
Smart Materials and Structures

 What ?

− Possess the capability to sense and actuate in a 
controlled manner in response to variable 
ambient stimuli

− Involve combinations of actuators, sensors, and 
controllers (muscles, nerves, and brains)

− Also referred to as adaptive or intelligent
materials

− Very active field in research and applications

− One of the key technologies for the 21st century 
[Scientific American]



 Several Types of Smart Materials

− Piezoelectric Materials

− Electrostrictive Materials

− Magnetostrictive Materials

− Electro-Rheological (ER) Fluids

− Magneto-Rheological (MR) Fulids

− Shape Memory Alloys (SMAs)

− Optical Fibers



• Applications

– Automation: actuators/sensors/motors; robots

– Biomedicine: surgical tools, microsensors

– Precision machinery: computer hard disk drives

– Transportation: cars, trains, airplanes

– Infrastructures: bridges and buildings

– Daily life applications: temperature control valves; toys

• How ?

– This is why we offer this course …



Actuated Structures – structures have distributed 
actuators (may not have sensors)

Sensory Structures – structures configured with distributed 
sensors, to monitor characteristics of the system

Controlled Structures – integration of sensory and 
actuated structures with a closed-loop control system

Active Structures – structures with embedded components 
serving some function in the load bearing properties of 
the system

Intelligent Structures (Smart Structures) – those which 
incorporate actuators and sensors that are highly 
integrated into the structure and have structural 
functionality, as well as highly integrated control logic, 
signal conditioning and power amplification electronics



 Piezoelectric Materials

− Most commonly used in smart structures

− Produce voltage when subject to mechanical 
strain

direct piezoelectric effect

− Induce strain when electric field applied

converse piezoelectric effect

− Used as both actuators/sensors



Schematic diagram of dipole effect induced in 

piezoelectric material



P V

+

_

P V

+

_

P

+

_

F

F

P

+

_

F

F

Piezoelectric Materials

Mechanical Response to Electrical Input

and Electrical Response to Mechanical Input



Strain distribution of G-1195 for moderate and large electric fields

• For smaller electric field, strain-field relation is nearly linear

• For higher fields, shown significant hysteresis and strain-
based nonlinearities



 Constitutive relations (linear)

Elastic materials

T = C S

where mechanical stresses

mechanical strains

material stiffness matrix

𝑇 

𝑆 

𝐶 



Piezoelectric materials

where electrical displacements (charge/area)

electric fields (voltage/meter)

dielectric constants obtained at 
constant strain (permittivity matrix)

piezoelectric constants relating voltage 
to stress

stiffness matrix measured at constant 
electric field

𝐷 ൌ 𝜀௦𝐸 ൅ 𝑒𝑆 
𝑇 ൌ െ𝑒௧𝐸 ൅ 𝑐ா𝑆 
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More often, an alternate form of constitutive 
equations:

where piezoelectric constants indicating the 
strength of the piezoelectric effect

dielectric constants for constant T

elasticity matrix for constant E

𝐷 ൌ 𝑑𝑇 ൅ 𝜀்𝐸 
𝑆 ൌ 𝑠ா𝑇 ൅ 𝑑௧𝐸 
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The coefficients appearing in the constitutive 
equations can be obtained. (IEEE 176-1987, 
IEEE Standard on Piezoelectricity)

With the coordinate system,

voltage applied in i direction

strain developed in j direction

Induced strain in x direction



Piezoelectric Material Properties

Comparisons:

PZT  times as dense compared to PVDF

PZT   times stiffer compared to PVDF

PZT  times compared to PVDF



 PZT (Lead Zirconate Titanate)

− Ceramic based

− Brittle and stiff

− Most commonly used as actuators

 PVDF (Polyvinylidene Fluoride)

− Polymer based

− Soft (compliant)

− Readily cut and shaped

− Suitable for sensing applications



Piezoelectric Materials

 Advantages:

− Relative temperature insensitivity

− Linear response at low excitation levels

− Broadband frequency response

 Disadvantages:

− Significant hysteresis at large electric field levels

− Brittleness and small tensile strength of PZTs

− Weak electromechanical coupling coefficients for 
PVDFs



 Electrostrictive Materials

− Similar to piezoelectric materials with 

slightly higher free strain

− Nonlinear strain-field relations

− Very sensitive to temperature



Strain-electric field distribution for an electrostrictive 

element



An Electrostrictive Polymer Actuator (EPAM) 

for manipulation in MRI devices



 Magnetostrictive Materials

− Produce strains when exposed to 
magnetic field

− Highly nonlinear between applied 
magnetic field and induced strains

− Magnetostrictive transducers are large in 
size 

− Actuators generate very large strains 
compared to piezoelectric and 
electrostrictive actuators

− Far from fragile once housed and 
prestressed



Schematic diagram of strain versus 

magnetic field for a magnetostrictive material



Schematic diagram of a Terfenol-D actuator



 Shape Memory Alloys (SMAs)

− Capable of memorizing its original 
configuration after heated above the 
characteristic transition temperature

− Can produce large displacements and forces 

− Most common SMA is Nitinol

− Heat may be internal

− Slow response time

− Nonlinear hysteresis

− Modeling is quite difficult



Representation of the changes in the crystal form 
of SMAs which leads to the shape memory effect

Shape Memory Alloys (SMAs)



Schematic diagram of transformation of 
a shape memory alloy



(a) Pseudoelasticity: stress-strain hysteresis loop (T > Af)

(b) Shape memory effect: residual strainεr (T < As)



• Pseudoelastic:  When an SMA is in the austenite phase 

(T > Af), a plastic strain is achieved under stress loading, 

the full strain can be recovered upon unloading

• Shape memory effect: when T < As during the stress-

induced martensite phase transformation, a large residual 

strain  εr remains after unloading. This strain can be 

recovered by heating SMA to T > Af



Artificially Fractured Jaw Model

SMA plate

attached

SMA plate

activated



 Electro-rheological (ER) Fluids

− ER fluids are colloidal dispersions of solid 
particulates in nonconducting or insulating oils

− Display reversible changes in dynamic yield 
stress due to an application of an electric field

− Electric field induce polarization of particles

− Particle-particle interaction leads to pearl 
chain formulation 

− Can change device stiffness & damping 
properties via electric field



Electrorheological (ER) Fluids



 A recipe for a couple of ER fluid

 Newtonian fluid

 Bingham plastic

A fluid that behaves as a solid until a minimum 
yield stress is exceeded and subsequently 
exhibits a linear relation between stress and 
shear rate



 Disadvantages (ER fluids):

− High voltage required

− Lack of long term stability

− Complexity of actuator/control design



Magneto-Rheological (MR) Fluids

What are they ?

 Micron sized, paramagnetic particles in oil

What do they do ?

 Newtonian in absence of applied field

 Develop yield strength when magnetic 
field applied

 Bingham Model:  =  (H)  

 Provide means for a quiet, rapid response 
interface between electronic controls and 
mechanical devices

.



Demonstration of MR fluids

(Courtesy of Lord Company)



 Magneto-rheological (MR) Fluids

− High yield stress (50 kPa to 100 kPa)

− Good stability

− Fast response time (within milliseconds), can 
be used for high frequency applications

− Broad operating temperature range (less than 
10 % variation in force output over a 
temperature range of - 40 to +150 °C)





Magnetorheological (MR) Fluids

Three basic modes of operation for MR Fluids

Flow Mode Shear Mode Squeeze Mode



Smart Dampers for Suspension Systems



Fiber Optic Sensors
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 Fiber Optic Sensors

− Lightweight

− Mechanically flexible, diverse geometry 
possible

− Low maintenance, high reliability

− No actuation abilities



Artistic view of global communication 
(Scientific Background on the Nobel Prize in Physics 2009)






