Structural Control

Passive control:

- Parameters are synthesized off-line
- Stable, no power requirement
- Fixed design, no feedback

Active control:

- Force actuators are used
- Feedback, high performance
- High power requirement, potential for instability

Structural Control

- Active-passive hybrid control :
 - Integrate active systems with well-designed passive elements
- Semi-active control :
 - Parameters are controllable
 - Adaptable energy dissipation devices
- Combine the advantages of both active (feedback, high performance) and passive (stable, fail-safe) systems

Active Vibration Control

Piezoelectric materials have shown to be effective active structural control elements:

Apply voltage => induce stress and moments

Active Constrained Layer (ACL) Damping Treatment - An Active-Passive Hybrid Approach

- Active piezoelectric cover sheet on passive viscoelastic constrained damping layer
- Active actions increase shear angle & enhance system damping

Semi-Active Suspension System

Block diagram of the control system

- Transducers: energy-conversion devices including sensors and actuators
 - Sensors: acquire information from the system
 - Actuators: output actions into the system
 - Smart actuators and sensors: actuators and sensors with the use of smart materials

Transduction Devices for Smart Structures

- Accelerometer (sensor)
- Electrodynamic shaker (actuator)
- Electrorheological fluid (actuator)
- Electrostrictive material (actuator)
- Magnetorheological fluid (actuator)
- Magnetostrictive material (actuator)
- Optical fibers (sensor)
- Piezoelectric material (actuator or sensor)
- Shape memory alloy (actuator or sensor)
- Strain gauge (sensor)

Major defects in primary sensors:

- nonlinearity
- cross-sensitivity
- noise
- parameter drift

- Some techniques for compensating the defects:
 - linearization processes are realizable with digital electronics
 - the material forming the sensor is physically organized to maximize the sensitivity of the device to the target variable and to minimize the response to all other physical variables
 - use sensor array approach
 - e.g. *chemiresistors* (chemically sensitive resistors)

An example of an array of chemiresistors fabricated using thick-film techniques. The slots are cut by a laser and help to isolate each sensor site from its neighbors

- Some techniques for compensating the defects: (cont.)
 - use filters (analog or digital)
 - positioning is critical
 - prefer self-test and auto-calibration features
 - the entire compensation and communication system can be constructed in single-chip form

Actuators:

- Output quantity is an energy or power, often in the form of mechanical work
- Input of the actuator is driven electrically whenever possible
- Connected in series with a power provider (power amplifier)
- Considerations: Required control authority
 (amount of control force, moment, strain or
 displacement, etc), power consumption,
 frequency response, and physical
 constraints such as size and mounting
 requirements, etc.

• Smart Actuators:

- Solid-state actuators: piezoelectric actuators, shape memory actuators, magnetostrictive actuators
- Actuators with controllable fluids (smart fluids): magnetorheological fluid actuators, electrorheological fluid actuators