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j 1 Introduction

Input-output linearization is one of the fundamental nonlinear control
methods.

It can be used to solve the asymptotic tracking problem for a class of
nonlinear systems of the following form:

ẋ = f(x) + g(x)u x ∈ <n, u ∈ <m

y = h(x) y ∈ <p. (6.1)

It is also the basis of some other more advanced nonlinear control methods
such as sliding control and adaptive control.

Jie Huang ( MAE, CUHK ) Input-Output linearization 3 / 113



j 2 Asymptotic tracking by input-output
linearization

Given

ẋ = f(x) + g(x)u

y = h(x) (6.2)

and a reference input (desired output) yd(t), find a state feedback control

u = k(x, yd(t), ..., y
(ρ)
d (t)) (6.3)

where k(0, .., 0) = 0 and ρ is an integer called relative degree of (6.2) s.t.
(i) The E.P. of ẋ = f(x) + g(x)k(x, 0, ..., 0) is asymptotically stable.
(ii)

lim
t→∞

(y(t)− yd(t)) = 0

Remark: Condition (i) guarantees (local) BIBO stability (Total Stability).
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j 2 Asymptotic tracking by input-output
linearization (cont.)

Idea: Let

e(t) = y(t)− yd(t) (6.4)

and try to find an integer ρ > 0 and a state feedback (6.3) such that e(t)
satisfies

e(ρ)(t) + α1e
(ρ−1)(t) + ...+ αρe(t) = 0 (6.5)

where α1, ..., αρ are such that

sρ + α1s
(ρ−1) + ...+ αρ−1s+ αρ (6.6)

is a stable polynomial.
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j 2 Asymptotic tracking by input-output
linearization (cont.)

As a result, e satisfies

lim
t→∞

e(t) = 0 (6.7)

(6.5) can be achieved if (6.2) is input-output linearizable in a sense to be
clarified later.

Note: The integer ρ is defined by the given system and is called the
relative degree of the system. In the special case where (6.2) is linear, ρ is
the relative degree of the transfer function of (6.2).
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j 2.1 Chain integrator system

Consider the following so-called chain integrator system

y(n) = u (6.8)

which is a linear system with the relative degree n. Let x1 = y,
x2 = ẏ, · · · , xn = y(n−1). Then the state space realization of (6.8) is

ẋ = Ax+Bu

y = Cx
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j 2.1 Chain integrator system (cont.)

where

A =


0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1
0 0 0 ... 0

 , B =


0
0
...
0
1

 ,

C = [1 ... ... ... 0] , x =


y
ẏ
...

y(n−1)


Therefore (6.8) can be converted into the standard form (6.2).
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j 2.1 Chain integrator system (cont.)

Let e = y(t)− yd(t). In order to achieve (6.5) with ρ = n, i.e.

(y(n) − y(n)d (t)) + α1(y
(n−1) − y(n−1)d ) + ...+ αn(y − y(t)) = 0. (6.9)

substituting (6.8) into (6.9) gives

(u− y(n)d (t)) + α1(y
(n−1) − y(n−1)d (t)) + ...+ αn(y − yd) = 0

⇒ u = y
(n)
d − α1(y

(n−1) − y(n−1)d )− ...− αn(y − yd)

= y
(n)
d −

n∑
i=1

αie
(n−i). (6.10)

(6.10) can be written as

u = −α1xn − α2xn−1 − ...− αnx1 + y
(n)
d + α1y

(n−1)
d + ...+ α1yd

= k(x, yd, ..., y
(n)
d )

which is in the standard form.
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j 2.1 Chain integrator system (cont.)

When yd = 0, the closed-loop system is

ẋ = Ax+Bk(x, 0, ..., 0) = (A−B[αn, ..., α1])x

=


0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1
−αn −αn−1 0 ... −α1

x. (6.11)

Clearly, (A−B[αn, ..., α1]) is a companion matrix with its characteristic
polynomial being

sn + α1s
(n−1) + ...+ αn−1s+ αn. (6.12)

Thus, if α1, ..., αn are such that (6.12) is a stable polynomial, the E.P. of
(6.11) at the origin is G.A.S.

Note: For this simple system, the integer ρ is equal to n, which is the
dimension of the system.
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j 2.2 Companion form

ẋ1 = x2
ẋ2 = x3
...
ẋn−1 = xn
ẋn = α(x) + β(x)u
y = x1

(6.13)

where β(0) 6= 0. (6.13) can be equivalently put into the form

y(n) = α(x) + β(x)u, where x =


y
ẏ
...

y(n−1)

 (6.14)
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j 2.2 Companion form (cont.)

To achieve asymptotic tracking for (6.13), note that using an input
transformation

α(x) + β(x)u = ua (6.15)

or

u =
ua − α(x)

β(x)
(6.16)

gives

y(n) = ua (6.17)

which is in the chain integrator form.
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j 2.2 Companion form (cont.)

Thus, by (6.10), letting

ua = y
(n)
d −

n∑
i=1

αie
(n−i) (6.18)

gives

e(n) + α1e
(n−1) + ...+ αne = 0 (6.19)

Therefore, substituting (6.18) into (6.16) gives

u =
y
(n)
d −

∑n
i=1 αie

(n−i) − α(x)

β(x)
(6.20)

which achieves asymptotic tracking.
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j 2.2 Companion form (cont.)

Note:

(i) Again for this simple system, the integer ρ is equal to n, the dimension
of the system.

(ii) It can be verified that

ẋ = f(x) + g(x)k(x, 0, ..., 0) =


0 1 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1
−αn −αn−1 0 ... −α1

x(6.21)

which is a stable linear system since its characteristic polynomial
sn + α1s

(n−1) + ...+ αn−1s+ αn is stable.

(iii) The closed-loop system (6.19) is a linear system. Thus the control law
(6.20) stabilizes the given system by making the closed-loop system a
stable linear system.
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j 2.2 Companion form (cont.)

Example: The inverted pendulum

ẋ1 = x2

ẋ2 =
mgl

J
sinx1 +

u

J
y = x1

By (6.20),

u =

(
ÿd(t)− α1ė− α2e−

mgl

J
sinx1

)
J

results in ë+ α1ė+ α2e = 0.
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j 2.3 General case

ẋ = f(x) + g(x)u, x ∈ <n

y = h(x), u ∈ <, y ∈ < (6.22)

Idea: convert it into the (partial) companion form

Step 1
Differentiating y until there exists an integer ρ such that

y(ρ) = α(x) + β(x)u (6.23)

where β(x) 6= 0 or at least β(0) 6= 0.
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j 2.3 General case (cont.)

Step 2
Using the input transformation

u =
ua − α(x)

β(x)
(6.24)

to obtain

y(ρ) = ua (6.25)
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j 2.3 General case (cont.)

Step 3
Using

ua = y
(ρ)
d −

ρ∑
i=1

αie
(n−i) (6.26)

gives

e(ρ) + α1e
(ρ−1) + ...+ αρ−1ė+ αρe = 0. (6.27)

Thus, by (6.20), the control law that achieves (6.27) is

u =
y
(ρ)
d −

∑ρ
i=1 αie

(ρ−i) − α(x)

β(x)
= k(x, yd, ..., y

(ρ)
d ). (6.28)
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j 2.3 General case (cont.)

Remark:

The closed-loop system is

ẋ = f(x) + g(x)k(x, yd, ..., y
(ρ)
d ).

Need to check the stability of

ẋ = f(x) + g(x)k(x, 0, ..., 0).

The stability is not guaranteed unless ρ = n.
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j 2.3 General case (cont.)

Example:

ẋ =

 ax1
x1x2
x2

+

 exp(x2)
1
0

u
y = h(x) = x3

where a is some constant.
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j 2.3 General case (cont.)

Simple calculations gives

ẏ = ẋ3 = x2

ÿ = x1x2 + u.

Thus, ρ = 2. Using the control law (6.28), that is,

u = −x1x2 + ÿd − α1ė− α2e = k(x, yd, ẏd, ÿd)

gives

ë+ α1ė+ α2e = 0.
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j 2.3 General case (cont.)

Note that

k(x, 0, 0, 0) = −x1x2 − α1ẏ − α2y = −x1x2 − α1x2 − α2x3

and

ẋ = f(x) + g(x)k(x, 0, 0, 0)

=

 ax1 + exp(x2)(−x1x2 − α1x2 − α2x3)
x1x2 − x1x2 − α1x2 − α2x3

x2

 = fc(x).

Jie Huang ( MAE, CUHK ) Input-Output linearization 22 / 113



j 2.3 General case (cont.)

The Jacobian matrix of fc(x) at the origin is:

J =
∂fc
∂x

∣∣∣∣
x=0

=

 a −α1 −α2

0 −α1 −α2

0 1 0


det(sI − J) =

∣∣∣∣∣∣
s− a α1 α2

0 s+ α1 α2

0 −1 s

∣∣∣∣∣∣ = (s− a)(s2 + α1s+ α2)

Therefore,

a < 0 A.S.

a > 0 unstable

a = 0 cannot conclude.
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j 2.3 General case (cont.)

Note:

(i) (6.23) can be viewed as an informal definition of the relative degree ρ
of the given system. As long as such an integer exists, one can find an
input transformation (6.24) such that the output y and the new input ua
satisfy the linear relation (6.25) (chain integrator). The control law (6.26)
is designed based on the linear system (6.25). That is why the approach is
called input-output linearization.

(ii) Unfortunately, for this general case, the integer ρ may not exist, and
even if it exists, the closed-loop system under the control law (6.28) with
yd(t) set to zero may not be asymptotically stable or even stable. Thus
whether or not ρ exists and whether or not the control law (6.28) may
stabilize the system need to be further studied next.

(iii) If ρ = n, the closed-loop system can always be made an
asymptotically stable linear system.
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j 3 Solution of input-output feedback
linearization
3.1 Notation

Suppose that h : <n → <1 is a smooth function and f : <n → <n,
g : <n → <n are vector fields. Then we introduce the following notation:

∂h

∂x
=

[
∂h

∂x1
, ...,

∂h

∂xn

]
L0
fh = h

Lfh =

n∑
i=1

∂h

∂xi
fi(x) =

[
∂h

∂x1
, ...,

∂h

∂xn

] f1(x)
...

fn(x)

 =
∂h

∂x
f(x)

...

We call ∂h∂x the gradient of h and Lfh the lie derivative of h along the
vector field f(x).
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j 3.1 Notation (cont.)

Since Lfh is still a smooth function from <n → <1, we can define

L2
fh = Lf (Lfh) = Lf

(
∂h

∂x
f(x)

)
=
∂
(
∂h
∂xf(x)

)
∂x

f(x)

In general,

Lkfh(x) = Lf

(
Lk−1f h(x)

)
=
∂Lk−1f h

∂x
f(x)

Also, for k = 0, 1, ...

LgL
k
fh(x) = Lg

(
Lkfh(x)

)
=
∂Lkfh

∂x
g(x).
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j 3.2 Relative degree

Consider the relation of the derivatives of y and u in a neighborhood of
some given point x0 ∈ <n (x0 is called an “analysis point” and is often
taken to be an equilibrium point).

y = h(x)

ẏ =
∂h

∂x
ẋ =

∂h

∂x
f(x) +

∂h

∂x
g(x)u = Lfh(x) + Lgh(x)u.

Suppose Lgh(x) = 0 in a neighborhood of x0. Then

ẏ = Lfh(x).

Since ẏ is independent of u, further differentiating ẏ gives

ÿ =
∂Lfh(x)

∂x
ẋ =

∂Lfh(x)

∂x
f(x) +

∂Lfh

∂x
g(x)u

= L2
fh(x) + LgLfh(x)u
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j 3.2 Relative degree (cont.)

If LgLfh(x) = 0 for x in a neighborhood of x0, then

ÿ(t) = L2
fh(x).

Repeat this procedure until we find an integer ρ such that
(i)

LgL
k
fh(x) = 0

for all k < ρ− 1, and for all x in a neighborhood of x0.
(ii)

LgL
(ρ−1)
f h(x0) 6= 0.
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j 3.2 Relative degree (cont.)

Then the system’s input-output relation at x0 is given by

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u = α(x) + β(x)u.

Then, we say the system has a relative degree ρ at the point x0. For
example,

ẋ = f(x) + g(x)u =

 −x1x1x2
x2

+

 exp(x2)
1
0

u
y = h(x) = x3
ẏ = L1

fh(x) = x2
ÿ = L2

fh(x) + LgLfh(x)u
relative degree=2

h = x3
Lfh = x2
L2
fh = x1x2

Lgh = 0
LgLfh = 1
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j 3.3 Solvability of input-output linearization

The following statements are equivalent:

(i) The system is input-output linearizable at x0

(ii ) The system has a relative degree at x0

(iii) There exists an integer ρ such that
(a) LgL

k
fh(x) = 0 for all k < ρ− 1 and for all x in a neighborhood of

x0, and
(b) LgL

(ρ−1)
f h(x0) 6= 0

(iv) The system has an input-output relationship at x0 in the sense that

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u

where LgL
ρ−1
f h(x0) 6= 0
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j 3.3 Solvability of input-output linearization
(cont.)

Remarks: (i) If the system has a relative degree at x0, then, for
j = 0, 1, · · · , (ρ− 1), and sufficiently small t,

y(j)(t) = Ljfh(x(t))

with x(0) = x0.

(ii) There exists a state-feedback control law

u =
−Lρfh(x) + y

(ρ)
d (t)−

∑ρ
i=1 αie

(ρ−i)

LgL
(ρ−1)
f h(x)

= k(x, yd(t), ..., y
(ρ)
d (t))

where e = y(t)− yd(t) such that u achieves

e(ρ)(t) + α1e
(ρ−1)(t) + ...+ αρe(t) = 0
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j 3.3 Solvability of input-output linearization
(cont.)

(iii) If there exists a positive integer ρ such that

LgL
(ρ−1)
f h(x) 6= 0, ∀ x

LgL
k
fh(x) = 0, ∀ k < ρ− 1, ∀ x

then ρ is called a global relative degree or uniform relative degree of the
system and the system is said to be globally input-output linearizable.
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j 3.3 Solvability of input-output linearization
(cont.)

(iv) For linear systems

ẋ = Ax+Bu

y = Cx

we have f(x) = Ax, g(x) = B, h(x) = Cx. It can be easily verified that

Lkfh(x) = CAkx, LgL
k
fh(x) = CAkB

The relative degree ρ is characterized by an integer ρ such that

CAkB = 0 ∀ k < ρ− 1

CAρ−1B 6= 0
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j 3.3 Solvability of input-output linearization
(cont.)

(v) Let

H(s) = C(sI −A)−1B =
b(s)

a(s)

where, from linear system theory,

a(s) = det(sI −A) = sn + a1s
n−1 + ...+ an−1s+ an

b(s) = b1s
n−1 + ...+ bn−1s+ bn

b1 = CB

b2 = CAB + a1CB

...

bn = CAn−1B + ...+ an−1CB

Therefore, ρ is the difference between the degree of a(s) and the degree of
b(s). That is why ρ is called relative degree.
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j 3.3 Solvability of input-output linearization
(cont.)

(vi) Some systems may not have well defined relative at some points,
e.g., the ball and beam system described by the following equations

ẋ1 = x2

ẋ2 = Bx1x
2
4 −BG sinx3

ẋ3 = x4

ẋ4 = u

y = x1

does not have a relative degree at x0 = 0 since

ẏ = x2

ÿ = Bx1x
2
4 −BG sinx3

y(3) = Bx2x
2
4 −BGx4 cosx3 + 2Bx1x4u.

Why?
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j 3.3 Solvability of input-output linearization
(cont.)

(vii) In general, the system does not have a well defined relative degree
at a point x0 if the first function of the following sequence

Lgh(x), LgLfh(x), · · · , LgLkfg(x), · · ·

which is equal to zero at the point x = x0, but is not identically zero in
any neighborhood of x0.
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j 3.4 Stability of the closed-loop system

Assume the system

ẋ = f(x) + g(x)u

y = h(x)

has relative degree ρ at x0 = 0, that is, ∃ ρ such that
(a) LgL

k
fh(x) = 0 for all k < ρ− 1 and all x in a neighborhood of

x0 = 0, and
(b) LgL

(ρ−1)
f h(x0) 6= 0.

Then we have

y(ρ) = Lρfh(x) + LgL
(ρ−1)
f h(x)u.
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j 3.4 Stability of the closed-loop system (cont.)

Thus the control law

u =
−Lρfh(x) + y

(ρ)
d −

∑ρ
i=1 αie

(ρ−i)

LgL
(ρ−1)
f h(x)

achieves

e(ρ) + α1e
(ρ−1) + ...+ αρ−1ė+ αρe = 0

where e = y − yd.
Note that condition (a) implies, for all x in a neighborhood of x0 = 0,

ẏ = Lfh(x), · · · , y(k) = Lkfh(x).

Therefore e(i) = Lifh(x)− y(i)d , i = 1, · · · , ρ, and u takes the following

form u = k(x, yd, ..., y
(ρ)
d ).
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j 3.4 Stability of the closed-loop system (cont.)

We will consider the stability of the closed-loop system

ẋ = f(x) + g(x)k(x, 0, ..., 0) (6.29)

where

k(x, 0, ..., 0) =
−Lρfh(x)−

∑ρ
i=1 αiL

(ρ−i)
f h(x)

LgL
ρ−1
f h(x)

. (6.30)
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j 3.4 Stability of the closed-loop system (cont.)

(i) Local A.S. of the E.P. of (6.29)
Let

A =
∂f

∂x

∣∣∣∣
x=0

, B = g(0), C =
∂h

∂x

∣∣∣∣
x=0

, K =
−∂k(x, 0, ..., 0)

∂x

∣∣∣∣
x=0

Then the Jacobian linearization of

ẋ = f(x) + g(x)u

y = h(x) (6.31)

at the origin is given by

ẋ = Ax+Bu

y = Cx (6.32)

The Jacobian linearization of (6.29) at the origin is

ẋ = (A−BK)x (6.33)

Clearly the E.P. of (6.29) is L.A.S. if all the eigenvalues of (A−BK) have
negative real parts.
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j 3.4 Stability of the closed-loop system (cont.)

(ii) Lemma: Assume (6.31) has a relative degree ρ at x = 0. Then
(6.32) also has a relative degree ρ, i.e.,{

CAkB = 0 ∀ k < ρ− 1
CAρ−1B 6= 0

(6.34)

Sketch of the proof:
It can be shown that

∂Lfh(x)

∂x

∣∣∣∣
x=0

=

(
∂2h

∂x2
f

)∣∣∣∣
x=0

+

(
∂h

∂x

∂f

∂x

)∣∣∣∣
x=0

= CA

∂Lkfh(x)

∂x

∣∣∣∣∣
x=0

=
∂Lk−1f h(x)

∂x

∂f

∂x

∣∣∣∣∣
x=0

= CAk, k = 2, 3, ...
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j 3.4 Stability of the closed-loop system (cont.)

Therefore,

LgL
k
fh(x)

∣∣∣
x=0

=
∂Lkfh(x)

∂x
g(x)

∣∣∣∣∣
x=0

= CAkB, k = 0, 1, 2, ...

(6.35)

Thus, the fact that LgL
k
fh(x) = 0 for all 0 ≤ k < ρ− 1 and for all x in a

neighborhood of x0 = 0 implies CAkB = 0 for all 0 ≤ k < ρ− 1, and the

fact that LgL
ρ−1
f h(x)

∣∣∣
x=0
6= 0 implies CAρ−1B 6= 0.

Exercise: Show that (6.34) implies that the row vectors
C,CA, · · · , CAρ−1 are linearly independent.
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j 3.4 Stability of the closed-loop system (cont.)

(iii) Theorem: Assume (6.31) has a relative degree ρ at the origin.
Then the transfer function of (6.32) is

H(s) = C(sI −A)−1B =
b(s)

a(s)

=
bρs

n−ρ + ...+ bn−1s+ bn
sn + a1sn−1 + ...+ an−1s+ an

(6.36)

and

det(sI − (A−BK))

=
1

CAρ−1B
b(s)(sρ + α1s

ρ−1 + ...+ αρ−1s+ αρ). (6.37)

As a result, the E.P. of (6.29) can be made L.A.S. if all the roots of b(s)
have negative real parts, and is unstable if some roots of b(s) have positive
real part.
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j 3.4 Stability of the closed-loop system (cont.)

Sketch of the proof:
(a) (6.36) holds since the relative degree of (6.32) is also ρ.

(b) To prove (6.37), we need to calculate det(sI − (A−BK)). This can
be done as follows:
Consider the control law

u = k(x, 0, ..., 0) +
v

LgL
ρ−1
f h(x)

(6.38)

which gives the closed-loop system

ẋ = f(x) + g(x)

(
k(x, 0, ..., 0) +

v

LgL
ρ−1
f h(x)

)

= f(x) + g(x)k(x, 0, ..., 0) +
g(x)

LgL
ρ−1
f h(x)

v

y = h(x) (6.39)
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j 3.4 Stability of the closed-loop system (cont.)

The linearization of (6.39) is

ẋ = (A−BK)x+
B

CAρ−1B
v

y = Cx (6.40)

The transfer function from v to y is

Y (s)

V (s)
= C(sI − (A−BK))−1

B

CAρ−1B

=
b(s)

det(sI − (A−BK))

1

CAρ−1B
(6.41)

because the numerator of C(sI −A)−1B = the numerator of
C(sI − (A−BK))−1B for any K since

det

[
sI − (A−BK) −B

C 0

]
= det

([
sI −A −B
C 0

] [
I 0
−K I

])
= det

[
sI −A −B
C 0

]
= b(s).
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j 3.4 Stability of the closed-loop system (cont.)

ã Remark: Given ẋ = Ax+Bu, y = Cx+Du, its transfer function is

P (s) = C(sI −A)−1B +D =

det

[
sI −A −B
C D

]
det(sI −A)

Proof: Note that(
In 0n×1
−C 1

)(
(sI −A)−1 0n×1

01×n 1

)(
sI −A −B
C D

)
=

(
In −(sI −A)−1B

0n×1 C(sI −A)−1B +D

)
Thus

det[(sI −A)−1] det

[
sI −A −B
C D

]
= C(sI −A)−1B +D
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j 3.4 Stability of the closed-loop system (cont.)

On the other hand, note that

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u. (6.42)

Thus under the control law (6.38), we have

y(ρ) = −
ρ∑
i=1

αiy
(ρ−i) + v.

⇒ Y (s)

V (s)
=

1

sρ + α1sρ−1 + ...+ αρ−1s+ αρ

=
b(s)

b(s)(sρ + α1sρ−1 + ...+ αρ)
. (6.43)

Comparing (6.41) and (6.43) gives

det(sI − (A−BK)) =
1

CAρ−1B
b(s)(sρ + α1s

ρ−1 + ...+ αρ).
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j 3.4 Stability of the closed-loop system (cont.)

(iv) Example

ẋ =

 ax1
x1x2
x2

+

 exp(x2)
1
0

u
y = x3

. (6.44)

We have shown before that ρ = 2, and under the control law

u = k(x, 0, 0, 0) = −x1x2 − α1x2 − α2x3,

the E.P. of the closed-loop system is L.A.S. if a < 0, and is unstable if
a > 0.
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j 3.4 Stability of the closed-loop system (cont.)

Now consider the Jacobian linearization of (6.44) at the origin

ẋ =

 a 0 0
0 0 0
0 1 0

x+

 1
1
0

u
y = [0 0 1]

Simple calculation gives

H(s) = C(sI −A)−1B =
(s− a)

det(sI −A)

i.e., b(s) = s− a. Thus, the E.P. of the closed-loop system is L.A.S. if
a < 0, and is unstable if a > 0 since b(s) is unstable if a > 0 and stable if
a < 0.
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j 3.5 Minimum phase systems

(i) Consider linear system

ẋ = Ax+Bu

y = Cx (6.45)

Let H(s) = C(sI −A)−1B = b(s)
a(s)

(6.45) is said to be minimum phase if all the roots of b(s) have
negative real part and nonminimum phase if otherwise.

The system is said to be strictly nonminumum phase if at least one
root of b(s) has positive real part.
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j 3.5 Minimum phase systems (cont.)

(ii) Nonlinear system

ẋ = f(x) + g(x)u

y = h(x) (6.46)

(6.46) is said to be (locally) minimum phase if its linearization (6.45)
is minimum phase, and is said to be strictly nonminimum phase if its
linearization (6.45) is.

Input-output linearization method only applies to minimum phase
system. When ρ = n, (6.46) is minimum phase.

(iii) The case where the linearization of nonlinear system (6.46) is neither
minumum phase nor strictly nonminumum phase is called critical case.
The stability property of the closed-loop system resulting from
input-output linearization control law for this case cannot be ascertained
based on the Lyapunov’s linearization method.
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j 3.6 Design example for a robot system

A flexible-joint mechanism : Figure 6.6 illustrates a mechanism
representing a link driven by a motor through a torsional spring ( a
single-link flexible-joint robot).

Motion equation:

Iq̈1 +Mg sin q1 + k(q1 − q2) = 0

Jq̈2 − k(q1 − q2) = u
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j 3.6 Design example for a robot system (cont.)

State equation:
Letting x = [q1, q̇1, q2, q̇2]

T gives

ẋ = f(x) + g(x)u =


x2

−Mgl
I sinx1 − k

I (x1 − x3)
x4

k
J (x1 − x3)

+


0
0
0
1
J

u.
Assume q1 is the output. Let y = x1. Then

ẏ = ẋ1 = x2

ÿ = ẋ2 = −Mgl

I
sinx1 −

k

I
(x1 − x3)

y(3) = −Mgl

I
x2 cosx1 −

k

I
(x2 − x4)
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j 3.6 Design example for a robot system (cont.)

y(4) = −Mgl

I
(ẋ2 cosx1 − ẋ1x2 sinx1)−

k

I
(ẋ2 − ẋ4)

= −Mgl

I

{(
−Mgl

I
sinx1 −

k

I
(x1 − x3)

)
cosx1 − x22 sinx1

}
−k
I

(
−Mgl

I
sinx1 −

k

I
(x1 − x3)−

k

J
(x1 − x3)−

1

J
u

)
=

Mgl

I
sinx1

(
x22 +

Mgl

I
cosx1 +

k

I

)
(6.47)

+
k

I
(x1 − x3)

(
k

I
+
k

J
+
Mgl

I
cosx1

)
+

k

IJ
u

= L4
fh(x) + LgL

3
fLu = α(x) + β(x)u

Clearly k
IJ 6= 0. The system is globally input-output linearizable.
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j 3.6 Design example for a robot system (cont.)

Given yd(t), let e = y − yd(t).
Then the control law

u =
y
(4)
d (t)− α1e

(3) − α2ë− α3ė− α4e− α(x)

β(x)

will achieve

e(4) + α1e
(3) + α2ë+ α3ė+ α4e = 0.

Thus asymptotic tracking can be achieved.
In particular, when yd(t) = 0, global A.S. can be achieved.
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j 4.1 Nonlinear State Transformations

The concept of diffeomorphism can be viewed as a generalization of the
familiar concept of coordinate transformation.

Let V be an open neighborhood of a point x0 ∈ <n and f : V 7→ <n be
continuous. Let W = f(V ) = {y ∈ <n | y = f(x) & x ∈ V }. Then W is
open and contains f(x0). If there exists a continuous function
g : W 7→ <n such that g(f(x)) = x for all x ∈ V , then the function g is
said to be a (local) inverse function of f and is denoted as f−1. If
V = W = <n, then g is said to be a global inverse function of f .

Examples:
(a) Let f(x) = x3 where x ∈ < . Then f has a global inverse

f−1(y) = y
1
3 .

(b) Let f(x) = Ax where x ∈ <n and A ∈ <n×n is nonsingular. Then f
has a global inverse f−1(y) = A−1y
(c) f(x) = x2 does not have a global inverse.
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j 4.1 Nonlinear State Transformations (cont.)

Diffeomorphism: Let V be an open neighborhood of a point x0 ∈ <n
and φ : V 7→ <n. φ is called a (local) diffeomorphism if it is smooth on V ,
and its inverse φ−1 : φ(V ) 7→ V exists and is smooth. If V = φ(V ) = <n,
then φ is called a global diffeomorphism on <n.

Remark: Global diffeomorphisms are rare, and therefore one often looks
for local diffeomorphism, i.e., for transformations defined only in an open
neighborhood of a given point.

Jie Huang ( MAE, CUHK ) Input-Output linearization 57 / 113



j 4.1 Nonlinear State Transformations (cont.)

Given a nonlinear function φ(x), it is easy to check whether it is a local
diffeomorphism by using the following well-known inverse function
theorem.

Inverse function theorem: Let V be an open set of <n and
φ : V 7→ <n be smooth. If the Jacobian matrix ∂φ

∂x is nonsingular at some
point x0 ∈ V , then there exists an open neighborhood U of x0 in V such
that φ : U 7→ φ(U) is a diffeomorphism.

Remark: If φ : V 7→ <n is C1, and the Jacobian matrix ∂φ
∂x is nonsingular

at some point x0 ∈ V , then there exists an open neighborhood U of x0 in
V such that the inverse of φ denoted by φ−1 : φ(U) 7→ U exists and is C1.

A diffeomorphism can be used to transform a nonlinear system into
another nonlinear system in terms of a new set of states, similarly to what
is commonly done in the analysis of linear systems.
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j 4.1 Nonlinear and State Transformations (cont.)

Consider the dynamic system described by

ẋ = f(x) + g(x)u

y = h(x).

Let φ : <n 7→ <n be a global diffeomorphism. Then the function z = φ(x)
defines a new set of states with its inverse function denoted by
x = φ−1(z).
Differentiation of z yields

ż =
∂φ

∂x
ẋ =

∂φ

∂x
(f(x) + g(x)u) = Lfφ(x) + Lgφ(x)u.

In terms of z, the new state-space representation is

ż = Lfφ(φ−1(z)) + Lgφ(φ−1(z))u = f∗(z) + g∗(z)u

y = h(x) = h(φ−1(z)) = h∗(z)

where the functions f∗, g∗ and h∗ are defined obviously.
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j 4.1 Nonlinear State Transformations (cont.)

An Example of Global Diffeomorphism:

For the robot system, let z = φ(x) be defined as follows

z1 = h(x) = x1

z2 = Lfh(x) = x2

z3 = L2
fh(x) = −Mgl

I
sinx1 −

k

I
(x1 − x3)

z4 = L3
fh(x) = −Mgl

I
x2 cosx1 −

k

I
(x2 − x4). (6.48)
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j 4.1 Nonlinear State Transformations (cont.)

Then (6.48) defines a global deffeomorphism in the sense that we can
solve x1, x2, x3 and x4 from the above equations in terms of z1, z2, z3, z4
as follows:

x1 = z1

x2 = z2

x3 = z1 +
I

k

(
z3 +

Mgl

I
sin z1

)
or x = φ−1(z)

x4 = z2 +
I

k

(
z4 +

Mgl

I
cos z1

)
. (6.49)
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j 4.1 Nonlinear State Transformations (cont.)

Moreover, under the new coordinates, we have

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = L4
fh(x) + LgL

3
fh(x)u

= L4
fh(φ−1(z)) + LgL

3
fh(φ−1(z))u (6.50)
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j 4.1 Nonlinear State Transformations (cont.)

Remark:
The robots system is globally diffeomorphic to a nonlinear system in
companion form. All systems with ρ = n can be put into the companion
form by state transformation. A further input transformation

L4
fh(x) + LgL

3
fh(x)u = L4

fh(φ−1(z)) + LgL
3
fh(φ−1(z))u = v

gives a linear system as follows:

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = v. (6.51)

Thus the robot system can be put into a linear system by state and input
transformation.
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j 4.1 Nonlinear State Transformations (cont.)

Example : A non-global diffeomorphism
The nonlinear vector function[

z1
z2

]
= φ(x) =

[
2x1 + 5x1x

2
2

3 sinx2

]
(6.52)

is well defined for all x1 and x2. Its Jacobian matrix is

∂φ

∂x
=

[
2 + 5x22 10x1x2

0 3 cosx2

]
which has rank 2 at x = (0, 0). Therefore, the inverse function theorem
indicates that the function (6.52) defines a local diffeomorphism around
the origin.
In fact, the diffeomorphism is valid in the region Ω = {(x1, x2), |x2| < π

2 }
because the inverse exists and is smooth for x in this region.
However, outside this region, say, at |x2| = π

2 , φ does not define a
diffeomorphism, because the inverse does not uniquely exist.
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j 4.2 A Special Version of The Frobenius Theorem

The Frobenius theorem provides a necessary and sufficient condition
for the solvability of a special class of partial differential equations,
and it is an important tool in the formal treatment of feedback
linearization for nth-order nonlinear systems.

This section will present a special version of the Frobenius Theorem.

Frobenius Theorem (Special version): Let g : <n 7→ <n be a vector
field and g(x0) 6= 0 for some x0 ∈ <n. Then there exist n− 1 smooth
functions φi : <n 7→ <, i = 1, · · · , n− 1, such that, for x in a
neighborhood of x0,

Lgφi(x) = 0, i = 1, · · · , n− 1

and the row vectors ∂φ1
∂x (x0), · · · , ∂φn−1

∂x (x0) are linearly independent.
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j 4.3 Normal Form and Zero Dynamics

In general, suppose system (6.46) has a relative degree ρ at x0 = 0 with
ρ ≤ n. Let φi(x) = Li−1f h(x), i = 1, · · · , ρ. Then, by the exercise in page

42, the ρ row vectors ∂φi(x)
∂x |x=0, i = 1, · · · , ρ, are linearly independent.

Therefore, there exist n− ρ smooth functions φi(x), i = (ρ+ 1), · · · , n
vanishing at the origin such that ∂φ(x)

∂x |x=0 is nonsingular where

φ(x) =

 φ1(x)
...

φn(x)

 .
By inverse function theorem, φ(x) is invertible in a neighborhood of x0.
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j 4.3 Normal Form and Zero Dynamics (cont.)

Let z = φ(x). Then

ż1 = z2

...

żρ−1 = zρ

żρ =
(
Lρfh(x) + LgL

ρ−1
f h(x)u

)∣∣∣
x=φ−1(z)

żρ+1 = (Lfφρ+1(x) + Lgφρ+1(x)u)|x=φ−1(z)

...

żn = (Lfφn(x) + Lgφn(x)u)|x=φ−1(z)

y = z1 (6.53)

We call (6.53) the normal form of the system (6.46).
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j 4.3 Normal Form and Zero Dynamics (cont.)

Remark: Since system (6.46) has a relative degree ρ at x0 = 0, with
φi(x) = Li−1f h(x), i = 1, · · · , ρ, we have

Lgφi(x) = 0, i = 1, · · · , ρ− 1

for x in an open neighborhood of the origin. By the Frobenius Theorem, it
is possible to choose φi(x), i = ρ+ 1, · · · , n, such that

Lgφi(x) = 0, i = ρ+ 1, · · · , n (6.54)

for x in an open neighborhood of the origin, and ∂φ(x)
∂x |x=0 is nonsingular,

i.e., φ(x) is locally invertible. It is clear from (6.53) that this set of choices
will render the equations (6.53) a more special expression as follows:
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j 4.3 Normal Form and Zero Dynamics (cont.)

ż1 = z2
...

żρ−1 = zρ

żρ =
(
Lρfh(x) + LgL

ρ−1
f h(x)u

)∣∣∣
x=φ−1(z)

= α(z) + β(z)u

żρ+1 = Lfφρ+1(x)|x=φ−1(z) = γρ+1(z)

...

żn = Lfφn(x)|x=φ−1(z) = γn(z)

y = z1. (6.55)
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j 4.3 Normal Form and Zero Dynamics (cont.)

Under the control law

u =
−α(z)− α1zρ − · · · − αρz1

β(z)
, (6.56)

the closed-loop system is

ż1 = z2
...

żρ−1 = zρ

żρ = −α1zρ − · · · − αρz1
żρ+1 = γρ+1(z)

...

żn = γn(z)

y = z1. (6.57)
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j 4.3 Normal Form and Zero Dynamics (Cont.)

If α1, · · · , αρ are such that sρ + α
(ρ−1)
1 + · · ·+ αρ−1s+ αρ is stable, then

limt→∞(z1, z2, · · · , zρ) = 0 and (zρ+1, · · · , zn) will be governed by

żρ+1 = γρ+1(0, · · · , 0, zρ+1, · · · , zn)

· · ·
żn = γn(0, · · · , 0, zρ+1, · · · , zn). (6.58)

(6.58) is called the zero dynamics of (6.46).

Thus under the input-output feedback control law (6.56), the origin of the
closed-loop system (6.57) is A.S. only if the origin of (6.58) is A.S.
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j 4.3 Normal Form and Zero Dynamics (Cont.)

Remark: (i) A more general definition of the minimum phase system can
be given in terms of the zero dynamics (6.58). System (6.46) is said to be
(global) minimum phase if the origin of (6.58) is (globally) A.S, and is said
to be non-minimum phase if the origin of (6.58) is unstable.

(ii) The above definition also applies to the critical case.

(iii) If ρ = n, system (6.46) has a trivial zero dynamics since the dimension
of (6.58) is zero and it can be fully linearized to a chain integrator form by
an input transform α(z) + β(z)u = v.
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j 4.3 Normal Form and Zero Dynamics (Cont.)

(iv) Let ξ = (zρ+1, · · · , zn)T and

γ(ξ) =

 γρ+1(0, · · · , 0, zρ+1, · · · , zn)
...

γn(0, · · · , 0, zρ+1, · · · , zn)


Then the zero dynamics (6.58) can be put in the following compact form:

ξ̇ = γ(ξ)

It can be shown that the roots of b(s), i.e., the zeros of the Jacobian
linearization of (6.46) at the origin coincide with the eigenvalues of the
matrix ∂γ

∂ξ (0).

Exercise: The origin of (6.29) is asymptotically stable if and only if the
origin of (6.57) is asymptotically stable.
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j 4.3 Normal Form and Zero Dynamics (Cont.)

Example:

ẋ =

 ax1
x1x2
x2

+

 exp(x2)
1
0

u
y = h(x) = x3

where a is some constant.
It is known that this system has a relative degree 2 at the origin with
h(x) = x3 and Lfh(x) = x2. Let φ1(x) = x3, φ2(x) = x2 and
φ3(x) = x1 − exp(x2) + 1. Then z = φ(x) is a global diffeomorphism
since we have x = φ−1(z) = (z3 + exp(z2)− 1, z2, z1) and

Lgφ3 = [1,− exp(x2), 0]g(x) = 0

.
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j 4.3 Normal Form and Zero Dynamics (Cont.)

Thus the (global) normal form of the system is

ż1 = z2

ż2 = ẋ2 = x1x2 + u = (z3 + exp(z2)− 1)z2 + u

ż3 = ẋ1 − exp(x2)ẋ2 = ax1 + exp(x2)u− exp(x2)(x1x2 + u)

= ax1 − exp(x2)x1x2 = (z3 + exp(z2)− 1)(a− exp(z2)z2)

and the zero dynamics is

ż3 = az3

The eigenvalue of the zero dynamics is equal to a which coincides with the
zero of the Jacobian linearization of the given system at the origin.
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j 5.1 Lie Brackets

Definition 6.2 Let f and g be two vector fields on <n. The Lie bracket of
f and g is a third vector field defined by

[f, g] = ∇g f −∇f g.

The Lie bracket [f, g] is commonly written as adfg (where ad stands for
“adjoint”).

Repeated Lie brackets can then be defined recursively by

ad0fg = g

adifg = [f, adi−1f g], for i = 1, 2, . . . .
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j 5.1 Lie Brackets (cont.)

Example 6.7: The following system

ẋ1 = −2x1 + ax2 + sinx1

ẋ2 = −x2 cosx1 + cos(2x1)u

can be written in the form ẋ = f(x) + g(x)u with the two vector fields
defined by

f(x) =

[
−2x1 + ax2 + sinx1

−x2 cosx1

]
, g(x) =

[
0

cos(2x1)

]
.

Their Lie bracket can be computed as

[f, g] =

[
0 0

−2 sin(2x1) 0

]
f −

[
−2 + cosx1 a
x2 sinx1 − cosx1

]
g

=

[
a cos(2x1)

cosx1 cos(2x1)− 2 sin(2x1)(−2x1 + ax2 + sinx1)

]
.
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j 5.1 Lie Brackets (cont.)

Lemma 6.1 Lie brackets have the following properties

(i) bilinearity:

[α1f1 + α2f2, g] = α1[f1, g] + α2[f2, g]

[f, α1g1 + α2g2] = α1[f, g1] + α2[f, g2]

where f, f1, f2 and g, g1, g2 are smooth vector fields, and α1, α2 are
constant scalars.

(ii) skew-commutativity:
[f, g] = −[g, f ].

(iii) Jacobi identity:
Ladfgh = LfLgh− LgLfh

where h(x) is a smooth scalar function.
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j 5.1 Lie Brackets (cont.)

Proof
(1) Bilinearity:

[α1f1 + α2f2, g] = ∇g(α1f1 + α2f2)−∇(α1f1 + α2f2)g

= α1(∇g f1 −∇f1 g) + α2(∇g f2 −∇f2 g)

= α1[f1, g] + α2[f2, g]

[f, α1g1 + α2g2] = ∇(α1 g1 + α2 g2)f −∇f(α1 g1 + α2 g2)

= α1(∇g1f −∇fg1) + α2(∇g2f −∇fg2)
= α1[f, g1] + α2[f, g2]

(2) Skew-commutativity:

[f, g] = ∇g f −∇f g = −(∇f g −∇g f) = −[g, f ]
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j 5.1 Lie Brackets (cont.)

(3) Jacobi identity: The identity can be rewritten as

∇h[f, g] = ∇(Lgh)f −∇(Lfh)g

The left-hand side of the above equation can be expanded as

∇h[f, g] = ∇h(∇g f −∇f g) =
∂h

∂x
(
∂g

∂x
f − ∂f

∂x
g)

while the right-hand side can be expanded as

∇(Lgh)f −∇(Lfh)g = ∇(
∂h

∂x
g)f −∇(

∂h

∂x
f)g

= (
∂h

∂x

∂g

∂x
+ gT

∂2h

∂x2
)f − (

∂h

∂x

∂f

∂x
+ fT

∂2h

∂x2
)g

=
∂h

∂x
(
∂g

∂x
f − ∂f

∂x
g)

where ∂2h
∂x2

= [ ∂2h
∂xi∂xj

]i,j=1,···n is the Hessian of h which is a symmetric

matrix.
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j 5.1 Lie Brackets (cont.)

Remark: The Jacobi identity can be used recursively to obtain useful
technical identities. Using it twice yields

Lad2fg
h = Ladf (adfg)h = LfLadfgh− LadfgLfh

= Lf (LfLgh− LgLfh)− (LfLg − LgLf )Lfh

= L2
fLgh− 2LfLgLfh+ LgL

2
fh. (6.59)

Similar identities can be obtained for higher-order Lie brackets.

Jie Huang ( MAE, CUHK ) Input-Output linearization 81 / 113



j 5.2 the Frobenius Theorem

Consider the set of first-order partial differential equations

∂h

∂x1
f1 +

∂h

∂x2
f2 +

∂h

∂x3
f3 = 0

∂h

∂x1
g1 +

∂h

∂x2
g2 +

∂h

∂x3
g3 = 0 (6.60)

where fi, gi, i = 1, 2, 3, are known scalar functions, and h is an unknown
function. Clearly, this set of partial differential equations is uniquely

defined by the two vectors f =
[
f1 f2 f3

]T
, g =

[
g1 g2 g3

]T
.

If a solution h(x1, x2, x3) exists for the above partial differential equations,
we shall say that the set of vector fields {f, g} is completely integrable.
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j 5.2 The Frobenius Theorem (cont.)

Formal definition of complete integrability of a set of vector fields:

Definition 6.4 A linearly independent set of vector fields {f1, f2, . . . , fm}
on <n is said to be completely integrable iff, there exist (n−m) scalar
functions h1(x), h2(x), . . . , hn−m(x) satisfying the system of partial
differential equations

(∇hi)fj = 0

where 1 ≤ i ≤ n−m, 1 ≤ j ≤ m, and the gradients ∇hi are linearly
independent.

Note that the number of unknown scalar functions hi involved is (n−m)
and the number of partial differential equations is m(n−m).
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j 5.2 The Frobenius Theorem (cont.)

Definition 6.5 A linearly independent set of vector fields {f1, f2, . . . , fm}
is said to be involutive iff ∃ scalar functions αijk : <n 7→ < such that

[fi, fj ](x) =

m∑
k=1

αijk(x)fk(x), ∀ i, j.

Involutivity means that if one forms the Lie bracket of any pairs of vector
fields from the set {f1, f2, . . . , fm}, then the resulting vector field can be
expressed as a linear combination of the original set of vector fields.
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j 5.2 The Frobenius Theorem (cont.)

i.e., involutivity condition guarantees the integrability of a set of vector
fields.

Theorem 6.1 (Frobenius) Let {f1, f2, . . . , fm} be a set of linearly
independent vector fields. The set is completely integrable iff it is
involutive.

For example, equation (6.60) has a solution h(x1, x2, x3) iff ∃ scalar
functions α1(x1, x2, x3) and α2(x1, x2, x3) such that

[f, g] = α1f + α2g

i.e., if the Lie bracket of f and g can be expressed as a linear combination
of f and g. Geometrically it means that the vector [f, g] is in the plane
formed by f and g.
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j 5.2 The Frobenius Theorem (cont.)

Remarks:

Constant vector fields are always involutive. Indeed, the Lie bracket of
two constant vectors is simply the zero vector, which can be trivially
expressed as linear combination of the vector fields.

A set composed of a single vector f is involutive. Indeed,

[f, f ] = (∇f)f − (∇f)f = 0.

Thus, the following set of equations is always completely integrable

(∇hi)f = 0

where 1 ≤ i ≤ n− 1, and the gradients ∇hi are linearly independent.

From Definition 6.5, checking whether a set of vector fields
{fi, f2, . . . , fm} is involutive amounts to checking whether

rank [f1(x) . . . fm(x)] = rank
[
f1(x) . . . fm(x) [fi, fj ](x)

]
for all x and all i, j.
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j 5.2 The Frobenius Theorem (cont.)

Example 6.9: Consider the set of partial differential equations

4x3
∂h

∂x1
− ∂h

∂x2
= 0

− x1
∂h

∂x1
+ (x23 − 3x2)

∂h

∂x2
+ 2x3

∂h

∂x3
= 0.

The associated vector fields are {f1, f2} with

f1 =
[

4x3 −1 0
]T

f2 =
[
−x1 (x23 − 3x2) 2x3

]T
.

One can easily finds that

[f1, f2] =
[
−12x3 3 0

]T
.

Since [f1, f2] = −3f1 + 0f2, this set of vector fields is involutive.
Therefore, the two partial differential equations are solvable.
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j 5.3 Input-State Linearization of SISO Systems

In this subsection, we discuss input-state linearization for single-input
nonlinear systems, linear in control or affine

ẋ = f(x) + g(x)u. (6.61)

with f and g being smooth vector fields.

We study

when such systems can be linearized by state and input
transformations,

how to find such transformations,

how to design controllers based on such feedback linearizations.
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j 5.3 Input-State Linearization of SISO Systems

Definition 6.6 A single-input nonlinear system in the form (6.61), with
f(x) and g(x) being smooth vector fields on <n, is said to be input-state
linearizable if there exists a region Ω in <n, a diffeomorphism φ : Ω 7→ <n,
and a nonlinear feedback control law

u = α(x) + β(x)v (6.62)

such that the new state variables z = φ(x) and the new input v satisfy a
linear time-invariant relation

ż = Az + bv (6.63)

where

A =

[
0(n−1)×1 In−1

0 01×(n−1)

]
, b =

[
0(n−1)×1

1

]
.
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j 5.3 Input-State Linearization of SISO Systems

Remarks:

The new state z is called the linearizing state, and the control law
(6.62) is called the linearizing control law. To simplify the notation,
we often use z to denote not only the transformed state, but the
diffeomorphism φ itself, i.e., z = z(x).

Note that the transformed linear dynamics has its A matrix and b
vector of a special form, corresponding to a linear companion form.
However, this loses no generality, because any representation of a
linear controllable system is equivalent to the companion form (6.63)
through a linear state transformation and pole placement. Therefore,
if (6.61) can be transformed into a linear system, it can be
transformed into the form prescribed by (6.63) by using additional
linear transformations in state and input.
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j 5.3 Input-State Linearization of SISO Systems

Remarks:

From the canonical form (6.63), input-output linearization is a special
case of input-state linearization, where the output function leads to a
relative degree n. This means that if a system is input-output
linearizable with relative degree n, it must be input-state linearizable.

On the other hand, if a system is input-state linearizable, with the

first new state z1 representing the output, then z
(n)
1 = u, i.e., the

system is input-output linearizable with relative degree n.
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j 5.3 Input-State Linearization of SISO Systems

We summarize the relationship between input-output linearization and
input-state linearization into the following lemma.

Lemma 6.3 An nth-order nonlinear system is input-state linearizable iff
there exists a scalar function z1(x) such that the system’s input-output
linearization with z1(x) as output function has relative degree n.

Note, however, that the above lemma provides no guidance about how to
find the desirable output function z1(x).
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j 5.3 Input-State Linearization of SISO Systems

At this point, a natural question is: can all nonlinear state equations in the
form of (6.61) be input-state linearized? If not, when do such
linearizations exist?

The following theorem provides a definitive answer to that question, and
constitutes one of the most fundamental results of feedback linearization
theory.

Theorem 6.2 The nonlinear system (6.61), with f(x) and g(x) being
smooth vector fields, is input-state linearizable iff there exists a region Ω
such that the following two conditions hold:

the vector fields {g, adfg, . . . , adn−1f g} are linearly independent in Ω;

the set {g, adfg, . . . , adn−2f g} is involutive in Ω.
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j 5.3 Input-State Linearization of SISO Systems

Remarks:

The first condition can be interpreted as simply representing a
controllability condition for the nonlinear system (6.61). For linear
systems, since f(x) = Ax, g(x) = b, we have adjfg = (−1)jAjb,
j = 1, 2, · · · , (n− 1). Thus, linear independence of the vector fields

{g, adfg, . . . , adn−1f g}

is equivalent to the invertibility of the familiar linear controllability
matrix.

(b, Ab, . . . , An−1b).

The involutivity condition is trivially satisfied for linear systems (which
have constant vector fields), but not generically satisfied in the
nonlinear case.
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j 5.3 Input-State Linearization of SISO Systems

Before proving Theorem 6.2, we state a technical lemma.

Lemma 6.4 Let z(x) be a smooth function in a region Ω. Then, in Ω, the
set of equations

Lgz = LgLfz = . . . = LgL
k
fz = 0 (6.64)

is equivalent to
Lgz = Ladfgz = . . . = Ladkfg

z = 0 (6.65)

for any positive integer k.

Jie Huang ( MAE, CUHK ) Input-Output linearization 95 / 113



j 5.3 Input-State Linearization of SISO Systems

Proof:
Let us show that (6.64) implies (6.65) .
When k = 0, the result is obvious. When k = 1, we have from Jacobi’s
identity (Lemma 6.1)

Ladf gz = LfLgz − LgLfz = 0− 0 = 0

When k = 2, we further have, using Jacobi’s identity twice (see (6.59))

Lad2f g
z = L2

fLg z − 2LfLgLf z + Lg L
2
fz = 0− 0 + 0 = 0

Repeating this procedure, we can show by induction that (6.64) implies
(6.65) for any k. One proceeds similarly to show that (6.65) implies (6.64)
(by using Jacobi’s identity the other way around).
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j 5.3 Input-State Linearization of SISO Systems

Proof of Theorem 6.2:
(Necessity) Assume that there exist a state transformation z = z(x) and
an input transformation u = α(x) +β(x)v such that z and v satisfy (6.63).
Expanding each line of (6.63), we obtain a set of differential equations

∂z1
∂x

f +
∂z1
∂x

gu = z2

∂z2
∂x

f +
∂z2
∂x

gu = z3

· · ·
∂zn
∂x

f +
∂zn
∂x

gu = v.

Since z1, . . . , zn are independent of u, while v is not, we conclude from the
above equations that

Lgz1 = Lgz2 = . . . = Lgzn−1 = 0, Lgzn 6= 0 (6.66)

Lfzi = zi+1, i = 1, . . . , n− 1. (6.67)
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j 5.3 Input-State Linearization of SISO Systems

By Lemma 6.4, equation (6.66) implies that

∇z1 adkfg = 0, k = 0, 1, 2, . . . , n− 2. (6.68)

Furthermore, we can show

∇z1 adn−1f g = Ladf (adn−2
f g)z1

= LfLadn−2
f gz1 − Ladn−2

f gLfz1

= 0− Ladn−2
f gz2

= · · · = (−1)n−1Lgzn.

This implies that
∇z1 adn−1f g 6= 0. (6.69)

Jie Huang ( MAE, CUHK ) Input-Output linearization 98 / 113



j 5.3 Input-State Linearization of SISO Systems

(6.68) and (6.69) means the vector fields {g, adfg, . . . , adn−1
f g} must be linearly

independent for each x ∈ Ω. In fact, if for some number i ≤ n− 1, there existed
scalar functions α1(x), · · · , αi−1(x) such that

adifg =

i−1∑
k=0

αkad
k
fg,

then

[f, adifg] = adi+1
f g =

i∑
k=1

αkad
k
fg, · · · , [f, adn−2

f g] = adn−1
f g =

n−2∑
k=n−i−1

αkad
k
fg.

This, together with (6.68), would imply that

∇z1adn−1
f g =

n−2∑
k=n−i−1

αk∇z1adkfg = 0

a contradiction to (6.69).

The set {g, adfg, . . . , adn−2
f g} is involutive follows from the existence of a scalar

function z1 satisfying the (n− 1) partial differential equations in (6.68), and from

the necessity part of the Frobenius theorem.
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j 5.3 Input-State Linearization of SISO Systems

(Sufficiency) Since the involutivity condition is satisfied, from Frobenius
theorem, there exists a non-zero scalar function z1(x) satisfying

Lgz1 = Ladfgz1 = . . . = Ladn−2
f gz1 = 0. (6.70)

By Lemma 6.4, the above equations can be written as

Lgz1 = LgLfz1 = . . . = LgL
n−2
f z1 = 0.

This means that if we use z = [z1 Lfz1 . . . Ln−1f z1]
T as a new set of

state variables, the first (n− 1) state equations verify

żk = zk+1, k = 1, . . . , n− 1

while the last equation is

żn = Lnf z1 + LgL
n−1
f z1u. (6.71)
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j 5.3 Input-State Linearization of SISO Systems

We now show that LgL
n−1
f z1 cannot be equal to zero. In fact, by Jacobi

identity,

Ladn−1
f gz1 = Ladf (adn−2

f g)z1

= LfLadn−2
f gz1 − Ladn−2

f gLfz1

= 0− Ladn−2
f gLfz1

= · · · = (−1)n−1LgL
n−1
f z1,

we must have
LgL

n−1
f z1 6= 0, ∀ x ∈ Ω.

Otherwise, the non-zero vector ∇z1 would satisfy

∇z1 [g adfg . . . adn−1f g] = 0

and thus would be orthogonal to n linearly independent vectors, a
contradiction to the fact that the vector fields {g, adfg, . . . , adn−1f g} are
linearly independent in Ω.
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j 5.3 Input-State Linearization of SISO Systems

Therefore, by taking the control law to be

u =
−Lnf z1 + v

LgL
n−1
f z1

equation (6.71) simply becomes

żn = v

which shows that the input-state linearization of the nonlinear system has
been achieved. The proof is thus completed.
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j 5.3 Input-State Linearization of SISO Systems

Based on the previous discussion, the input-state linearization of a
nonlinear system can be performed through the following steps:

(1) Construct the vector fields {g, adfg, . . . , adn−1f g} for the given
system.

(2) Check whether the controllability and involutivity conditions are
satisfied.

(3) If both are satisfied, find the first state z1 from equations (6.70), i.e.,

∇z1 adifg = 0, i = 0, . . . , n− 2, ∇z1 adn−1f g 6= 0.

(4) Compute the state transformation z(x) = [z1 Lfz1 . . . Ln−1f z1]
T and

the input transformation (6.62), with

α(x) = −
Lnf z1

LgL
n−1
f z1

, β(x) =
1

LgL
n−1
f z1

.
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j 5.3 Input-State Linearization of SISO Systems

The Robot Example: Recall that with the state vector as

x = [q1 q̇1 q2 q̇2]
T

the corresponding vector fields f and g can be written

f = [x2 − MgL

I
sinx1 −

k

I
(x1 − x3) x4

k

J
(x1 − x3)]T

g = [0 0 0
1

J
]T
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j 5.3 Input-State Linearization of SISO Systems

The controllability matrix is obtained by simple computation

[
g adf g ad2f g ad3f g

]
=


0 0 0 − k

IJ

0 0 k
IJ 0

0 − 1
J 0 k

J2

1
J 0 − k

J2 0


It has rank 4 for k > 0, IJ <∞. Furthermore, since the vector fields[
g adf g ad2f g

]
are constant, they form an involutive set. Therefore,

the system is input-state linearizable.
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j 5.3 Input-State Linearization of SISO Systems

Let us find out the state transformation z = z(x) and the input
transformation u = α(x) + β(x)v so that input-state linearization is
achieved. From (6.68), z1(x) must satisfy the following equations:

∂z1
∂x

g = 0,
∂z1
∂x

adfg = 0,
∂z1
∂x

ad2fg = 0

Given the above expression of the controllability matrix, the first
component z1 of the new state vector z should satisfy

∂z1
∂x4

= 0,
∂z1
∂x3

= 0,
∂z1
∂x2

= 0

Thus, z1 must be a function of x1 only. In fact, any smooth function of x1
satisfies the above equations, but the simplest non-zero solution to the
above equations is

z1 = x1 (6.72)
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j 5.3 Input-State Linearization of SISO Systems

The other states can be obtained from z1

z2 = ∇z1 f = x2 (6.73)

z3 = ∇z2 f = −MgL

I
sinx1 −

k

I
(x1 − x3) (6.74)

z4 = ∇z3 f = −MgL

I
x2cosx1 −

k

I
(x2 − x4) (6.75)

Accordingly, the input transformation is

u =
v −∇z4 f
∇z4 g

(6.76)

which can be written explicitly as

u =
IJ

k
(v − α(x)) (6.77)

where
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j 5.3 Input-State Linearization of SISO Systems

α(x) =
MgL

I
sinx1(x

2
2 +

MgL

I
cosx1 +

k

I
)

+
k

I
(x1 − x3)(

k

I
+
k

J
+
MgL

I
cosx1)

As a result, we have

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = v

thus completing the input-state linearization.
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j 5.3 Input-State Linearization of SISO Systems

Finally, note that
• The above input-state linearization is actually global, because the
diffeomorphism z(x) and the input transformation are well defined
everywhere. Specifically, the inverse of the state transformation is

x1 = z1

x2 = z2

x3 = z1 +
I

k
(z3 +

MgL

I
sinz1)

x4 = z2 +
I

k
(z4 +

MgL

I
z2cosz1)

which is well defined and differentiable everywhere. The input
transformation (6.77) is also well defined everywhere.
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j 5.3 Input-State Linearization of SISO Systems

• In this particular example, the transformed variables have physical
meanings. We see that z1 is the link position, z2 the link velocity, z3 the
link acceleration, and z4 the link jerk. This further illustrates our earlier
remark that the complexity of a nonlinear physical model is strongly
dependent on the choice of state variables.
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j 5.3 Input-State Linearization of SISO Systems

• In hindsight, of course, we also see that the same result could have been
derived simply by differentiating the first motion equation of the robot
twice, i.e., from the input-output linearization perspective of Lemma 6.3.
Note that inequality ∇z1adn−1f g 6= 0 can be replaced by the normalization
equation

∇z1adn−1f g = 1

without affecting the input-state linearization. This equation and
∇z1adif g = 0, i = 0, 1, ..., n− 2 constitute a total of n linear equations
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j 5.3 Input-State Linearization of SISO Systems

[
ad0f g ad1f g · · · adn−2f g adn−1f g

]


∂z1
∂x1
∂z1
∂x2
· · ·
∂z1

∂xn−1
∂z1
∂xn

 =


0
0
· · ·
0
1


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j 5.3 Input-State Linearization of SISO Systems

Given the independence condition on the vector fields, the partial
derivatives ∂z1

∂x1
, ..., ∂z1∂xn

can be computed uniquely from the above
equations. The state variable z1 can then be found, in principle, by
sequentially integrating these partial derivatives. Note that analytically
solving this set of partial differential equations for z1 may be a nontrivial
step (although numerical solutions may be relatively easy due to the
recursive nature of the equations).
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