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Liuchao JIN MAEG5080 Smart Materials & Structures Assignment #1

Problem 1

The piezoelectric constant matrix d of PZT is described as
0 0 0 0 𝑑15 0

0 0 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0

 (1)

Consider a PZT element above used as a micro positioning device, in which in 𝐿 = 30 mm,
𝑇 = 5 mm, and 𝑊 = 12 mm. With 110 volts applied, compute the changes in 𝐿, 𝑇 , and 𝑊 for a
PSI-5A-S4 piezoceramic (𝑑31 = −190 × 10−12 Meters/Volt; 𝑑33 = 390 × 10−12 Meters/Volt;
𝑑15 = 550 × 10−12 Meters/Volt).
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Solution:
The electric fields after 110 volts are applied are given by:

𝐸 =


0

0
110 V

𝑇

 =


0

0
110 V
5 mm

 =


0

0

2.2 × 104

 V/m (2)

The mechanical strains are calculated as:

𝑆 = 𝑑𝑡𝐸 =


0 0 0 0 𝑑15 0

0 0 0 𝑑15 0 0

𝑑31 𝑑31 𝑑33 0 0 0


𝑡

·


0

0

2.2 × 104

 =


−4.18 × 10−6

−4.18 × 10−6

8.58 × 10−6

0

0

0


(3)

Therefore, the changes in 𝐿, 𝑇 , and 𝑊 for a PSI-5A-S4 piezoceramic can be computed as

Δ𝐿 = 𝑆1𝐿 = −4.18 × 10−6 × 30 mm = −1.254 × 10−7 m (4)

Δ𝑊 = 𝑆2𝑊 = −4.18 × 10−6 × 12 mm = −5.02 × 10−8 m (5)

Δ𝑇 = 𝑆3𝑇 = 8.58 × 10−6 × 5 mm = 4.29 × 10−8 m (6)
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Problem 2

Given the following differential equation

𝑚 ¥𝑥 + 𝑐 ¤𝑥 + 𝑘𝑥 = 0 (7)

or
¥𝑥 + 2𝜁𝜔𝑛 ¤𝑥 + 𝜔2

𝑛𝑥 = 0 (8)

where 𝜔𝑛 =

√︃
𝑘
𝑚

and 𝜁 = 𝑐
2𝑚𝜔𝑛

. For initial conditions: 𝑥 (0) = 𝑥0, ¤𝑥 (0) = 𝑣0,
(a) Show the solutions for the following cases in details:

(i) 𝜁 = 0 (undamped):
𝑥 (𝑡) = 𝐴 cos (𝜔𝑛𝑡 − 𝜙) (9)

where 𝐴 =

√︂
𝑥20 +

(
𝑣0
𝜔𝑛

)
and 𝜙 = tan−1 𝑣0

𝑥0𝜔𝑛
.

(ii) 0 < 𝜁 < 1 (underdamped):

𝑥 (𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos (𝜔𝑑𝑡 − 𝜙) (10)

where 𝜔𝑑 =
√︁
1 − 𝜁2𝜔𝑛, 𝐴 =

√︂
𝑥20 +

(
𝜁𝜔𝑛𝑥0+𝑣0

𝜔𝑑

)2
, and 𝜙 = tan−1 𝜁𝜔𝑛𝑥0+𝑣0

𝑥0𝜔𝑑
.

(iii) 𝜁 = 1 (critically damped):

𝑥 (𝑡) = [𝑥0 (𝑣0 + 𝜔𝑛𝑥0) 𝑡] 𝑒−𝜔𝑛𝑡 (11)

(iv) 𝜁 > 1 (overdamped):

𝑥 (𝑡) = 𝐶1𝑒

(
−𝜁+

√
𝜁2−1

)
𝜔𝑛𝑡 + 𝐶2𝑒

(
−𝜁−

√
𝜁2−1

)
𝜔𝑛𝑡 (12)

where

𝐶1 =

𝑥0𝜔𝑛

(
𝜁 +

√︁
𝜁2 − 1

)
+ 𝑣0

2𝜔𝑛

√︁
𝜁2 − 1

(13)

and

𝐶2 =

−𝑥0𝜔𝑛

(
𝜁 −

√︁
𝜁2 − 1

)
− 𝑣0

2𝜔𝑛

√︁
𝜁2 − 1

(14)

(b) Consider the following values of damping ratio:
(1) 𝜁 = 0; (2) 𝜁 = 0.1; (3) 𝜁 = 1; (4) 𝜁 = 5

where 𝜔𝑛 = 1.2𝜋 rad/sec, 𝑥0 = 1.5 mm, and 𝑣0 = 2 mm/sec.
Plot the following three figures (MATLAB is recommended):

(i) 𝑥 (𝑡) versus 𝑡 (0∼8 sec)
(ii) ¤𝑥 (𝑡) versus 𝑡 (0∼8 sec)
(iii) ¤𝑥 (𝑡) versus 𝑥 (𝑡) (called phase plane)

(c) Discuss the results in part (b)
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Solution:
(a)
(i)

Assume that the solution 𝑥 (𝑡) is of the form (Inman & Singh, 1994)

𝑥 (𝑡) = 𝑎𝑒𝜆𝑡 (15)

where 𝑎 and𝜆 are nonzero constants to be determined. Upon successive differentiation, Equation
(15) becomes ¤𝑥 (𝑡) = 𝜆𝑎𝑒𝜆𝑡 and ¥𝑥 (𝑡) = 𝜆2𝑎𝑒𝜆𝑡 . Substitution of the assumed exponential form
into Equation (8) yields

𝑚𝜆2𝑎𝑒𝜆𝑡 + 𝑘𝑎𝑒𝜆𝑡 = 0 (16)

Since the term 𝑎𝑒𝜆𝑡 is never zero, Equation (16) can be divided by 𝑎𝑒𝜆𝑡 to yield

𝑚𝜆2 + 𝑘 = 0 (17)

Solving this algebraically results in

𝜆 = ±
√︂
− 𝑘

𝑚
= ±

√︂
𝑘

𝑚
𝑗 = ±𝜔𝑛 𝑗 (18)

where 𝑗 =
√
−1 is the imaginary number and 𝜔𝑛 =

√︁
𝑘/𝑚 is the natural frequency as before.

Note that there are two values for 𝜆, 𝜆 = +𝜔𝑛 𝑗 and 𝜆 = −𝜔𝑛 𝑗 , because the equation for 𝜆 is of
second order. This implies that there must be two solutions of Equation (8) as well. Substitution
of Equation (18) into Equation (15) yields that the two solutions for 𝑥 (𝑡) are

𝑥 (𝑡) = 𝑎1𝑒
+ 𝑗𝜔𝑛𝑡 (19)

and
𝑥 (𝑡) = 𝑎2𝑒

− 𝑗𝜔𝑛𝑡 (20)

where 𝑎1 and 𝑎2 are complex-valued constants of integration. The Euler relations for trigono-
metric functions state that 2 sin 𝜃 =

(
𝑒𝜃 𝑗 − 𝑒−𝜃 𝑗

)
and 2 cos 𝜃 =

(
𝑒𝜃 𝑗 + 𝑒−𝜃 𝑗

)
, where 𝑗 =

√
−1.

Using the Euler relations, Equation (20) can be written as

𝑥 (𝑡) = 𝐴 cos (𝜔𝑛𝑡 − 𝜙) (21)

where 𝐴 and 𝜙 are real-valued constants of integration. Each set of two constants is determined
by the initial conditions, 𝑥0 and 𝑣0:

𝑥0 = 𝑥 (0) = 𝐴 cos (𝜔𝑛0 − 𝜙) = 𝐴 cos 𝜙 (22)

and
𝑣0 = ¤𝑥 (0) = −𝜔𝑛𝐴 sin (𝜔𝑛0 − 𝜙) = 𝜔𝑛𝐴 sin 𝜙 (23)
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Solving these two simultaneous equations for the two unknowns 𝐴 and 𝜙 yields

𝐴 =

√︄
𝑥20 +

(
𝑣0

𝜔𝑛

)
(24)

and
𝜙 = tan−1

𝑣0

𝑥0𝜔𝑛

(25)

(ii)
Let 𝑥 (𝑡) have the form given in Equation (15), 𝑥 (𝑡) = 𝑎𝑒𝜆𝑡 . Substitution of this form into

Equation (8) yields (
𝑚𝜆2 + 𝑐𝜆 + 𝑘

)
𝑎𝑒𝜆𝑡 = 0 (26)

Again, 𝑎𝑒𝜆𝑡 ≠ 0, so that this reduces to a quadratic equation in 𝜆 of the form

𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0 (27)

called the characteristic equation. This is solved using the quadratic formula to yield the two
solutions

𝜆1,2 = − 𝑐

2𝑚
± 1

2𝑚

√︁
𝑐2 − 4𝑘𝑚 = −𝜁𝜔𝑛 ± 𝜔𝑛

√︁
𝜁2 − 1 (28)

In this case, the damping ratio 𝜁 is less than 1 (0 < 𝜁 < 1) and the discriminant of Equation
(28) is negative, resulting in a complex conjugate pair of roots. Factoring out (-1) from the
discriminant in order to clearly distinguish that the second term is imaginary yields√︁

𝜁2 − 1 =

√︃(
1 − 𝜁2

)
(−1) =

√︁
1 − 𝜁2 𝑗 (29)

Thus the two roots become
𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛

√︁
1 − 𝜁2 𝑗 (30)

Following the same argument as that made for the undamped response of Equation (20), the
solution is then of the form

𝑥 (𝑡) = 𝑒−𝜁𝜔𝑛𝑡
(
𝑎1𝑒

+ 𝑗
√
1−𝜁2𝜔𝑛𝑡 + 𝑎2𝑒

− 𝑗
√
1−𝜁2𝜔𝑛𝑡

)
(31)

where 𝑎1 and 𝑎2 are arbitrary complex-valued constants of integration to be determined by the
initial conditions. Using the Euler relations, this can be written as

𝑥 (𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos (𝜔𝑑𝑡 − 𝜙) (32)

where 𝐴 and 𝜙 are constants of integration and 𝜔𝑑 , called the damped natural frequency, is
given by

𝜔𝑑 =
√︁
1 − 𝜁2𝜔𝑛 (33)

in units of rad/s. Each set of 𝐴 and 𝜙 is determined by the initial conditions, 𝑥0 and 𝑣0:

𝑥0 = 𝑥 (0) = 𝐴𝑒−𝜁𝜔𝑛0 cos (𝜔𝑑0 − 𝜙) = 𝐴 cos 𝜙 (34)
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Differentiating Equation (32) yields

¤𝑥 (𝑡) = −𝜁𝜔𝑛𝐴𝑒
−𝜁𝜔𝑛𝑡 cos (𝜔𝑑𝑡 − 𝜙) − 𝜔𝑑𝐴𝑒

−𝜁𝜔𝑛𝑡 sin (𝜔𝑑𝑡 − 𝜙) (35)

Let 𝑡 = 0 and 𝐴 = 𝑥0/cos 𝜙 in this last expression to get

𝑣0 = ¤𝑥 (0) = −𝜁𝜔𝑛𝑥0 + 𝑥0𝜔𝑑 tan 𝜙 (36)

Solving this last expression for 𝜙 yields

tan 𝜙 =
𝜁𝜔𝑛𝑥0 + 𝑣0

𝑥0𝜔𝑑

(37)

With this value of 𝜙, the cosine becomes

cos 𝜙 =
𝑥0𝜔𝑑√︃

(𝜁𝜔𝑛𝑥0 + 𝑣0)2 + (𝑥0𝜔𝑑)2
(38)

Thus the value of 𝐴 and 𝜙 are determined to be

𝐴 =

√︄
𝑥20 +

(
𝜁𝜔𝑛𝑥0 + 𝑣0

𝜔𝑑

)2
(39)

and
𝜙 = tan−1

𝜁𝜔𝑛𝑥0 + 𝑣0

𝑥0𝜔𝑑

(40)

(iii)
In this last case, the damping ratio is exactly one (𝜁 = 1) and the discriminant of Equation

(28) is equal to zero. This corresponds to the value of 𝜁 that separates oscillatory motion from
nonoscillatory motion. Since the roots are repeated, they have the value

𝜆1 = 𝜆2 = −𝜔𝑛 (41)

The solution takes the form
𝑥 (𝑡) = (𝑎1 + 𝑎2𝑡) 𝑒−𝜔𝑛𝑡 (42)

where, again, the constants 𝑎1 and 𝑎2 are determined by the initial conditions. Substituting the
initial displacement into Equation (42) and the initial velocity into the derivative of Equation
(42) yields

𝑎1 = 𝑥0, 𝑎2 = 𝑣0 + 𝜔𝑛𝑥0 (43)

(iv)
In this case, the damping ratio is greater than 1 (𝜁 > 1). The discriminant of Equation (28)

is positive, resulting in a pair of distinct real roots. These are

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛

√︁
𝜁2 − 1 (44)

Page 5 of 13



Liuchao JIN MAEG5080 Smart Materials & Structures Assignment #1

The solution of Equation (8) then becomes

𝑥 (𝑡) = 𝐶1𝑒

(
−𝜁+

√
𝜁2−1

)
𝜔𝑛𝑡 + 𝐶2𝑒

(
−𝜁−

√
𝜁2−1

)
𝜔𝑛𝑡 (45)

which represents a nonoscillatory response. Again, the constants of integration 𝐶1 and 𝐶2 are
determined by the initial conditions:

𝑥0 = 𝑥 (0) = 𝐶1𝑒

(
−𝜁+

√
𝜁2−1

)
𝜔𝑛0 + 𝐶2𝑒

(
−𝜁−

√
𝜁2−1

)
𝜔𝑛0

= 𝐶1 + 𝐶2 (46)

Differentiating Equation (32) yields

¤𝑥 (𝑡) =
(
−𝜁 +

√︁
𝜁2 − 1

)
𝜔𝑛𝐶1𝑒

(
−𝜁+

√
𝜁2−1

)
𝜔𝑛𝑡 +

(
−𝜁 −

√︁
𝜁2 − 1

)
𝜔𝑛𝐶2𝑒

(
−𝜁−

√
𝜁2−1

)
𝜔𝑛𝑡 (47)

Let 𝑡 = 0 in this last expression to get

𝑣0 = ¤𝑥 (0) =
(
−𝜁 +

√︁
𝜁2 − 1

)
𝜔𝑛𝐶1 +

(
−𝜁 −

√︁
𝜁2 − 1

)
𝜔𝑛𝐶2 (48)

Solving Equation (46) and (48) for 𝐶1 and 𝐶2 yields

𝐶1 =

𝑥0𝜔𝑛

(
𝜁 +

√︁
𝜁2 − 1

)
+ 𝑣0

2𝜔𝑛

√︁
𝜁2 − 1

(49)

and

𝐶2 =

−𝑥0𝜔𝑛

(
𝜁 −

√︁
𝜁2 − 1

)
− 𝑣0

2𝜔𝑛

√︁
𝜁2 − 1

(50)

(b) The MATLAB code in the main file is shown below:

1 clc; clf; clear all;

2 hold on;

3 t0 = 0; tf = 8;

4 tspan = [t0 tf];

5 x0v0 = [2; 1];

6 [t,x1] = ode45(’Q2MotionFunction1’, tspan , x0v0);

7 figure(1);

8 hold on;

9 plot(t, x1(:,1),’color’,[238, 64, 53]/256,’LineWidth’,2.5);

10 figure(2);

11 hold on;

12 plot(t, x1(:,2),’color’,[238, 64, 53]/256,’LineWidth’,2.5);

13 [t,x2] = ode45(’Q2MotionFunction2’, tspan , x0v0);

14 figure(1);

15 plot(t, x2(:,1),’color’,[128, 0, 128]/256,’LineWidth’,2.5);

16 figure(2);

17 plot(t, x2(:,2),’color’,[128, 0, 128]/256,’LineWidth’,2.5);

18 [t,x3] = ode45(’Q2MotionFunction3’, tspan , x0v0);

19 figure(1);
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20 plot(t, x3(:,1),’color’,[123, 192, 67]/256,’LineWidth’,2.5);

21 figure(2);

22 plot(t, x3(:,2),’color’,[123, 192, 67]/256,’LineWidth’,2.5);

23 [t,x4] = ode45(’Q2MotionFunction4’, tspan , x0v0);

24 figure(1);

25 plot(t, x4(:,1),’color’,[3, 146, 207]/256,’LineWidth’,2.5);

26 figure(2);

27 plot(t, x4(:,2),’color’,[3, 146, 207]/256,’LineWidth’,2.5);

28 figure(3);

29 hold on;

30 plot(x1(:,1), x1(:,2),’color’,[238, 64, 53]/256,’LineWidth’,2.5);

31 plot(x2(:,1), x2(:,2),’color’,[128, 0, 128]/256,’LineWidth’,2.5);

32 plot(x3(:,1), x3(:,2),’color’,[123, 192, 67]/256,’LineWidth’,2.5);

33 plot(x4(:,1), x4(:,2),’color’,[3, 146, 207]/256,’LineWidth’,2.5);

34 figure(1);

35 grid on;

36 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

37 ylabel(’$x\left(t\right), \mathrm{\ \left(mm\right)}$’, ...

38 ’interpreter’,’latex’);

39 legend(’$\zeta=0$’, ’$\zeta=0.1$’, ’$\zeta=1$’, ’$\zeta=5$’, ...

40 ’interpreter’,’latex’);

41 a = get(gca,’XTickLabel’);

42 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

43 set(gcf,’renderer’,’painters’);

44 hold off;

45 filename = "x_vs_t"+".pdf";

46 saveas(gcf,filename);

47 figure(2);

48 grid on;

49 xlabel(’$t, \mathrm{\ \left(s\right)}$’,’interpreter’,’latex’);

50 ylabel(’$\dot{x}\left(t\right), \mathrm{\ \left(mm/s\right)}$’, ...

51 ’interpreter’,’latex’);

52 legend(’$\zeta=0$’, ’$\zeta=0.1$’, ’$\zeta=1$’, ’$\zeta=5$’, ...

53 ’interpreter’,’latex’);

54 a = get(gca,’XTickLabel’);

55 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

56 set(gcf,’renderer’,’painters’);

57 hold off;

58 filename = "xdot_vs_t"+".pdf";

59 saveas(gcf,filename);

60 figure(3);

61 grid on;

62 xlabel(’$x\left(t\right), \mathrm{\ \left(mm\right)}$’, ...

63 ’interpreter’,’latex’);

64 ylabel(’$\dot{x}\left(t\right), \mathrm{\ \left(mm/s\right)}$’, ...

65 ’interpreter’,’latex’);
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66 legend(’$\zeta=0$’, ’$\zeta=0.1$’, ’$\zeta=1$’, ’$\zeta=5$’, ...

67 ’interpreter’,’latex’);

68 a = get(gca,’XTickLabel’);

69 set(gca,’XTickLabel’,a,’FontName’,’Times’,’fontsize’,12);

70 set(gcf,’renderer’,’painters’);

71 hold off;

72 filename = "xdot_vs_x"+".pdf";

73 saveas(gcf,filename);

The MATLAB code in the function that defines the motion dynamics of the spring-damper
system is shown below:
Case (1)

1 function xdot = Q2MotionFunction1(t,x)

2 omega_n = 1.5*pi;

3 zeta = 0;

4 xdot(1) = x(2);

5 xdot(2) = −omega_n^2*x(1)−2*zeta*omega_n*x(2);

6 xdot = xdot(:);

Case (2)
1 function xdot = Q2MotionFunction2(t,x)

2 omega_n = 1.5*pi;

3 zeta = 0.1;

4 xdot(1) = x(2);

5 xdot(2) = −omega_n^2*x(1)−2*zeta*omega_n*x(2);

6 xdot = xdot(:);

Case (3)
1 function xdot = Q2MotionFunction3(t,x)

2 omega_n = 1.5*pi;

3 zeta = 1;

4 xdot(1) = x(2);

5 xdot(2) = −omega_n^2*x(1)−2*zeta*omega_n*x(2);

6 xdot = xdot(:);

Case (4)
1 function xdot = Q2MotionFunction4(t,x)

2 omega_n = 1.5*pi;

3 zeta = 5;

4 xdot(1) = x(2);

5 xdot(2) = −omega_n^2*x(1)−2*zeta*omega_n*x(2);

6 xdot = xdot(:);

(i) The results for 𝑥 (𝑡) are plotted in Figure 1.
(ii) The results for ¤𝑥 (𝑡) are plotted in Figure 2.
(iii) The results for phase portraits are plotted in Figure 3.
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Figure 1: Results for 𝑥 (𝑡) versus 𝑡.
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Figure 2: Results for ¤𝑥 (𝑡) versus 𝑡.
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Figure 3: Results for ¤𝑥 (𝑡) versus 𝑥 (𝑡) (called phase plane).
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(c) The discussion is listed below:

• For undamped case, the system is in the harmonic motion and will never end, which is
marginal stable.

• Critical damping returns the system to equilibrium as fast as possible without overshoot-
ing.

• An underdamped system will oscillate through the equilibrium position.

• An overdamped system moves more slowly toward equilibrium than one that is critically
damped.
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Problem 3

For a single degree of freedom damped system under harmonic force, the magnification factor
𝑀 is found as

𝑀 =
1√︃(

1 − 𝑟2
)2 + (2𝜁𝑟)2

(51)

where 𝑟 = 𝜔
𝜔𝑛

.
Show the maximum value of 𝑀 for 0 < 𝜁 < 1√

2
,

𝑀max =
1

2𝜁
√︁
1 − 𝜁2

(52)

where 𝑟 =
√︁
1 − 2𝜁2.

Solution:
To get the maximum value of 𝑀 , we need to minimize

(
1 − 𝑟2

)2 + (2𝜁𝑟)2. We can regard(
1 − 𝑟2

)2 + (2𝜁𝑟)2 as a function with respect to 𝑟:

𝑓 (𝑟) =
(
1 − 𝑟2

)2
+ (2𝜁𝑟)2 = 𝑟4 +

(
4𝜁2 − 2

)
𝑟2 + 1 (53)

Because 0 < 𝜁 < 1√
2
, 𝑓 (𝑟) is a quadratic function with respect to 𝑟2. This function reaches the

minimum point at

𝑟2 = −4𝜁
2 − 2

2
(54)

that is
𝑟 =

√︁
1 − 2𝜁2 (55)

In this case, the magnification factor 𝑀 reaches maximum, which equals

𝑀max =
1

2𝜁
√︁
1 − 𝜁2

(56)
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