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j 1 Introduction

Many dynamic systems to be controlled have constant or slowly-varying
uncertain parameters. For instance,

Robot manipulators may carry large objects with unknown inertial
parameters;

Power systems may be subjected to large variations in loading
conditions;

Fire-fighting aircraft may experience considerable mass changes as
they load and unload large quantities of water.

Adaptive control is an approach to the control of such systems.
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j 1 Introduction

The basic idea in adaptive control is to estimate the uncertain plant
parameters (or, equivalently, the corresponding controller parameters)
on-line based on the measured system signals, and use the estimated
parameters in the control input computation.

An adaptive control system can be regarded as a control system with
on-line parameter estimation.

An adaptive control law, whether developed for linear plants or for
nonlinear plants, is nonlinear, the analysis and design of an adaptive
control system is thus intimately connected with Lyapunov theory.
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j 1 Introduction

Why adaptive control?

Robot manipulation: Robots have to manipulate loads of various
sizes, weights, and mass distributions (Figure 8.1). It is very
restrictive to assume that the inertial parameters of the loads are well
known before a robot picks them up and moves them away. If
controllers with constant gains are used and the load parameters are
not accurately known, robot motion can be either inaccurate or
unstable. Adaptive control, on the other hand, allows robots to move
loads of unknown parameters with high speed and high accuracy;
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j 1 Introduction

Why adaptive control?

Ship steering;
Aircraft control;
Process control.
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j 2 Basic Concepts in Adaptive Control

An adaptive controller differs from an ordinary controller in that the
controller parameters are variable, and there is a mechanism for adjusting
these parameters online based on signals in the system.
There are two main approaches for constructing adaptive controllers:

1 model-reference adaptive control method;

2 self-tuning method.
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j 3 How To Design Adaptive Controllers?

In conventional (non-adaptive) control design, a controller structure
(e.g., pole placement) is chosen first, and parameters of the controller
are then computed based on the known parameters of the plant.

In adaptive control, the major difference is that the plant parameters
are unknown, so that the controller parameters have to be provided
by an adaptation law which can learn the unknown parameters online.

As a result, the adaptive control design is more involved, with the
additional needs of choosing an adaptation law and proving the
stability of the system with adaptation.
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j 3 How To Design Adaptive Controllers?

The design of an adaptive controller usually involves the following three
steps:

1 choose a control law containing variable parameters;

2 choose an adaptation law for adjusting those parameters;

3 analyze the convergence properties of the resulting control system.

For uncertain linear systems, there are two main adaptive control methods,
namely, model reference adaptive control (MRAC) and the self-tuning
approach.
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j 3 Adaptive Control of Nonlinear Systems

Recently, adaptive control has been successfully developed for some
important classes of nonlinear control problems. Such problems usually
satisfy the following conditions:

1 the nonlinear plant dynamics can be linearly parameterized

2 the full state is measurable

3 nonlinearities can be canceled stably (i.e., without unstable hidden
modes or dynamics) by the control input if the parameters are known
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j 3.1 Problem Statement

Consider nth− order nonlinear systems in companion form

y(n) +

m∑
i=1

αifi(x, t) = bu (8.1)

where x = [y ẏ · · · y(n−1)]T is the state vector, fi are known nonlinear
functions of the state and time, and the parameters αi and b are unknown
constants. We assume that the state is measured, and that the sign of b is
known. One example of such dynamics is

mẍ+ cf1(ẋ) + kf2(x) = u (8.2)

which represents a mass-spring-damper system with nonlinear friction and
nonlinear damping.
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j 3.1 Problem Statement

The objective of the adaptive control design is to make the output
asymptotically track a desired output yd(t) despite the parameter
uncertainty. To facilitate the adaptive controller derivation, let us rewrite
equation (8.1) as

a0y
(n) +

m∑
i=1

aifi(x, t) = u (8.3)

by dividing both sides by the unknown constant b, where a0 = 1/b and
ai = αi/b.
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j 3.2 Design of Control Law

Similarly to the sliding control approach of chapter 7, let us define a
combined error

s = e(n−1) + α1e
(n−2) + · · ·+ αn−1e (8.4)

where e = y − yd is the output tracking error and α1, · · · , αn−1 are real
numbers such that ∆(λ) = λ(n−1) + α1λ

(n−2) + · · ·+ αn−1 is a stable
(Hurwitz) polynomial. Note that s can be rewritten as

s = y(n−1) − y(n−1)r (8.5)

where y
(n−1)
r is defined as

y(n−1)r = y
(n−1)
d − α1e

(n−2) − · · · − αn−1e (8.6)
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j 3.2 Design of Control Law

Consider the control law

u = a0f0(x, t)− ks+

m∑
i=1

aifi(x, t) (8.7)

where k is a constant of the same sign as a0, and f0(x, t) is the derivative

of y
(n−1)
r , i.e.,

f0(x, t) = y
(n)
d − α1e

(n−1) − · · · − αn−1ė (8.8)

Note that f0(x, t), the so-called “reference” value of y(n), is obtained by

modifying y
(n)
d according to the tracking errors.

If the parameters are all known, this choice leads to the tracking error
dynamics

a0ṡ+ ks = 0 (8.9)

and therefore gives exponential convergence of s, which, in turn,
guarantees the convergence of e since s = 0 is a stable system.
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j 3.3 Design of Adaptation Law

If the parameters are unknown, then the control law (8.7) is replaced by

u = â0f0(x, t)− ks+

m∑
i=1

âifi(x, t) (8.10)

where ai have been replaced by their estimated value âi. The tracking
error from this control law can be easily shown to be

a0ṡ+ ks = −
m∑
i=0

ãifi(x, t) (8.11)

where ãi = ai − âi, i = 0, 1, · · · ,m.
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j 3.3 Design of Adaptation Law

Choose the following adaptation law

˙̂ai = −γisgn(a0) s fi, i = 0, · · · ,m (8.12)

where γi > 0. The overall adaptive control law consists of (8.7) and
(8.12).

Theorem 8.1: Suppose fi(x, t), i = 1, · · · ,m, and

yd(t), ẏd(t), · · · , y(n)d (t) are bounded. Then, for any initial condition, the
solution of the closed-loop system composed of the plant (8.3) and the
control law (8.7) and (8.12) is bounded, and limt→∞ e(t) = 0.
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j 3.4 Stability Analysis

Proof: Consider the Lyapunov function candidate

V =
1

2
sgn(a0)a0s

2 +
1

2

m∑
i=0

γ−1i ã2i (8.13)

whose derivative along the solution of the closed-loop system is

V̇ = sgn(a0)a0sṡ+

m∑
i=0

γ−1i ãi ˙̃ai

= sgn(a0)s(−ks−
m∑
i=0

ãifi(x, t)) +

m∑
i=0

γ−1i ãi ˙̃ai

= −|k|s2 −
m∑
i=0

ãi(sgn(a0)sfi(x, t)− γ−1i
˙̂ai) = −|k|s2 ≤ 0

(8.14)

As a result, s and all ãi are bounded. We will further show
limt→∞ s(t) = 0. For this purpose, note that

V̈ = −2|k|sṡ (8.15)
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j 3.4 Stability Analysis

Since (8.4) can be viewed as a stable (n− 1)th order linear differential
equation with bounded input s, the solution (e, ė, · · · , e(n−1)) of (8.4) is

bounded. By assumption, y
(n)
d is bounded. Thus, from (8.8), f0(x, t) is

bounded.
Since s and ãi have been shown to be bounded, and, by assumption,
fi(x, t), i = 1, · · · ,m, are bounded, from (8.11), ṡ is bounded. Thus, V̇ is
uniformly continuous. By Babalat’s Lemma, limt→∞ s(t) = 0.
Finally, note that (8.4) can be viewed as a stable (n− 1)th order linear
differential equation with the input s satisfying limt→∞ s(t) = 0. Thus,
the solution (e, ė, · · · , e(n−1)) of (8.4) tends to zero asymptotically. Since

yd(t), ẏd(t), · · · , y(n−1)d (t) are bounded, x(t) is bounded.

Exercise: Show in detail that (i) f0(x, t) is bounded, and (ii) the solution
(e, ė, · · · , e(n−1)) of (8.4) tends to zero asymptotically.

Jie Huang ( MAE, CUHK ) Adaptive Control Fall 2011 Page : 18 / 36



j 3.4 Stability Analysis

Remark 8.1:

(i) γi is called the adaptation gain. A smaller gain leads to slower
convergence, but a too large gain may incur poor transient response such
as large oscillations.
(ii) sgn(a0) determines the direction of the search.
(iii) ãi may not tend to zero. The convergence of ãi is related to the
concept of persistence of excitation.
(iv) If a0 is known, then the control law can be simplified to

u = a0f0(x, t)− ks+

m∑
i=1

âifi(x, t)

˙̂ai = −γisgn(a0) s fi, i = 1, · · · ,m

(v) If fi, i = 0, 1, · · · ,m, are independent of t, then fi(x) are bounded
since x is bounded.
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j 4 Adaptive Control of Euler-Lagrange Systems1

Euler-Lagrange Systems

M(q)q̈ + C(q, q̇)q̇ +G(q) = u (8.16)

where q, u ∈ Rn are the generalized coordinate and force vector,
respectively, C(q, q̇)q̇ ∈ Rn with C(q, q̇) ∈ Rn×n represents the Coriolis
and centripetal force vector and G(q) ∈ Rn denotes the gravity force
vector.
Some properties of system (8.16) are listed as follows.

Property 1: For all q ∈ Rn, M(q) ≥ kmIn for some km > 0.

Remark 8.2: By Property 1, kmM(q)−1 ≤ In, and hence M(q)−1 is
bounded for all q ∈ Rn.

1This Section is based on Chapter 5 of the book: He Cai, Youfeng Su, and
Jie Huang “Cooperative Control of Multi-agent Systems: Distributed Observer
and Distributed Internal Model Approaches,” Springer, 2022.
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j 4 Adaptive Control of Euler-Lagrange Systems

The vector C(q, q̇)q̇ is such that

C(q, q̇)q̇ = Ṁ(q)q̇ − 1

2

∂(q̇TM(q)q̇)

∂q

Thus, the matrix C(q, q̇) is not uniquely defined. If one adopts the
following so-called the Christofflel symbols:

Cij =
1

2

n∑
k=1

∂Mij

∂qk
q̇k +

1

2

n∑
k=1

(
∂Mik

∂qj
−
∂Mjk

∂qi

)
q̇k

where Cij and Mij denote the elements of C(q, q̇) and M(q) on the ith

row and jth column, respectively, then the following property holds.

Property 2: The matrix Ṁ(q)− 2C(q, q̇) is anti-symmetric2.

2A matrix A ∈ Rn×n is anti-symmetric if A+AT = 0. If A is
anti-symmetric, then, for any x ∈ Rn, xTAx = 0.

Jie Huang ( MAE, CUHK ) Adaptive Control Fall 2011 Page : 21 / 36



j 4 Adaptive Control of Euler-Lagrange Systems

Property 3:

M(q)x+ C(q, q̇)y +G(q) = Y (q, q̇, x, y)Θ, ∀x, y ∈ Rn

where Y (q, q̇, x, y) ∈ Rn×l is a known regression matrix and Θ ∈ Rl is a
nonzero constant vector consisting of the uncertain parameters. Moreover,
if q(t), q̇(t), x(t), and y(t) are bounded over [0,∞), then C(q(t), q̇(t))
and Y (q(t), q̇(t), x(t), y(t)) are also bounded over [0,∞).
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j 4 Adaptive Control of Euler-Lagrange Systems

The Desired Generalized Position Vector q0(t): It is assumed that q0 is
twice differentiable over t ≥ 0, and q0(t), q̇0(t) and q̈0(t) are bounded over
[0,∞).

Trajectory Tracking Problem: Given system (8.16), design a control
law of the following form:

u = f(q, q̇, q0, q̇0, q̈0, Θ̂)

˙̂
Θ = g(q, q̇, q0, q̇0, q̈0)

where Θ̂ is the estimate of Θ, such that

lim
t→∞

(q(t)− q0(t)) = 0, lim
t→∞

(q̇(t)− q̇0(t)) = 0.
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j 4 Adaptive Control of Euler-Lagrange Systems

To introduce our specific control law, let e = q − q0, and

s = ė+ αe = q̇ − ζ (8.17)

where
ζ = q̇0 − α(q − q0) (8.18)

with α > 0.
Let Y = Y (q, q̇, ζ̇, ζ). Then our control law is given as follows:

u = −Ks+ Y Θ̂ (8.19a)

˙̂
Θ = −Λ−1Y T s (8.19b)

where K ∈ Rn×n, Λ ∈ Rl×l are positive definite gain matrices.
Remark 8.3: The control law (8.19) is a type of adaptive control law in
which (8.19b) provides the estimate Θ̂ of the unknown parameter vector
Θ.
Theorem 8.2: Given system (8.16), the Trajectory Tracking Problem is
solvable by the control law (8.19).
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j 4 Adaptive Control of Euler-Lagrange Systems

Proof: Substituting (8.19a) into (8.16) gives

M(q)q̈ + C(q, q̇)q̇ +G(q) = −Ks+ Y Θ̂ (8.20)

and subtracting YΘ on both sides of (8.20) gives

M(q)q̈ + C(q, q̇)q̇ +G(q)− YΘ = −Ks+ Y Θ̂− YΘ. (8.21)

Substituting Y (q, q̇, ζ̇, ζ)Θ = M(q)ζ̇ + C(q, q̇)ζ +G(q), which is due to
Property 3, into the left hand side of (8.21) gives

M(q)q̈ + C(q, q̇)q̇ +G(q)−M(q)ζ̇ − C(q, q̇)ζ −G(q) = −Ks+ Y Θ̃

where Θ̃ = Θ̂−Θ. Then, we have

M(q)ṡ+ C(q, q̇)s+Ks = Y Θ̃. (8.22)
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j 4 Adaptive Control of Euler-Lagrange Systems

Let

V =
1

2
(sTM(q)s+ Θ̃TΛΘ̃).

Noting sT (Ṁ(q)− 2C(q, q̇))s ≡ 0 since Ṁ(q)− 2C(q, q̇) is
anti-symmetric gives

V̇ = sTM(q)ṡ+
1

2
sT Ṁ(q)s+ Θ̃TΛ ˙̃Θ

= sT (−C(q, q̇)s−Ks+ Y Θ̃) +
1

2
sT Ṁ(q)s+ Θ̃TΛ ˙̃Θ

= −sTKs+
1

2
sT (Ṁ(q)− 2C(q, q̇))s+ sTY Θ̃− Θ̃TΛΛ−1Y T s

= −sTKs+ sTY Θ̃− Θ̃TΛΛ−1Y T s

= −sTKs ≤ 0.

(8.23)

Since M(q) is positive definite by Property 1, V (t) is lower bounded for all
t ≥ 0. By (8.23), V̇ ≤ 0, which implies that limt→∞ V (t) exists and is
finite, and thus s(t) and Θ̃(t) are bounded over [0,∞).
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j 4 Adaptive Control of Euler-Lagrange Systems

Next, we will show that ṡ(t) is bounded over [0,∞). For this purpose,
note that (8.17) can be viewed as a stable first order system in e with a
bounded input s. Thus e and ė are bounded. Since q0, q̇0 are bounded,
q(t) and q̇(t) are also bounded over [0,∞).
From (8.17), we have

ṡ = q̈ − ζ̇.

By (8.18),
ζ̇ = q̈0 − α(q̇ − q̇0). (8.24)

Therefore, ζ(t) and ζ̇(t) are also bounded over [0,∞), which in turn
implies that Y (t) is bounded over [0,∞) by Property 3. Then, by (8.22),
Remark 8.2 and Property 3 again, ṡ(t) is bounded over [0,∞).

Jie Huang ( MAE, CUHK ) Adaptive Control Fall 2011 Page : 27 / 36



j 4 Adaptive Control of Euler-Lagrange Systems

Since ṡ(t) is bounded over [0,∞), so is V̈ (t). Then, by Barbalat’s Lemma,
limt→∞ s(t) = 0. By (8.17), e satisfies

ė+ αe = s (8.25)

which is a stable first order system in e with the input s decaying to zero.
Thus, limt→∞ e(t) = 0. The proof is thus complete.

Exercise: Show that the solution of (8.25) is bounded if s(t) is bounded,
and limt→∞ e(t) = 0 and limt→∞ ė(t) = 0 if limt→∞ s(t) = 0.
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j 4 Adaptive Control of Euler-Lagrange Systems

Example: Shown in Fig. 1 is a three-link cylindrical robot arms whose
motion equations3 are described by (8.16) where q = col(θ, h, r) and

M(q) =

 J +m2r
2 0 0

0 m1 +m2 0
0 0 m2


C(q, q̇) =

 m2rṙ 0 m2rθ̇
0 0 0

−m2rθ̇ 0 0

 , G(q) =

 0
(m1 +m2)g

0


where J is the moment of inertia of the base link, and m1 and m2 are the
masses of the vertical link and the horizontal link, respectively. The values
of J , m1, m2 are unknown. The actual values of the unknown parameters
are J = 1 kg·m2, m1 = 2 kg, m2 = 3 kg.

3The detailed derivation of the equations can be found in Lewis FL, Dawson
MD, Abdallah TC (2004) Robot Manipulator Control: Theory and Practice.
2nd edition, Marcel Dekker, New York.
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j Fig. 1: Three-Link Cylindrical Robot Arm

θ 

r

h
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j 4 Adaptive Control of Euler-Lagrange Systems

Let x = col(x1, x2, x3) and y = col(y1, y2, y3). Then

M(q)x+ C(q, q̇)y +G(q)

=

 (J +m2r
2)x1 +m2rṙy1 +m2rθ̇y3

(m1 +m2)x2 + (m1 +m2)g

m2x3 −m2rθ̇y1


=

 x1 0 r2x1 + rṙy1 + rθ̇y3
0 x2 + g x2 + g

0 0 x3 − rθ̇y1

 ·
 J
m1

m2


,Y (q, q̇, x, y)Θ.
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j 4 Adaptive Control of Euler-Lagrange Systems

where

Y (q, q̇, x, y) =

 x1 0 r2x1 + rṙy1 + rθ̇y3
0 x2 + g x2 + g

0 0 x3 − rθ̇y1


Θ =

 J
m1

m2

 .
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j 4 Adaptive Control of Euler-Lagrange Systems

By Theorem 8.2, we can synthesize an adaptive control law of the form
(8.19) with the design parameters being α = 10, K = 10I3, Λ = 0.2I3.
To evaluate the performance of the control law (8.19), let the desired
generalized position vector q0(t) = col(π/6, 0.1 sin 4t, 0.4 cos 4t). Then,
q0, q̇0 and q̈0 are bounded.
Let us evaluate the control law (8.19) with the initial values being given by
qi(0) = 0, q̇i(0) = 0, Θ̂i(0) = 0. Figs. 2 and 3 show the tracking
performance of the position and velocity for each link, respectively. It is
observed that all the tracking errors tend to zero asymptotically.
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j Fig. 2: Tracking Performance of the Position
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Figure: Three-link cylindrical robot arm.
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j Fig. 3: Tracking Performance of the Velocity
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Figure: Three-link cylindrical robot arm.
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Thank  you!

Back to Outline
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