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j 1 Introduction 1.1 Problem description

Given a nonlinear control system

ẋ = f(x) + g(x)u, x(0) = x0

y = h(x), (5.1)

find a feedback control law so that the closed-loop system has some
desirable behaviors.

System (5.1) is linear in the input u and is called affine system. Most
practical systems can be put in the form (5.1).
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j 1.2 Two fundamental control problems

1.2.1 Stabilization problem

Given (5.1), find a state feedback control law

u = k(x), k(0) = 0 (5.2)

such that the E.P. of the closed-loop system

ẋ = f(x) + g(x)k(x)

at x = 0 is (globally) asymptotically stable.

Remarks:
(a) Lyapunov linearization cannot guarantee global A.S. Thus, k(x) is
obtained based on Lyapunov’s direct method. k(x) is usually nonlinear.
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j 1.2.1 Stabilization problem (cont.)

(b) Example 1:
An inverted pendulum

Jθ̈ −mgl sin θ = τ ⇒ ẋ1 = x2
ẋ2 =

u+mgl sinx1
J

where u = τ, x1 = θ and x2 = θ̇.
Let

u = J(−kdx2 − kpx1)−mgl sinx1 ⇒ ẋ1 = x2
ẋ2 = −kdx2 − kpx1.

Therefore, the E.P. of the closed-loop system is G.A.S. if kd > 0, kp > 0.

Note: The closed-loop system is a linear system.
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j 1.2 Two fundamental control problems

1.2.2 Tracking problem

Given (5.1) and a (sufficiently smooth) reference input (desirable
trajectory) yd(t), find a control law

u = k(x, yd(t), ..., y
(ρ)
d (t)) (5.3)

where k(0, 0, ..., 0) = 0, and ρ is some integer such that
(i) the E.P. of

ẋ = f(x) + g(x)k(x, 0, ..., 0)

is (globally) A.S. and
(ii)

lim
t→∞

(y(t)− yd(t)) = 0.

Remark: Condition (i) guarantees that the state of the closed-loop system
is bounded for sufficiently small reference input and initial state (Total
Stability).
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j 1.2.2 Tracking problem (cont.)

Example 2: Consider the inverted pendulum with yd(t) = sinωt

ẋ1 = x2

ẋ2 =
u+mgl sinx1

J
y = x1.

Letting e = y − yd(t) and

u = J(ÿd − kdė− kpe)−mgl sinx1
gives

ẋ1 = x2

ẋ2 = ÿd(t)− kdė− kpe
y = x1.

Therefore e satisfies
ë+ kdė+ kpe = 0.

Since s2 + kds+ kp is stable when kd > 0, kp > 0, limt→∞ e(t) = 0.
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j 1.2.2 Tracking problem (cont.)

Remarks:

(a) Problem 1 is the special case of problem 2 when yd(t) = 0.

(b) The two examples have shown that it is possible to use nonlinear
control laws to obtain a closed-loop system with a desirable behavior. How
to systematically obtain the control laws is the topic of the nonlinear
control system design.
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j 1.3 Other desirable behaviors

Disturbance rejection / Attenuation

Speed of response

Control effort

Robustness

Cost...
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j 1.4 Approaches

Backstepping for strictly feedback system.

Input-output linearization for minimum phase systems.

Variable structure control / sliding control for uncertain minimum
phase systems.

Adaptive control for parametric uncertain systems.

For nonlinear systems, not a single method works for all systems.

Different methods have been developed to handle different classes of
nonlinear systems with various special forms.
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j 2 Stabilization by backstepping 2.1 Introduction

Backstepping is a systematic nonlinear control design method
devoloped in the 1990s.

It can be used to solve the stabilization problem and the asymptotic
tracking problem for nonlinear systems in strict feedback form to be
described shortly.

In what follows, we will focus on the stabilization problem.

The exposition of the rest of this chapter is mainly based on

Hassan K. Khalil, “Nonlinear Systems,” Third Edition, Prentice
Hall, 2002.
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j 2.2 Review of Lyapunov’s second method

Given ẋ = f(x), f(0) = 0, x ∈ <n, x = 0 is G.A.S. if there exists a
radially unbounded P.D. function V (x) such that

V̇ =
∂V (x)

∂x
f(x)

is N.D. for all x ∈ <n.
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j 2.2 Review of Lyapunov’s second method (cont.)

Consider

ẋ = f(x) + g(x)u, x ∈ <n, u ∈ <1.

Want to find u = k(x), k(0) = 0 such that there exists a radially
unbounded global Lyapunov function V (x) for

ẋ = fc(x) = f(x) + g(x)k(x)

satisfying

∂V (x)

∂x
(f(x) + g(x)k(x)) < 0, ∀ x 6= 0.

Remark: Unlike the stability analysis of a nonlinear system ẋ = f(x)
where a single function V (x) needs to be found, the stabilization problem
studied here involves two functions k(x) and V (x) for ẋ = f(x) + g(x)u.
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j 2.3 systems in strict-feedback form or lower
triangular form

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...

ẋn−1 = fn−1(x1, ..., xn−1) + gn−1(x1, ..., xn−1)xn

ẋn = fn(x1, ..., xn) + gn(x1, ..., xn)u.

where xi ∈ <, i = 1, · · · , n, and u ∈ <.
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j 2.3 systems in strict-feedback form or lower
triangular form (cont.)

The system can be put in the standard form (5.1) with

f(x) =


f1(x1) + g1(x1)x2

f2(x1, x2) + g2(x1, x2)x3
...

fn−1(x1, ..., xn−1) + gn−1(x1, ..., xn−1)xn
fn(x1, ..., xn)

 ,

g(x) =


0
0
...
0

gn(x1, ..., xn)

 .
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j 2.4 Backstepping

2.4.1 Control Lyapunov function (C.L.F.)

Consider

η̇ = f(η) + g(η)u, η ∈ <n, u ∈ <1 (5.4)

where f(0) = 0, and f(η) and g(η) are smooth functions of η ∈ <n.

A P.D. function V (η) is a control Lyapunov function of (5.4) with respect
to state feedback u = φ(η) with φ(0) = 0 if

V̇ (η)
∣∣∣
u=φ(η)

=
∂V (η)

∂η
[f(η) + g(η)φ(η)] < 0, ∀ η 6= 0 (5.5)
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j 2.4.1 Control Lyapunov function (C.L.F.) (cont.)

Remarks

(a) If (5.4) has a C.L.F. w.r.t. u = φ(η), then the E.P. of

η̇ = f(η) + g(η)φ(η) (5.6)

at η = 0 is A.S. Moreover, if V (η) is radially unbounded, then the E.P. is
G.A.S.
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j 2.4.1 Control Lyapunov function (C.L.F.) (cont.)

(b) Existence of C.L.F. for one dimensional system
If n = 1, g(η) 6= 0, ∀ η, then V (η) = 1

2η
2 is a C.L.F. for (5.4) w.r.t

u = φ(η) =
−αη − f(η)

g(η)
, ∀ α > 0 (5.7)

In fact, the closed-loop system is

η̇ = f(η) + g(η)φ(η) = −αη

and

V̇ (η) = ηη̇ = −αη2 < 0, η 6= 0.
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But g(η) 6= 0 is not necessary. For example, consider

η̇ = ηu

It can be verified that V (η) = 1
2η

2 is a C.L.F. for η̇ = ηu w.r.t.

φ(η) = −η2 since V̇ (η)
∣∣∣
u=φ(η)

= ∂V (η)
∂η [f(η) + g(η)φ(η)] = −η4.

The C.L.F. defined here is not unique and it depends on the control
function φ. It is possible to define C.L.F. uniquely solely based on the
given system (5.4).
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j 2.4.2 Lemma 1

Lemma 1
Consider

η̇ = f(η) + g(η)ζ, η ∈ <n (5.8)

ζ̇ = u ζ ∈ <1, u ∈ <1 (5.9)

where f(0) = 0, f(η) and g(η) are smooth.
If (5.8) has a control Luapunov function V (η) w.r.t. state feedback
ζ = φ(η), then the system described by (5.8) and (5.9) has a control
Lyapunov function

Va(η, ζ) = V (η) +
1

2
(ζ − φ(η))2 (5.10)

w.r.t. state feedback

u = φa(η, ζ)

=
∂φ(η)

∂η
[f(η) + g(η)ζ]− ∂V (η)

∂η
g(η)− k(ζ − φ(η)) (5.11)

where k > 0.
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j 2.4.2 Lemma 1 (cont.)

Thus the E.P. of the closed-loop system

η̇ = f(η) + g(η)ζ

ζ̇ = φa(η, ζ) (5.12)

is A.S. Moreover, if V (η) is radially unbounded, so is Va(η, ζ). Thus, the
E.P. of (5.12) is G.A.S.

Jie Huang ( MAE, CUHK ) Nonlinear control systems design 21 / 43



j 2.4.3 Example 1

ẋ1 = x21 − x31 + x2 (5.13)

ẋ2 = u (5.14)

which is in the form of (5.8) and (5.9) with η = x1 and ζ = x2

f(η) = η2 − η3, g(η) = 1.

Consider (5.13). By (5.7), under the control φ(x1) = −x1 − x21 + x31, the
closed-loop system has a control Lyapunov function

V (x1) =
1

2
x21

(In fact, under x2 = φ(x1), (5.13) becomes ẋ1 = −x1).
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j 2.4.3 Example 1 (cont.)

By Lemma 1, (5.13) and (5.14) have a control Lyapunov function

Va(x1, x2) = V (x1) +
1

2
(x2 − φ(x1))2

=
1

2
x21 +

1

2
(x2 + x1 + x21 − x31)2 (5.15)

w.r.t.

u = φa(x1, x2) =
∂φ(x1)

∂x1
(x21 − x31 + x2)−

∂V (x1)

∂x1
− k(x2 − φ(x1))

= (−1− 2x1 + 3x21)(x
2
1 − x31 + x2)− x1 − k(x2 + x1 + x21 − x31)

where k > 0. Therefore, the E.P. of

ẋ1 = x21 − x31 + x2

ẋ2 = φa(x1, x2)

is A.S. (In fact, G.A.S. since V (x1) is radially unbounded).
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j 2.4.4 Proof of Lemma 1

Proof: Since V (η) is C.L.F. for (5.8) w.r.t. ζ = φ(η), we have

V̇ (η)
∣∣∣
ζ=φ(η)

=
∂V (η)

∂η
[f(η) + g(η)φ(η)] < 0, ∀ η 6= 0

Let

Va(η, ζ) = V (η) +
1

2
(ζ − φ(η))2,

which is globally positive definite.
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j 2.4.4 Proof of Lemma 1 (cont.)

Then

V̇a(η, ζ) =
∂Va(η, ζ)

∂η
η̇ +

∂Va(η, ζ)

∂ζ
ζ̇

=
∂V (η)

∂η
[f(η) + g(η)ζ]− (ζ − φ(η))∂φ(η)

∂η
[f(η) + g(η)ζ]

+(ζ − φ(η))u

=
∂V (η)

∂η
[f(η) + g(η)(ζ − φ(η) + φ(η))]

−(ζ − φ(η))
[
∂φ(η)

∂η
{f(η) + g(η)ζ} − u

]
=

∂V (η)

∂η
[f(η) + g(η)φ(η)]

−(ζ − φ(η))
[
∂φ(η)

∂η
{f(η) + g(η)ζ} − u− ∂V (η)

∂η
g(η)

]
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j 2.4.4 Proof of Lemma 1 (cont.)

Choosing u such that[
∂φ(η)

∂η
{f(η) + g(η)ζ} − u− ∂V (η)

∂η
g(η)

]
= −k(ζ − φ(η))

for some k > 0 gives

u = φa(η, ζ) =
∂φ(η)

∂η
[f(η) + g(η)ζ]− ∂V (η)

∂η
g(η)− k(ζ − φ(η))

. Then, ∀ (η, ζ) 6= (0, 0),

V̇a(η, ζ) =
∂V (η)

∂η
[f(η) + g(η)φ(η)]− k(ζ − φ(η))2 < 0

Therefore, Va(η, ζ) is a C.L.F. of (5.8) and (5.9) w.r.t. φa(η, ζ).
Moreover, if V (η) is radially unbounded, so is Va(η, ζ).
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Thus, under u = φa(η, ζ), the E.P. of

η̇ = f(η) + g(η)ζ

ζ̇ = φa(η, ζ)

is G.A.S.
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j 2.5 Applying Lemma 1 to dimension 3 system

Example 2 
ẋ1 = x21 − x31 + x2
ẋ2 = x3
ẋ3 = u

(5.16)

Let

η =

[
x1
x2

]
, f(η) =

[
x21 − x31 + x2

0

]
, ζ = x3, g(η) =

[
0
1

]
Then the system is in the form

η̇ = f(η) + g(η)ζ

ζ̇ = u (5.17)
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j 2.5 Applying Lemma 1 to dimension 3 system
(cont.)

To find a C.L.F. for system (5.17), all we need to do is to find a C.L.F. for
the η subsystem

η̇ = f(η) + g(η)ζ (5.18)

or {
ẋ1 = x21 − x31 + x2
ẋ2 = x3

(5.19)

viewing ζ = x3 as a control.
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j 2.5 Applying Lemma 1 to dimension 3 system
(cont.)

But, by Example 1, we have already known

Va(x1, x2) =
1

2
x21 +

1

2
(x2 + x1 + x21 − x31)2 (5.20)

is a C.L.F. for (5.19) w.r.t.

φa(x1, x2) = (−1− 2x1 + 3x21)(x
2
1 − x31 + x2)

−x1 − k1(x2 + x1 + x21 − x31), k1 > 0 (5.21)
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j 2.5 Applying Lemma 1 to dimension 3 system
(cont.)

Thus, by Lemma 1, a C.L.F. for (5.16) is

V (x1, x2, x3) = Va(x1, x2) +
1

2
(x3 − φa(x1, x2))2 (5.22)

w.r.t.

u = φ(x1, x2, x3)

=
∂φa(x1, x2)

∂(x1, x2)
[f(x1, x2) + g(x1, x2)x3]

−∂Va(x1, x2)
∂(x1, x2)

g(x1, x2)− k2(x3 − φa(x1, x2)) (5.23)

where k2 > 0.
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j 2.6 Extension of Lemma 1

Consider

η̇ = f(η) + g(η)ζ, η ∈ <n (5.24)

ζ̇ = fa(η, ζ) + ga(η, ζ)u, ζ ∈ <1, u ∈ <1 (5.25)

where fa(0, 0) = 0 and ga(η, ζ) 6= 0, ∀ η, ζ.
Using the input transformation

u =
1

ga(η, ζ)
[ua − fa(η, ζ)] (5.26)

gives

η̇ = f(η) + g(η)ζ (5.27)

ζ̇ = ua (5.28)
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j 2.6 Extension of Lemma 1 (cont.)

Therefore, by Lemma 1, if (5.27) has a C.L.F. V (η) w.r.t. state feedback
ζ = φ(η), then (5.27) and (5.28) have a C.L.F.

Va(η, ζ) = V (η) +
1

2
(ζ − φ(η))2 (5.29)

w.r.t.

ua = φa(ζ, η) =
∂φ(η)

∂η
[f(η) + g(η)ζ]− ∂V (η)

∂η
g(η)− k(ζ − φ(η))

where k > 0. Therefore, (5.24) and (5.25) have the same C.L.F. w.r.t.

u =
1

ga(η, ζ)
[φa(η, ζ)− fa(η, ζ)] (5.30)
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j 2.6 Extension of Lemma 1 (cont.)

Example 3 
ẋ1 = x21 − x31 + x2
ẋ2 = x3
ẋ3 = x2 sinx1 + e−x3u

(5.31)

Letting u = ex3(ua − x2 sinx1) gives

ẋ1 = x21 − x31 + x2
ẋ2 = x3
ẋ3 = ua

(5.32)

From previous example, it is known that a C.L.F. for (5.32) is given by
V (x1, x2, x3) described by (5.22) w.r.t. ua = φ(x1, x2, x3) described by
(5.23).
According to (5.30), a C.L.F. for (5.31) is also given by V (x1, x2, x3) w.r.t.

u =
1

e−x3
[φ(x1, x2, x3)− x2 sinx1] (5.33)
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j 2.7 General case



ẋ = f0(x) + g0(x)z1
ż1 = f1(x, z1) + g1(x, z1)z2
ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3
...
żl−1 = fl−1(x, z1, ..., zl−1) + gl−1(x, z1, ..., zl−1)zl
żl = fl(x, z1, ..., zl) + gl(x, z1, ..., zl)u (l = 1⇒ (5.24)&(5.25))

(5.34)

where

x ∈ <n, z1, ..., zl ∈ <1,

f0(0) = f1(0) = ... = fl(0) = 0,

gi(x, z1, ..., zi) 6= 0, for 0 ≤ i ≤ l
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j 2.7 General case (cont.)

Assume V0(x) is C.L.F. for

ẋ = f0(x) + g0(x)z1 (5.35)

w.r.t. z1 = φ0(x). Then a feedback control law

u = φ(x, z1, ..., zl)

for stabilizing (5.34) can be recursively constructed as follows:
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j 2.7 General case (cont.)

Step 1
Applying the extension of Lemma 1 to{

ẋ = f0(x) + g0(x)z1
ż1 = f1(x1, z1) + g1(x1, z1)z2

(5.36)

and using (5.29) and (5.30) to obtain a C.L.F. V1(x, z1) for (5.36) as
follows

V1(x, z1) = V0(x) +
1

2
(z1 − φ0(x))2 (5.37)

w.r.t.

z2 = φ1(x, z1)

=
1

g1(x, z1)
[
∂φ0(x)

∂x
(f0(x) + g0(x)z1)−

∂V0(x)

∂x
g0(x)

−k1(z1 − φ0(x))− f1(x, z1)], k1 > 0 (5.38)
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j 2.7 General case (cont.)

Step 2
Applying the extension of Lemma 1 again to

ẋ = f0(x) + g0(x)z1
ż1 = f1(x1, z1) + g1(x1, z1)z2
ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3

(5.39)

with

η =

[
x
z1

]
, ζ = z2, u = z3,

f(η) =

[
f0(x) + g0(x)z1
f1(x1, z1)

]
, g(η) =

[
0

g1(x1, z1)

]
fa(η, ζ) = f2(x, z1, z2), ga(η, ζ) = g2(x, z1, z2)
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j 2.7 General case (cont.)

and using (5.29) and (5.30) again to obtain a C.L.F. V2(x, z1, z2) for
(5.39) as follows

V2(x, z1, z2) = V1(x, z1) +
1

2
(z2 − φ1(x, z1))2 (5.40)

w.r.t.

z3 = φ2(x, z1, z2)

=
1

g2(x, z1, z2)

∂φ1(x, z1)

(x, z1)

[
f0(x) + g0(x)z1

f1(x1, z1) + g1(x1, z1)z2

]
− 1

g2(x, z1, z2)

∂V1(x, z1)

∂(x, z1)

[
0
g1(x1, z1)

]
− 1

g2(x, z1, z2)
k2(z2 − φ1(x, z1))

− 1

g2(x, z1, z2)
f2(x, z1, z2), k2 > 0 (5.41)
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j 2.7 General case (cont.)

Step l
Assume Vl−1(x, z1, ..., zl−1) is a C.L.F. for

ẋ = f0(x) + g0(x)z1
ż1 = f1(x, z1) + g1(x, z1)z2
ż2 = f2(x, z1, z2) + g2(x, z1, z2)z3
...
żl−1 = fl−1(x, z1, ..., zl−1) + gl−1(x, z1, ..., zl−1)zl

(5.42)

w.r.t.

zl = φl−1(x, z1, ..., zl−1) (5.43)
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j 2.7 General case (cont.)

Let

η =


x
z1
...
zl−1

 , ζ = zl

f(η) =


f0(x) + g0(x)z1
f1(x, z1) + g1(x, z1)z3
...
fl−1(x, z1, ..., zl−1)

 , g(η) =


0
0
...

gl−1(x, z1, ..., zl−1)


fa(η, ζ) = fl(x, z1, ..., zl), ga(η, ζ) = gl(x, z1, ..., zl).
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j 2.7 General case (cont.)

Then using (5.29) and (5.30) gives a C.L.F. for (5.34)

V (x, z1, ..., zl−1, zl) = Vl−1(x, z1, ..., zl−1)

+
1

2
(zl − φl−1(x, z1, ..., zl−1))2

w.r.t. the control

u =
1

gl(x, z1, ..., zl)

∂φl−1(x, z1, ..., zl−1)

∂u
(f(u) + g(u)zl)

− 1

gl(x, z1, ..., zl)

∂Vl−1(x, z1, ..., zl−1)

∂u
g(u)

− 1

gl(x, z1, ..., zl)
kl(zl − φl−1(x, z1, ..., zl−1))

− 1

gl(x, z1, ..., zl)
fl(x, z1, ..., zl), kl > 0
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j 2.7 General case (cont.)

Remarks:

(i) The key to the success of the above procedure is to be able to find
V0(x) and φ0(x).

(ii) V0(x) and φ0(x) are not unique.

(iii) k1, k2, ...kl are design parameters.
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