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Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #1

Problem 1

The piezoelectric constant matrix d of PZT is described as

0 0 0 0 dis O
0 0 0 dis 0 O (1)
d31 ds1 dsz 0 0 0

Consider a PZT element above used as a micro positioning device, in which in L = 30 mm,
T =5 mm, and W = 12 mm. With 110 volts applied, compute the changes in L, T, and W for a
PSI-5A-S4 piezoceramic (d3; = —190 x 10712 Meters/Volt; d33 = 390 x 10712 Meters/Volt;
di5 = 550 x 10712 Meters/Volt).

Solution:

The electric fields after 110 volts are applied are given by:

0 0 0
E=| 0 |=| 0 |=| o V/m 2)
110 V 110V 4
0 WOV 12.2x10

The mechanical strains are calculated as:

[—4.18 x 107]
‘ —4.18x 1076
0 0 0 0 dy 0 0 6
t 8.58 x 10
S=dE=10 0 0 diz 0 O0f- 0 = 0 (3)
d31 d31 d33 0 0 0 2.2 % 104 0
0

Therefore, the changes in L, T, and W for a PSI-5A-S4 piezoceramic can be computed as

AL=8L=-418%x10%%x30 mm =-1.254 x 107" m 4)
AW = SoW = -4.18 X 1079 x 12 mm = —=5.02 x 10 m (5)
AT = S3T =858 %X 1070 x5 mm =4.29 x 10 m (6)
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Problem 2
Given the following differential equation
mi+cx+kx=0 (7)
or
X+ 20 wpk + w2x =0 (8)
where w,, = \/% and ¢ = Qman. For initial conditions: x (0) = xg, X (0) = v,
(a) Show the solutions for the following cases in details:
(1) ¢ = 0 (undamped):
x (1) = Acos (wyt — @) 9)
where A = | [x2 + (Z)—i) and ¢ = tan™! -
(i1) 0 < ¢ < 1 (underdamped):
x (1) = Ae 59" cos (wat — @) (10)
2
where wg = \1 — Cwp, A = \/xg + (—gw’igwo) ,and ¢ = tan~! —gwx"(fgzvo.
(ii1) ¢ = 1 (critically damped):
x () = [x0 (vo + wnxo) ] e (11)
(iv) £ > 1 (overdamped):
2 (1) = CreleVETent | 0 (eNETJont (12)
where
X0Wy ({ ++/2 - 1) + v
C = (13)
2w\ 2 -1
and
—X0Wn (§ -V - 1) — Vo
Cy = (14)

QwHW

(b) Consider the following values of damping ratio:
H¢=0;2)¢=013)¢=1&HH=5
where w, = 1.2z rad/sec, xg = 1.5 mm, and vg = 2 mm/sec.
Plot the following three figures (MATLAB is recommended):

(1) x (¢) versus t (0~8 sec)

(ii) x (¢) versus t (0~8 sec)

(iii) X (¢) versus x () (called phase plane)
(c) Discuss the results in part (b)

Page 2 of 13



Liuchao JIN MAEGS5080 Smart Materials & Structures Assignment #1

Solution:
(@)
(1)
Assume that the solution x (7) is of the form (Inman & Singh, 1994)
x (t) = ae (15)

where a and A are nonzero constants to be determined. Upon successive differentiation, Equation
(15) becomes % () = dae™ and & (1) = 22ae. Substitution of the assumed exponential form
into Equation (8) yields

mA2ae" + kae' =0 (16)

A

Since the term ae? is never zero, Equation (16) can be divided by ae? to yield

ml2+k=0 (17)

Solving this algebraically results in

/ k /k
A=t —— =4 —] = 2w,j (18)
m m

where j = V-1 is the imaginary number and w, = +/k/m is the natural frequency as before.
Note that there are two values for 4, 4 = +w,j and 1 = —w,j, because the equation for A is of
second order. This implies that there must be two solutions of Equation (8) as well. Substitution

of Equation (18) into Equation (15) yields that the two solutions for x () are
x (1) = ajet’en (19)

and
x (1) = age /! (20)

where a1 and ay are complex-valued constants of integration. The Euler relations for trigono-
metric functions state that 2sin@ = (€% — ¢7%/) and 2cos§ = (% +e7%), where j = V-1.

Using the Euler relations, Equation (20) can be written as
x (1) = Acos (wpt — @) (21)

where A and ¢ are real-valued constants of integration. Each set of two constants is determined

by the initial conditions, xg and vq:
x0 =x(0) = A cos (w,0 — ¢) = Acos ¢ (22)
and

vo =X (0) = —w,A sin (w,0 — ¢) = w,Asin ¢ (23)
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Solving these two simultaneous equations for the two unknowns A and ¢ yields

A= |2+ (:)—0) (24)
and

¢ = tan™! x;)f) (25)
(ii)

Let x () have the form given in Equation (15), x (#) = ae’. Substitution of this form into
Equation (8) yields
(m/12 +cd+ k) ae' =0 (26)

Again, ae'’ # 0, so that this reduces to a quadratic equation in A of the form
mA®+cAd+k=0 (27)

called the characteristic equation. This is solved using the quadratic formula to yield the two

solutions

1
Adlg=——+ 5 Ve —dkm = o, w2 -1 (28)

2m m
In this case, the damping ratio { is less than 1 (0 < { < 1) and the discriminant of Equation

(28) is negative, resulting in a complex conjugate pair of roots. Factoring out (-1) from the

discriminant in order to clearly distinguish that the second term is imaginary yields

N 1= (1-2) (1) =122 (29)

A2 = ~{wn WVl = (%) (30)

Thus the two roots become

Following the same argument as that made for the undamped response of Equation (20), the

solution is then of the form
x (1) = e~¢@n! (ale+j 1-Cont 4 goe™i 1_42“’"’) (1)

where a1 and as are arbitrary complex-valued constants of integration to be determined by the

initial conditions. Using the Euler relations, this can be written as
x (1) = Ae™*“n! cos (wqt — ¢) (32)

where A and ¢ are constants of integration and wy, called the damped natural frequency, is
given by
wg =1 - Cw, (33)

in units of rad/s. Each set of A and ¢ is determined by the initial conditions, x and vq:
x0 = x(0) = Ae ™0 cos (wy0 — ¢) = A cos ¢ (34)
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Differentiating Equation (32) yields
% (1) = —=fwpAe™ ! cos (wat — ¢) — waAe 4! sin (wyt — @) (35)
Lett = 0and A = xg/cos ¢ in this last expression to get
vo =X (0) = =lwuxo + xowy tan ¢ (36)

Solving this last expression for ¢ yields

X0 +
tan ¢ = M (37)
XoWwq
With this value of ¢, the cosine becomes
cos ¢ = 10%d (38)

\/(éwnxo +v0)” + (xowa)”

Thus the value of A and ¢ are determined to be

2
A= \/x% + (@+Od+vo) (39)
and
6 = tan"! % (40)
(ii1)

In this last case, the damping ratio is exactly one ({ = 1) and the discriminant of Equation
(28) is equal to zero. This corresponds to the value of { that separates oscillatory motion from

nonoscillatory motion. Since the roots are repeated, they have the value
A1 =2 = —wy 41)
The solution takes the form
x (1) = (a1 + ast) e™ ! (42)

where, again, the constants a; and as are determined by the initial conditions. Substituting the
initial displacement into Equation (42) and the initial velocity into the derivative of Equation
(42) yields

ai =xg, as =vo+ wyXxo 43)

(iv)
In this case, the damping ratio is greater than 1 ({ > 1). The discriminant of Equation (28)

is positive, resulting in a pair of distinct real roots. These are

A1,2 = —fwy = w2 -1 (44)
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The solution of Equation (8) then becomes
— 2_ Ry 2_
% (1) = Crel VTt | [N T (45)
which represents a nonoscillatory response. Again, the constants of integration C; and Cy are

determined by the initial conditions:

x0 = x (0) = Crel Vo0 o eV T)wn0 _ ) (46)

Differentiating Equation (32) yields

x (1) = (—§ ++/22 - 1) wncle(‘é“ﬂ/(?_—l)wnz N (—{ B \/ﬁ) wncze(—f—\/@_—l)wnz 47)

Let # = 0 in this last expression to get

v =5 (0) = (~£ + V= 1) w,C1 + (¢ = V= T) 0, (48)

Solving Equation (46) and (48) for C; and Cs yields

X0Wy, ({ +4/02% - 1) + vy
C = (49)

201

—X0Wp (C -V - 1) = Vo
2(1),,@

(b) The MATLAB code in the main file is shown below:

and

Cy = (50)

clc; clf; clear all;

hold on;

t0 = 0; tf = 8;

tspan = [t0 tf];

x0v0 = [2; 1];

[t,x1] = oded5 (’'Q2MotionFunctionl’, tspan , x0vO0);
figure (1) ;

hold on;

plot (t, x1(:,1),"color’,[238, 64, 531/256,’'LineWidth’,2.5);
figure (2);

hold on;
plot(t, x1(:,2),’'color’,[238, 64, 53]1/256,'LineWidth’,2.5);
[t,x2] = oded5 (’'Q2MotionFunction2’, tspan , x0vO0);

figure (1) ;

plot (t, x2(:,1),"'color’,[128, 0, 128]1/256,'LineWidth’,2.5);
figure (2);

plot (t, x2(:,2),"color’,[128, 0, 128]1/256,’'LineWidth’,2.5);
[t,x3] = oded5 (’'Q2MotionFunction3’, tspan , x0vO0);
figure (1) ;
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plot (t, x3(:,1),"’color’,[123, 192, 67]/256,’LineWidth’,2.5);
figure (2);

plot (t, x3(:,2),"coloxr’,[123, 192, 67]1/256,’LineWidth’,2.5);
[t,x4] = oded5 (’'Q2MotionFunction4’, tspan , x0vO0);
figure(1l);

plot (t, x4(:,1),"’color’,[3, 146, 2071/256,'LineWidth’,2.5);
figure (2);

plot (t, x4(:,2),"color’,[3, 146, 207]1/256,'LineWidth’,2.5);
figure (3);

hold on;

plot (x1¢(:,1), x1(:,2),"color’,[238, 64, 53]1/256,’LineWidth’,2.5);
plot (x2(:,1), x2(:,2),’color’,[128, 0, 128]/256,'LineWidth’,2.5);
plot (x3(:,1), x3(:,2),’color’,[123, 192, 671/256,’LineWidth’,2.5);
plot (x4 (:,1), x4(:,2),"'color’,[3, 146, 207]1/256,’'LineWidth’,2.5);
figure (1) ;

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}$’,’interpreter’,’latex’);

ylabel (' Sx\left (t\right), \mathrm{\ \left (mm\right)}$’,
"interpreter’,’ latex’);

legend (' S\zeta=0S$’, ’'S$\zeta=0.1$’, ’S\zeta=1S$’, ’S$\zeta=5$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’ ,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,'painters’);

hold off;

filename = "x_vs_t"+".pdf";

saveas (gef, filename) ;

figure (2);

grid on;

xlabel (' $t, \mathrm{\ \left (s\right)}S$’,’interpreter’,’latex’);

ylabel (' $\dot {x}\left (t\right), \mathrm{\ \left (mm/s\right)}s$’,
"interpreter’,’latex’);

legend (' $\zeta=0$", ’'S$\zeta=0.1$", ’S$\zeta=1$’, ’'$\zeta=5s$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’, ' Times’,’ fontsize’,12);

set (gcf, '’ renderer’,'painters’);

hold off;

filename = "xdot_vs_t"+".pdf";

saveas (gecf, filename) ;

figure (3);

grid on;

xlabel (' Sx\left (t\right), \mathrm{\ \left (mm\right)}$’,
"interpreter’,’ latex’);

ylabel (' $\dot {x}\left (t\right), \mathrm{\ \left (mm/s\right)}s’,

"interpreter’,’latex’);
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legend (' $\zeta=0$’, ’'$\zeta=0.1%", "S$\zeta=1$’, ’$\zeta=5$’,
"interpreter’,’ latex’);

a = get(gca,’XTickLabel’);

set (gca, ' XTickLabel’,a,’FontName’,’' Times’,’ fontsize’,12);

set (gcf, ' renderer’,’'painters’);

hold off;
filename = "xdot_vs_x"+".pdf";
saveas (gef, filename) ;

The MATLAB code in the function that defines the motion dynamics of the spring-damper

system is shown below:

Case (1)

function xdot = Q2MotionFunctionl (t, x)

omega_n = 1.5xpi;

zeta = 0;

xdot (1) = x(2);

xdot (2) = —-omega_n"2xx(1l)-2xzeta*xomega_nx*x(2);

xdot = xdot (:);

Case (2)

function xdot = Q2MotionFunction2 (t, x)

omega_n = 1.5xpi;

zeta = 0.1;

xdot (1) = x(2);

xdot (2) = -omega_n”"2*x(l)-2xzetaxomega_n*x(2);

xdot = xdot (:);

Case (3)

function xdot = Q2MotionFunction3 (t, x)

omega_n = 1.5xpi;

zeta = 1;

xdot (1) = x(2);

xdot (2) = -omega_n"2+x(1l)-2+xzetaxomega_n*x(2);

xdot = xdot (:);

Case (4)

function xdot = Q2MotionFunctioni (t, x)

omega_n = 1.5xpi;

zeta = 5;

xdot (1) = x(2);

xdot (2) = —-omega_n"2xx(1l)-2xzeta*omega_n*x(2);

xdot = xdot (:);

(i) The results for x () are plotted in Figure 1.
(i1) The results for x (¢) are plotted in Figure 2.

(1i1) The results for phase portraits are plotted in Figure 3.
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Figure 2: Results for x (¢) versus 7.
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Figure 3: Results for x (¢) versus x (¢) (called phase plane).
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(c) The discussion is listed below:

* For undamped case, the system is in the harmonic motion and will never end, which is

marginal stable.

* Critical damping returns the system to equilibrium as fast as possible without overshoot-

ing.
* An underdamped system will oscillate through the equilibrium position.

* An overdamped system moves more slowly toward equilibrium than one that is critically

damped.
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Problem 3

For a single degree of freedom damped system under harmonic force, the magnification factor

M is found as

M = ! (51)

\/(1 — r2)2 +(20r)?

where r = £
w

n

Show the maximum value of M for 0 < £ < =

‘/53

1
Mmax =

2uN1-2

(52)

where r = /1 — 272
Solution:

To get the maximum value of M, we need to minimize (1 — r2)2 +(2¢r)?. We can regard

(1- r2)2 + (2¢7)? as a function with respect to r:

F(r) = (1 - r2)2 L) =rty (452 - 2) P2 41 (53)

Because 0 < ¢ < LQ, f (r) is a quadratic function with respect to r2. This function reaches the
minimum point at
o AL -2

= (54)

r=+/1-222 (55)

In this case, the magnification factor M reaches maximum, which equals

that is

1
Myax = ——— (56)

2uNL- 22
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