Chapter 5 Nonlinear control systems design

Professor Jie Huang

Dept. Mechanical and Automation Engineering The Chinese University of Hong Kong

Outline

■ Introduction

② ♦ Stabilization by backstepping

lacksquare 1 Introduction 1.1 Problem description

Given a nonlinear control system

$$\dot{x} = f(x) + g(x)u, x(0) = x_0$$

 $y = h(x),$ (5.1)

find a feedback control law so that the closed-loop system has some desirable behaviors.

System (5.1) is linear in the input u and is called affine system. Most practical systems can be put in the form (5.1).

1.2 Two fundamental control problems

1.2.1 Stabilization problem

Given (5.1), find a state feedback control law

$$u = k(x),$$
 $k(0) = 0$ (5.2)

such that the E.P. of the closed-loop system

$$\dot{x} = f(x) + g(x)k(x)$$

at x=0 is (globally) asymptotically stable.

Remarks:

(a) Lyapunov linearization cannot guarantee global A.S. Thus, k(x) is obtained based on Lyapunov's direct method. k(x) is usually nonlinear.

☐ 1.2.1 Stabilization problem (cont.)

Example 1:

An inverted pendulum

$$J\ddot{\theta} - mgl\sin\theta = \tau \quad \Rightarrow \quad \begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{u + mgl\sin x_1}{J} \end{array}$$

where $u = \tau$, $x_1 = \theta$ and $x_2 = \dot{\theta}$.

Let

$$u = J(-k_d x_2 - k_p x_1) - mgl \sin x_1 \quad \Rightarrow \quad \begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = -k_d x_2 - k_p x_1. \end{array}$$

Therefore, the E.P. of the closed-loop system is G.A.S. if $k_d > 0$, $k_n > 0$.

Note: The closed-loop system is a linear system.

1.2 Two fundamental control problems

1.2.2 Tracking problem

Given (5.1) and a (sufficiently smooth) reference input (desirable trajectory) $y_d(t)$, find a control law

$$u = k(x, y_d(t), ..., y_d^{(\rho)}(t))$$
(5.3)

where k(0,0,...,0)=0, and ρ is some integer such that

(i) the E.P. of

$$\dot{x} = f(x) + g(x)k(x, 0, ..., 0)$$

is (globally) A.S. and (ii)

$$\lim_{t \to \infty} (y(t) - y_d(t)) = 0.$$

Remark: Condition (i) guarantees that the state of the closed-loop system is bounded for sufficiently small reference input and initial state (Total Stability).

1.2.2 Tracking problem (cont.)

Example 2: Consider the inverted pendulum with $y_d(t) = \sin \omega t$

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & \dfrac{u + mgl\sin x_1}{J} \\ y & = & x_1. \end{array}$$

Letting $e = y - y_d(t)$ and

$$u = J(\ddot{y}_d - k_d \dot{e} - k_p e) - mgl \sin x_1$$

gives

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & \ddot{y}_d(t) - k_d \dot{e} - k_p e \\ y & = & x_1. \end{array}$$

Therefore *e* satisfies

$$\ddot{e} + k_d \dot{e} + k_p e = 0.$$

Since $s^2 + k_d s + k_p$ is stable when $k_d > 0$, $k_p > 0$, $\lim_{t \to \infty} e(t) = 0$.

Remarks:

- (a) Problem 1 is the special case of problem 2 when $y_d(t) = 0$.
- (b) The two examples have shown that it is possible to use nonlinear control laws to obtain a closed-loop system with a desirable behavior. How to systematically obtain the control laws is the topic of the nonlinear control system design.

■ 1.3 Other desirable behaviors

- Disturbance rejection / Attenuation
- Speed of response
- Control effort
- Robustness
- Cost...

■ 1.4 Approaches

- Backstepping for strictly feedback system.
- Input-output linearization for minimum phase systems.
- Variable structure control / sliding control for uncertain minimum phase systems.
- Adaptive control for parametric uncertain systems.
- For nonlinear systems, not a single method works for all systems.
- Different methods have been developed to handle different classes of nonlinear systems with various special forms.

2 Stabilization by backstepping 2.1 Introduction

- Backstepping is a systematic nonlinear control design method devoloped in the 1990s.
- It can be used to solve the stabilization problem and the asymptotic tracking problem for nonlinear systems in strict feedback form to be described shortly.
- In what follows, we will focus on the stabilization problem.
- The exposition of the rest of this chapter is mainly based on

Hassan K. Khalil, "Nonlinear Systems," Third Edition, Prentice Hall. 2002.

2.2 Review of Lyapunov's second method

Given $\dot{x} = f(x)$, f(0) = 0, $x \in \Re^n$, x = 0 is G.A.S. if there exists a radially unbounded P.D. function V(x) such that

$$\dot{V} = \frac{\partial V(x)}{\partial x} f(x)$$

is N.D. for all $x \in \mathbb{R}^n$.

2.2 Review of Lyapunov's second method (cont.)

Consider

$$\dot{x} = f(x) + g(x)u, \qquad x \in \Re^n, \qquad u \in \Re^1.$$

Want to find u = k(x), k(0) = 0 such that there exists a radially unbounded global Lyapunov function V(x) for

$$\dot{x} = f_c(x) = f(x) + g(x)k(x)$$

satisfying

$$\frac{\partial V(x)}{\partial x} \left(f(x) + g(x)k(x) \right) < 0, \qquad \forall \ x \neq 0.$$

Remark: Unlike the stability analysis of a nonlinear system $\dot{x} = f(x)$ where a single function V(x) needs to be found, the stabilization problem studied here involves two functions k(x) and V(x) for $\dot{x} = f(x) + g(x)u$.

2.3 systems in strict-feedback form or lower triangular form

$$\begin{array}{rcl} \dot{x}_1 & = & f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 & = & f_2(x_1, x_2) + g_2(x_1, x_2)x_3 \\ & & \cdots \\ \dot{x}_{n-1} & = & f_{n-1}(x_1, ..., x_{n-1}) + g_{n-1}(x_1, ..., x_{n-1})x_n \\ \dot{x}_n & = & f_n(x_1, ..., x_n) + g_n(x_1, ..., x_n)u. \end{array}$$

where $x_i \in \Re$, $i = 1, \dots, n$, and $u \in \Re$.

2.3 systems in strict-feedback form or lower triangular form (cont.)

The system can be put in the standard form (5.1) with

$$f(x) = \begin{bmatrix} f_1(x_1) + g_1(x_1)x_2 \\ f_2(x_1, x_2) + g_2(x_1, x_2)x_3 \\ \dots \\ f_{n-1}(x_1, \dots, x_{n-1}) + g_{n-1}(x_1, \dots, x_{n-1})x_n \\ f_n(x_1, \dots, x_n) \end{bmatrix},$$

$$g(x) = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ g_n(x_1, \dots, x_n) \end{bmatrix}.$$

2.4 Backstepping

2.4.1 Control Lyapunov function (C.L.F.)

Consider

$$\dot{\eta} = f(\eta) + g(\eta)u, \quad \eta \in \Re^n, \quad u \in \Re^1$$
 (5.4)

where f(0) = 0, and $f(\eta)$ and $g(\eta)$ are smooth functions of $\eta \in \Re^n$.

A P.D. function $V(\eta)$ is a control Lyapunov function of (5.4) with respect to state feedback $u=\phi(\eta)$ with $\phi(0)=0$ if

$$\dot{V}(\eta)\Big|_{u=\phi(\eta)} = \frac{\partial V(\eta)}{\partial \eta} [f(\eta) + g(\eta)\phi(\eta)] < 0, \quad \forall \eta \neq 0$$
 (5.5)

Remarks

(a) If (5.4) has a C.L.F. w.r.t. $u = \phi(\eta)$, then the E.P. of

$$\dot{\eta} = f(\eta) + g(\eta)\phi(\eta) \tag{5.6}$$

at $\eta=0$ is A.S. Moreover, if $V(\eta)$ is radially unbounded, then the E.P. is G.A.S.

☐ 2.4.1 Control Lyapunov function (C.L.F.) (cont.)

(b) Existence of C.L.F. for one dimensional system If $n=1,\ g(\eta)\neq 0,\ \forall\ \eta,$ then $V(\eta)=\frac{1}{2}\eta^2$ is a C.L.F. for (5.4) w.r.t

$$u = \phi(\eta) = \frac{-\alpha \eta - f(\eta)}{g(\eta)}, \qquad \forall \ \alpha > 0$$
 (5.7)

In fact, the closed-loop system is

$$\dot{\eta} = f(\eta) + g(\eta)\phi(\eta) = -\alpha\eta$$

and

$$\dot{V}(\eta) = \eta \dot{\eta} = -\alpha \eta^2 < 0, \ \eta \neq 0.$$

But $g(\eta) \neq 0$ is not necessary. For example, consider

$$\dot{\eta}=\eta u$$

It can be verified that $V(\eta)=\frac{1}{2}\eta^2$ is a C.L.F. for $\dot{\eta}=\eta u$ w.r.t.

$$\phi(\eta) = -\eta^2 \text{ since } \dot{V}(\eta) \Big|_{u=\phi(\eta)} = \frac{\partial V(\eta)}{\partial \eta} [f(\eta) + g(\eta)\phi(\eta)] = -\eta^4.$$

The C.L.F. defined here is not unique and it depends on the control function ϕ . It is possible to define C.L.F. uniquely solely based on the given system (5.4).

2.4.2 Lemma 1

Lemma 1

Consider

$$\dot{\eta} = f(\eta) + g(\eta)\zeta, \quad \eta \in \Re^n$$

$$\dot{\zeta} = u \quad \zeta \in \Re^1, \quad u \in \Re^1$$
(5.8)

$$\dot{\zeta} = u \qquad \zeta \in \Re^1, \ u \in \Re^1 \tag{5.9}$$

where f(0) = 0, $f(\eta)$ and $g(\eta)$ are smooth.

If (5.8) has a control Luapunov function $V(\eta)$ w.r.t. state feedback $\zeta = \phi(\eta)$, then the system described by (5.8) and (5.9) has a control Lyapunov function

$$V_a(\eta,\zeta) = V(\eta) + \frac{1}{2}(\zeta - \phi(\eta))^2$$
 (5.10)

w.r.t. state feedback

$$u = \phi_{a}(\eta, \zeta)$$

$$= \frac{\partial \phi(\eta)}{\partial \eta} [f(\eta) + g(\eta)\zeta] - \frac{\partial V(\eta)}{\partial \eta} g(\eta) - k(\zeta - \phi(\eta)) \quad (5.11)$$

where k > 0.

☐ 2.4.2 Lemma 1 (cont.)

Thus the E.P. of the closed-loop system

$$\dot{\eta} = f(\eta) + g(\eta)\zeta
\dot{\zeta} = \phi_a(\eta, \zeta)$$
(5.12)

is A.S. Moreover, if $V(\eta)$ is radially unbounded, so is $V_a(\eta,\zeta)$. Thus, the E.P. of (5.12) is G.A.S.

\square 2.4.3 Example 1

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2 (5.13)$$

$$\dot{x}_2 = u \tag{5.14}$$

which is in the form of (5.8) and (5.9) with $\eta=x_1$ and $\zeta=x_2$

$$f(\eta) = \eta^2 - \eta^3, \qquad g(\eta) = 1.$$

Consider (5.13). By (5.7), under the control $\phi(x_1)=-x_1-x_1^2+x_1^3$, the closed-loop system has a control Lyapunov function

$$V(x_1) = \frac{1}{2}x_1^2$$

(In fact, under $x_2 = \phi(x_1)$, (5.13) becomes $\dot{x}_1 = -x_1$).

\square 2.4.3 Example 1 (cont.)

By Lemma 1, (5.13) and (5.14) have a control Lyapunov function

$$V_a(x_1, x_2) = V(x_1) + \frac{1}{2}(x_2 - \phi(x_1))^2$$
$$= \frac{1}{2}x_1^2 + \frac{1}{2}(x_2 + x_1 + x_1^2 - x_1^3)^2$$
(5.15)

w.r.t.

$$u = \phi_a(x_1, x_2) = \frac{\partial \phi(x_1)}{\partial x_1} (x_1^2 - x_1^3 + x_2) - \frac{\partial V(x_1)}{\partial x_1} - k(x_2 - \phi(x_1))$$
$$= (-1 - 2x_1 + 3x_1^2)(x_1^2 - x_1^3 + x_2) - x_1 - k(x_2 + x_1 + x_1^2 - x_1^3)$$

where k > 0. Therefore, the E.P. of

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2
\dot{x}_2 = \phi_a(x_1, x_2)$$

is A.S. (In fact, G.A.S. since $V(x_1)$ is radially unbounded).

Proof: Since $V(\eta)$ is C.L.F. for (5.8) w.r.t. $\zeta = \phi(\eta)$, we have

$$\dot{V}(\eta)\Big|_{\zeta=\phi(\eta)} = \frac{\partial V(\eta)}{\partial \eta} [f(\eta) + g(\eta)\phi(\eta)] < 0, \qquad \forall \ \eta \neq 0$$

Let

$$V_a(\eta,\zeta) = V(\eta) + \frac{1}{2}(\zeta - \phi(\eta))^2,$$

which is globally positive definite.

2.4.4 Proof of Lemma 1 (cont.)

Then

$$\begin{split} \dot{V}_{a}(\eta,\zeta) &= \frac{\partial V_{a}(\eta,\zeta)}{\partial \eta}\dot{\eta} + \frac{\partial V_{a}(\eta,\zeta)}{\partial \zeta}\dot{\zeta} \\ &= \frac{\partial V(\eta)}{\partial \eta}[f(\eta) + g(\eta)\zeta] - (\zeta - \phi(\eta))\frac{\partial \phi(\eta)}{\partial \eta}[f(\eta) + g(\eta)\zeta] \\ &+ (\zeta - \phi(\eta))u \\ &= \frac{\partial V(\eta)}{\partial \eta}[f(\eta) + g(\eta)(\zeta - \phi(\eta) + \phi(\eta))] \\ &- (\zeta - \phi(\eta))\left[\frac{\partial \phi(\eta)}{\partial \eta}\{f(\eta) + g(\eta)\zeta\} - u\right] \\ &= \frac{\partial V(\eta)}{\partial \eta}[f(\eta) + g(\eta)\phi(\eta)] \\ &- (\zeta - \phi(\eta))\left[\frac{\partial \phi(\eta)}{\partial \eta}\{f(\eta) + g(\eta)\zeta\} - u - \frac{\partial V(\eta)}{\partial \eta}g(\eta)\right] \end{split}$$

lacksquare 2.4.4 Proof of Lemma 1 (cont.)

Choosing u such that

$$\left[\frac{\partial \phi(\eta)}{\partial \eta} \{f(\eta) + g(\eta)\zeta\} - u - \frac{\partial V(\eta)}{\partial \eta} g(\eta)\right] = -k(\zeta - \phi(\eta))$$

for some k > 0 gives

$$u = \phi_a(\eta, \zeta) = \frac{\partial \phi(\eta)}{\partial \eta} [f(\eta) + g(\eta)\zeta] - \frac{\partial V(\eta)}{\partial \eta} g(\eta) - k(\zeta - \phi(\eta))$$

. Then, $\forall (\eta, \zeta) \neq (0, 0)$,

$$\dot{V}_a(\eta,\zeta) = \frac{\partial V(\eta)}{\partial \eta} [f(\eta) + g(\eta)\phi(\eta)] - k(\zeta - \phi(\eta))^2 < 0$$

Therefore, $V_a(\eta,\zeta)$ is a C.L.F. of (5.8) and (5.9) w.r.t. $\phi_a(\eta,\zeta)$. Moreover, if $V(\eta)$ is radially unbounded, so is $V_a(\eta,\zeta)$.

Thus, under $u = \phi_a(\eta, \zeta)$, the E.P. of

$$\dot{\eta} = f(\eta) + g(\eta)\zeta
\dot{\zeta} = \phi_a(\eta, \zeta)$$

is G.A.S.

2.5 Applying Lemma 1 to dimension 3 system

Example 2

$$\begin{cases} \dot{x}_1 = x_1^2 - x_1^3 + x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = u \end{cases}$$
 (5.16)

Let

$$\eta = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad f(\eta) = \begin{bmatrix} x_1^2 - x_1^3 + x_2 \\ 0 \end{bmatrix}, \quad \zeta = x_3, \quad g(\eta) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Then the system is in the form

$$\dot{\eta} = f(\eta) + g(\eta)\zeta
\dot{\zeta} = u$$
(5.17)

☐ 2.5 Applying Lemma 1 to dimension 3 system (cont.)

To find a C.L.F. for system (5.17), all we need to do is to find a C.L.F. for the η subsystem

$$\dot{\eta} = f(\eta) + g(\eta)\zeta \tag{5.18}$$

or

$$\begin{cases} \dot{x}_1 = x_1^2 - x_1^3 + x_2 \\ \dot{x}_2 = x_3 \end{cases}$$
 (5.19)

viewing $\zeta = x_3$ as a control.

2.5 Applying Lemma 1 to dimension 3 system (cont.)

But, by Example 1, we have already known

$$V_a(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}(x_2 + x_1 + x_1^2 - x_1^3)^2$$
 (5.20)

is a C.L.F. for (5.19) w.r.t.

$$\phi_a(x_1, x_2) = (-1 - 2x_1 + 3x_1^2)(x_1^2 - x_1^3 + x_2) -x_1 - k_1(x_2 + x_1 + x_1^2 - x_1^3), \quad k_1 > 0$$
 (5.21)

2.5 Applying Lemma 1 to dimension 3 system (cont.)

Thus, by Lemma 1, a C.L.F. for (5.16) is

$$V(x_1, x_2, x_3) = V_a(x_1, x_2) + \frac{1}{2}(x_3 - \phi_a(x_1, x_2))^2$$
 (5.22)

w.r.t.

$$u = \phi(x_1, x_2, x_3)$$

$$= \frac{\partial \phi_a(x_1, x_2)}{\partial (x_1, x_2)} [f(x_1, x_2) + g(x_1, x_2)x_3]$$

$$- \frac{\partial V_a(x_1, x_2)}{\partial (x_1, x_2)} g(x_1, x_2) - k_2(x_3 - \phi_a(x_1, x_2))$$
 (5.23)

where $k_2 > 0$.

2.6 Extension of Lemma 1

Consider

$$\dot{\eta} = f(\eta) + g(\eta)\zeta, \qquad \eta \in \mathbb{R}^n$$

$$\dot{\zeta} = f_a(\eta, \zeta) + g_a(\eta, \zeta)u, \qquad \zeta \in \mathbb{R}^1, \quad u \in \mathbb{R}^1$$
(5.24)

$$\dot{\zeta} = f_a(\eta, \zeta) + g_a(\eta, \zeta)u, \qquad \zeta \in \Re^1, \quad u \in \Re^1$$
 (5.25)

where $f_a(0,0) = 0$ and $g_a(\eta,\zeta) \neq 0$, $\forall \eta, \zeta$.

Using the input transformation

$$u = \frac{1}{g_a(\eta, \zeta)} [u_a - f_a(\eta, \zeta)] \tag{5.26}$$

gives

$$\dot{\eta} = f(\eta) + g(\eta)\zeta \tag{5.27}$$

$$\dot{\zeta} = \eta$$

$$\dot{\zeta} = u_a \tag{5.28}$$

2.6 Extension of Lemma 1 (cont.)

Therefore, by Lemma 1, if (5.27) has a C.L.F. $V(\eta)$ w.r.t. state feedback $\zeta=\phi(\eta)$, then (5.27) and (5.28) have a C.L.F.

$$V_a(\eta,\zeta) = V(\eta) + \frac{1}{2}(\zeta - \phi(\eta))^2$$
 (5.29)

w.r.t.

$$u_a = \phi_a(\zeta, \eta) = \frac{\partial \phi(\eta)}{\partial \eta} [f(\eta) + g(\eta)\zeta] - \frac{\partial V(\eta)}{\partial \eta} g(\eta) - k(\zeta - \phi(\eta))$$

where k > 0. Therefore, (5.24) and (5.25) have the same C.L.F. w.r.t.

$$u = \frac{1}{g_a(\eta, \zeta)} [\phi_a(\eta, \zeta) - f_a(\eta, \zeta)]$$
(5.30)

2.6 Extension of Lemma 1 (cont.)

Example 3

$$\begin{cases} \dot{x}_1 = x_1^2 - x_1^3 + x_2 \\ \dot{x}_2 = x_3 \\ \dot{x}_3 = x_2 \sin x_1 + e^{-x_3} u \end{cases}$$
 (5.31)

Letting $u = e^{x_3}(u_a - x_2 \sin x_1)$ gives

$$\dot{x}_1 = x_1^2 - x_1^3 + x_2
\dot{x}_2 = x_3
\dot{x}_3 = u_a$$
(5.32)

From previous example, it is known that a C.L.F. for (5.32) is given by $V(x_1,x_2,x_3)$ described by (5.22) w.r.t. $u_a=\phi(x_1,x_2,x_3)$ described by (5.23).

According to (5.30), a C.L.F. for (5.31) is also given by $V(x_1, x_2, x_3)$ w.r.t.

$$u = \frac{1}{e^{-x_3}} [\phi(x_1, x_2, x_3) - x_2 \sin x_1]$$
 (5.33)

2.7 General case

$$\begin{cases}
\dot{x} = f_0(x) + g_0(x)z_1 \\
\dot{z}_1 = f_1(x, z_1) + g_1(x, z_1)z_2 \\
\dot{z}_2 = f_2(x, z_1, z_2) + g_2(x, z_1, z_2)z_3 \\
... \\
\dot{z}_{l-1} = f_{l-1}(x, z_1, ..., z_{l-1}) + g_{l-1}(x, z_1, ..., z_{l-1})z_l \\
\dot{z}_l = f_l(x, z_1, ..., z_l) + g_l(x, z_1, ..., z_l)u \quad (l = 1 \Rightarrow (5.24)\&(5.25))
\end{cases}$$
(5.34)

where

$$x \in \Re^n, \qquad z_1, ..., z_l \in \Re^1,$$

$$f_0(0) = f_1(0) = ... = f_l(0) = 0,$$

$$g_i(x, z_1, ..., z_i) \neq 0, \qquad \text{for } 0 \leq i \leq l$$

2.7 General case (cont.)

Assume $V_0(x)$ is C.L.F. for

$$\dot{x} = f_0(x) + g_0(x)z_1 \tag{5.35}$$

w.r.t. $z_1 = \phi_0(x)$. Then a feedback control law

$$u = \phi(x, z_1, ..., z_l)$$

for stabilizing (5.34) can be recursively constructed as follows:

2.7 General case (cont.)

Step 1

Applying the extension of Lemma 1 to

$$\begin{cases} \dot{x} = f_0(x) + g_0(x)z_1\\ \dot{z}_1 = f_1(x_1, z_1) + g_1(x_1, z_1)z_2 \end{cases}$$
 (5.36)

and using (5.29) and (5.30) to obtain a C.L.F. $V_1(x,z_1)$ for (5.36) as follows

$$V_1(x, z_1) = V_0(x) + \frac{1}{2}(z_1 - \phi_0(x))^2$$
(5.37)

w.r.t.

$$z_{2} = \phi_{1}(x, z_{1})$$

$$= \frac{1}{g_{1}(x, z_{1})} \left[\frac{\partial \phi_{0}(x)}{\partial x} (f_{0}(x) + g_{0}(x)z_{1}) - \frac{\partial V_{0}(x)}{\partial x} g_{0}(x) - k_{1}(z_{1} - \phi_{0}(x)) - f_{1}(x, z_{1}) \right], \quad k_{1} > 0$$
(5.38)

Step 2

Applying the extension of Lemma 1 again to

$$\begin{cases}
\dot{x} = f_0(x) + g_0(x)z_1 \\
\dot{z}_1 = f_1(x_1, z_1) + g_1(x_1, z_1)z_2 \\
\dot{z}_2 = f_2(x, z_1, z_2) + g_2(x, z_1, z_2)z_3
\end{cases}$$
(5.39)

with

$$\eta = \begin{bmatrix} x \\ z_1 \end{bmatrix}, \quad \zeta = z_2, \quad u = z_3,
f(\eta) = \begin{bmatrix} f_0(x) + g_0(x)z_1 \\ f_1(x_1, z_1) \end{bmatrix}, \quad g(\eta) = \begin{bmatrix} 0 \\ g_1(x_1, z_1) \end{bmatrix},
f_a(\eta, \zeta) = f_2(x, z_1, z_2), \quad g_a(\eta, \zeta) = g_2(x, z_1, z_2)$$

2.7 General case (cont.)

and using (5.29) and (5.30) again to obtain a C.L.F. $V_2(x,z_1,z_2)$ for (5.39) as follows

$$V_2(x, z_1, z_2) = V_1(x, z_1) + \frac{1}{2}(z_2 - \phi_1(x, z_1))^2$$
(5.40)

w.r.t.

$$z_{3} = \phi_{2}(x, z_{1}, z_{2})$$

$$= \frac{1}{g_{2}(x, z_{1}, z_{2})} \frac{\partial \phi_{1}(x, z_{1})}{(x, z_{1})} \begin{bmatrix} f_{0}(x) + g_{0}(x)z_{1} \\ f_{1}(x_{1}, z_{1}) + g_{1}(x_{1}, z_{1})z_{2} \end{bmatrix}$$

$$- \frac{1}{g_{2}(x, z_{1}, z_{2})} \frac{\partial V_{1}(x, z_{1})}{\partial (x, z_{1})} \begin{bmatrix} 0 \\ g_{1}(x_{1}, z_{1}) \end{bmatrix}$$

$$- \frac{1}{g_{2}(x, z_{1}, z_{2})} k_{2}(z_{2} - \phi_{1}(x, z_{1}))$$

$$- \frac{1}{g_{2}(x, z_{1}, z_{2})} f_{2}(x, z_{1}, z_{2}), \quad k_{2} > 0$$
(5.41)

Step I

Assume $V_{l-1}(x, z_1, ..., z_{l-1})$ is a C.L.F. for

$$\begin{cases}
\dot{x} = f_0(x) + g_0(x)z_1 \\
\dot{z}_1 = f_1(x, z_1) + g_1(x, z_1)z_2 \\
\dot{z}_2 = f_2(x, z_1, z_2) + g_2(x, z_1, z_2)z_3 \\
\dots \\
\dot{z}_{l-1} = f_{l-1}(x, z_1, \dots, z_{l-1}) + g_{l-1}(x, z_1, \dots, z_{l-1})z_l
\end{cases} (5.42)$$

w.r.t.

$$z_{l} = \phi_{l-1}(x, z_{1}, ..., z_{l-1})$$
(5.43)

\Box 2.7 General case (cont.)

Let

$$\eta = \begin{bmatrix} x \\ z_1 \\ \dots \\ z_{l-1} \end{bmatrix}, \quad \zeta = z_l$$

$$f(\eta) = \begin{bmatrix} f_0(x) + g_0(x)z_1 \\ f_1(x, z_1) + g_1(x, z_1)z_3 \\ \dots \\ f_{l-1}(x, z_1, \dots, z_{l-1}) \end{bmatrix}, g(\eta) = \begin{bmatrix} 0 \\ 0 \\ \dots \\ g_{l-1}(x, z_1, \dots, z_{l-1}) \end{bmatrix}$$

$$f_a(\eta, \zeta) = f_l(x, z_1, \dots, z_l), \qquad g_a(\eta, \zeta) = g_l(x, z_1, \dots, z_l).$$

\square 2.7 General case (cont.)

Then using (5.29) and (5.30) gives a C.L.F. for (5.34)

$$V(x, z_1, ..., z_{l-1}, z_l) = V_{l-1}(x, z_1, ..., z_{l-1}) + \frac{1}{2} (z_l - \phi_{l-1}(x, z_1, ..., z_{l-1}))^2$$

w.r.t. the control

$$u = \frac{1}{g_l(x, z_1, ..., z_l)} \frac{\partial \phi_{l-1}(x, z_1, ..., z_{l-1})}{\partial u} (f(u) + g(u)z_l)$$

$$- \frac{1}{g_l(x, z_1, ..., z_l)} \frac{\partial V_{l-1}(x, z_1, ..., z_{l-1})}{\partial u} g(u)$$

$$- \frac{1}{g_l(x, z_1, ..., z_l)} k_l(z_l - \phi_{l-1}(x, z_1, ..., z_{l-1}))$$

$$- \frac{1}{g_l(x, z_1, ..., z_l)} f_l(x, z_1, ..., z_l), \qquad k_l > 0$$

Remarks:

- (i) The key to the success of the above procedure is to be able to find $V_0(x)$ and $\phi_0(x)$.
- (ii) $V_0(x)$ and $\phi_0(x)$ are not unique.
- (iii) $k_1, k_2, ...k_l$ are design parameters.