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Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #1

Problem 1

The piezoelectric constant matrix d of PZT is described as

0 0 0 0 dis O
0 0 0 dis 0 O (1)
d31 ds1 dsz 0 0 0

Consider a PZT element above used as a micro positioning device, in which in L = 30 mm,
T =5 mm, and W = 12 mm. With 110 volts applied, compute the changes in L, T, and W for a
PSI-5A-S4 piezoceramic (d3; = —190 x 10712 Meters/Volt; d33 = 390 x 10712 Meters/Volt;
di5 = 550 x 10712 Meters/Volt).

Solution:

The electric fields after 110 volts are applied are given by:

0 0 0
E=| 0 |=| 0 |=| o V/m 2)
110 V 110V 4
0 WOV 12.2x10

The mechanical strains are calculated as:

[—4.18 x 107]
‘ —4.18x 1076
0 0 0 0 dy 0 0 6
t 8.58 x 10
S=dE=10 0 0 diz 0 O0f- 0 = 0 (3)
d31 d31 d33 0 0 0 2.2 % 104 0
0

Therefore, the changes in L, T, and W for a PSI-5A-S4 piezoceramic can be computed as

AL=8L=-418%x10%%x30 mm =-1.254 x 107" m 4)
AW = SoW = -4.18 X 1079 x 12 mm = —=5.02 x 10 m (5)
AT = S3T =858 %X 1070 x5 mm =4.29 x 10 m (6)

Page 1 of 13



Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #1
Problem 2
Given the following differential equation
mi+cx+kx=0 (7)
or
X+ 20 wpk + w2x =0 (8)
where w,, = \/% and ¢ = Qman. For initial conditions: x (0) = xg, X (0) = v,
(a) Show the solutions for the following cases in details:
(1) ¢ = 0 (undamped):
x (1) = Acos (wyt — @) 9)
where A = | [x2 + (Z)—i) and ¢ = tan™! -
(i1) 0 < ¢ < 1 (underdamped):
x (1) = Ae 59" cos (wat — @) (10)
2
where wg = \1 — Cwp, A = \/xg + (—gw’igwo) ,and ¢ = tan~! —gwx"(fgzvo.
(ii1) ¢ = 1 (critically damped):
x () = [x0 (vo + wnxo) ] e (11)
(iv) £ > 1 (overdamped):
2 (1) = CreleVETent | 0 (eNETJont (12)
where
X0Wy ({ ++/2 - 1) + v
C = (13)
2w\ 2 -1
and
—X0Wn (§ -V - 1) — Vo
Cy = (14)

QwHW

(b) Consider the following values of damping ratio:
H¢=0;2)¢=013)¢=1&HH=5
where w, = 1.2z rad/sec, xg = 1.5 mm, and vg = 2 mm/sec.
Plot the following three figures (MATLAB is recommended):

(1) x (¢) versus t (0~8 sec)

(ii) x (¢) versus t (0~8 sec)

(iii) X (¢) versus x () (called phase plane)
(c) Discuss the results in part (b)
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Solution:
(@)
(1)
Assume that the solution x (7) is of the form (Inman & Singh, 1994)
x (t) = ae (15)

where a and A are nonzero constants to be determined. Upon successive differentiation, Equation
(15) becomes % () = dae™ and & (1) = 22ae. Substitution of the assumed exponential form
into Equation (8) yields

mA2ae" + kae' =0 (16)

A

Since the term ae? is never zero, Equation (16) can be divided by ae? to yield

ml2+k=0 (17)

Solving this algebraically results in

/ k /k
A=t —— =4 —] = 2w,j (18)
m m

where j = V-1 is the imaginary number and w, = +/k/m is the natural frequency as before.
Note that there are two values for 4, 4 = +w,j and 1 = —w,j, because the equation for A is of
second order. This implies that there must be two solutions of Equation (8) as well. Substitution

of Equation (18) into Equation (15) yields that the two solutions for x () are
x (1) = ajet’en (19)

and
x (1) = age /! (20)

where a1 and ay are complex-valued constants of integration. The Euler relations for trigono-
metric functions state that 2sin@ = (€% — ¢7%/) and 2cos§ = (% +e7%), where j = V-1.

Using the Euler relations, Equation (20) can be written as
x (1) = Acos (wpt — @) (21)

where A and ¢ are real-valued constants of integration. Each set of two constants is determined

by the initial conditions, xg and vq:
x0 =x(0) = A cos (w,0 — ¢) = Acos ¢ (22)
and

vo =X (0) = —w,A sin (w,0 — ¢) = w,Asin ¢ (23)
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Solving these two simultaneous equations for the two unknowns A and ¢ yields

A= |2+ (:)—0) (24)
and

¢ = tan™! x;)f) (25)
(ii)

Let x () have the form given in Equation (15), x (#) = ae’. Substitution of this form into
Equation (8) yields
(m/12 +cd+ k) ae' =0 (26)

Again, ae'’ # 0, so that this reduces to a quadratic equation in A of the form
mA®+cAd+k=0 (27)

called the characteristic equation. This is solved using the quadratic formula to yield the two

solutions

1
Adlg=——+ 5 Ve —dkm = o, w2 -1 (28)

2m m
In this case, the damping ratio { is less than 1 (0 < { < 1) and the discriminant of Equation

(28) is negative, resulting in a complex conjugate pair of roots. Factoring out (-1) from the

discriminant in order to clearly distinguish that the second term is imaginary yields

N 1= (1-2) (1) =122 (29)

A2 = ~{wn WVl = (%) (30)

Thus the two roots become

Following the same argument as that made for the undamped response of Equation (20), the

solution is then of the form
x (1) = e~¢@n! (ale+j 1-Cont 4 goe™i 1_42“’"’) (1)

where a1 and as are arbitrary complex-valued constants of integration to be determined by the

initial conditions. Using the Euler relations, this can be written as
x (1) = Ae™*“n! cos (wqt — ¢) (32)

where A and ¢ are constants of integration and wy, called the damped natural frequency, is
given by
wg =1 - Cw, (33)

in units of rad/s. Each set of A and ¢ is determined by the initial conditions, x and vq:
x0 = x(0) = Ae ™0 cos (wy0 — ¢) = A cos ¢ (34)
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Differentiating Equation (32) yields
% (1) = —=fwpAe™ ! cos (wat — ¢) — waAe 4! sin (wyt — @) (35)
Lett = 0and A = xg/cos ¢ in this last expression to get
vo =X (0) = =lwuxo + xowy tan ¢ (36)

Solving this last expression for ¢ yields

X0 +
tan ¢ = M (37)
XoWwq
With this value of ¢, the cosine becomes
cos ¢ = 10%d (38)

\/(éwnxo +v0)” + (xowa)”

Thus the value of A and ¢ are determined to be

2
A= \/x% + (@+Od+vo) (39)
and
6 = tan"! % (40)
(ii1)

In this last case, the damping ratio is exactly one ({ = 1) and the discriminant of Equation
(28) is equal to zero. This corresponds to the value of { that separates oscillatory motion from

nonoscillatory motion. Since the roots are repeated, they have the value
A1 =2 = —wy 41)
The solution takes the form
x (1) = (a1 + ast) e™ ! (42)

where, again, the constants a; and as are determined by the initial conditions. Substituting the
initial displacement into Equation (42) and the initial velocity into the derivative of Equation
(42) yields

ai =xg, as =vo+ wyXxo 43)

(iv)
In this case, the damping ratio is greater than 1 ({ > 1). The discriminant of Equation (28)

is positive, resulting in a pair of distinct real roots. These are

A1,2 = —fwy = w2 -1 (44)
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The solution of Equation (8) then becomes
— 2_ Ry 2_
% (1) = Crel VTt | [N T (45)
which represents a nonoscillatory response. Again, the constants of integration C; and Cy are

determined by the initial conditions:

x0 = x (0) = Crel Vo0 o eV T)wn0 _ ) (46)

Differentiating Equation (32) yields

x (1) = (—§ ++/22 - 1) wncle(‘é“ﬂ/(?_—l)wnz N (—{ B \/ﬁ) wncze(—f—\/@_—l)wnz 47)

Let # = 0 in this last expression to get

v =5 (0) = (~£ + V= 1) w,C1 + (¢ = V= T) 0, (48)

Solving Equation (46) and (48) for C; and Cs yields

X0Wy, ({ +4/02% - 1) + vy
C = (49)

201

—X0Wp (C -V - 1) = Vo
2(1),,@

(b) The MATLAB code in the main file is shown below:

and

Cy = (50)

clc; clf; clear all;

hold on;

t0 = 0; tf = 8;

tspan = [t0 tf];

x0v0 = [2; 1];

[t,x1] = oded5 (’'Q2MotionFunctionl’, tspan , x0vO0);
figure (1) ;

hold on;

plot (t, x1(:,1),"color’,[238, 64, 531/256,’'LineWidth’,2.5);
figure (2);

hold on;
plot(t, x1(:,2),’'color’,[238, 64, 53]1/256,'LineWidth’,2.5);
[t,x2] = oded5 (’'Q2MotionFunction2’, tspan , x0vO0);

figure (1) ;

plot (t, x2(:,1),"'color’,[128, 0, 128]1/256,'LineWidth’,2.5);
figure (2);

plot (t, x2(:,2),"color’,[128, 0, 128]1/256,’'LineWidth’,2.5);
[t,x3] = oded5 (’'Q2MotionFunction3’, tspan , x0vO0);
figure (1) ;
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plot (t, x3(:,1),"’color’,[123, 192, 67]/256,’LineWidth’,2.5);
figure (2);

plot (t, x3(:,2),"coloxr’,[123, 192, 67]1/256,’LineWidth’,2.5);
[t,x4] = oded5 (’'Q2MotionFunction4’, tspan , x0vO0);
figure(1l);

plot (t, x4(:,1),"’color’,[3, 146, 2071/256,'LineWidth’,2.5);
figure (2);

plot (t, x4(:,2),"color’,[3, 146, 207]1/256,'LineWidth’,2.5);
figure (3);

hold on;

plot (x1¢(:,1), x1(:,2),"color’,[238, 64, 53]1/256,’LineWidth’,2.5);
plot (x2(:,1), x2(:,2),’color’,[128, 0, 128]/256,'LineWidth’,2.5);
plot (x3(:,1), x3(:,2),’color’,[123, 192, 671/256,’LineWidth’,2.5);
plot (x4 (:,1), x4(:,2),"'color’,[3, 146, 207]1/256,’'LineWidth’,2.5);
figure (1) ;

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' Sx\left (t\right), \mathrm{\ \left (mm\right)}$’,
"interpreter’,’ latex’);

legend (' S\zeta=0S$’, ’'S$\zeta=0.1$’, ’S\zeta=1S$’, ’S$\zeta=5$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’ ,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,'painters’);

hold off;

filename = "x_vs_t"+".pdf";

saveas (gef, filename) ;

figure (2);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}S$’,’interpreter’,’latex’);

ylabel (' $\dot {x}\left (t\right), \mathrm{\ \left (mm/s\right)}s$’,
"interpreter’,’latex’);

legend (' $\zeta=0$", ’'S$\zeta=0.1$", ’S$\zeta=1$’, ’'$\zeta=5s$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’, ' Times’,’ fontsize’,12);

set (gcf, '’ renderer’,'painters’);

hold off;

filename = "xdot_vs_t"+".pdf";

saveas (gecf, filename) ;

figure (3);

grid on;

xlabel (' Sx\left (t\right), \mathrm{\ \left (mm\right)}$’,
"interpreter’,’ latex’);

ylabel (' $\dot {x}\left (t\right), \mathrm{\ \left (mm/s\right)}s’,

"interpreter’,’latex’);
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legend (' $\zeta=0$’, ’'$\zeta=0.1%", "S$\zeta=1$’, ’$\zeta=5$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);

hold off;
filename = "xdot_vs_x"+".pdf";
saveas (gef, filename) ;

The MATLAB code in the function that defines the motion dynamics of the spring-damper

system is shown below:

Case (1)

function xdot = Q2MotionFunctionl (t, x)

omega_n = 1.5xpi;

zeta = 0;

xdot (1) = x(2);

xdot (2) = —-omega_n"2xx(1l)-2xzeta*xomega_nx*x(2);

xdot = xdot (:);

Case (2)

function xdot = Q2MotionFunction2 (t, x)

omega_n = 1.5xpi;

zeta = 0.1;

xdot (1) = x(2);

xdot (2) = -omega_n”"2*x(l)-2xzetaxomega_n*x(2);

xdot = xdot (:);

Case (3)

function xdot = Q2MotionFunction3 (t, x)

omega_n = 1.5xpi;

zeta = 1;

xdot (1) = x(2);

xdot (2) = -omega_n"2+x(1l)-2+xzetaxomega_n*x(2);

xdot = xdot (:);

Case (4)

function xdot = Q2MotionFunctioni (t, x)

omega_n = 1.5xpi;

zeta = 5;

xdot (1) = x(2);

xdot (2) = —-omega_n"2xx(1l)-2xzeta*omega_n*x(2);

xdot = xdot (:);

(i) The results for x () are plotted in Figure 1.
(i1) The results for x (¢) are plotted in Figure 2.

(1i1) The results for phase portraits are plotted in Figure 3.
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Figure 2: Results for x (¢) versus 7.
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Figure 3: Results for x (¢) versus x (¢) (called phase plane).
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(c) The discussion is listed below:

* For undamped case, the system is in the harmonic motion and will never end, which is

marginal stable.

* Critical damping returns the system to equilibrium as fast as possible without overshoot-

ing.
* An underdamped system will oscillate through the equilibrium position.

* An overdamped system moves more slowly toward equilibrium than one that is critically

damped.
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Problem 3

For a single degree of freedom damped system under harmonic force, the magnification factor

M is found as

M = ! (51)

\/(1 — r2)2 +(20r)?

where r = £
w

n

Show the maximum value of M for 0 < £ < =

‘/53

1
Mmax =

2uN1-2

(52)

where r = /1 — 272
Solution:

To get the maximum value of M, we need to minimize (1 — r2)2 +(2¢r)?. We can regard

(1- r2)2 + (2¢7)? as a function with respect to r:

F(r) = (1 - r2)2 L) =rty (452 - 2) P2 41 (53)

Because 0 < ¢ < LQ, f (r) is a quadratic function with respect to r2. This function reaches the
minimum point at
o AL -2

= (54)

r=+/1-222 (55)

In this case, the magnification factor M reaches maximum, which equals

that is

1
Myax = ——— (56)

2uNL- 22
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Problem 1

The vertical dynamics of a two-axle vehicle with a suspension system are modeled as
a SDOF system, as shown in the following figure. The vehicle travels to the right at a

speed V and encounters a step change in the road height.

v m = 1000 kg
—_— ¢ = 2500 N/(m/s)
m k = 158,000 N/m
h=0.075m
L=3m

¢ k
!
== ¥

(a) Develop the equation of motion for this “base-driven” system.

(b) Develop an expression for the vertical motion of the vehicle following its encounter
with the road height change. Use nominal speed V = 24 m/s, plot this motion as a
function of time. Discuss your findings.

(c) Possibly computer-assisted: What is the maximum height attainable by the vehicle
at any speed? At what speed(s) is this achieved? At what speed(s) will the residual
suspension motion (when both wheels are on the higher part of the road) be

minimized?

Solution:

(a) The free-body diagram of m is shown on the right side of Figure 1. The force exerted by
the spring k on the mass m is downward as it tends to restore to the undeformed position.

Note that the gravitational force, mg, is not included in the free-body diagrams.

Figure 1: Simplified Suspension System of Car Model.
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(b)

~N N L AW =

Applying Newton’s second law to the mass m gives
+Tx:ZFx:max (D)

k(x —y) +c(x—y) =maky 2

Rearranging the equations into the standard input—output form,

mi+cx+kx=cy+ky 3)

When the vehicle encounters a step change in the road height, the equation of motion for

this "base-driven" system can be expressed as

Vv

ch ch (t L) kh kh( L) @)

X+cx+kx=—06(1)+— —u(t)+ —ult—-—
mx + cx + kx 2c5()+2(5 +2u()+2u v
where 6 (f — a) is the Dirac Delta Function, and u (¢ — a) is the Heaviside Function.
Taking the Laplace transform to Equation (4) with the initial condition x (0) = 0 and
x (0) = 0 yields that

ch ch _1, khl khev*

2 =5
X X(s)+kX(s) = — + — ol 5
ms“X (s) +csX (s) + (s) 2+2ev+25+2 . (5)

Solving the Laplace transform in Equation (5) gets that

3u(t - 1)
X (t) :T8
3V2503u(z—-%)e—%ﬂé%snl(;égﬂ__vggﬁ)

1
40048

5 |4
b 1= ) e Fred cos (Y2 — )

+

(6)

o

40048
3V0503¢ 1 sin VB 301 o5 VI
+ _ + 3
40048 40048 80

The plot of this motion as a function of time is shown in Figure 2. From the system
response shown in Figure 2, we can see that when the vehicle encounters a step change in

the road height, the system is underdamped and the steady time is about 2 seconds.

I use the following MATLAB codes to find the answer to this question:

clc; clf; clear all;

syms s t V

m = 1000; ¢ = 2500, k = 158000; h = 0.075; L = 3;
fl = ilaplace(c*h/2%1/ (m*s”2+c*s+k),t);

f2 = ilaplace (cxh/2+exp (-L/V=*s)/ (mxs”2+cxs+k),t);
f3 = ilaplace(kxh/2%1/s*1/ (m*xs”2+cxs+k),t);

f4 = ilaplace (k+xh/2x1/s*exp (-L/V+*s)/ (mxs”2+cxs+k),t);
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34
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- 0.06 | “
=

0.04

0.02

Figure 2: System motion diagram.

f(t,v) = £f1+£2+£3+£4;

figure;

fplot (f,’color’, [128, 0, 128]1/256,’LineWidth’,2.5)

x1lim ([0 107);

grid on;

10

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' $x\left (t\right), \mathrm{\ \left (m\right)}$’,

"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’ Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);
filename = "Q2-1-Motion"+".pdf";
saveas (gef, filename) ;

figure;

V =0.01:0.01:3000;

size (V);

SV
Mx = zeros(l,sv(2));
for i = 1:s5v(2)
t = [0:0.01:2 3/V(1i):0.01:(3/V(1)+2)1;
Mx (i) = max(f(t,V(i)));
end

plot (V,Mx,’'color’, [128, 0, 128]/256,'LineWidth’,2.5);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right) }$’,’ interpreter’,’latex’);

ylabel (' $x\left (t\right), \mathrm{\ \left (m\right)}$’,

"interpreter’,’latex’);

a = get(gca,’XTickLabel’);
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35 set(gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
36 set (gcf,’renderer’,’painters’);
37 filename = "Q2-1-Motion"+".pdf";

38 saveas(gecf, filename);

The results gotten from MATLAB are shown in Figure 3.

0.14 T T T T

013+ 3

012+ 1

< o011 .

xmaz

0.09 4

008 1 1 1 1
0 50 100 150 200 250
V, (m/s)

Figure 3: The maximum displacement versus the velocity.

From Figure 3, it can be concluded that
* The maximum height attainable by the vehicle at any speed is 0.1309 m, with the
velocity equal to 2560 m/s.

* The residual suspension motion (when both wheels are on the higher part of the
road) is minimized when the velocity is equal to 11.9450 m/s. At this speed, the

minimum displacement is equal to 0.0825 m
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Problem 2

An accelerometer has a suspended mass of 0.01 kg with a damped natural
frequency of vibration of 150 Hz. When mounted on an engine undergoing an
acceleration of 1 g at an operating speed of 6000 rpm, the acceleration is recorded as
9.5 m/s2 by the instrument. Find the damping constant and the spring stiffness of the
accelerometer (Choose damping ratio close to 0.7 if possible).

Compression
/ Spring

/ Crystal

/— Base

¥

é k x(t) Seismic Mass
| Piezoelectric

m

$ c

¥(t) = motion of structure

Mounted to Structure

Solution:
The amplitude ratio of the accelerometer is equal to (Inman & Singh, 1994)

_8&nm 1 _9.5

g \/(1 —r2)2 +(20r)? 98

In addition, the forcing function frequency and the damped natural frequency of the system are

M (7)

equal to
w= w = 2007 rad/s (8)
and
wg = wp\1 =2 =2nf =300 rad/s 9)

Solving Equation (7), (8), and (9) to obtain ¢ and w,, we can know that { = 0.72 and w,, =
1363.9 rad/s. Therefore, the damping constant and the spring stiffness of the accelerometer are
equal to

¢ =2mlw, =19.72 N/(m/s) (10)

and
k = mw? =1.86 x 10* N/m (11)
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Problem 3

A spring-mass system (see figure), which is constrained to move in the vertical
direction only.

(@) Derive the equations of motion.

(b) Find the natural frequencies.
(c) Find and sketch the mode shapes. m

ék

Solution:

(a) We set the coordinate for the upper block as x; and the lower block as xo. Then, the

equations of motion is derived as follows:

ool el

(b) We can use determinate to calculate the natural frequencies.
det ([k] — [m] a)Q) =0= (2k - mwz) (2k - mwz) —k*=0

= m2w* — 4kmw? + 3k% = (13)

.

(¢) For Mode 1 (wy = \/%),

2k —mw? -k [ ]_ 0 Bt ”
-k 2%k — mw? = 0 == 1 (14
For Mode 2 (w; = \/%nz),
2k — mw? —k 0 1
[ k2% —mw2] [”2] - [0] - s [—1] (13)

Based on this, the mode shapes are drawn as shown in Figure 4.

Page 6 of 8



Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #2

4 U
1 b=
I I
0 1 2
1 =
4 u

Figure 4: Mode shapes for the system.
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Problem 1

Under sinusoidal input with amplitude 0.03 m, 90° phase angle and frequency 2.5 Hz, plot the
following figures (SIMULINK is highly recommended) and hand in the results with your own
program codes:

(i) Damping force F, (¢) versus displacement x () (forv =0V, 1V, 2V cases).

1500
—y = () V
——) = |V
1000 | v=2V
/ T
g \
. or
=
-500 \ /
o \ /
1500 I I I I I |
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

z, (m)

Figure 1: Damping force F,; () versus displacement x (¢) (forv =0V, 1V, 2V cases).

(i1) Damping force F, (t) versus velocity x (1) (forv =0V, 1V, 2V cases).

1500
— =0V
— =1V
— =2V
1000

500 F /

Fy,

-500 /

-1000

_1500 1 1 1 1 1 1 1 1 1 1
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

&, (m/s)

Figure 2: Damping force F,; (¢) versus velocity x (¢) (forv =0V, 1V, 2V cases).

Page 1 of 9



maXo + cox + (k1 + ko) xo — coxp — koxp —kix1 —F3=0

Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #3
Problem 2
(a) The equation of motion is shown as follows:
{ mixX1+kixi —kixo+F;=0 0

(b) The state space representation of the car suspension system with the outputs x1, X1, X2 is

X1 0
. X9 0
X = . = ki
X1 m_l
. k
X9 m—12
A
= AX + Bu

0 1 0
0 0 1
k
m—llk 0O 0
ki+ c
e 0 Tmy
X1
Y = jél =
X9
£ CX + Du
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Problem 3
The on-off controller is set up as follows:

Ot

\dot{x}_1 Lypl+ 2« 1

_ g vivi2 v >

\dot{x} 2 add4 vbeforécn C3>

v12

on-off control1

Figure 3: On-off controller.
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Problem 4

The response for the system is list below:

(a) Bump excitation: displacement versus time for # = 0 : 0.001 : 8.

Figure 4: Bump excitation: displacement versus time for = 0 : 0.001 : 8.

(b) x1 (¢) versus t fort =0 :0.001 : 8 (for v =0V, 2 V and controlled cases).

[ [

0.08 v=0V &
v=2V
controlled cases| |

0.06

0.02

S

-0.04

Iy, (Hl)

-0.06

Figure 5: x; (¢) versus ¢ forr = 0 : 0.001 : 8 (for v =0V, 2 V and controlled cases).
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(c) %1 (¢) versus t fort =0 :0.001 : 8 (forv =0V, 2V and controlled cases).

8 ‘ v=0 V‘ [
v=2V
6 controlled cases| |
4
g2
S 0
2 \/
-4
-6
0 1 2 3 4 5 6 7 8

Figure 6: i1 (¢) versus ¢ forr = 0 : 0.001 : 8 (for v =0V, 2 V and controlled cases).

(d) Voltage v (¢) versus ¢ for = 0 : 0.001 : 8 (only for the controlled case).

15}

0.5 |

Figure 7: Voltage v () versus ¢ for t = 0 : 0.001 : 8 (only for the controlled case).

Discussion: From Figure 5, we can know that the controlled case converges to stability more
quickly than the other two cases and has a lower overshoot and oscillation. The amplitude
of oscillation for the acceleration when the system is controlled by on-off controller is also
lower than that of other cases. Therefore, we can conclude that the MR damper has the better

performance and can make the system stable to equilibrium point.
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Appendix

K (z-1
™ Tsz

500

(0 —— ]

A

Au

/\/ > ot} | L}[:] 100 “:: o ()
—»

+
FO add1 Fd
[:] 350 = [:]

G X X
. tln V Fdv0
L )
w0 20 | | ML )
add
P Fdv1
1 ()
7 Fdv2

V2

Figure 8: Block diagram for MR damper.

Input Matlab source for plot MR damper response diagram:

clf;

x = out.xin.signals.values;

dx = out.dxin.signals.values;
Fdv0 = out.Fdv0O.signals.values;
Fdvl = out.Fdvl.signals.values;
Fdv2 = out.Fdv2.signals.values;

figure(1l);

hold on;

plot (x,Fdv0, "Color", [128, 0, 128]/256,'LineWidth’,2.5);

plot (x,Fdvl, "Color", [0, 128, 128]/256,’LineWidth’,2.5);

plot (x,Fdv2, "Color", [128, 128, 0]/256,’LineWidth’,2.5);

hold off;

grid on;

xlabel (' $x, \mathrm{\ \left (m\right)}S$’,’interpreter’,’latex’);
ylabel (' $F_d, \mathrm{\ \left (N\right)}$’, ’interpreter’,’latex’);

legend (’ $v=0 \mathrm{\ V}$’,’$v=1 \mathrm{\ V}$’,’$v=2 \mathrm{\ V}$’, ...

"interpreter’,’latex’);
% a = get(gca,’XTickLabel’);
% set (gca,’XTickLabel’,a,’FontName’,’'Times’,’ fontsize’,12);
set (gcf, ' renderer’,'painters’);

filename = "Q3-1-Fd-x"+".pdf";
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saveas (gef, filename) ;

figure (2);

hold on;

plot (dx,Fdv0, "Color", [128, 0, 128]/256,’LineWidth’,2.5);

plot (dx,Fdvl, "Color", [0, 128, 128]/256,'LineWidth’,2.5);

plot (dx,Fdv2,"Color", [128, 128, 0]/256,’LineWidth’,2.5);

hold off;

grid on;

xlabel (' $\dot {x}, \mathrm{\ \left (m/s\right)}$’, interpreter’,’latex’);
ylabel (' $F_d, \mathrm{\ \left (N\right)}$’, ’interpreter’,’latex’);

legend (’ $v=0 \mathrm{\ V}$’,’$v=1 \mathrm{\ V}$’,’$v=2 \mathrm{\ V}$’, ...

"interpreter’,’latex’);

[)

% a = get(gca,’XTickLabel’);

% set (gca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
set (gcf, ' renderer’,'painters’);

filename = "Q3-1-Fd-dx"+".pdf";

saveas (gecf, filename) ;

Cio—t
\dot{x}_1 L+ 22l « i
- T vivi2 4 v v %@
\dot{x} 2 add4 vbeforgcn v
on-off control1
v12

Figure 9: Block diagram for on-off controller.

Input Matlab source for on-off controller:

function v = fcn(vlvl2, vbefore)

if vivl1i2 > 0
v o= 2;
elseif vlvli2 < 0
v = 0;

else

v vbefore;

end

Input Matlab source for plotting x,, v, x1, and %1:

clear all; clc;

figgl = openfig(’v.fig’,’reuse’);

grid onj;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);
ylabel (' $v, \mathrm{\ \left (V\right)}$’, ’interpreter’,’latex’);

% legend (' $v=0 \mathrm{\ V}$’,’Sv=1 \mathrm{\ V}$’,’S$v=2 \mathrm{\ V}$’,...
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xb

\dot{x}_b

a =

set (
set (
file
save
clos
figg
grid
xlab
ylab
titl
le

o\

o

a =

set (

X = Ax+ Bu x 1
y=Cx+ Du \dot{x}_1 1
\dot{x} 2
\dot{x} b \dot{x} 2

Figure 10: Block diagram for state space function.

Fd x1 @

xb \dot{x)_1 B \dot{x}_1 vi2 P vi2

— \dot{x}_b \dot{x}_2 P \dot{x}_2 v v
state space2 Au on-off controller2
Ar
\‘ A@
Fd x_1

xb \dot{x)_1 ! \dot{x}_1 vi2 vi2

\dot{x}_b \dot{x}_2 B \dot{x}_2 v v
state space1 au on-off controller1
At

l D
— P Fd x_1

»xb \dot{x})_1 ! \dot{x}_1 v12 vi2

Lyl

I

xb

\dot{x}_b Fd
»| \dot{x}_b \dot{x}_2 »|\dot{x}_2 v »v

state space Au on-off controller
At
@ =DD

Figure 11: Block diagram for the whole system.

"interpreter’,’ latex’);

get (gca, ' XTickLabel’);
gca,’'XTickLabel’ ,a,’FontName’,’' Times’,’ fontsize’,12);
gcf,’ renderer’,’painters’);
name = "v"+".pdf";

as (gef, filename);
e(figgl);

2 = openfig(’xb.fig’,’reuse’);

on;

el ('$t, \mathrm{\ \left (s\right)}$’,’ interpreter’,’latex’);

el (' $x_b, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);
e("");
gend (' $v=0 \mathrm{\ V}$’,’Sv=2 \mathrm{\ V}$’,’S\text{controlled cases}S$’, ...

"interpreter’,’ latex’);
get (gca, ' XTickLabel’ ) ;

gca,’XTickLabel’,a,’FontName’,’'Times’,’ fontsize’,12);
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set (gcf, ' renderer’,’'painters’);

filename = "xb"+".pdf";

saveas (gcf, filename) ;

close (figg2);

figg3 = openfig(’'x.fig’,’reuse’);

grid onj;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' $x_1, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);

title('’);

legend (’ $v=0 \mathrm{\ V}$’,’$v=2 \mathrm{\ V}$’,’controlled cases’, ...
"interpreter’,’latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, '’ renderer’,'painters’);

filename = "x"+".pdf";

saveas (gef, filename) ;

close (figg3);

figg4d = openfig(’ddotx.fig’,’reuse’);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' $\ddot{x}_1, \mathrm{\ \left (m\right)}$’, ’interpreter’,’latex’);

title('’);

legend (’ $v=0 \mathrm{\ V}$’,’$v=2 \mathrm{\ V}$’,’controlled cases’, ...
"interpreter’,’latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);

filename = "ddotx"+".pdf";

saveas (gecf, filename) ;

close(figg4) ;
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Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #4

Problem 1

(40 points) Two plane pendulums, masses m: and my, are connected by respective
massless rigid links L1 and L2 shown in the figure. Those two links are coupled via
a spring of stiffness k at a distance a from the supports. The spring is unstretched
when the links are vertical. The pendulums are respectively excited by external
forces F(t) and F2(t), which remain horizontal at all times. Derive the equations of
motion for the system. Assume small motions on the plane.

Solution:
In terms of generalized coordinate g, the Lagrange’s equation subject to a generalized force

has the form

d (0T\ 0T oD JU
|- Fo 55 =0 (1)
dt \dq dq 0q Odq
Kinetic energy:
1 -2 1 s 12
T = 57711 (L191) + 51’)12 (LQQQ) (2)
Potential energy:
2
1 . (61— 62
U=migLi (1 —-cosf)+magls (1 —cosfs) + §k 2a sin 5 3)
Rayleigh’s damping (or dissipation) function:
D=0 4)
Generalized force: 5
r .
Q:Zl:Fl-a—ql:FiLicosHi, i=1,2 5)
For q1 = 91,
d (0T or oD JdU
- ( . ) - +—+ =0 (6)
dt\dq1] 0dq1 9dq1 9qi
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d .
= (r1L301) = 0+ 0+ migLy sin 0,

1 61-0 1 6,-0
+§x2k(2asin( 12 2))><2a><—cos( 12 2)=F1L1(:0501

2
mlL%él +myigLysinf + ka? sin (01— 62) = F1Lq cos 0

For q2 = 92,

i(&T)_ oT 0D U _
dt \dq2] 0q2 9042 0q2
d

E (I’IQL%QQ) —0+4+0+mogLasinby

1 61-0 1 6,-40
+§><2k(2asin( 12 2))><2a><(—§cos( 1 2)):F2L2(:0502

2
mngég + mog Ly sin Oy — ka?sin (61— 02) = Folocos 0o

Therefore, the equations of motion for the system is

mlL%§1 +migLisin 01 + ka®sin (6, — 02) = F1 L1 cos 61
maL205 + magLy sin Oy — ka? sin (01 — 02) = FaL cos 02

For the small motions on the plane, the equations of motion for the system is

mlL%Q.l + mlgL191 + ka2 (91 - 92) =FiL{cosf;
mngéQ + ngLQQQ - ka2 (91 - 92) = FyL9 cos 09
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Problem 2

(60 points) Consider a simply-supported uniform beam with PZT actuators
mounted on its top and bottom surfaces between x = x; and x = X2. The patches are
activated so as to produce pure bending in the beam. A discrete force Fq (t) has been
applied at x = Xq.

(@) Derive the partial differential equation for the transverse beam response w(x,t) using
extended Hamilton’s Principle.

(b) Applying Galerkin’s method with comparison functions (Hint: you may use
@, (X) =sin(rzx/ L)), determine the discretized ordinary differential equations (use

three expansion terms, i.e., N = 3). Assume the damping matrix C =aM + K ,

where ¢ =0.6 and f=1.2x10"°,

(c) Changing the second order differential equations into the state space form, then use
state feedback u = - Kcx for the system, where control gain is given as Kc = [-55400
-22549 15848 -753 -249 174]. Under an impulse excitation for Fq(t)with magnitude
1/100 N.sec, plot the time response of transverse displacement at x = 0.6L for the
cases without and with control (0 to 0.5 sec). Also plot the corresponding voltage
for the controlled case (0 to 0.5 sec).

The rectangular cross sections of the beam and PZT are given as: width b = 2 cm,
thickness t, = 2 mm, and t, = 0.6 mm, respectively. Other parameters are given as

follows: L = 50 cm, x1 = 15 cm, x2 = 24 ¢cm, x¢ = 30 cm, d,, =-175x10"% m/V,
Py, = 2700 kgim?®, p =7600 kg/m?®, E, =7x10" N/m? E, =6.5x10" N/m?.

Fa(t
2 nW()C,l) A )
4—)Cj—>|
PZT elements
4 .?Cd -
< L
Solution:
(a) Potential energies:
1 [t 8%w\?
=— Eyly | — 14
Vi 2/0 bb(axz) dx (14)
L aQW 2
Vv :/ E,l,|—| [H(x—-x1)—-H(x—x2)] dx (15)
0 Ox?

where H is the Heaviside’s function.
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Kinetic energies:

1 [t ow

T, = = A d 16
bQ/OPbb(at)x (16)

L ow >
T, = PpAp B [H (x —x1) — H (x —x2)] dx (17)

0

Virtual work: L

oW, = / f(x,t) 6w (x,1) dx (18)
0
From the constitutive equation of the piezoelectric materials

S1=s5T1 +ds1 E3 (19)
Ty = E, (S1 — d31E3) (20)

where E,, = ,15 ,Es = %)
ST

The virtual work done by the induced strain (force) is:

L ou
oW, = 2/ E,d31bv (t)5( o ) [H(x —x1) — H(x —x2)] dx (21)
0
where b is the width of beam and piezo layer. and

Iy+1tp\ ow
= — -— 22
“r ( 2 ) Ox (22)

tp+tp

Leta = 5

82

L
5Wp:—2./0 E d31abv(t)6(a 3

) [H (x —x1) — H (x —x2)] dx (23)
Apply extended Hamilton’s principle:

12
/ (6T = 6V +Wye)dt =0 (24)
t

12 L 2 L 2
/z (5 {%'/0 PrAp (%_v:) dx} +0 {'/0 PpA, (%_v:) [H(x—x1)—H(x —x9)] dx}) dt
2. \2 L 2.1\2
/ ( { / Eply (%) dx}+6{/o E,I, (%) [H(x —x1) — H(x —x9)] dx}) dt

L
( £ (1) 6w (x,1) dx — 2/ Edglabv(t)é(azw)[H(x x1) - H(x - xg)]dx)dt—O

(25)

—+
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/ttza{%/L bAb(aav:)de} di
/ / p,,A,,—(s(a )ddx
/ / o Abawa(aw) 26)
:/ (pbAba )5w|’2 dx—/ /t2 0 (pbAb )6wdtdx
/ / pbAb—éwdtdx

52) (aw)
= Epl,— | 6 —
A(bbaxz

—/.t2E[62_W56_W
-y P ox2 Ox

/ ( b 2) g E;;Cw)dxdt

12 P 02 L
(9)6 (Eblb o 2) 5W|Odt

12
/ / (Eb]b ) owdxdt

3w
dl—/ Eblba 5W|Odl‘

/ / Eblb—éwdxdt

S:
|
— \

/ / Eblb—5wdxdt

* Similar to the derivation of Equation (26), the second term in Equation (25) can be

(27)

degenerated into

to L 2
/t1 ) {'/0 PpAp ((z?_v:) [H(x—x1) — H(x —x9)] dx} dt

L to (92W
= —2/ / ppApW [H (x —x1) — H (x —x2)] Swdtdx
0 1

(28)
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_/tzé{/LEI ((222) [H (x — Xl)—H(X—XQ)]dX}dt
/ / E,I, 2( )[H(x x1) — H(x—xﬂ]é(%)dxdt

L
:—2/ (E I aax [H (x —x1) — H(x—xz)])é(i—:)odt
+2/ ( pa 5 [H(x x1)—H(x - XQ)]) giw)d dt
1o 2 L
:—2'/l1 E,I, C22)[H(x xl)—H(x—xg)]é(aa—:)Odt

ta pL 3
+2/l1 ./0 E,I, (23)[H(x x1)—H((x—x9)]6 (aaz:)dxdt

ta pL 2
+2/l1 ./0 E,I, (22)[H’(x x1) —H (x —x9)] 6 (aaz:)dxdt

3w
=2 Eplp s [H(x —x1) — H(x —x9)] (5w|O dt
n

|
o}

to L 04
E,I H H(x - owdxdt
L e (G 1 =) = s s
to L 3
_2/ / o1y ((Z v;/) [H' (x —x1) — H (x — x2)] dwdxdt
H 0 X

E
L aZW / ’ L
+2 E,I, [H (x —x1) = H (x — x2)] 0wl dt
0 X
E

63
V;) [H' (x —x1) — H' (x — x2)] dwdxdt
X

& L aQW 4 144
- 2/t1 -/0 E,I, 6x2) [H” (x —x1) — H" (x — x2)] Swdxdt
(29)
to L 82W
—/ 2/ E,d31abv (t)é( )[H (x =x1) — H (x —x2)] dxdt
ho 40 ox* (30)

to L
= —2/ / Epdziabv (1) [H” (x — x1) — H” (x — x2)] Swdxdt
11 0
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Substituting Equation (26)(27)(28)(29)(30) into Equation (25) yields that

12 L 92 52w
J£ {Jg (_pbAb(Eig)‘zppA (afz)“¥¢f x1) = H (x = x2)]

4 4
_Eblb(aaxw) 2,1, (‘; 4)[H(x—x1)—H(x—XQ)]

6'3
—4E,1, (a )[H (x =x1) = H' (x = x9)]

oy 31)
_2EI (a 2)[H//(X—X1)_H”(x—x2)]+f(x,t)
—2E,ds1abv (1) [H” (x —x1) — H” (x — x2)] )éwdx
*w\ (0w 33w
—Eylp|—5| 0| — Epl 0 dt=0
b b(@xz) (Gx) TE b((?x ) W|O}
For arbitrary 6w in 0 < x < L, the equation of motion is
9*w 8%w 9w
PbAp (W)+ 20pA, (8 5 )+2E I, (8 4)] [H(x—x1) — H(x—x9)]
tw Bw\ . ,
+Eblb(6x4)+4EI (63)[H (x=x1) —H (x = x2)] 32)
9w .,
+2E,I, [H” (x —x1) — H” (x = x9)]
0x2
+2E,d31abv (1) [H” (x —x1) — H" (x —x2)] = f (x,1)
with boundary conditions
Atx=0, sw=0, Z¥=0
— — 3w _
Atx =L, ow=0, ﬁ—O
(b) Assume
W) = > 6 (x) g (1) (33)
i=1

where ¢; (x) satisfies all boundary conditions.
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Substituting Equation (33) into Equation (32) yields that

PbAb Y 60 (X) G (1) + Eply ) ¢ () i (1)
i=1 i=1

+|20p4p ) 8 (0) i (1) +2Ep1, D" ¢ () qi (1) | [H (x = x1) = H (x = x2)]

i=1 i=1
+4EpI, Z 6'¥ (x) i (1) [H' (x = x1) = H' (x = x2)]
i=1
+2E,1, Z o7 (x)qi (1) [H” (x —x1) — H” (x — x2)]
i=1

+2E,d3iabv (t) [H" (x —x1) —H" (x =x2)] = f (x,1) = ¢

(34)
Min g by (&, ¢;) =0,
L
:(s,qﬁj):/ e(x, )¢ (x)dx=0 j=12,..,n (35)
0
Equation (34) becomes
n L
poAD Zl /0 b1 (x) 6, (x) dx)
n L
+2p, A, (Z /O i (x) ¢ (x) [H (x = x1) = H (x = x2)] dx)]qi (1)
i=1
o [F W
+ |Eply Zl] /0 oY (x) ¢ (x) dx)
C t (4)
2 ) . - — _ d ;
+2E, I, 21] /0 oD (x) 6; () [H (x—x1) — H (x - x3)] x) )
, o
+ (4,0, | /0 6 (x) ¢ () [H' (x = x1) = H' (x = x2)] dx) g: (1)
L =1
: o
+|2E,1, Z /0 ¢! (x) ¢; (x) [H” (x —x1) = H” (x = x2)] dx) qi (1)
| =1 .
+2E,d31abv (t)/0 ¢j (x) [H" (x —x1) — H” (x —x2)] dx
L
—/0 £ (6,0 6 (x) dx =0
* L 4 L
/ 6.7, (x) dx = / g7 (x) ¢ (x) dx (37)
0 0
* L
/O 0 (¥) 6; () [H (x = x1) — H (x - x2)] dx (38)
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L
/0 0¥ ()¢ () [H' (x - x1) — H' (x - x2)] dx

= 6P (x) ¢; () [H (x —x1) — H (x = x2) ]|

L (39)
—/0 oW (x) @) (x) [H (x = x1) — H (x — x2)] dx
L
- [ 4 @8 @ 1 (=) = H (-]
L
/0 67 (¥) 6, (x) [H” (x - x1) — H” (x - x2)] d
= ¢/ (x) ¢; (x) [H' (x—x1) — H' (x - x2)][g
L
- /O 0P (x) ¢, () [H (x = x1) — H' (x - x2)] dx
L
- [ 00 0 ) = B =)
b (40)
:/0 6 (x) 6, () [H (x - x1) — H (x — x2)] dx
L
o [0 @ @ 1 ) H (5]
L
e [0 0000 1H (- 1) - H (3= x0)] d
) L
+ / 87 () 7 () [H (x = x1) — H (x — x3)] dn
0
L
/0 6; () [H” (x —x1) — H” (x - x)] dx
=¢; (x) [H (x —x1) - H (x —x2)][§
L
- [t ) - B - )
0 (41)

=—¢; (x) [H(x —x1) — H (x — x2)]|%

L
[0 e - H

L
= [t =) = H =) v = 6 ) = 8 ()
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From Equation (38), (39), and (40), we can get that
L
2 /0 o™ (x) @) (x) [H (x — x1) — H (x — x2)] d
L
44 / 0% (x) 6, () [H (x = x1) — H' (x - x2)] dx
’ L 42)
42 /O 67 (¥) ¢, (x) [H” (x = x1) = H” (x = x2)] d

L
=2 [ 6 007 @) [ (- 30) - H (- x0)] d
0

Substituting Equation (37), (41), (42) into (36) yields

n L
PrAs (Z‘ [ awew dx)
n L
+2p,A, (Z/O ¢i (x)¢; (x) [H (x —x1) — H (x — x2)] dx) Gi (1)
i=1

noaL
DI ACACTAT dx) “3)
i=1

n L
> /0 o7 () ¢ (x) [H (x = x1) = H (x = x2)] dx)
=1

+ | Eplp

+2E,1, qi (1)

L
26 duaby (1) (¢ () =0 x0)) = [ ) o )

Therefore, we can get that
n n
D mardr (1) 4 ) kaydr (1) = fo, (0 + fa, (1), s=1,2,..,n (44)
r=1 s=1

where mg = pyAp [} 6r () b5 (x) dx + 20, A [ 6, (x) s (x) dx
ko = Eply [ 67 (x) 87 (x) dx + 2B, 1, [ 67 (x) ¢ (x) dx
fo, (£) = 2E,dsiaby (1) (8] (x1) - ¢} (x2))
fa (0 = [ F (et ¢y (x) dx = [[7 Fa (1) ¢y (1) 6 (x = xg) dx = Fy (1) ¢ (x0)

Choosing ¢, = sin (rax/L),r = 1,2, ..., n satisfy all boundary conditions
Atx=0, ow=0, Lw_

352 "~ Because C = aM + BK, where @ = 0.6 and B =
At.x:L, (SWZO, _W_O

ox2
1.2x 1076
M {G}+C{q} +KA{q} ={fc}+{fa} (45)
fors =r,
m,, = % +ppA, (xz —x1) + 2 [sm (2"”1) i (2”2’“2)] (46)

4 (EplyL E,I 2 2
krr:(ﬂ) { b2b +E,I, (xo—x1) + gm’ [Sln( ﬂll:xl)—sin( ﬂl’:x2)]} 47)
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fors # r,
20pA,L | rsin () cos () s cos (£) sin (Z)
Mgy = 5 5 + 5 5
T s4—=r re—s
2E,I,L (srn? 2 [ rsin (%) cos (F%)  scos () sin (Z=
sr = T L2 §2 — 2 r2 _ 2
And
Je (t) = 2Epdsiabv (1) (%) (COS (szcl) — Cos (STQ))
. (STTXy
fa (1)) = Fa (1) 85 (xa) = Fu (1) sin (%)
(c) Let
t
xy= |1
g (1)

Equation (45) becomes

{G}=-MC{g} - MK {q} + M {f.} + M {f4}

In state-space form:
X =Ax+ Bu+ Eud

y = Cox + Du
where
0 Vi
A =
MKk —-M-1lC
T (cos (£x1) = cos (Tx2))
0 27 (cos (2£x1) = cos (Zxy
B = M1 2E,d31ab t ( ( - ) ( ' ))
2L (cos (%x1) — cos (%x2))
sin (Fx4)
5 0 ] sin (Qfxd)
M1 '

sin (2Zxq)

Because y = w (x,1) = 2.7, ¢, (x0) ¢r (t) where xo = 0.6L

C0:[¢1(x0) $2(x0) -+ Pu(x0) O O --- 0]1><2n

=[sin(0.67r) sin (1.27) -+ sin(0.6n7) 0 0 --- 0]1 ,
Xzn

and
D=0
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If we use the state feedback u = —K_x, the state-space of the sytem is

% =(A-BK.)x+ Buy

60
y=(Co— DK.)x ©0

The following codes are used to simulate the response of the system:

1 elec; clf; clear all;

2

3 % initialize

4

5 b = 2e-2;

6 L = 0.50;

7 x1 = 0.15; x2 = 0.24;

8 xd = 0.30;

9

10 Eb = 7el10;

11 pb = 2700; tb = 2e-3;

12

13 Ec = 6.5el10;

14 pc = 7600; tc = 0.6e-3;

15 d31 = -175e-12;

16

17 Ac = bxtc; 2Ab = bx*tb;

18 Ib = b*tb"3/12; Ic = bxtc”3/12+Acx (tb+tc)"2/4;

19 a = (tb+tc)/2;

20

21 % stiffness and mass matrices

22

23 N = 3; % no. of expansion terms

24

25 K = zeros (N);

26 M = zeros (N);

27 C = zeros (N);

28 Fc = zeros(N,1); Fd = zeros(N,1);

29

30 for r = 1:N

31 for s = 1:N

32 if r == s

33 K(r,s) = (pi*r/L)“4x (EbxIb*L/2+EcxIc* (x2-x1)+...

34 EcxIc*L/ (2+pix*r) « (sin (2xpirrxx1/L)-sin (2+pirr*xx2/L)));
35 M(r,s) = pbxAb*L/2+pc*Ac* (x2-x1)+...

36 pc*Ac*L/ (2+pi*r) * (sin (2xpixr+x1/L) —sin (2+xpirxr*xx2/L));
37 else

38 K(r,s) = 2+Ec*xIc+L/pi* (pi"2xr*s/L"2)"2%...

39 ((r+xsin(s+pi*x2/L) *cos (r+pi*x2/L) )/ (s"2-r"2)+...
40 (s*sin (r*pixx2/L) xcos (s*pi+x2/L))/(r"2-s"2)—...
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41 ((r+*sin(s*pi*x1/L) *cos (r*pi*x1/L))/ (s "2-r"2)+...
42 (s*sin(r+pixx1/L)+xcos (sxpixx1/L))/(r"2-5"2)));
43 M(r,s) = 2+«pc*Ac*xL/pix ((r+sin(s*pi*x2/L)*cos (r*pixx2/L))/(s"2-r"2)+...
44 (s*sin (r*pixx2/L) xcos (s*pirx2/L))/(r"2-s"2)—...
45 ((r*sin(s*pi*x1/L) *cos (r*pi*x1/L))/ (s"2-r"2)+...
46 (s*sin(r+pixx1/L)*xcos (sxpi*x1/L))/(r"2-58"2)));
47 end

48 end

49

50 % due to voltage input

51 Fc(r) = 2+xaxEcxd31+bx (pi*r/L) * (cos (r*pixx1/L)-cos (r+pi*x2/L));
52 % due to discrete force with magnitude 1/100

53 Fd(r) = 1/100«sin(r*pixxd/L);

54 end

55

56 % add internal damping

57

58 C = 0.6xM+1.2e-6%K;

59

60 % state-space model

61

62 AL = -inv (M) *K;

63 AR = —-inv (M) *C;

64 A = [zeros(N) eye(N);...

65 AL AR];

66 BL1 = inv (M) *Fc; BL2 = inv (M) xFd;

67 Bl = [zeros(N,1);BL1];

68 B2 = [zeros (N,1);BL2];

69 for r = 1:N

70 CCw(l,r) = sin(r*pix0.6); % displacement w at midpoint (x=L/2)
71 end

72 CC = [CCw zeros(l,N)];

73 D = [0];

74

75 % control gain

76 Kc = [-55400 -22549 15848 -753 -249 174];

77 Ac=A-Bl=*Kc;

78

79 % impulse response

80

81 t = 0:0.0005:0.5;

82 1IU = 1;

83 [y,x,t] = impulse(A,B2,CC,D,IU,t); % uncontrolled response

84 [yc,x,t] = impulse (Ac,B2,CC,D,IU,t); % controlled response

85 u = -Kcxx’'; % controlled voltage

86
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87 % plot results

88

89 figure(l);

90 hold on;

91 plot(t,ycx1000,’color’,[1 0.5 0],’LineWidth’,2.5)

92 plot(t,y*1000,’:’,’color’,[0.667 0.667 1],’LineWidth’,2.5) % unit (mm)
93 hold off;

94 grid on;

95 title ('’ Impulse response of transverse displacement at $x = 0.6LS$’

96 ,"interpreter’,’ latex’);

97 xlabel(’'Time (sec)’,’interpreter’,’latex’);

98 ylabel ('Displacement (mm)’,’interpreter’,’latex’);

99 legend(’'With controlled’,’Without controlled’,’interpreter’,’latex’);
100 a = get(gca,’XTickLabel’);

101 set (gca,’XTickLabel’,a,’FontName’,’'Times’,’ fontsize’,12);

102 set (gca,’position’, [0.15 0.20 0.6 0.6]);

103 set (gef, 'position’, [100 100 800 6001);

104 set (gcf,’ renderer’,’painters’);

105 filename = "Q4-2-tyyc"+".pdf";

(
(
(
(

106 saveas (gecf, filename) ;

107

108 figure (2);

109 plot(t,u,’color’,[1 0.5 0],’LineWidth’,2.5);

110 grid on;

111 title(’'Controlled voltage’,’interpreter’,’latex’);
112 xlabel (' Time (sec)’,’interpreter’,’latex’);

113 ylabel ('Voltage (V)’,’interpreter’,’latex’);

114 a = get(gca,’XTickLabel’);

115 set(geca,’XTickLabel’,a,’FontName’,’Times’,’ fontsize’,12);
116 set (geca,’position’, [0.15 0.20 0.6 0.6]);

117 set (gcf,’position’, [100 100 800 6001]);

118 set (gcf,’ renderer’,’painters’);

119 filename = "Q4-2-tu"+".pdf";

120 saveas (gef, filename) ;

The simulation results are shown in Figure 1.
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Impulse response of transverse displacement at « = 0.6L Controlled voltage
251 250 T T T
s With controlled
2r Without controlled

15§
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Figure 1: Simulation results for the response of the system.
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