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[CJ 1 Introduction 1.1 Problem description

Given a nonlinear control system

& = f(z)+gl@u,  2(0)==z0
= h(z), (5.1)

find a feedback control law so that the closed-loop system has some
desirable behaviors.

System (5.1) is linear in the input u and is called affine system. Most
practical systems can be put in the form (5.1).
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[T 1.2 Two fundamental control problems

1.2.1 Stabilization problem
Given (5.1), find a state feedback control law
u = k(z), E(0)=0 (5.2)

such that the E.P. of the closed-loop system

i = f(z)+ g(x)k(x)
at z = 0 is (globally) asymptotically stable.

Remarks:
(a) Lyapunov linearization cannot guarantee global A.S. Thus, k(z) is
obtained based on Lyapunov's direct method. k(x) is usually nonlinear.
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[Tl 1.2.1 Stabilization problem (cont.)

(b) Example 1:
An inverted pendulum

J9 — mgl sinf =1 = x.l ~ fa—mgl sin x1

To=—"7

where u =7, 1 =60 and =5 = 0.
Let
o B B . 1 =T
u=J(—kqro — kpz1) — mglsinz; = i = kg — k1.
Therefore, the E.P. of the closed-loop system is G.A.S. if kg > 0, k, > 0.

8
11

Note: The closed-loop system is a linear system.
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[T 1.2 Two fundamental control problems

1.2.2 Tracking problem

Given (5.1) and a (sufficiently smooth) reference input (desirable
trajectory) y4(t), find a control law

w = k(z,ya(t), -y (t) (5.3)

where (0,0, ...,0) = 0, and p is some integer such that
(i) the E.P. of

i = f(x) + g(x)k(z,0, ...,0)
is (globally) A.S. and
(i)
lim (y(t) — ya(t)) = 0.

t—o00

Remark: Condition (i) guarantees that the state of the closed-loop system
is bounded for sufficiently small reference input and initial state (Total
Stability).
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Tl 1.2.2 Tracking problem (cont.)

Example 2: Consider the inverted pendulum with y4(t) = sinwt

.fl = X2
. u + mgl sin z;
ro = ——F—
J
Yy = Ii.

Letting e = y — y4(¢t) and

u=J(jJqg — kaé — kpe) — mglsinz

gives
1 = T9
&y = Ya(t) — keé — kpe
Yy = x.

Therefore e satisfies
é+kjdé+k§p620.
Since 52 + kgs + k, is stable when kg > 0, k, > 0, lim;_ e(t) = 0.
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Tl 1.2.2 Tracking problem (cont.)

Remarks:
(a) Problem 1 is the special case of problem 2 when y,4(t) = 0.

(b) The two examples have shown that it is possible to use nonlinear
control laws to obtain a closed-loop system with a desirable behavior. How
to systematically obtain the control laws is the topic of the nonlinear
control system design.
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[Tl 1.3 Other desirable behaviors

Disturbance rejection / Attenuation

Speed of response

@ Control effort

Robustness

o Cost...
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14 Approaches

@ Backstepping for strictly feedback system.
@ Input-output linearization for minimum phase systems.

e Variable structure control / sliding control for uncertain minimum
phase systems.

@ Adaptive control for parametric uncertain systems.
@ For nonlinear systems, not a single method works for all systems.

@ Different methods have been developed to handle different classes of
nonlinear systems with various special forms.
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[C] 2 Stabilization by backstepping 2.1 Introduction

@ Backstepping is a systematic nonlinear control design method
devoloped in the 1990s.

@ It can be used to solve the stabilization problem and the asymptotic
tracking problem for nonlinear systems in strict feedback form to be
described shortly.

@ In what follows, we will focus on the stabilization problem.

@ The exposition of the rest of this chapter is mainly based on

Hassan K. Khalil, “Nonlinear Systems,” Third Edition, Prentice
Hall, 2002.
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] 2.2 Review of Lyapunov’s second method

Given &= f(z), f(0)=0, z€®R" x=0is G.A.S. if there exists a
radially unbounded P.D. function V' (z) such that
. 0V(x)
V =

Ox

f(x)

is N.D. for all z € R™.
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[Tl 2.2 Review of Lyapunov’s second method (cont.)

Consider
T = f(x) + g(x)u, x e R, ue R

Want to find u = k(z), k(0) = 0 such that there exists a radially
unbounded global Lyapunov function V() for

&= fe(r) = f(x) + g(x)k(z)
satisfying

aV(x)
Ox

(f(@) + g(z)k(z)) <0, Va0

Remark: Unlike the stability analysis of a nonlinear system & = f(x)
where a single function V(x) needs to be found, the stabilization problem
studied here involves two functions k(x) and V() for & = f(x) + g(z)u.
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23 systems in strict-feedback form or lower

triangular form

1 = fi(w1) + g1(21)m2
o = folw1,22) + g2(z1, x2) 23

Tpo1 = foo1(@1, 0, Tn1) + gno1(@1, -0, Tn—1)Tp
Tn = fo(z1, ., zn) + gn(21, ..y T0)u.

where z; e R, i=1,--- ,n, and u € R.

Jie Huang ( MAE, CUHK) Nonlinear control systems design



23 systems in strict-feedback form or lower

triangular form (cont.)

The system can be put in the standard form (5.1) with

[ fi(z1) + g1(z1)z2
fo(x1,22) + g2(z1, 22)23
f@) = ,
fnfl(xly ---,xnfl) + gnfl(l'la ..‘,$n,1)In
L fn(xl,...,xn)
[ 0
0
g(x) =
0
In (1505 Tn)
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24 Backstepping

2.4.1 Control Lyapunov function (C.L.F.)
Consider
n=f)+gmu, neR", ueR! (54)

where f(0) =0, and f(n) and g(n) are smooth functions of 7 € R".

A P.D. function V() is a control Lyapunov function of (5.4) with respect
to state feedback u = ¢(n) with ¢(0) = 0 if

v =) s gmem) <0, Yazo  (55)
u=¢(n) on
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[Tl 2.4.1 Control Lyapunov function (C.L.F.) (cont.)

Remarks
(a) If(5.4) hasa C.L.F. w.r.t. u = ¢(n), then the E.P. of

n=fn+gnen) (5.6)

at 7 = 0is A.S. Moreover, if V(n) is radially unbounded, then the E.P. is
G.AS.
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[Tl 2.4.1 Control Lyapunov function (C.L.F.) (cont.)

(b) Existence of C.L.F. for one dimensional system
If n =1, g(n) #0, Vn, then V(n) = in?is a C.L.F. for (5.4) w.r.t

B el f(n)

OB Va>0 (5.7)

In fact, the closed-loop system is

n=rfm+gmemn) =—an

and

V(n) =ni=—an* <0, n#0.

Jie Huang ( MAE, CUHK) Nonlinear control systems design



But g(n) # 0 is not necessary. For example, consider
n=nu

It can be verified that V(1) = n? is a C.L.F. for /) = nu w.r.t.

on) = =1 since V()| = “5I I () +g(molm] = —n'.

The C.L.F. defined here is not unique and it depends on the control
function ¢. It is possible to define C.L.F. uniquely solely based on the
given system (5.4).
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[ 2.4.2 Lemma 1

Lemma 1
Consider

o= fm+gm¢ neR” (5.8)
¢ = u cCeR, ueR! (5.9)
where f(0) =0, f(n) and g(n) are smooth.
If (5.8) has a control Luapunov function V' (7) w.r.t. state feedback

¢ = ¢(n), then the system described by (5.8) and (5.9) has a control
Lyapunov function

Valn Q) = V1) + 5 (¢ — 6(m)? (5.10)
w.r.t. state feedback
u = ¢a(777 C)
dp(n) 9V (n)

where k£ > 0.
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Tl 2.4.2 Lemma 1 (cont.)

Thus the E.P. of the closed-loop system

no= f(n)+9m)¢
¢ = ¢a(n,¢) (5.12)

is A.S. Moreover, if V(n) is radially unbounded, so is V4 (7, (). Thus, the
E.P. of (5.12) is G.A.S.
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C 243 Example 1

i = 2% -2 (5.13)
i’g = u (5.14)

which is in the form of (5.8) and (5.9) with n = z1 and { = 22
fy=n*—=n*,  g(n) =1

Consider (5.13). By (5.7), under the control ¢(x1) = —z1 — 22 + 3, the
closed-loop system has a control Lyapunov function

1
V(1) = 551?%
(In fact, under xo = ¢(z1), (5.13) becomes &1 = —x1).
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Tl 2.4.3 Example 1 (cont.)

By Lemma 1, (5.13) and (5.14) have a control Lyapunov function

Va(zi,22) = V(xy)+ %(xz — ¢(21))?

1 1
= iw% + 5(3:2 + 1 4 27 — 23)? (5.15)

w = dulonan) = 00— i) - T ey — o)

= (=1 -2z +323)(2? — 23 + 20) — x1 — k(xy + 21 + 27 — )

where & > 0. Therefore, the E.P. of

i’l = x%—x?—i—m
Ty = ¢a(x1,72)

is A.S. (In fact, G.A.S. since V(z1) is radially unbounded).
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Tl 2.4.4 Proof of Lemma 1

Proof:  Since V(n) is C.L.F. for (5.8) w.r.t. {( = ¢(n), we have

oV (n)

V| = an UM F9mem] <0, ¥n#0

Let

Valn, Q) = Vin) + 5(C— o),

which is globally positive definite.
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Tl 2.4.4 Proof of Lemma 1 (cont.)

Then

Va(n,¢)

8Va(’l7, C) . 8Va(7]a C) -
on 1T o ¢
8257”) LFn) + 9(n)C] — (¢ — 6(n))

+(¢ = ¢(n)u
i 87(7 ) Lf(n) +g(n)(¢ — d(n) + o(n))]

201w+ ) -

20 o)+ g

9é(n)

Tn{f(”) +9(n)¢E —u— oy 9

oV (n) ( )]




Tl 2.4.4 Proof of Lemma 1 (cont.)

Choosing u such that

25 1)+ 9t) — = ZgPg(m)] = ~(¢ - o)

for some k > 0 gives

w=6a(.6) = 250 150) + 9] ~ L5 glo) — k(& - o)
. Then, ¥ (n,¢) # (0,0),
Va(n, ¢) = ‘Wf? (£ + a(m)dlm)] — k(¢ — d(m)? < 0

Therefore, V,(n,¢) is a C.L.F. of (5.8) and (5.9) w.r.t. ¢4(7, ().
Moreover, if V() is radially unbounded, so is V,(n, ().
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Thus, under u = ¢4(n, (), the E.P. of

o= fm) +g(n)¢
< = qba(ﬁ:C)

is G.A.S.
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C] 25 Applying Lemma 1 to dimension 3 system

Example 2
:blzl‘%—x:f-i-wg
;'ngazg (5.16)
igzu
Let
2 3
it R B i e o ) . 10

Then the system is in the form

no= fm)+g9mn)g
( = u (5.17)

Jie Huang ( MAE, CUHK) Nonlinear control systems design



C] 25 Applying Lemma 1 to dimension 3 system

(cont.)

To find a C.L.F. for system (5.17), all we need to do is to find a C.L.F. for
the 7 subsystem

n=f(n)+gn(¢ (5.18)

or

o 2 .3
{wl_ml Tt T (5.19)

i’gzl‘g

viewing ¢ = x3 as a control.
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C] 25 Applying Lemma 1 to dimension 3 system

(cont.)

But, by Example 1, we have already known

1 1
Va(z1,22) = 5:13% + 5(932 + 1 4 22 — 23)?

3 (5.20)

is a C.L.F. for (5.19) w.r.t.

¢Go(r1,2) = (—1—221 + 3w%)(w% — x‘;’ + x9)
—x1 — ki(xo + 21 + LL‘% — l‘?), kit >0 (5.21)
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C] 25 Applying Lemma 1 to dimension 3 system

(cont.)

Thus, by Lemma 1, a C.L.F. for (5.16) is

V(x1, 22, 23) = Vo(1,22) + %(533 — Ga(71,72))? (5.22)

u = ¢(x1aw27x3)

Wv (w1,22) + g1, 22) 3]

_MQ(% x9) — ko (w3 — (w1, 2))  (5.23)

where ko > 0.
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IC] 2.6 Extension of Lemma 1

Consider

o= f(n) +9(n)¢, neRt (5.24)
¢ = fa, Q)+ ga(n, O, CeR', ueR'  (5.25)

where f4(0,0) =0 and ga(n,¢) # 0,V n, C.
Using the input transformation

1
u = ga(n’ C) [ua - fa(777 é‘)] (526)
gives
no= fm+gn)¢ 5.27)
C = uq 5.28)
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[Tl 2.6 Extension of Lemma 1 (cont.)

Therefore, by Lemma 1, if (5.27) has a C.L.F. V(n) w.r.t. state feedback
¢ = ¢(n), then (5.27) and (5.28) have a C.L.F.

Valn, Q) = Vi) + 5(C — on))? (5.29)
w.r.t.

o = 0ul6en) = P51 + 90)¢] = L5 go) — k(C— o)

where k& > 0. Therefore, (5.24) and (5.25) have the same C.L.F. w.r.t.

1
9a(n,¢)

[‘ﬁa(”a() - fa(777 C)] (530)

u =
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[Tl 2.6 Extension of Lemma 1 (cont.)

Example 3
i‘l = 33% — l’? + 29
ftQ = I3 (5.31)
T3 = xr9sinzy + e Tu
Letting u = €™3(u, — o sinx) gives
i‘l = I% — xi{’ + xI9
.CfCQ = I3 (5.32)
ng = Ugq

From previous example, it is known that a C.L.F. for (5.32) is given by
V(x1,x2,x3) described by (5.22) w.r.t. u, = ¢(x1, 2, x3) described by
(5.23).

According to (5.30), a C.L.F. for (5.31) is also given by V (z1, z2, z3) w.r.t.

1

e 73

u= [p(x1, x2,23) — T2 sin 1] (5.33)
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[C] 2.7 General case

(&= fo(r) + go(z)21
21 = fi(x,21) + g1(z, 21) 22
2o = fa(x, 21, 22) + g2(x, 21, 22) 23 (5.34)

Zo1 = fici(z, 21, 221) + i1 (2, 21, 0 21-1) 2
( 4= filz, 21, 2) + g, 21, 2)u (D=1 = (5.24)&(5.25))

where
xeR?, 21,02 € RL
fo(0) = f1(0) = ... = fi(0) = 0,
gi(x, 21, ..., 2i) # 0, for 0<4 <

Nonlinear control systems design
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Tl 2.7 General case (cont.)

Assume Vy(z) is C.L.F. for

& = fo(x) + go(z)z1 (5.35)
w.r.t. z1 = ¢o(x). Then a feedback control law

u=¢(x,21,...,21)

for stabilizing (5.34) can be recursively constructed as follows:
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Tl 2.7 General case (cont.)

Step 1
Applying the extension of Lemma 1 to

{ & = fo(z) + go(x)z1 (5.36)

2 = fi(z1,21) + g1(21, 21) 22

and using (5.29) and (5.30) to obtain a C.L.F. Vi (z, 21) for (5.36) as
follows

Vil 1) = Voe) + (o1 — do(a))? (537)
w.r.t
7 = ¢1(w, 21)
—]{71(2’1 — ¢0($)) — fl(fL', 21)], ]{71 >0 (538)
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Tl 2.7 General case (cont.)

Step 2
Applying the extension of Lemma 1 again to

& = fo(x) + go(x)21
z1 = fi(z1,21) + g1(21, 21) 22 (5.39)
2‘2 = f2(x7 21, ZQ) + 92($7 21, 22)Z3

with
n —[Z]; (=2, u==z3,
_ | folz) + go(x)21 _ 0
sy =[RS = | ]
fa(ThC) :f2($,21722), ga(777<)292(x721722)
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Tl 2.7 General case (cont.)

and using (5.29) and (5.30) again to obtain a C.L.F. Va(x, 21, 22) for
(5.39) as follows

Vala, 21, 22) = V(e 21) + 2 (22 — a(ar, 1))? (5.40)

23 = ¢a(w, 21, 22)

1 0¢1(x, z1) [ fo(x) + go(x) 2z }
g2(x,21,22) (2, 21) Ji(w1, 21) + g1(21, 21) 22

1 oVi(z,z1) [ O
g2(x, 21, 22) O(x,21) [ g1(w1, 21) }

1
S _
T ) 2(22 — ¢1(x, 21))
1
_ - k 41
92(%21,22)]02(%21,22), 5 >0 (5.41)
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Tl 2.7 General case (cont.)

Step |
Assume Vi_i(z, 21, ...,2;—1) is a C.L.F. for

T = f()(lll') + go(a:)zl
21 = fi(z,21) + g1(w, 21) 22
Zo = fa(x, 21, 22) + g2(x, 21, 22) 23 (5.42)

Zo1 = fi1(@, 215 2-1) F g1 (2, 21, 5 2-1) 2

2 = Pr—1(x, 215 ..y 21—1) (5.43)
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Tl 2.7 General case (cont.)

Let
[z
n = “ ) C =2z

| 2l-1
[ fo(z) + go(x)z1 0

fly = | DA atn ) !
| fie(x, 21, 2m1) gi—1(x, 21, .0y 21-1)

fam, Q) = filz,z1,..., z1), 9a(1,¢) = gi(x, 21, ..., 21).
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Tl 2.7 General case (cont.)

Then using (5.29) and (5.30) gives a C.L.F. for (5.34)

Vix, 21, z21-1,21) = Vii(w, 21,00 2121)

1
+§(Zl — B11(w, 215 ey 21-1))?

w.r.t. the control

= 1 Opr—1(x, 21, ..., 21-1)
v gz, 21, ..y 21) ou (f(u) + g(u)z)
1 8‘671(%721’ "'7Zl71)
ai(x, 21, ..., 21) ou g(u)
1

kil — -1 (z, 21, o 21-1))

——Zfl(l',Zl,...,Zl), kl >0
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Tl 2.7 General case (cont.)

Remarks:

(i) The key to the success of the above procedure is to be able to find
Vo(x) and ¢o(x).

(i) Vo(x) and ¢p(x) are not unique.

(i) ki, ko, ...k; are design parameters.
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