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j 1 Introduction

Consider

y(n) = α(x) + β(x)u

or

ẋ1 = x2

...

ẋn−1 = xn

ẋn = α(x) + β(x)u

y = x1 (7.1)
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j 1 Introduction (cont.)

Input-output linearization consists of two steps.

Step 1. Input transformation

u =
−α(x) + v

β(x)

which results in a linear system in chain integrator form

ẋ1 = x2

...

ẋn−1 = xn

ẋn = v

y = x1.
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j 1 Introduction (cont.)

Step 2. Using linear control

v = y
(n)
d − α1e

(n−1) − ...− αn−1ė− αne

to yield

e(n) + α1e
(n−1) + ...+ αn−1ė+ αne = 0.

Limitation: α(x) & β(x) must be known precisely.
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j 1 Introduction (cont.)

Example 1. Consider a single link robot

Jθ̈ −mgl sin θ = u

or

ẋ1 = x2

ẋ2 =
u+mgl sin θ

J
y = x1

where J is moment of inertia, m is total mass. Clearly,

u = Jv −mgl sin θ (7.2)

makes

ẋ1 = x2

ẋ2 = v.
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j 1 Introduction (cont.)

However, generally J (moment of inertia) and m (total mass) are not
known exactly. Therefore instead of (7.2), one usually uses

u = Ĵv − m̂gl sin θ (7.3)

where Ĵ and m̂ are estimates of J and m, respectively. Under (7.3), we
have

ẋ2 =
Ĵv + (m− m̂)gl sin θ

J

or

ÿ =
Ĵv + (m− m̂)gl sin θ

J
.
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j 1 Introduction (cont.)

Further application of v = ÿd − α2e+ α1ė will not give

ë+ α1ė+ α2e = 0.

Therefore the control law cannot guarantee limt→∞ e = 0.

Conclusion: Input-output linearization cannot achieve asymptotic
tracking when there is uncertainty in the plant.
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j 2 Sliding Control

2.1 Problem description

Given (7.1) and yd(t), let e = y − yd and define

s = e(n−1) + α1e
(n−2) + ...+ αn−1e (7.4)

where α1, ...,αn−1 are such that

λn−1 + α1λ
n−2 + ...+ αn−2λ+ αn−1 (7.5)

is a stable polynomial.
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j 2.1 Problem description (cont.)

We call a nonlinear controller

u = k(x, yd, ..., y
(n)
d ) (7.6)

a sliding controller if u achieves

1

2

ds2

dt
≤ −η|s| for some η > 0 (7.7)

Geometrically, s = 0 can be viewed as a surface in <n space (Fig. 7.2) and
is called a sliding surface. The condition described by (7.7) is called sliding
condition.
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j 2.1 Problem description (cont.)

Roughly speaking, (7.7) states that the squared ”distance” to the surface
decreases along all system trajectories.
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j 2.2 Interpretation of the sliding condition

Observation: If for some t0, the trajectories of the closed-loop system x(t)
satisfies

s(t) = 0, t ≥ t0, (7.8)

then (7.4) implies

lim
t→∞

e(t) = 0

since (7.5) is stable.

Next assume s(0) 6= 0. Without loss of generality, assume s(0) > 0, and
note that (7.7) is equivalent to

ṡ ≤ −η, s > 0 (7.9)

ṡ ≥ η, s < 0 (7.10)
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j 2.2 Interpretation of the sliding condition (cont.)

Assume s(t) > 0 for 0 ≤ t < T . Integrating (7.9) gives∫ T

0
ṡdτ ≤

∫ T

0
−ηdτ whenever s > 0

⇐⇒ s(T )− s(0) ≤ −ηT ⇐⇒ s(T ) ≤ −ηT + s(0).

Thus for some T ≤ s(0)
η , lim

t→T
s(t) = 0.

Similarly, if s(0) < 0, we have, for some T ≤ −s(0)η

lim
t→T

s(t) = 0.
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j 2.2 Interpretation of the sliding condition (cont.)

Therefore, for any s(0), there exists some T ≤ |s(0)|η such that

s(t) = 0, t ≥ T.
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j 2.2 Interpretation of the sliding condition (cont.)

Conclusion: If a controller is such that the closed-loop system satisfies
sliding condition (7.7) for some η > 0, then for any x(0), the trajectories

x(t, x0) will reach the sliding surface in T ≤ |s(0)|η , and then x(t, x0) will
remain in s(t) = 0 for all t ≥ T . Thus (7.4) and (7.5) guarantee

lim
t→∞

e(t) = 0.
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j 2.3 Achieving sliding condition

Step 1: Achieving

ṡ = v.

Since

ṡ = e(n) + α1e
(n−1) + ...+ αn−1ė

= (y(n) − y(n)d ) + α1e
(n−1) + ...+ αn−1ė

= (α(x) + β(x)u− y(n)d ) + α1e
n−1 + ...+ αn−1ė,

letting

u =
v − α(x) + y

(n)
d − α1e

(n−1) − ...− αn−1ė
β(x)

gives ṡ = v.
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j 2.3 Achieving sliding condition (cont.)

Step 2: Define a sign function sgn(s) as follows

sgn(s) =


1 s > 0
−1 s < 0
0 s = 0

Let v = −φ(x)sgn(s) where φ(x) is a function satisfying

φ(x) ≥ η ∀x.
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j 2.3 Achieving sliding condition (cont.)

Then

ṡ = −φ(x)sgn(s)

which is equivalent to

ṡ =

{
−φ(x) ≤ −η s > 0
φ(x) ≥ η s < 0

or

1

2

ds2

dt
≤ −η|s|.

Thus

u =
−φ(x)sgn(s)− α(x) + y

(n)
d − α1e

(n−1) − ...− αn−1ė
β(x)

(7.11)

achieves sliding condition.
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j 2.4 Example

ÿ = −1.5ẏ2 cos 3y + u

or

ẋ1 = x2

ẋ2 = −1.5x22 cos 3x1 + u = α(x) + β(x)u

y = x1

where α(x) = −1.5x22 cosx1, β(x) = 1. Given any yd(t), we want to
achieve

1

2

ds2

dt
≤ −η|s| for η = 1
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j 2.4 Example 2(cont.)

Solution: Since n = 2, define s(t) as follows

s(t) = ė(t) + α1e(t) where α1 > 0.

Therefore by (7.11),

u =
−φ(x)sgn(s)− α(x) + ÿd − α1ė

β(x)
(7.12)

where φ(x) ≥ 1 ∀x.
Substituting φ(x) = 2, α(x) = −1.5x22 cos 3x1, β(x) = 1 and
s = ė+ α1e = (ẏ − ẏd) + α1(y − yd) = (x2 − ẏd) + α1(x1 − yd) into
(7.12) gives

u = −2sgn(x2 + α1x1 − (ẏd + α1yd)) + 1.5x22 cosx1 + ÿd − α1(x2 − ẏd)
= k(x, yd, ẏd, ÿd).
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j 2.5 Robustness property of sliding control

Consider

y(n) = α(x) + β(x)u.

Assume α(x) is not known exactly. Let

α(x) = α̂(x) + ∆α(x)

where α̂(x) is an estimation of α(x), and ∆α(x) is the estimation error.
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j 2.5 Robustness property of sliding control (cont.)

Assume the bound of ∆α(x) is known, i.e. there exists a known function
F (x) such that

|∆α(x)| ≤ F (x), ∀x.

Let φ(x) = η + F (x). Then under the controller

u =
−φ(x)sgn(s)− α̂(x) + y

(n)
d − α1e

(n−1) − ...− αn−1ė
β(x)

(7.13)

we have

y(n) = −φ(x)sgn(s) + ∆α(x) + y
(n)
d − α1e

(n−1) − ...− αn−1ė

or
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j 2.5 Robustness property of sliding control (cont.)

ṡ = −φ(x)sgn(s) + ∆α(x)

=

{
−φ(x) + ∆α(x) s > 0
φ(x) + ∆α(x) s < 0

=

{
−η − F (x) + ∆α(x) s > 0
η + F (x) + ∆α(x) s < 0

=

{
−η − (F (x)−∆α(x)) ≤ −η s > 0
η + (F (x) + ∆α(x)) ≥ η s < 0

or

1

2

ds2

dt
≤ −η|s|.

That is, even if α(x) is not known exactly, controller (7.13) can still
achieve sliding condition by utilizing the estimation of α(x) in the
controller.
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j 2.5 Robustness property of sliding control (cont.)

Remark:

(i) Since the controller (7.13) can tolerate certain model uncertainty, we
say that the controller is robust with respect to the model uncertainty.

(ii) Sliding controller can also handle model uncertainty associated with
β(x).
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j 2.5 Robustness property of sliding control (cont.)

Example 3.

ÿ = −aẏ2 cos 3y + u where 1 ≤ a ≤ 2

ẋ1 = x2

⇐⇒ ẋ2 = α(x) + β(x)u

y = x1

where x1 = y, x2 = ẏ, α(x) = −ax22 cos 3x1, β(x) = 1.

Objective: find u = k(x, yd, ẏd, ÿd) so that

1

2

ds2

dt
≤ −η|s| for some η > 0

where s = ė+ α1e with e = y − yd and α1 > 0.
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j 2.5 Robustness property of sliding control (cont.)

Let α̂(x) = −1.5x22 cos 3x1. Then α(x) = α̂(x) + ∆α(x)
where ∆α(x) = α(x)− α̂(x) = (−a+ 1.5)x22 cos 3x1.

Clearly |∆α(x)| ≤ 0.5x22| cos 3x1| = F (x).

Let φ(x) = η + 0.5x22| cos 3x1|. Then, by (7.13),

u = −φ(x)sgn(s)− α̂(x) + ÿd − α1ė (7.14)

achieves

1

2

ds2

dt
≤ −η|s|.
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j 2.6 Remarks

(i) α1,...,αn−1 are such that λn−1 + α1λ
n−2 + ...+ αn−2λ+ αn−1 is

stable.
For simplicity, we can always choose α1,...,αn−1 such that

λn−1 + α1λ
n−2 + ...+ αn−2λ+ αn−1 = (λ+ α)n−1 for some α > 0.

For example, when n = 3, λ2 + α1λ+ α2 = (λ+ 2)2 = λ2 + 4λ+ 4

(ii) η is such that T ≤ |s(0)|η . The smaller η is, the larger T is.

(iii) Make φ(x) as small as possible but larger than η + F (x) to reduce
the control power and the chattering phenomenon.
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j 2.6 Remarks (cont.)

(iv) Chattering phenomenon
Due to the presence of the function sgn(s) in the control law, the control
law is not continuous across s(t) = 0. Since the implementation of the
control switching is imperfect in practice because, for instance, the
switching is not instantaneous and the value of s is not known with infinite
precision, the control law may lead to chattering phenomenon shown in
Fig. 7.4. Figure 7.7 shows the control input and tracking performance
under control law (7.14).
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j 2.6 Remarks (cont.)

Consider again Example 3 given in the robustness property analysis, and
assume that the desired trajectory is yd = sin(πt/2). Figure 7.7 shows the
tracking error and control law using the switched control law. We see that
tracking performance is excellent, but is obtained at the price of high
control chattering.
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j 2.6 Remarks (cont.)

Chattering is undesirable in practice because it incites high frequency
dynamics neglected in the course of modeling. To avoid chattering, we can
introduce a saturation function sat(s) as follows

sat(s) =


1 s > 1
s − 1 ≤ s ≤ 1
−1 s < −1
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j 2.6 Remarks (cont.)

Replacing sgn(s) by sat( sε) with ε > 0 in the control law gives an
approximate control law as follows:

u =
−φ(x)sat( sε)− α̂(x) + y

(n)
d − α1e

(n−1) − ...− αn−1ė
β(x)

.

This control law cannot make lim
t→∞

e(t) = 0, but can make e(t) sufficiently

small by having ε sufficiently small.
It can be expected that the discontinuous control law u is suitably
smoothed to achieve an optimal trade-off between control bandwidth and
tracking precision, and chattering is avoided.
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j 2.6 Remarks (cont.)

If we utilize the control law with saturation function, the control input and
tracking performance are shown in Figure 7.8. It can be seen that the
tracking performance, while not as “perfect” as above, is still very good,
and is now achieved using a smooth control law.
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j Exercises

Consider the single-input, single output system

ẋ1 = x2
... =

...

ẋn−1 = xn

ẋn = α(x) + β(x)u

y = x1

where x = (x1, · · · , xn−1, xn)T , α(x) and β(x) are continuous for all
x ∈ Rn, and are not known exactly. Assume there exist known functions
α̂(x) and F (x) such that, for all x, |α(x)− α̂(x)| ≤ F (x). Also, assume
there exist two known positive real numbers bmin and bmax such that

bmin ≤ β(x) ≤ bmax for all x (7.15)
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j Exercises (cont.)

(a) Define the estimate β̂ of β(x) by β̂ = (bminbmax)1/2 and let
b = (bmax/bmin)1/2. Show that

b−1 ≤ β̂

β(x)
≤ b for all x

(b) Show that ∣∣∣∣∣ β̂

β(x)
− 1

∣∣∣∣∣ ≤ b− 1 (7.16)

(c) Given any smooth time function yd(t), t ≥ 0, let e = y − yd and
s = e(n−1) + α1e

(n−2) + · · ·+ αn−1e for some real number
α1, · · · , αn−1. Show that, for any η > 0, u = β̂−1[û− φ(x)sgn(s)],

where û = −α̂(x) + y
(n)
d − α1e

(n−1) − · · · − αn−1ė and
φ(x) ≥ b(F (x) + η) + (b− 1)|û| for all x, is such that

1

2

d

dt
s2 ≤ −η|s|
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j Exercises (cont.)

Solution:
(a) Since

bmin ≤ β(x) ≤ bmax,

we have
1

bmax
≤ 1

β(x)
≤ 1

bmin
.

Then
(bminbmax)

1
2

bmax
≤ β̂

β(x)
≤ (bminbmax)

1
2

bmin
,

which is equivalent to

b−1 ≤ β̂

β(x)
≤ b. (7.17)
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j Exercises (cont.)

(b) By definition, b ≥ 1. Thus,(
1

b
− 1

)
− (1− b) =

b2 − b− b+ 1

b
=

(b− 1)2

b
≥ 0,

which gives (7.16) since

1− b ≤ 1

b
− 1 ≤ β̂

β(x)
− 1 ≤ b− 1. (7.18)
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j Exercises (cont.)

(c) By (7.16), we have

b(F (x) + η) + (b− 1)|û| ≥ β̂

β(x)
(F (x) + η) +

∣∣∣∣∣ β̂

β(x)
− 1

∣∣∣∣∣ |û|. (7.19)

Now consider

ṡ = e(n) + α1e
(n−1) + · · ·+ αn−1ė

= α̂(x) + ∆(x) + β(x)u− y(n)d + α1e
(n−1) + · · ·+ αn−1ė

= ∆(x) +
β(x)

β̂
(û− φ(x)sgn(s))− û

= ∆(x) +

(
β(x)

β̂
− 1

)
û− β(x)

β̂
φ(x)sgn(s).
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j Exercises (cont.)

For s > 0,

ṡ = ∆(x) +

(
β(x)

β̂
− 1

)
û− β(x)

β̂
φ(x)

≤ F (x) +

∣∣∣∣β(x)

β̂
− 1

∣∣∣∣ |û| − β(x)

β̂

(
β̂

β(x)
(η + F (x)) +

∣∣∣∣∣ β̂

β(x)
− 1

∣∣∣∣∣ |û|
)

= −η, s > 0. (7.20)

For s < 0,

ṡ = ∆(x) +

(
β(x)

β̂
− 1

)
û+

β(x)

β̂
φ(x)

≥ ∆(x)−
∣∣∣∣β(x)

β̂
− 1

∣∣∣∣ |û|+ β(x)

β̂

(
β̂

β(x)
(η + F (x)) +

∣∣∣∣∣ β̂

β(x)
− 1

∣∣∣∣∣ |û|
)

≥ η, s < 0. (7.21)
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j Exercises (cont.)

(7.20) and (7.21) imply
1

2

d

dt
s2 ≤ −η|s|,

which completes the proof.

Jie Huang ( MAE, CUHK ) Sliding Control 39 / 39


	Introduction
	Sliding Control
	Problem description
	Interpretation of the sliding condition
	Achieving sliding condition
	Example 2.
	Robustness property of sliding control
	Remarks


