Vibration

- Any motion that repeats itself after an interval of time is called <u>vibration</u> or <u>oscillation</u>.
- The minimum number of independent coordinates required to determine completely the positions of all parts of a system at any instant of time defines the <u>degree of freedom</u> of the system.

Single-Degree-of-Freedom (SDOF) Systems

Equation of motion:

Free Vibration of Undamped Systems:

Assume zero damping and external forces,

The time taken to complete one cycle of motion defines the *period*

Natural frequency

where Hz denotes <u>hertz</u>

Free Vibration of Damped Systems:

Let F(t)=0 and divide through by m,

Comparison of motions with different types of damping

Response to Harmonic Excitations

Excitation force

where is the magnitude

is the excitation (or forcing) frequency

Equation of motion becomes

Variation of X and ϕ with frequency ratio r

where is the solution of the homogeneous eq.

represents <u>transient</u> response free vibration dies out with time

is the particular solution represents <u>steady-state</u> response

Homogenous, particular, and general solutions for an underdamped case

Piezoelectric Accelerometer

Magnitude versus frequency of the relative displacement for a transducer

For larger values of *r*

- relative displacement and the displacement of the base have the same amplitude
- can be used to measure harmonic base displacement

<u>Seismometer</u>: instrument with low natural frequency compared to the excitation frequency

Effect of damping on the constant of proportionality between base acceleration and the relative displacement (voltage) for an accelerometer

For small values of r,

- the relative position is proportional to the base acceleration
- the accelerometer can be used in the range

<u>Accelerometer</u>: a high natural-frequency instrument that measures the acceleration of a vibrating body

e.g., a mass resting on a piezoelectric ceramic crystal,

up to can be measured

Multi-DOF Systems

Evrite equations in matrix form
$$\begin{bmatrix}
m, & 0 \\
0 & m_2
\end{bmatrix} \begin{bmatrix}
\ddot{X}_1 \\
\ddot{X}_2
\end{bmatrix} + \begin{bmatrix}
G_1 + G_2 & -G_2
\end{bmatrix} \begin{bmatrix}
\dot{X}_1 \\
\dot{X}_2
\end{bmatrix} + \begin{bmatrix}
k_1 + k_2 & -k_2
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} + \begin{bmatrix}
K_2 \\
K_2
\end{bmatrix} \begin{bmatrix}
K_2 \\
K_2
\end{bmatrix} = \begin{bmatrix}
K_2 \\
K_2
\end{bmatrix}$$

Free Vibration of an Undamped System

Equatione of motion:

$$\begin{bmatrix} m, & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Synchronous motion

(All wordinates execute the same motion in time)

$$\begin{cases} \chi_1 \\ \chi_2 \end{cases} = \begin{cases} A_1 \\ A_2 \end{cases} e^{i\omega t}$$

[] A must satisfy homogeneous linear equation:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(-ks k-mw2/(A))))
det=o for nonzero A1, A2
=> Characteristic equation:
[(k,+k,)-m,w2][k,-m,w2]-k,2=0

Natural Frequencies w, and ws $\omega_r = \sqrt{\lambda_r}$ k, k, + k2 - > M, k2 - > M, k, - > M, k2 + 2 m, m2 - k2 = 0 12(m,m)+) (-m,k,-m,k,-m,k,)+(k,k)=0 $m_1 k_2 + m_2 k_1 + m_2 k_3 \pm \int k_3^2 m_1^2 - 2k_1 k_2 m_1 m_2 + 2k_3^2 m_1 m_2 + 2k_3^2 m_1 m_2 + 2k_3^2 m_1 m_2 + 2k_3^2 m_2^2 + 2k_1 k_2 m_2^2 + 2k_3^2 m_2^2 + 2k_3^2$ 2mimz

$$|det|^{2k-\lambda m} - k| = \chi^{2}(m^{2}) + \lambda(-3mk) + k^{2} = 0$$

$$|-k| |k-\lambda m| = \chi^{2}(m^{2}) + \lambda(-3mk) + k^{2} = 0$$

Eigenvaluer
$$\gamma_1 = \frac{3-55}{2} \frac{k}{m}$$

$$\lambda = \frac{3 + \sqrt{5}}{2} \frac{k}{m}$$

$$\omega_1 = \sqrt{\frac{3-\sqrt{5}}{2}} \sqrt{\frac{k}{m}} \sim 0.6/8 \sqrt{\frac{k}{m}}$$

Modal vectors

Mode 1: $\lambda_1 = \frac{3-\sqrt{5}}{2} \frac{R}{m}$

$$\begin{cases} 2k - \left(\frac{3-\sqrt{5}}{2}\right)k & -k \\ -k & k - \left(\frac{3-\sqrt{5}}{2}\right)k & A_{1} \\ \end{pmatrix} = \begin{cases} 0 \\ A_{2} \\ \end{pmatrix},$$

absolute magnitudes of the elements of the modal vector are not unique

$$\begin{cases} A_1 \\ A_2 \end{cases} = \alpha_1 \begin{cases} \frac{1}{1+\sqrt{5}} \\ \frac{1+\sqrt{5}}{2} \end{cases} \simeq \alpha_1 \begin{cases} 1.0007 \\ 1.618 \end{cases}$$

Mode 2:
$$\lambda_2 = \frac{3+\sqrt{5}}{2} \frac{R}{m}$$

$$\begin{bmatrix}
2k - \left(\frac{3+\sqrt{5}}{2}\right)k & -k \\
-k & k - \left(\frac{3+\sqrt{5}}{2}\right)k
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_2
\end{bmatrix} = \begin{bmatrix}
0
\end{bmatrix}$$

$$\begin{cases} A_{1} \\ A_{2} \end{cases} = \alpha_{2} \begin{cases} 1 \\ 1 - \sqrt{5} \end{cases} \simeq \alpha_{2} \begin{cases} 1,000 \\ -0.618 \end{cases}$$

