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Preface

This book is written to be an undergraduate and introductory graduate level textbook, depending on

whether the more advanced topics appearing at the end of each chapter are covered. Without the advanced

topics, the book is of a level readily comprehensible by junior and senior undergraduate students in science

andengineering. With theadvanced topics included, thebookcanserveas the textbookfor the first course in

finite elements at the graduate level. The text material evolved from over 50 years of combined teaching

experience by the authors of graduate and undergraduate finite element courses.

The book focuses on the formulation and application of the finite element method. It differs from other

elementary finite element textbooks in the following three aspects:

1. It is introductory andself-contained.Only amodest background inmathematics and physics isneeded,

all of which is covered in engineering and science curricula in the first two years. Furthermore, manyof

the specific topics in mathematics, such as matrix algebra, some topics in differential equations, and

mechanics and physics, such as conservation laws and constitutive equations, are reviewed prior to

their application.

2. It is generic. While most introductory finite element textbooks are application specific, e.g. focusing

on linear elasticity, the finite element method in this book is formulated as a general purpose numerical

procedure for solving engineering problems governed by partial differential equations. The metho-

dology for obtaining weak forms for the governing equations, a crucial step in the development and

understanding of finite elements, is carefully developed. Consequently, students from various engi-

neering and science disciplines will benefit equally from the exposition of the subject.

3. It isa hands-on experience.The book integratesfiniteelement theory,finiteelement code development

and the application of commercial software package. Finite element code development is introduced

through MATLAB exercises and a MATLAB program, whereas ABAQUS is used for demonstrating

the use of commercial finite element software.

The material in the book can be covered in a single semester and a meaningful course can be constructed

from a subset of the chapters in this book for a one-quarter course. The course material is organized in three

chronological units of about one month each: (1) finite elements for one-dimensional problems; (2) finite

elements for scalar fieldproblems in two dimensions and (3) finite elements for vector field problems in two

dimensions and beams. In each case, the weak form is developed, shape functions are described and these

ingredients are synthesized to obtain the finite element equations. Moreover, in a web-base chapter, the

application of general purpose finite element software using ABAQUS is given for linear heat conduction

and elasticity.

Each chapter contains a comprehensive set of homework problems, some of which require program-

ming with MATLAB. Each book comes with an accompanying ABAQUS Student Edition CD, and



MATLAB finite element programs can be downloaded from the accompanying website hosted by John

Wiley & Sons: www.wileyeurope/college/Fish. A tutorial for the ABAQUS example problems, written by

ABAQUS staff, is also included in the book.

Depending on the interests and background of the students, three tracks have been developed:

1. Broad Science and Engineering (SciEng) track

2. Advanced (Advanced) track

3. Structural Mechanics (StrucMech) track

The SciEng track is intended for a broad audience of students in science and engineering. It is aimed

at presenting FEM as a versatile tool for solving engineering design problems and as a tool for

scientific discovery. Students who have successfully completed this track should be able to appreciate

and apply the finite element method for the types of problems described in the book, but more importantly,

the SciEng track equips them with a set of skills that will allow them to understand and develop the

method for a variety of problems that have not been explicitly addressed in the book. This is our

recommended track.

The Advanced track is intended for graduate students as well as undergraduate students with a strong

focus on applied mathematics, who are less concerned with specialized applications, such as beams and

trusses, but rather with a more detailed exposition of the method. Although detailed convergence proofs in

multidimensions are left out, the Advanced track is an excellent stepping stone for students interested in a

comprehensive mathematical analysis of the method.

The StrucMech track is intended for students in Civil, Mechanical and Aerospace Engineering whose

main interests are in structural and solid mechanics. Specialized topics, such as trusses, beams and energy-

basedprinciples, are emphasized in this track, while sectionsdealingwith topicsother thansolid mechanics

in multidimensions are classified as optional.

The Table P1 gives recommended course outlines for the three tracks. The three columns on the right list

are the recommended sections for each track.

Table P1 Suggested outlines for Science and Engineering (SciEng) track, Advanced Track and Structural

Mechanics (StrucMech) Track.

Outline SciEng Advanced StrucMech

Part 1: Finite element formulation for

one-dimensional problems

Chapter 1: Introduction All All All

Chapter 2: Direct approach for discrete systems 2.1–2.3 2.1, 2.2, 2.4

Chapter 3: Strong and weak forms for 3.1–3.6 All 3.1.1, 3.2–3.5, 3.9

one-dimensional problems

Chapter 4: Approximation of trial solutions, All All All

weight functions and Gauss quadrature for

one-dimensional problems

Chapter 5: Finite element formulation for 5.1–5.4, 5.6, 5.6.1 All 5.1, 5.2, 5.4, 5.6,

one-dimensional problems 5.6.1

Part 2: Finite element formulation for scalar

field problems in multidimensions

Chapter 6: Strong and weak forms for 6.1–6.3 All 6, 6.1

multi-dimensional scalar field problems

Chapter 7: Approximation of trial solutions, 7.1–7.4, 7.8.1 All 7.1–7.4, 7.8.1

weight functions and Gauss quadrature for

multi-dimensional problems

Chapter 8: Finite element formulation for multi 8.1, 8.2 All

dimensional scalar field problems

xii PREFACE



Table P1 (Continued)

Outline SciEng Advanced StrucMech

Part 3: Finite element formulation for

vector field problems in two dimensions

Chapter 9: Finite element formulation for vector 9.1–9.6 All 9.1–9.6

field problems – linear elasticity

Chapter 10: Finite element formulation for beams 10.1–10.4

Chapter 11: Commercial finite element program All All All

ABAQUS tutorial

Chapter 12: Finite Element Programming with 12.1–12.6 12.1, 12.1–12.4,

MATLAB (on the web only) 12.3–12.6 12.6–12.7

A BRIEF GLOSSARY OF NOTATION

Scalars, Vectors, Matrices

a, B Scalars

a, B Matrices

~a;~B Vectors

ai;Bij Matrix or vector components

Integers

nnp Number of nodal points

nel Number of element

ngp Number of Gauss points

nen Number of element nodes

e Element number

�IJ Kronecker delta

Sets

8 For all

[ Union

\ Intersection

2 Member of

� Subset of

Spaces, Continuity

U Space of trial solutions

U0 Space of weight functions

Cn Functions whose jth derivatives

0 � j � n are continuous

Hs A space of functions

with s square-integrable

derivatives

Strong Forms-General

� Problem domain

� Boundary of domain

n ¼ ðnx; nyÞ Unit normal to �ðn ¼ �1 in1DÞ

ðx; yÞ Physical coordinates (x in 1D)

=; =S Gradient and symmetric gradient

matrices
~r Gradient vector

Strong Form-Heat Conduction

T Temperature

q ¼ ðqx; qyÞT Flux (q in 1D)

�T Essential boundary

�q Natural boundary

s Heat source

�q; �T Boundary flux and temperature

D Conductivity matrix

kxx; kyy; kxy Conductivities (k in 1D)

Strong Form-Elasticity

u ¼ ðux; uyÞT Displacements (u in 1D)

~sx;~sy stress vectors acting on the planes

normal to x and y directions

e; r Strain and stress matrices (e and s
in 1D)

s Stress tensor

exx; eyy; gxy Strain components

sxx; syy; sxy Stress components

b ¼ ðbx; byÞT Body forces (b in 1D)

t ¼ ðtx; tyÞT Tractions

E; � Young’s modulus and Poisson’s

ratio.

D Material moduli matrix
�t ¼ ð�tx;�tyÞT Prescribed traction (�t in 1D)

�u ¼ ð�ux; �uyÞT Prescribed displacements

(�u in 1D)

�u;�t Essential (displacement) and

natural (traction) boundary
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Strong Form - Beams

uM
x ðxÞ Displacement in x at

midline

m(x) Internal moment

s(x) Internal shear force

p(x) Distributed loading

I Moment of inertia

� Curvature

uy Vertical displacements,

� Rotations

�m;�s Prescribed moments and shear

forces

�uy; �� Prescribed vertical displacements

and rotations

�m;�s Natural boundary: moments

and shear

�u;�� Essential boundary: vertical

displacements and rotations

Finite Elements-General

�e Domain of element e (le in 1D)

Ae Area of element e (cross-sectional

area in 1D)

xe
I ; y

e
I Coordinates of node I in

element e

Ne;N Element and global shape

function matrices

Be;B Element and global shape

function derivative matrices

Le Gather matrix

LeT Scatter matrix

Je Jacobian matrix

�e; �h Element and global trial solutions

we;wh Element and global weight

functions

Wi Gauss quadrature weights

�; �; �I Parent/natural coordinate

xð�; �Þ x - coordinate mapping

yð�; �Þ y - coordinate mapping

KE;KF ;KEF Partition into E- and F- nodes

w Global weight functions matrix

Re Rotation matrix from element to

global coordinate system

Finite Elements-Heat Conduction

Te Finite element temperature

d; de Global and element

temperature matrices

K;Ke Global and element conductance

matrices

f�; f
e
� Global and element

boundary flux matrices

f�; f
e
� Global and element source

matrices

r Global residual matrix

f Global flux matrix

Finite Elements-Elasticity

ue Finite element displacements

ue
xI ; u

e
yI Displacements at element node I

in x and y directions, respectively

d; de Global and element

displacement matrix

K;Ke Global and element stiffness

matrices

f�; f
e
� Global and element

boundary force matrix

f�; f
e
� Global and element

body force matrices

f; fe Global and element force

matrix

r Global reaction force matrix

Finite Elements-Beams

ue
y Finite element vertical

displacements

de Element displacement

matrix ½uy1; �1; uy2; �2�T
K;Ke Global and element stiffness

matrices

f�; f
e
� Global and element

boundary force matrices

f�; f
e
� Global and element body

force matrices

f; fe Global and element force

matrices

r Global reaction force matrix
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1
Introduction

1.1 BACKGROUND

Many physical phenomena in engineering and science can be described in terms of partial differential

equations. In general, solving these equations by classical analytical methods for arbitrary shapes is almost

impossible. The finite element method (FEM) is a numerical approach by which these partial differential

equations can be solved approximately. From an engineering standpoint, the FEM is a method for solving

engineering problems such as stress analysis, heat transfer, fluid flow and electromagnetics by computer

simulation.

Millions of engineers and scientists worldwide use the FEM to predict the behavior of structural,

mechanical, thermal, electrical and chemical systems for both design and performance analyses. Its

popularity can be gleaned by the fact that over $1 billion is spent annually in the United States on FEM

software and computer time. A 1991 bibliography (Noor, 1991) lists nearly 400 finite element books in

English and other languages. Aweb search (in 2006) for the phrase ‘finite element’ using the Google search

engine yielded over 14 million pages of results. Mackerle (http://ohio.ikp.liu.se/fe) lists 578 finite element

books published between 1967 and 2005.

To explain the basic approach of the FEM, consider a plate with a hole as shown in Figure 1.1 for which

we wish to find the temperature distribution. It is straightforward to write a heat balance equation for each

point in the plate. However, the solution of the resulting partial differential equation for a complicated

geometry, such as an engine block, is impossible by classical methods like separation of variables.

Numerical methods such as finite difference methods are also quite awkward for arbitrary shapes; software

developers have not marketed finite difference programs that can deal with the complicated geometries that

are commonplace in engineering. Similarly, stress analysis requires the solution of partial differential

equations that are very difficult to solve by analytical methods except for very simple shapes, such as

rectangles, and engineering problems seldom have such simple shapes.

The basic idea of FEM is to divide the body into finite elements, often just called elements, connected by

nodes, and obtain an approximate solution as shown in Figure 1.1. This is called the finite element mesh and

the process of making the mesh is called mesh generation.

The FEM provides a systematic methodology by which the solution, in the case of our example, the

temperature field, can be determined by a computer program. For linear problems, the solution is

determined by solving a system of linear equations; the number of unknowns (which are the nodal

temperatures) is equal to the number of nodes. To obtain a reasonably accurate solution, thousands of

nodes are usually needed, so computers are essential for solving these equations. Generally, the accuracy of

the solution improves as the number of elements (and nodes) increases, but the computer time, and hence

the cost, also increases. The finite element program determines the temperature at each node and the heat

flow through each element. The results are usually presented as computer visualizations, such as contour

A First Course in Finite Elements J. Fish and T. Belytschko
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plots, although selected results are often output on monitors. This information is then used in the

engineering design process.

The same basic approach is used in other types of problems. In stress analysis, the field variables are the

displacements; in chemical systems, the field variables are material concentrations; and in electromag-

netics, the potential field. The same type of mesh is used to represent the geometry of the structure or

component and to develop the finite element equations, and for a linear system, the nodal values are

obtained by solving large systems (from 103 to 106 equations are common today, and in special applica-

tions, 109) of linear algebraic equations.

This text is limited to linear finite element analysis (FEA). The preponderance of finite element analyses

in engineering design is today still linear FEM. In heat conduction, linearity requires that the conductance

be independent of temperature. In stress analysis, linear FEM is applicable only if the material behavior is

linear elastic and the displacements are small. These assumptions are discussed in more depth later in the

book. In stress analysis, for most analyses of operational loads, linear analysis is adequate as it is usually

undesirable to have operational loads that can lead to nonlinear material behavior or large displacements.

For the simulation of extreme loads, such as crash loads and drop tests of electronic components, nonlinear

analysis is required.

The FEM was developed in the 1950s in the aerospace industry. The major players were Boeing and Bell

Aerospace (long vanished) in the United States and Rolls Royce in the United Kingdom. M.J. Turner, R.W.

Clough, H.C. Martin and L.J. Topp published one of the first papers that laid out the major ideas in 1956

Plate with a Hole 

Triangular Finite 

Element 

Refined Finite Element ModelFinite Element Model 

Figure 1.1 Geometry, loads and finite element meshes.
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(Turner et al., 1956). It established the procedures of element matrix assembly and element formulations

that you will learn in this book, but did not use the term ‘finite elements’. The second author of this paper,

Ray Clough, was a professor at Berkeley, who was at Boeing for a summer job. Subsequently, he wrote a

paper that first used the term ‘finite elements’, and he was given much credit as one of the founders of the

method. He worked on finite elements only for a few more years, and then turned to experimental methods,

but his work ignited a tremendous effort at Berkeley, led by theyounger professors, primarily E. Wilson and

R.L. Taylor and graduate students such as T.J.R. Hughes, C. Felippa and K.J. Bathe, and Berkeley was the

center offinite element research for many years. This research coincided with the rapid growth of computer

power, and the method quickly became widely used in the nuclear power, defense, automotive and

aeronautics industries.

Much of the academic community first viewed FEM very skeptically, and some of the most prestigious

journals refused to publish papers on FEM: the typical resistance of mankind (and particularly academic

communities) to the new. Nevertheless, several capable researchers recognized its potential early, most

notably O.C. Zienkiewicz and R.H. Gallagher (at Cornell). O.C. Zienkiewicz built a renowned group at

Swansea in Wales that included B. Irons, R. Owen and many others who pioneered concepts like the

isoparametric element and nonlinear analysis methods. Other important early contributors were J.H.

Argyris and J.T. Oden.

Subsequently, mathematicians discovered a 1943 paper by Courant (1943), in which he used triangular

elements with variational principles to solve vibration problems. Consequently, many mathematicians

have claimed that this was the original discovery of the method (though it is somewhat reminiscent of the

claim that the Vikings discovered America instead of Columbus). It is interesting that for many years

the FEM lacked a theoretical basis, i.e. there was no mathematical proof that finite element solutions

give the right answer. In the late 1960s, the field aroused the interest of many mathematicians, who showed

that for linear problems, such as the ones we will deal with in this book, finite element solutions converge

to the correct solution of the partial differential equation (provided that certain aspects of the problem are

sufficiently smooth). In other words, it has been shown that as the number of elements increases,

the solutions improve and tend in the limit to the exact solution of the partial differential equations.

E. Wilson developed one of the first finite element programs that was widely used. Its dissemination was

hastened by the fact that it was ‘freeware’, which was very common in the early 1960s, as the commercial

value of software was not widely recognized at that time. The program was limited to two-dimensional

stress analysis. It was used and modified by many academic research groups and industrial laboratories and

proved instrumental in demonstrating the power and versatility of finite elements to many users.

Then in 1965, NASA funded a project to develop a general-purpose finite element program by a group in

California led by Dick MacNeal. This program, which came to be known as NASTRAN, included a large

array of capabilities, such as two- and three-dimensional stress analyses, beam and shell elements, for

analyzing complexstructures, such asairframes, and analysis ofvibrations and time-dependent response to

dynamic loads. NASA funded this project with $3 000 000 (like $30 000 000 today). The initial program

was put in the public domain, but it had many bugs. Shortly after the completion of the program, Dick

MacNeal and Bruce McCormick started a software firm that fixed most of the bugs and marketed the

program to industry. By 1990, the program was the workhorse of most large industrial firms and the

company, MacNeal-Schwendler, was a $100 million company.

At about the same time, John Swanson developed a finite element program at Westinghouse Electric

Corp. for the analysis of nuclear reactors. In 1969, Swanson left Westinghouse to market a program called

ANSYS. The program had both linear and nonlinear capabilities, and it was soon widely adopted by many

companies. In 1996, ANSYS went public, and it now (in 2006) has a capitalization of $1.8 billion.

Another nonlinear software package of more recent vintage is LS-DYNA. This program was first

developed at Livermore National Laboratory by John Hallquist. In 1989, John Hallquist left the

laboratory to found his own company, Livermore Software and Technology, which markets the

program. Intially, the program had nonlinear dynamic capabilities only, which were used primarily

for crashworthiness, sheet metal forming and prototype simulations such as drop tests. But Hallquist
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quickly added a large range of capabilities, such as static analysis. By 2006, the company had almost

60 employees.

ABAQUS was developed by a company called HKS, which was founded in 1978. The program was

initially focused on nonlinear applications, but gradually linear capabilities were also added. The program

was widely used by researchers because HKS introduced gateways to the program, so that users could add

new material models and elements. In 2005, the company was sold to Dassault Systemes for $413 million.

As you can see, even a 5% holding in one of these companies provided a very nice nest egg. That is why

youngpeople shouldalwaysconsider starting theirowncompanies;generally, it ismuchmore lucrativeand

exciting than working for a big corporation.

In many industrial projects, the finite element database becomes a key component of product develop-

ment because it is used for a large number of different analyses, although in many cases, the mesh has to be

tailored for specific applications. The finite element database interfaces with the CAD database and is often

generated from the CAD database. Unfortunately, in today’s environment, the two are substantially

different. Therefore, finite element systems contain translators, which generate finite element meshes

from CAD databases; they can also generate finite element meshes from digitizations of surface data. The

need for two databases causes substantial headaches and is one of the major bottlenecks in computerized

analysis today, as often the two are not compatible.

The availability of awide range of analysis capabilities in one program makes possible analyses of many

complex real-life problems. For example, the flow around a car and through the engine compartment can be

obtained by a fluid solver, called computational fluid dynamics (CFD) solver. This enables the designers to

predict the drag factor and the lift of the shape and the flow in the engine compartment. The flow in the

engine compartment is then used as a basis for heat transfer calculations on the engine block and radiator.

These yield temperature distributions, which are combined with the loads, to obtain a stress analysis of the

engine.

Similarly, in the design of a computer or microdevice, the temperatures in the components can be

determined through a combination of fluid analysis (for the air flowing around the components) and heat

conduction analysis. The resulting temperatures can then be used to determine the stresses in the

components, such as at solder joints, that are crucial to the life of the component. The same finite element

model, with some modifications, can be used to determine the electromagnetic fields in various situations.

These are of importance for assessing operability when the component is exposed to various electro-

magnetic fields.

In aircraft design, loads from CFD calculations and wind tunnel tests are used to predict loads on the

airframe. A finite element model is then used with thousands of load cases, which include loads in various

maneuvers such as banking, landing, takeoff and so on, to determine the stresses in the airframe. Almost all

of these are linear analyses; only determining the ultimate load capacity of an airframe requires a nonlinear

analysis. It is interesting that in the 1980s a famous professor predicted that by 1990 wind tunnels would be

used only to store computer output. He was wrong on two counts: Printed computer output almost

completely disappeared, but wind tunnels are still needed because turbulent flow is so difficult to compute

that complete reliance on computer simulation is not feasible.

Manufacturing processes are also simulated by finite elements. Thus, the solidification of castings is

simulated toensuregoodqualityof the product. In the designof sheetmetal for applications suchascars and

washing machines, the forming process is simulated to insure that the part can be formed and to check that

after springback (when the part is released from the die) the part still conforms to specifications.

Similar procedures apply in most other industries. Indeed, it is amazing how the FEM has transformed

the engineering workplace in the past 40 years. In the 1960s, most engineering design departments

consisted of a room of 1.5 m� 3 m tables on which engineers drew their design with T-squares and other

drafting instruments. Stresses in the design were estimated by simple formulas, such as those that you learn

in strength of materials for beam stretching, bending and torsion (these formulas are still useful,

particularly for checking finite element solutions, because if the finite element differs from these formulas

by an order of magnitude, the finite element solution is usually wrong). To verify the soundness of a design,
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prototypes were made and tested. Of course, prototypes are still used today, but primarily in the last stages

of a design. Thus, FEA has led to tremendous reductions in designcycle time, and effectiveuse of this tool is

crucial to remaining competitive in many industries.

A question that may occur to you is: Why has this tremendous change taken place? Undoubtedly, the

major contributor has been the exponential growth in the speed of computers and the even greater decline in

the cost of computational resources. Figure 1.2 shows the speed of computers, beginning with the first

electronic computer, the ENIAC in 1945. Computer speed here is measured in megaflops, a rather archaic

term that means millions of floating point operations per second (in the 1960s, real number multiplies were

called floating point operations).

The ENIAC was developed in 1945 to provide ballistic tables. It occupied 1800 ft2 and employed 17468

vacuum tubes. Yet its computational power was a small fraction of a $20 calculator. It was not until the

1960s that computers had sufficient power to do reasonably sized finite element computations. For

example, the 1966 Control Data 6600, the most powerful computer of its time, could handle about

10 000 elements in several hours; today, a PC does this calculation in a matter of minutes. Not only

were these computers slow, but they also had very little memory: the CDC 6600 had 32k words of random

access memory, which had to accommodate the operating system, the compiler and the program.

As can be seen from Figure 1.2, the increase in computational power has been linear on a log scale,

indicating a geometric progression in speed. This geometric progression was first publicized by Moore, a

founder of Intel, in the 1990s. He noticed that the number of transistors that could be packed on a chip, and

hence the speed of computers, doubled every 18 months. This came to be known as Moore’s law, and

remarkably, it still holds.

From the chart you can see that the speed of computers has increased by about eight orders of magnitude

in the last 40 years. However, the improvement is even more dramatic if viewed in terms of cost in inflation-

adjusted currency. This can be seen from Table 1.1, which shows the costs of several computers in 1968 and

2005, along with the tuition at Northwestern, various salaries, the price of an average car and the price of a
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Figure 1.2 Historical evolution of speed of computers.
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decent car (in the bottom line). It can be seen that the price of computational power has decreased by a factor

of over a hundred from 1968 to 2006. During that time, the value of our currency has diminished by a factor

of about 10, so the cost of computer power has decreased by a factor of a billion! Awidely circulated joke,

originated by Microsoft, was that if the automobile industry had made the same progress as the computer

industry over the past 40 years, a car would cost less than a penny. The auto industry countered that if

computer industry designed and manufactured cars, they would lock up several times a day and you would

need to press start to stop the car (and many other ridiculous things). Nevertheless, electronic chips are an

area where tremendous improvements in price and performance have been made, and this has changed our

lives and engineering practice.

The price of finite element software has also decreased, but only a little. In the 1980s, the software fees

for corporate use of NASTRAN were on the order of $200 000–1 000 000. Even a small firm would have to

pay on the order of $100 000. Today, NASTRAN still costs about $65 000 per installation, the cost of

ABAQUS starts at $10 000 and LS-DYNA costs $12 000. Fortunately, all of these companies make student

versions available for much less. The student version of ABAQUS comes free with the purchase of this

book;auniversity license forLS-DYNAcosts $500.So todayyoucansolvefiniteelementproblemsas large

as those solved on supercomputers in the 1990s on your PC.

As people became aware of the rapidly increasing possibilities in engineering brought about by

computers in the 1980s, many fanciful predictions evolved. One common story on the West Coast was

that by the next century, in which we are now, when an engineer came to work he would don a headgear,

which would read his thoughts. He would then pick up his design assignment and picture the solution. The

computer would generate a database and a visual display, which hewould then modify with a few strokes of

his laser pen and some thoughts. Once he considered the designvisually satisfactory, hewould then think of

‘FEM analysis’, which would lead the computer to generate a mesh and visual displays of the stresses. He

would then massage the design in a few places, with a laser pen or his mind, and do some reanalyses until the

design met the specs. Then he would push a button, and a prototype would drop out in front of him and he

could go surfing.

Well, this has not come to pass. In fact, making meshes consumes a significant part of engineering time

today, and it is often tedious and causes many delays in the design process. But the quality of products that

can be designed with the help of CAD and FEM is quite amazing, and it can be done much quicker than

before.Thenextdecadewillprobably seesome majorchanges, and inviewof the hazardsofpredictions, we

will not make any, but undoubtedly FEM will play a role in your life whatever you do.

Table 1.1 Costs of some computers and costs of selected items for an

estimate of uninflated dollars (from Hughes–Belytschko Nonlinear FEM Short

Course).

Costs

1968 2005

CDC 6600 (0.5–1 Mflops) $8 000 000

512 Beowulf cluster (2003) 1 Tflop $500 000

Personal computer (200–1600 Mflops) $500–3000

B.S. Engineer (starting salary, Mech Eng) $9000 $51 000

Assistant Professor of $11 000 $75 000

Engineering (9 mo start salary)

1 year tuition at Northwestern $1800 $31 789

GM, Ford or Chrysler sedan $3000 $22 000

Mercedes SL $7000 $90–120 K

Decrease in real cost of computations 107 to 108

Some figues are approximate.
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1.2 APPLICATIONS OF FINITE ELEMENTS

In the following, we will give some examples of finite element applications. The range of applications of

finite elements is too large to list, but to provide an idea of its versatility we list the following:

a. stress and thermal analyses of industrial parts such as electronic chips, electric devices, valves, pipes,

pressure vessels, automotive engines and aircraft;

b. seismic analysis of dams, power plants, cities and high-rise buildings;

c. crash analysis of cars, trains and aircraft;

d. fluid flow analysis of coolant ponds, pollutants and contaminants, and air in ventilation systems;

e. electromagnetic analysis of antennas, transistors and aircraft signatures;

f. analysis of surgical procedures such as plastic surgery, jaw reconstruction, correction of scoliosis and

many others.

This is a very short list that is just intended to give you an idea of the breadth of application areas for the

method. New areas of application are constantly emerging. Thus, in the past few years, the medial

community has become very excited with the possibilities of predictive, patient-specific medicine.

One approach in predictive medicine aims to use medical imaging and monitoring data to construct a

model of a part of an individual’s anatomy and physiology. The model is then used to predict the patient’s

response to alternative treatments, such as surgical procedures. For example, Figure 1.3(a) shows a hand

wound and a finite element model. The finite element model can be used to plan the surgical procedure to

optimize the stitches.

Heart models, such as shown inFigure1.3(b), are still primarily topicsof research, but it is envisaged that

they will be used to design valve replacements and many other surgical procedures. Another area in which

finite elements have been used for a long time is in the design of prosthesis, such as shown in Figure 1.3(c).

Most prosthesis designs are still generic, i.e. a single prosthesis is designed for all patients with some

variations in sizes. However, with predictive medicine, it will be possible to analyze characteristics of a

particular patient such as gait, bone structure and musculature and custom-design an optimal prosthesis.

FEA of structural components has substantially reduced design cycle times and enhanced overall

product quality. For example in the auto industry, linear FEA is used for acoustic analysis to reduce interior

noise, for analysis of vibrations, for improving comfort, for optimizing the stiffness of the chassis and for

increasing the fatigue life of suspension components, design of the engine so that temperatures and stresses

are acceptable, and many other tasks. We have already mentioned CFD analyses of the body and engine

Figure 1.3 Applications in predictive medicine. (a) Overlying mesh of a hand model near the wound.1 (b) Cross-

section of a heart model.2 (c) Portion of hip replacement: physical object and finite element model.3

1With permission from Mimic Technologies.
2Courtesy of Chandrajit Bajaj, University of Texas at Austin.
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compartments previously. The FEMs used in these analyses are exactly like the ones described in this book.

Nonlinear FEA is used for crash analysis with both models of the car and occupants; a finite element model

for crash analysis is shown in Figure 1.4(a) and a finite element model for stiffness prediction is shown in

Figure1.4(c). Notice the tremendous detail in the latter; these models still require hundreds of man-hours to

develop. The payoff for such a modeling is that the number of prototypes required in the design process can

be reduced significantly.

Figure 1.4(b) shows a finite element model of an aircraft. In the design of aircraft, it is imperative that the

stresses incurred from thousands of loads, some very rare, some repetitive, do not lead to catastrophic

failure or fatigue failure. Prior to the availability of FEA, such a design relied heavily on an evolutionary

Figure 1.4 Application to aircraft design and vehicle crash safety: (a) finite element model of Ford Taurus crash;3 (b)

finite element model of C-130 fuselage, empennage and center wing4 and (c) flow around a car.5

Figure 1.5 Dispersion of chemical and biological agents in Atlanta. The red and blue colors represent the highest and

lowest levels of contaminant concentration.6

3Courtesy of the Engineering Directorate, Lawrence Livermore National Laboratory.
4Courtesy of Mercer Engineering Research Center.
5Courtesy of Mark Shephard, Rensselaer.
6Courtesy of Shahrouz Aliabadi.
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process (basing new designs on old designs), as tests for all of the loads are not practical. With FEA, it has

become possible to make much larger changes in airframe design, such as the shift to composites.

In a completely different vein, finite elements also play a large role in environmental decision making

and hazard mitigation.Forexample, Figure1.5 is avisualization of the dispersal ofa chemical aerosol in the

middle of Atlanta obtained by FEA; the aerosol concentration is depicted by color, with the highest

concentration in red. Note that the complex topography of this area due the high-rise buildings, which is

crucial to determining the dispersal, can be treated in great detail by this analysis. Other areas of hazard

mitigation in which FEA offers great possibilities are the modeling of earthquakes and seismic building

response, which is being used to improve their seismic resistance, the modeling of wind effects on

structures and the dispersal of heat from power plant discharges. The latter, as the aerosol dispersal,

involves the advection–diffusion equation, which is one of the topics of this book. The advection–diffusion

equation can also be used to model drug dispersal in the human body. Of course, the application of these

equations to these different topics involves extensive modeling, which is the value added by engineers with

experience and knowledge, and constitutes the topic of validation, which is treated in Chapters 8 and 9.

Matrix Algebra and Computer Programs

It is highly recommended that students familiarize themselves with matrix algebra and programming prior

to proceeding with the book. An introduction to matrix algebra and applications in MATLAB is given in a

Web chapter (Chapter 12) which is available on www.wileyeurope/college/Fish.

This webpage also includes the MATLAB programs which are referred to in this book and other

MATLAB programs for finite element analysis. We have chosen to use a web chapter for this material to

provide an option for updating this material as MATLAB and the programs change. We invite readers who

develop other finite element programs in MATLAB to contact the first author (Jacob Fish) about including

their programs. We have also created a blog where students and instructors can exchange ideas and place

alternative finite element programs. This forum is hosted at http://1coursefem.blogspot.com/

REFERENCES

Courant, R. (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math.

Soc., 42, 2165–86.
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2
Direct Approach for
Discrete Systems

The finite element method (FEM) consists of the following five steps:

1. Preprocessing: subdividing the problem domain into finite elements.

2. Element formulation: development of equations for elements.

3. Assembly: obtaining the equations of the entire system from the equations of individual elements.

4. Solving the equations.

5. Postprocessing: determining quantities of interest, such as stresses and strains, and obtaining visua-

lizations of the response.

Step 1, the subdivision of the problem domain into finite elements in today’s computer aided engineering

(CAE)environment, isperformed by automatic mesh generators. For trussproblems, such as the one shown

in Figure 2.1, each truss member is represented by a finite element. Step 2, the description of the behavior of

each element, generally requires the development of the partial differential equations for the problem and

its weak form. This will be the main focus of subsequent chapters. However, in simple situations, such as

systems of springs or trusses, it is possible to describe the behavior of an element directly, without

considering a governing partial differential equation or its weak form.

In this chapter, we focus on step 3, how to combine the equations that govern individual elements to

obtain the equations of the system. The element equations are expressed in matrix form. Prior to that, we

develop some simple finite element matrices for spring assemblages and trusses, step 2. We also introduce

the procedures for the postprocessing of results.

2.1 DESCRIBING THE BEHAVIOR OF A SINGLE BAR ELEMENT

A truss structure, such as the one shown in Figure 2.1, consists of a collection of slender elements, often

called bars. Bar elements are assumed to be sufficiently thin so that they have negligible resistance to

torsion, bending or shear, and consequently, the bending, shear and torsional forces are assumed to vanish.

The only internal forces of consequence in such elements are axial internal forces, so their behavior is

similar to thatof springs. Someof the barelements in Figure2.1are alignedhorizontally,whereas others are

positioned at an arbitrary angle � as shown in Figure 2.2(b). In this section, we show how to relate nodal

internal forces acting at the nodes to the corresponding nodal displacements,which are denoted by ðFe
1;F

e
2Þ

and ðue
1; u

e
2Þ, respectively, for the bar in one dimension as shown in Figure 2.2(a). In two dimensions, the

nodal forces of an element are ðFe
1x;F

e
1y;F

e
2x;F

e
2yÞ and the nodal displacements are ðue

1x; u
e
1y; u

e
2x; u

e
2yÞ.
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Notation. Throughout this textbook, the following notation is used. Element numbers are denoted by

superscripts. Node numbers are denoted by subscripts; when the variable is a vector with components, the

component is given after the node number. When the variable has an element superscript, then the node

number is a local number; otherwise, it is a global node number. The distinction between local and global

node numbers will be described later in this section. For instance, u
ð5Þ
2y is the y-component of the

displacement at node 2 of element 5. We will start by considering a horizontally aligned element in Section

2.1. Two-dimensional problems will be considered in Section 2.4.

Consider a bar element positioned along the x-axis as shown in Figure 2.2(a). The shape of the cross

section is quite arbitrary as shown in Figure 2.3. In this chapter, we assume that the bar is straight, its

material obeys Hooke’s lawand that it cansupportonly axial loading, i.e. it doesnot transmit bending, shear

or torsion. Young’s modulus of element e is denoted by Ee, its cross-sectional area by Ae and its length by le.

Because of the assumptions on the forces in the element, the only nonzero internal force is an axial

internal force, which is collinear with the axis along the bar. The internal force across any cross section of

the bar is denoted by pe. The axial stress is assumed to be constant in the cross section and is given by the

internal force divided by the cross-sectional area:

�e ¼ pe

Ae
: ð2:1Þ

The axial force and the stress are positive in tension and negative in compression.

The following equations govern the behavior of the bar:

1. Equilibrium of the element, i.e. the sum of the nodal internal forces acting on the element is equal to

zero:

Fe
1 þ Fe

2 ¼ 0: ð2:2Þ

Figure 2.1 A bridge truss.
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Figure 2.2 Various configurations of bar elements: (a) horizontally aligned bar and (b) bar element positioned at an

arbitrary angle in two dimensions (see Section 2.4).
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2. The elastic stress–strain law, known as Hooke’s law, which states that the stress�e is a linear function of

the strain ee:

�e ¼ Eeee: ð2:3Þ

3. The deformation of the structure must be compatible, i.e. no gaps or overlaps can develop in the

structure after deformation.

It is important to recognize the difference between the sign convention for the internal axial force (and

the stress) and that for the nodal internal forces. The internal force pe is positive in tension and negative in

compression, i.e. pe is positive when it points out from the surface on which it is acting; the nodal internal

forces are positive when they point in the positive x-direction and are not associated with surfaces, see

Figure 2.4.

We will also need a definition of strain in order to apply Hooke’s law. The only nonzero strain is the axial

strain ee, which is defined as the ratio of the elongation �e to the original element length:

ee ¼ �
e

le
: ð2:4Þ

We will now develop the element stiffness matrix, which relates the element internal nodal forces to

the element nodal displacements. The element internal force matrix is denoted by Fe and element

displacement matrix by de. For this two-node element, these matrices are given by

Fe ¼ Fe
1

Fe
2

� �
; de ¼ ue

1

ue
2

� �
:

Figure 2.3 Examples of cross sections of a bar element.
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Figure 2.4 Elongation of an element and free-body diagrams, showing the positive sense of pe and Fe
I .
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The element stiffness matrix Ke that relates these matrices will now be developed. The matrix is derived by

applying Hooke’s law, strain–displacement equations and equilibrium:

Fe
2 ¼ pe ¼ Ae�e definition of stress ðEquation ð2:1ÞÞ
¼ AeEeee Hooke0s law ðEquation ð2:3ÞÞ

¼ AeEe �
e

‘e
definition of strain ðEquation ð2:4ÞÞ:

ð2:5Þ

The elongation of an element can be expressed in terms of the nodal displacements (see Figure 2.4) by

�e ¼ ue
2 � ue

1; ð2:6Þ

which is obtained as follows: le
new ¼ le þ ue

2 � ue
1, so from �e ¼ lenew � le, (2.6) follows.

Note that when ue
1 ¼ ue

2, which is rigid body translation, the elongation vanishes. Substituting (2.6) into

(2.5) gives

Fe
2 ¼ keðue

2 � ue
1Þ; ð2:7Þ

where ke is given by

ke ¼ AeEe

le
: ð2:8Þ

From equilibrium of the bar element (2.2) and (2.7), it follows that

Fe
1 ¼ �Fe

2 ¼ keðue
1 � ue

2Þ: ð2:9Þ

Equations (2.7) and (2.9) can be written in the matrix form as

Fe
1

Fe
2

� �
|fflffl{zfflffl}

Fe

¼ ke �ke

�ke ke

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Ke

ue
1

ue
2

� �
|fflffl{zfflffl}

de

: ð2:10Þ

Using the underscored definitions, we can write the relation between the nodal forces and nodal

displacements as

Fe ¼ Kede; where Ke ¼ ke �ke

�ke ke

� �
¼ AeEe

le

1 �1

�1 1

� �
: ð2:11Þ

In the above, Ke is the element stiffness matrix. We can use this element stiffness for any constant area bar

element in one dimension. This universality of element stiffness matrices is one of the attributes of FEM

that leads to its versatility: for any bar element with constant area Ae in one dimension, Equation (2.11)

gives the stiffness matrix. We will later develop element matrices that apply to any triangular element or

quadrilateral element based on the weak solution of differential equations rather than on physical

arguments.

Equation (2.10) describes the relationship between nodal forces and displacements for a single element,

i.e. it describes the behavior of an element. Note that this is a linear relationship: The nodal forces are

linearly related to the nodal displacements. This linearity stems from the linearity of all the ingredients that

describe this element’s behavior: Hooke’s law, the linearity between axial force and stress, and the linearity

of the expression for the strain.

An important characteristic of the element stiffness matrix is that it is symmetric, i.e. Ke ¼ KeT.
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2.2 EQUATIONS FOR A SYSTEM

The objective of this section is to describe the development of the equations for the complete system from

element stiffness matrices. We will introduce the scatter and assembly operations that are used for this

purpose. These are used throughout the FEM in even the most complex problems, so mastering these

procedures is essential to learning the FEM.

Wewill describe the process of developing these equations by an example. For this purpose, consider the

two-bar system shown in Figure 2.5, which also gives the material properties, loads and support conditions.

At a support, the displacement is a given value; we will specify it later. Nodal displacements and nodal

forces are positive in the positive x-direction.

Thefirst step inapplying the FEMis todivide the structure intoelements. The selectionand generation of

a mesh forfiniteelementmodels is an extensive topic thatwewill discuss in subsequent chapters. In the case

of a discrete structure such as this, it is necessary only to put nodes wherever loads are applied and at points

where the section properties or material properties change, so the finite element mesh consisting of two

elements shown in Figure 2.5(b) is adequate.

The elements are numbered 1 and 2, and the nodes are numbered 1 to 3; neither the nodes nor the

elements need to be numbered in a specific order in FEM. We will comment about node numbering in

Section 2.2.2. At each node, either the external forces or the nodal displacements are known, but not both;

for example, at node 1 the displacement u1 ¼ �u1 is prescribed, therefore the force to be subsequently

referred to as reaction r1 is unknown. At nodes 2 and 3 the external forces f2 and f3 are known, and therefore

the displacements u2 and u3 are unknown.

For each bar element shown in Figure2.6, the nodal internal forces are related to the nodal displacements

by the stiffness matrix given in Equation (2.11).

The stiffness equations of the elements, derived in Section 2.1.1, are repeated here for convenience

(e ¼ 1; 2):

Fe ¼ Kede or
Fe

1

Fe
2

� �
¼ ke �ke

�ke ke

� �
ue

1

ue
2

� �
: ð2:12Þ

(1)E , (1)A

(2)l

3f , 3u

123

(a)

(b) 2f , 2u 1r , 1u

(1)l

(2)E , (2)A

(2)(1)

x3f 2f

Figure 2.5 (a) Two-element bar structure and (b) the finite element model (element numbers are denoted in

parenthesis).
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2F , (1)

2u (2)
1F , (2)

1u (2)
2F , (2)

2u

Figure 2.6 Splitting the structure in figure 2.5 into two elements.
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The global system equations will be constructed by enforcing compatibility between the elements and

nodal equilibrium conditions.

To develop the system equations, we will write the equilibrium equations for the three nodes. For this

purpose, we construct free-body diagrams of the nodes as shown in Figure2.7(c). Note that the forces on the

elements are equal and opposite to the corresponding forces on the nodes by Newton’s third law.

0

F
ð1Þ
2

F
ð1Þ
1

264
375

|fflfflfflffl{zfflfflfflffl}
~F
ð1Þ

þ
F
ð2Þ
2

F
ð2Þ
1

0

2664
3775

|fflfflfflffl{zfflfflfflffl}
~F
ð2Þ

¼
r1

f2

f3

264
375 ¼ 0

f2

f3

264
375

|fflffl{zfflffl}
f

þ
r1

0

0

264
375

|fflffl{zfflffl}
r

: ð2:13Þ

Each row of the above matrix equation is an equilibrium equation at a node. On the right-hand side are the

applied external forces and reactions, which are arranged in matrices f and r, respectively. The matrix f

consists of the prescribed (known) external forces at the nodes, f2 and f3; the matrix r consists of the

unknown force at node 1, denoted by r1.

The above equation may be summarized in words as follows: The sum of the internal element forces is

equal to that of the external forces and reactions. This differs somewhat from the well-known equilibrium

condition that the sum of forces on any point must vanish. The reason for the difference is that the element

nodal forces,which are the forces that appear in the element stiffness matrix, act on the elements. The forces

exerted by the elements on the nodes are equal and opposite.

Notice that the element forces are labeled with subscripts 1 and 2; these are the local node numbers. The

nodes of the mesh are the global node numbers. The local node numbers of a bar element are always

numbered 1, 2 in the positive x-direction. The global node numbers are arbitrary. The global and local node

numbers for this example are shown in Figure 2.7(a) and (b), respectively.

We will now use the element stiffness equations to express the element internal nodal forces (LHS in

(2.13)), in terms of the global nodal displacements of the element.

For element 1, the global node numbers are 2 and 3, and the stiffness equation (2.12) gives

F
ð1Þ
1

F
ð1Þ
2

" #
¼ kð1Þ �kð1Þ

�kð1Þ kð1Þ

" #
u3

u2

� �
: ð2:14Þ

Notice that we have replaced the nodal displacements by the global nodal displacements. This enforces

compatibility as it ensures that the displacements of elements at common nodes are identical.

3

(1)
1F (1)

2F (2)
1F (2)

2F

2 1

3 2 1

(1)
1F (1)

2F (2)
1F (2)

2F

3 2 1
(a)

(b)

(c)

1 1 2 2 

x

f f

f f

r

r

Figure 2.7 Free-body diagrams of the nodes and elements (external forces are shown above the nodes but act in the

same line): (a) complete system with global node numbers; (b) free-body diagrams of elements with local node numbers

and (c) free-body diagrams of nodes.
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For element 2, the global node numbers are 1 and 2, and the stiffness equation (2.12) gives

F
ð2Þ
1

F
ð2Þ
2

" #
¼
"

kð2Þ �kð2Þ

�kð2Þ kð2Þ

#
u2

u1

� �
: ð2:15Þ

The above expressions for the internal nodal forces cannot be substituted directly into the left-hand side

of (2.13) because the matrices are not of the same size. Therefore, we augment the internal forces matrices

in (2.14) and (2.15) by adding zeros; we similarly augment the displacement matrices. The terms of

the element stiffness matrices in (2.14) and (2.15) are rearranged into larger augmented element stiffness

matrices and zeros are added where these elements have no effect. The results are

0

F
ð1Þ
2

F
ð1Þ
1

24 35
|fflfflfflffl{zfflfflfflffl}

~F
ð1Þ

¼
0 0 0

0 kð1Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
ð1Þ

u1

u2

u3

24 35
|fflffl{zfflffl}

d

or ~F
ð1Þ ¼ ~K

ð1Þ
d: ð2:16Þ

Note that we have added a row of zeros in row 1 corresponding to the force at node 1, as element 1 exerts no

force on node 1, and a column of zeros in column 1, as the nodal displacement at node 1 does not affect

element 1 directly. Similarly, an augmented equation for element 2 is

F
ð2Þ
2

F
ð2Þ
1

0

2664
3775

|fflfflfflffl{zfflfflfflffl}
~F
ð2Þ

¼
kð2Þ �kð2Þ 0

�kð2Þ kð2Þ 0

0 0 0

264
375

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~K
ð2Þ

u1

u2

u3

264
375

|fflffl{zfflffl}
d

or ~F
ð2Þ ¼ ~K

ð2Þ
d: ð2:17Þ

The matrices in the above equations are now of the same size as in (2.13) and we can substitute (2.16) and

(2.17) into (2.13) to obtain

0 0 0

0 kð1Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
ð1Þ

u1

u2

u3

24 35
|fflffl{zfflffl}

d

þ
kð2Þ �kð2Þ 0

�kð2Þ kð2Þ 0

0 0 0

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
ð2Þ

u1

u2

u3

24 35
|fflffl{zfflffl}

d

¼
0

f2

f3

24 35
|fflffl{zfflffl}

f

þ
r1

0

0

24 35
|fflffl{zfflffl}

r

;

or in the matrix form

ð~Kð1Þ þ ~K
ð2ÞÞd ¼ f þ r: ð2:18Þ

The above are the assembled stiffness equations and the variable within the parentheses is the assembled

stiffness matrix, which in this case is given by

K ¼
X2

e¼1

~Ke ¼
kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35: ð2:19Þ

The stiffness matrix K is singular, as can readily be seen by checking the determinant. To obtain a solvable

system, the boundary conditions must be prescribed.

We will now summarize what we have done to obtain the global stiffness matrix. First, we scattered the

terms in an element stiffness into larger matrices of the same order as the global stiffness according to the
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global node numbers. Then, we added these augmented stiffnesses to obtain the global stiffness matrix.

Thus, the process of obtaining the global stiffness matrix consists of matrix scatter and add. This is

summarized in Table 2.1.

We can bypass the addition of zeros and assemble the matrix directly by just adding the terms in the

element stiffness according to theirglobal node numbers as shown in Table 2.1. This process is called direct

assembly. The result is equivalent to the result from the matrix scatter and add. Assembling of the stiffness

matrix in computer programs is done by direct assembly, but the concept of matrix scatter and add is useful

in that it explains how compatibility and equilibrium are enforced at the global level.

2.2.1 Equations for Assembly

We next develop the assembly procedures in terms of equations. In this approach, compatibility between

elements is enforced by relating the element nodal displacements to the global displacement

Table 2.1 Matrix scatter and add and direct assembly.

Matrix scatter and add

Element 1 scatter, global nodes 3 and 2

Kð1Þ ¼ kð1Þ �kð1Þ

�kð1Þ kð1Þ

� �
) ~K

ð1Þ ¼
0 0 0

0 kð1Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35
Element 2 scatter, global nodes 2 and 1

Kð2Þ ¼ kð2Þ �kð2Þ

�kð2Þ kð2Þ

� �
) ~K

ð2Þ ¼
kð2Þ �kð2Þ 0

�kð2Þ kð2Þ 0

0 0 0

24 35
Add matrices

K ¼
X2

e¼1

~
K

e ¼
kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35
Direct assembly

Kð1Þ ¼ kð1Þ �kð1Þ

�kð1Þ kð1Þ

" #
½3�
½2�

½3� ½2�

K ¼
kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

264
375 ½1�½2�
½3�

½1� ½2� ½3�

Kð2Þ ¼ kð2Þ �kð2Þ

�kð2Þ kð2Þ

" #
½2�
½1�

½2� ½1�
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matrix d ¼ ½ u1 u2 u3 �T by equations. These equations are written as follows:

dð1Þ ¼ u
ð1Þ
1

u
ð1Þ
2

" #
¼ 0 0 1

0 1 0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Lð1Þ

�u1

u2

u3

24 35 ¼ Lð1Þd; dð2Þ ¼ u
ð2Þ
1

u
ð2Þ
2

" #
¼ 0 1 0

1 0 0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Lð2Þ

�u1

u2

u3

24 35 ¼ Lð2Þd;

ð2:20Þ

or in general

de ¼ Led: ð2:21Þ

The matrices Le are called thegather matrices. The namegather originates from the fact that these matrices

gather the nodal displacements of each element from the global matrix. Note that these equations state that

the element displacement at a node is the same as the corresponding global displacement, which is

equivalent to enforcing compatibility.

The matrices Le are Boolean matrices that consist strictly of ones and zeros. They play an important role

in developing matrix expressions relating element to global matrices.

Using (2.11), the element equations can be written as

KeLed ¼ Fe: ð2:22Þ

Compatibility is automatically enforced by Equation (2.20).

It can be observed that the first term on the left-hand side of (2.13) can be expressed as

0

F
ð1Þ
2

F
ð1Þ
1

264
375 ¼ 0 0

0 1

1 0

264
375 F

ð1Þ
1

F
ð1Þ
2

" #
¼ Lð1ÞTFð1Þ;

whereas the second term on the left-hand side of (2.13) is equal to

F
ð2Þ
2

F
ð2Þ
1

0

2664
3775 ¼

0 1

1 0

0 0

264
375 F

ð2Þ
1

F
ð2Þ
2

" #
¼ Lð2ÞTFð2Þ:

Note that ðLeÞT scatters the nodal forces into theglobal matrix.Substituting the above two equations into

(2.13) gives

X2

e¼1

LeTFe ¼ f þ r: ð2:23Þ

Although we have shown the relation between internal, external forces and reactions fora specificexample,

(2.23) always holds. The general relation is derived in Section 2.5.

In order to eliminate the unknown internal element forces from Equation (2.22), we premultiply (2.22)

by LeT and then add them together. Thus, premultiplying the element equations (2.22) by LeT

yields

LeTKeLed ¼ LeTFe; e ¼ 1; 2:
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We now define the system of equations for the entire system. By adding the element equations (e ¼ 1; 2),

we get

Kd ¼ f þ r; ð2:24Þ

where K is called the global stiffness matrix and is given by

K ¼
Xnel

e¼1

LeTKeLe ð2:25Þ

where nel is the number of elements; in this case nel ¼ 2. The above gives the assembly procedure in terms

of an equation. It is equivalent to direct assembly and matrix scatter and add. Whenever this equation

appears, it indicates assembly of the element matrices into the global matrix (for general meshes, the range

of e will be 1 to nel) . By comparison with (2.19), we can see that

~K
e ¼ LeTKeLe: ð2:26Þ

So the stiffness matrix scatter corresponds to pre- and postmultiplications of Ke by LeT and Le,

respectively.

Substituting the expressions of the element stiffness matrices (2.12) into (2.24) and using (2.25) gives

the global equation

kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35 �u1

u2

u3

24 35 ¼ r1

f2

f3

24 35: ð2:27Þ

The above system of three equations can be solved for the three unknowns u2 , u3 and r1 as described in the

next section.

2.2.2 Boundary Conditions and System Solution

We now proceed with the process of solving the global system of equations. For the purpose of discussion,

we consider prescribed displacement �u1 ¼ 4=kð2Þ at node 1 and external forces f2 ¼ �4 and f3 ¼ 10 acting

at nodes 2 and 3 as shown in Figure 2.8.

The global system of equations (2.27) is then:

kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35 �u1

u2

u3

24 35 ¼ r1

�4

10

24 35: ð2:28Þ

There are several ways of modifying the above equations to impose the displacement boundary conditions.

In the first method, the global system is partitioned based on whether or not the displacement at the node is

prescribed. We partition the system of equations into E-nodes and F-nodes. The E-nodes are those where

the nodal displacements are known (E stands for essential, the meaning of this will become clear in later

chapters), whereas F-nodes are thosewhere the displacements are unknown; (or free). The subscripts E and

3 10= 2 4= −

3 2 1

1 (2)

4=(1) (2)

(2)(1) 1

f

k k

k

r

uf

Figure 2.8 Two-element truss structure with applied external forces and boundary conditions.
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F in the global displacement matrix, d ¼
�dE

dF

� �
, the global force matrix, f ¼ fE

fF

� �
and reaction matrix,

r ¼ rE

rF

� �
denote the corresponding blocks; rF ¼ 0 because there are no reactions on free nodes; the

external forces in this chapter corresponding to E-nodes are assumed to vanish, fE ¼ 0 .

For convenience, when solving the equations either manually or by utilizing the MATLAB program

(Chapter 12), the E-nodes are numbered first. In general, the optimal numbering is based on computational

efficiency considerations.

The system equation (2.28) is then partitioned as follows:

kð2Þ �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35 �u1

u2

u3

24 35 ¼ r1

�4

10

24 35 or
KE KEF

KT
EF KF

� �
�dE

dF

� �
¼ rE

fF

�
;

�
ð2:29Þ

where

KE ¼ ½kð2Þ�; KEF ¼ ½�kð2Þ 0�; KF ¼
kð1Þ þ kð2Þ �kð1Þ

�kð1Þ kð1Þ

" #
;

rE ¼ ½r1�; �dE ¼ ½�u1� ¼ ½4=kð2Þ�; fF ¼
�4

10

� �
; dF ¼

u2

u3

� �
:

The unknowns in the above system of equations are dF and rE, whereas �dE , fF, kð1Þ and kð2Þ are known. If we

write the second row of Equation (2.29), we have

KT
EF

�dE þKFdF ¼ fF:

If we subtract the first term from both sides of the above equation and premultiply by K�1
F , we obtain

dF ¼ K�1
F ðfF �KT

EF
�dEÞ: ð2:30Þ

This equation enables us to obtain the unknown nodal displacements. The partitioning approach also

enables us to obtain the reaction force, rE. Writing the first row of (2.29) gives

rE ¼ KE
�dE þKEFdF: ð2:31Þ

AsdF isknownfrom Equation (2.30),wecanevaluate the right-handside of the aboveequation toobtain the

reactions rE.

For the two-bar problem, the solution of the unknown displacements by Equation (2.30) using (2.29)

gives

u2

u3

� �
¼ kð1Þ þ kð2Þ �kð1Þ

�kð1Þ kð1Þ

� ��1 �4

10

� �
� �kð2Þ

0

� �
½4=kð2Þ�

� �
;

which yields

u2 ¼
10

kð2Þ
; u3 ¼ 10

1

kð1Þ
þ 1

kð2Þ

� �
:

--------------------------------------------

-----------
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The reaction force is found from Equation (2.31) and is given by

r1 ¼ �6:

It can be shown that KF is positive definite (see Problem 12.3 in Chapter 12).

The second method for imposing the displacement boundary conditions is to replace the equations

corresponding to prescribed displacements by trivial equations that set the nodal displacements to their

correct value, or in manual computations, to drop them altogether. We put the product of the first column of

K and �u1 on the right-hand side and replace the first equation by u1 ¼ �u1 . This gives

1 0 0

0 kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35 u1

u2

u3

24 35 ¼ �u1

�4� ð�kð2ÞÞ�u1

10� ð0Þ�u1

24 35: ð2:32Þ

Again, it can be seen that the above equations can be solved manually by just considering the last two

equations.

The reactions can then be computed by evaluating the rows of the total stiffness equations that give the

reactions. From row 1 of Equation (2.29), we obtain

r1 ¼ kð2Þ �kð2Þ 0
h i �u1

u2

u3

24 35 ¼ �6:

The third method for imposing the boundary conditions is the penalty method. This is a very simple

method to program, but should be used for matrices of moderate size (up to about 10 000 unknowns) only

because it tends to decrease the conditioning of the equations (see Saad (1996) and George and Liu (1986)).

In this method, the prescribed displacements are imposed by putting a very large number in the entry

corresponding to the prescribed displacement. Thus, for the example we have just considered, we change

the equations to

b �kð2Þ 0

�kð2Þ kð1Þ þ kð2Þ �kð1Þ

0 �kð1Þ kð1Þ

24 35 u1

u2

u3

24 35 ¼ b�u1

�4

10

24 35; ð2:33Þ

where b is a very large number. For example, in a computer with eight digits of precision, we make

b � 107 average ðKiiÞ . The other terms in row 1 and column 1 then become irrelevant because they are

much smaller than the first diagonal term, and the equations are almost identical to those of (2.32).

The method can physically be explained in stress analysis as connecting a very stiff spring between node

1 and the support, which is displaced by �u1. The stiff spring then forces node 1 to movewith the support. The

penalty method is most easily understood when �u1 ¼ 0 ; then it corresponds to a stiff spring linked to the

stationary support and the displacement of the node 1 is very small. The reactions can be evaluated as was

done for the previous method. We will elaborate on the penalty method in Chapters 3 and 5.

Example 2.1

Three bars are joined as shown in Figure 2.9. The left and right ends are both constrained, i.e. prescribed

displacement is zero at both ends. There is a force of 5 N acting on the middle node. The nodes are

numbered starting with the nodes where displacements are prescribed.
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The element stiffness matrices are

Kð1Þ ¼

½1� ½3�
kð1Þ �kð1Þ

�kð1Þ kð1Þ

� �
½1�
½3� ;

Kð2Þ ¼

½1� ½3�
kð2Þ �kð2Þ

�kð2Þ kð2Þ

� �
½1�
½3� ;

Kð3Þ ¼

½3� ½2�
kð3Þ �kð3Þ

�kð3Þ kð3Þ

� �

where the global numbers corresponding to the element nodes are indicated above each column and to the

right of each row.

By direct assembly, the global stiffness matrix is

K ¼

½1� ½2� ½3�
kð1Þ þ kð2Þ 0 �kð1Þ � kð2Þ

0 kð3Þ �kð3Þ

�kð1Þ � kð2Þ �kð3Þ kð1Þ þ kð2Þ þ kð3Þ

24 35 ½1�½2�
½3�

The displacement and force matrices for the system are

d ¼
0

0

u3

24 35; f ¼
0

0

5

24 35; r ¼
r1

r2

0

24 35
The global system of equations is given by

kð1Þ þ kð2Þ 0 �kð1Þ � kð2Þ

0 kð3Þ �kð3Þ

�kð1Þ � kð2Þ �kð3Þ kð1Þ þ kð2Þ þ kð3Þ

24 35 0

0

u3

24 35 ¼ r1

r2

5

24 35:
As the first two displacements are prescribed, we partition after two rows and columns

kð1Þ þ kð2Þ 0 �kð1Þ � kð2Þ

0 kð3Þ �kð3Þ

�kð1Þ � kð2Þ �kð3Þ kð1Þ þ kð2Þ þ kð3Þ

264
375 0

0

u3

264
375 ¼ r1

r2

5

264
375

or

KE KEF

KT
EF KF

� �
�dE

dF

� �
¼ rE

fF

� �
;

(1)k

(2)k1 3 2

(3)k

3 5f =

Figure 2.9 Three-bar example problem.

--------------------------------------------------------

-----------
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where

KE ¼
kð1Þ þ kð2Þ 0

0 kð3Þ

" #
KF ¼ kð1Þ þ kð2Þ þ kð3Þ

h i
KEF ¼

�kð1Þ � kð2Þ

�kð3Þ

" #
�dE ¼

0

0

� �
dF ¼ u3½ � fF ¼ 5½ � rE ¼

r1

r2

� �
The reduced system of equations is given by

ðkð1Þ þ kð2Þ þ kð3ÞÞu3 ¼ 5;

which yields

u3 ¼
5

kð1Þ þ kð2Þ þ kð3Þ
:

2.3 APPLICATIONS TO OTHER LINEAR SYSTEMS1

The methods described for one-dimensional bars can also be used directly for other networks. For the

methods to be applicable, the systems must be characterized by

1. a balance or conservation law for the flux;

2. a linear law relating the flux to the potential;

3. a continuous potential (i.e. a compatible potential).

Two examples are described in the following: steady-state electrical flow in a circuit and fluid flow in a

hydraulic piping system.

In an electrical system, the potential is the voltage and the flux is the current. An element of a circuit is

shown in Figure 2.10. By Ohm’s law, the current from node 1 to node 2 is given by

ie2 ¼
ee

2 � ee
1

Re
; ð2:34Þ

where ee
2 and ee

1 are thevoltages (potentials) at the nodesand Re is the resistance of thewire. This is the linear

flux–potential law. By the law of charge conservation, if the current is in steady state,

ie1 þ ie2 ¼ 0; ð2:35Þ

which is the second of the above conditions on the element level. Writing (2.34) and (2.35) in matrix form,

we have

ie
1

ie
2

� �
|ffl{zffl}

fe

¼ 1

Re

1 �1

�1 1

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ke

ee
1

ee
2

� �
|fflffl{zfflffl}

de

: ð2:36Þ

The continuity of the voltage at the nodes is enforced by

de ¼ Led: ð2:37Þ
1Recommended for Science and Engineering Track.
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Current balance at the nodes gives Xnel

e¼1

LeTFe ¼ f þ r ð2:38Þ

Details can be seen in Example 2.2.

The system equation can then be obtained by enforcing the condition that the sum of the currents at any

node is equal to any external sources of currents. The process is identical to what we did for bar elements.

f þ r ¼
Xnel

e¼1

LeTFe by Equation ð2:38Þ

¼
Xnel

e¼1

LeTKede by Equation ð2:36Þ

¼
Xnel

e¼1

LeTKeLed|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
K

by Equation ð2:37Þ:

As indicated by the underscore, the assembled system matrix is given by

K ¼
Xnel

e¼1

LeTKeLe: ð2:39Þ

This system is obtained by a sequence of scatter and add operations, which corresponds to direct assembly.

For a piping system, a similar procedure can be developed if the flow rate is linearly related to the

pressure drop between two points. A network model is constructed as shown in Figure 2.11. Nodes are

needed only where two pipes join or where the fluid is withdrawn or added. In each element, the nodal

outflow rate Qe
I at node is proportional to the nodal pressure drop ðPe

2 � Pe
1Þ (see Figure 2.10), so

Qe
2 ¼ �eðPe

2 � Pe
1Þ; ð2:40Þ

where �e depends on the cross-sectional area of the pipe, the viscosity of the fluid and the element length.

Linear laws of this type apply over a large range of flows.

Conservation of fluid in an element is expressed by

Qe
1 þ Qe

2 ¼ 0: ð2:41Þ

The system equations are then obtained by writing the equation for the conservation of fluid at nodes and

using the continuity of the pressure field. The process is identical to that used in obtaining Equation (2.39).

This is left as an exercise, although it will become apparent in the example.

The similarity of these different systems is surprising and can provide a deeper understanding of linear

systems. Allof these systemspossess apotential and aconservation law. In the mechanical bar, the potential

is not as obvious: it is the displacement. The displacement has all of the properties of a potential: it must be

continuous (compatible) and its change determines the flux, which in this case is the stress.

1 2

1
e

2
e

2
e

e

1
e

2
e

e

1
e 2

e
1
e

i
e e i Q Q

1R

P P

Figure 2.10 A resistance element for a circuit and a hydraulic element for a piping network; the nodal flux is positive

when it exits the domain of the element.

APPLICATIONS TO OTHER LINEAR SYSTEMS 25



Example 2.2

Set up the discrete equations for the systems shown in Figure 2.11 and solve them. The three systems in

Figure 2.11 all have the same basic topology, i.e. the same relationship between nodes and elements. We

first assemble the system matrix by scatter and add. Then the specific equations are set up by enforcing

constants on the flux or potential. We use ke ¼ 1
Re ¼ �e to denote the element coefficients for the three

different systems.

The scatter operations on the elements then give the following (I and J give the global node numbers of

the element):

Element 1, I ¼ 1, J ¼ 4:

Kð1Þ ¼ kð1Þ
1 �1

�1 1

� �
) ~K

ð1Þ ¼
kð1Þ 0 0 �kð1Þ

0 0 0 0

0 0 0 0

�kð1Þ 0 0 kð1Þ

2664
3775:

Element 2, I ¼ 4, J ¼ 2:

Kð2Þ ¼ kð2Þ
1 �1

�1 1

� �
) ~K

ð2Þ ¼

0 0 0 0

0 kð2Þ 0 �kð2Þ

0 0 0 0

0 �kð2Þ 0 kð2Þ

2664
3775:

Element 3, I ¼ 1, J ¼ 3:

Kð3Þ ¼ kð3Þ
1 �1

�1 1

� �
) ~K

ð3Þ ¼
kð3Þ 0 �kð3Þ 0

0 0 0 0

�kð3Þ 0 kð3Þ 0

0 0 0 0

2664
3775:

1

2

4

3

1 0p =

(1)
2 10 /p κ=

1

4

3

2

(2)R

(1)
2 10e R=

(1)R (3)R

(4)R

(5)R

(1)κ (3)κ
(4)κ

(2)κ (5)κ

1 0e =

(1)
2 10 /u k=

1
4

3

2
(1)k

(3)k

(2)k

(4)k
(5)k

Figure 2.11 Example 2.2: mechanical, electrical and hydraulic systems with an identical network structure.
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Element 4, I ¼ 4, J ¼ 3:

Kð4Þ ¼ kð4Þ
1 �1

�1 1

� �
) ~K

ð4Þ ¼

0 0 0 0

0 0 0 0

0 0 kð4Þ �kð4Þ

0 0 �kð4Þ kð4Þ

2664
3775:

Element 5, I ¼ 3, J ¼ 2:

Kð5Þ ¼ kð5Þ
1 �1

�1 1

� �
) ~K

ð5Þ ¼

0 0 0 0

0 kð5Þ �kð5Þ 0

0 �kð5Þ kð5Þ 0

0 0 0 0

2664
3775:

Assembled system matrix:

K ¼
X5

e¼1

~K
e ¼

kð1Þ þ kð3Þ 0 �kð3Þ �kð1Þ

0 kð2Þ þ kð5Þ �kð5Þ �kð2Þ

�kð3Þ �kð5Þ kð3Þ þ kð4Þ þ kð5Þ �kð4Þ

�kð1Þ �kð2Þ �kð4Þ kð1Þ þ kð2Þ þ kð4Þ

2664
3775:

Equations for the mechanical system:

kð1Þ þ kð3Þ 0 �kð3Þ �kð1Þ

0 kð2Þ þ kð5Þ �kð5Þ �kð2Þ

�kð3Þ �kð5Þ kð3Þ þ kð4Þ þ kð5Þ �kð4Þ

�kð1Þ �kð2Þ �kð4Þ kð1Þ þ kð2Þ þ kð4Þ

266664
377775

�dE

dF

" #
¼

rE

fF

� �
¼

r1

r2

0

0

26664
37775

where the solution matrix for mechanical, piping and electrical systems is

dF ¼
u3

u4

� �
¼ p3

p4

� �
¼ e3

e4

� �
; �dE ¼

�u1

�u2

� �
¼ �p1

�p2

� �
¼ �e1

�e2

� �
¼ 0

10=kð1Þ

� �
Partitioning above after two rows and columns gives

kð3Þ þ kð4Þ þ kð5Þ �kð4Þ

�kð4Þ kð1Þ þ kð2Þ þ kð4Þ

� �
dF ¼

0

0

� �
� 10

kð1Þ
�kð5Þ

�kð2Þ

� �
Letting ke ¼ 1 for e ¼ 1 to 5 and solving above gives

dF ¼
u3

u4

� �
¼ p3

p4

� �
¼ e3

e4

� �
¼ 5

5

� �

2.4 TWO-DIMENSIONAL TRUSS SYSTEMS 2

Truss structures, such as the one shown in Figure 2.1, consist of bar elements positioned at arbitrary angles

in space joined by pin-like joints that cannot transmit moments. In order to analyze such general truss

2Recommended for Structural Mechanics Track.
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structures, it is necessary to develop an element stiffness matrix for a bar element aligned arbitrarily in two- or

three-dimensional space. We will first consider the two-dimensional case where the bar elements are in the xy-

plane as shown in Figure 2.2(b). Trusses differ from networks such as electrical systems in that the nodal

displacements in multidimensional problems arevectors. The unknowns of the system are then the components

of the vector, so the number of unknowns per node is 2 and 3 in two and three dimensions, respectively.

We begin by developing the element stiffness matrix for a bar element in two dimensions. A generic bar

element is shown in Figure 2.12, along with the nodal displacements and nodal forces. At each node, the

nodal force has two components; similarly, as can be seen from Figure 2.12, each nodal displacement has

two components, so the element force and displacement matrices are, respectively,

Fe ¼ ½Fe
1x Fe

1y Fe
2x Fe

2y�
T

and de ¼ ½de
1x de

1y de
2x de

2y�
T:

To obtain a general relation between the element internal forces Fe and displacements de, we start with the

stiffness equations in the local element coordinate system ðx0e; y0eÞ; as shown in Figure 2.12, x0e is aligned

along the axial direction of the bar element and is positive from node 1 to node 2. The angle�e is defined as

positive in the counterclockwise sense.

In the element coordinate system ðx0e; y0eÞ , the element stiffness given by Equation (2.10) applies, so

ke �ke

�ke ke

� �
u0e1x

u0e2x

� �
¼

F0e1x

F0e2x

� �
:

The above equation can be expanded by adding the equations F0e1y ¼ F0e2y ¼ 0. These nodal force

components perpendicular to the axis of the element can be set to zero because we have assumed that

the element is so slim that the shear forces are negligible.

The nodal forces in the element are independent of the normal displacements in small displacement

theory. This is because the elongation is a quadratic function of the nodal displacements normal to the bar.

As the nodal displacements are assumed to be small, the effect of the normal displacements on the

elongation is therefore of second order, and hence the effects of these displacement components on the

stress and strain can be neglected. So the stiffness matrix in the element coordinate system is given by

F01x
e

F01y
e

F02x
e

F02y
e

266664
377775

|fflfflffl{zfflfflffl}
F0e

¼ ke

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K0e

u01x
e

u01y
e

u02x
e

u02y
e

266664
377775

|fflfflffl{zfflfflffl}
d0e

;

1 1,e e
x xu F

x

y

1

2

1 1,e e
y yu F

2 2,e e
y yu F

2 2,e e
x xu F

ek

ex

ey

ex

1

2

e

x

1 1,e e
x xF u

1 1,e e
y yF u

2 2,e e
x xF u

2 2,e e
y yF u

ek
e

x

Figure 2.12 A two-dimensional truss element in the local coordinate system x0e1 , y0e1 .
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or in terms of the underscored nomenclature

F0
e ¼ K0

e
d0

e
: ð2:42Þ

It is easy to see that for the above stiffness matrix, the y0e-components of the forces at the two nodes always

vanish and that the y0e-components of the displacements have no effect on the nodal forces; the stiffness

matrix in (2.42) is simply the matrix (2.11) embedded in a matrix of zeros. In other words, we have simply

scattered the axial bar stiffness into a larger matrix; this is valid when the element coordinate system is

aligned with the axis of the element.

The relation between the displacement components in the two coordinate systems shown in Figure 2.12

at the nodes (I ¼ 1; 2) is obtained by means of the relation for vector transformations:

u0eIx ¼ ue
Ix cos �e þ ue

Iy sin �e

u0eIy ¼ �ue
Ix sin �e þ ue

Iy cos �e

These equations can be written in the matrix form as follows:

d0
e ¼ Rede; ð2:43Þ

where

de ¼

ue
1x

ue
1y

ue
2x

ue
2y

26664
37775; Re ¼

cos�e sin�e 0 0

� sin�e cos�e 0 0

0 0 cos�e sin�e

0 0 � sin�e cos�e

26664
37775:

Re is the rotation matrix. The above combines the vector transformation at the two nodes. As these

transformationsare independentofeach other,blocksof thematrix relatingdifferentnodesarezero, e.g. the

upper right 2� 2 block is zero as the element components of the nodal displacement at node 1 are

independent of the displacement at node 2.

Note that Re is an orthogonal matrix: its inverse is equal to its transpose, i.e. ðReÞTRe ¼ ReðReÞT ¼ I or

ðReÞ�1 ¼ ReT: ð2:44Þ

Premultiplying Equation (2.43) by ðReÞT , we obtain

ReTd0
e ¼ ReTRede ¼ de;

where the second equality follows from the orthogonality relation (2.44). The components of the element

force matrices are related by the same component transformation rule:

ðaÞ F0e ¼ ReFe; ðbÞ Fe ¼ ReTF0e: ð2:45Þ

We are now in a position to determine the relation between Fe and de . Starting with (2.45b),

Fe ¼ ReTF0e by Equation ð2:45bÞ
¼ ReTK0ed0e by Equation ð2:42Þ
¼ ReTK0eRe|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ke

de by Equation ð2:43Þ
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As indicated above, the underscored term is the element stiffness in the global coordinate system:

Ke ¼ ReTK0
e
Re: ð2:46Þ

An explicit expression for Ke isobtained by substituting the matrixexpressions for Ke and Re into Equation

(2.46), which gives

Ke ¼ ke

cos2 �e cos�e sin�e � cos2 �e � cos�e sin�e

cos�e sin�e sin2 �e � cos �e sin �e � sin2 �e

� cos2 �e � cos�e sin �e cos2 �e cos�e sin�e

� cos�e sin�e � sin2 �e cos�e sin�e sin2 �e

2664
3775: ð2:47Þ

It can be seen that Ke is a symmetric matrix.

2.5 TRANSFORMATION LAW 3

In the following, we develop a more general method for transformation of stiffness matrices by means of

energy concepts. By transformation here we mean either a rotation from one coordinate system to another

orascatter operation fromanelement to theglobalcoordinate system. Wewilldenotesucha transformation

matrix by Te. The matrix Te transforms the element displacement matrix from a coordinate system where

the stiffness relation �Ke is known to another coordinate system where the stiffness matrix �K
e
is unknown.

We start with

ðaÞ bde ¼ Te�de; ðbÞ bFe ¼ bKebde: ð2:48Þ

In the case of rotation from one coordinate system to another (Section 2.4), d0e ¼ Rede , so Te ¼ Re,

d0e ¼ bde and de ¼ �d
e

; in the case of scatter operation (Section 2.2), de ¼ Led , so Te ¼ Le , de ¼ bde and

d ¼ �d
e

. In the following, we will describe how to relate �F
e

to bFe and how to establish the stiffness relation
�F

e ¼ �K
e�de.

Let bFe be the internal element force matrix and �bde be an arbitrary infinitesimal element displacement

matrix. The nodal internal forces must be chosen so that the work done by the internal forces, denoted by

�Wint , is given by

�Wint ¼ �bdeTbFe: ð2:49Þ

Note that �bde has to be infinitesimal so that the internal force matrix bFe remains constant as the element

deforms. For example, for the two-node element in one dimension, the work done by element e is

�Wint ¼ �bue
1
bFe

1 þ �bue
2
bFe

2.

We now show that if (2.48) holds then

�K
e ¼ TeT bKeTe: ð2:50Þ

We first show that if (2.48) holds then

�F
e ¼ TeTbFe ð2:51Þ

The key concept that makes this proof possible is that the internal work expressed in terms of �bde and bFe

must equal to the internal work expressed in terms of ��de and �F
e
, so

�Wint ¼ �bdeTbFe ¼ ��deT �F
e
: ð2:52Þ

3Optional for all tracks.
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We will discuss why this must be true later. We now substitute the first part of (2.48) into (2.52), which

gives

�Wint ¼ ��deT �F
e ¼ ��deT

TeTbFe: ð2:53Þ

Rearranging terms in the above gives

��d
eTð�Fe � TeTbFeÞ ¼ 0: ð2:54Þ

As the above must hold for arbitrary ��d
e
, the result (2.51) follows from the vector scalar product theorem

(see Appendix A2).

We next prove the relation (2.50) as follows:

�F
e ¼ TeTbFe from ð2:51Þ
¼ TeT bKebde

by ð2:48bÞ
¼ TeT bKeTe|fflfflfflfflffl{zfflfflfflfflffl}

�K

�d
e

by ð2:48aÞ:

As the last line in the above defines the transformed element stiffness matrix, (2.50) is proved.

The above proof is based on the fact that any two valid representations of the element must be

energetically consistent, that is, the element must absorb the same amount of energy irrespective of the

coordinate system in which it is described. One way of explaining this is that energy is a scalar, so it is

independent of the alignment of the coordinate system. Scalar physical variables like pressure, temperature

and energy do not depend on the coordinate system that is chosen. Furthermore, energy has to be

independent of what generalized deformation modes are used to describe the deformation of the system.

Energy has a very unique and important role in physics and mechanics: its invariance with respect to the

frame of reference leads to important results such as the principle of virtual work and theorem of minimum

potential energy and appears throughout finite element analysis.

Example 2.3

Figure 2.13 (left) shows material properties, geometry, loads and boundary conditions of the two-bar

structure. In this example, we emphasize the four main steps in the finite element method (FEM), namely

(1) preprocessing, (2) construction of local (element) behavior, (3) assembling the local matrices to

obtain the global behavior and (4) postprocessing.

x

y

E, A constant

10

2

(2)

1

3

l(1)

l

Figure 2.13 Two-element truss structure.
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Step 1, which is subdividing the structure into elements, assigning the element numbers to each bar,

node numbers to each joint, starting with nodes where the displacements are prescribed, is shown in

Figure 2.13. The finite element model consists of two elements numbered 1 and 2 and three nodes.

Step 2 deals with the formulation of each element starting with element 1.

Element 1:

Element 1 isnumbered withglobal nodes 1 and 3. It is positioned at an angle�ð1Þ ¼ 90�with respect to the

positive x-axis as shown in Figure 2.14. Other relations are as follows:

cos 90� ¼ 0; sin 90� ¼ 1; lð1Þ ¼ l; kð1Þ ¼ Að1ÞEð1Þ

lð1Þ
¼ AE

l
;

Kð1Þ ¼ AE

l

0 0 0 0

0 1 0 �1

0 0 0 0

0 �1 0 1

26664
37775
½1�

½3�

½1� ½3�

Element 2:

Element 2 isnumbered withglobal nodes 2 and 3. It is positioned at an angle�ð2Þ ¼ 45�with respect to the

positive x-axis as shown in Figure 2.14. Other relations are as follows:

cos 45� ¼ 1ffiffiffi
2
p ; sin 45� ¼ 1ffiffiffi

2
p ; lð2Þ ¼

ffiffiffi
2
p

l;

kð2Þ ¼ Að2ÞEð2Þ

lð2Þ
¼ AEffiffiffi

2
p

l
;

Kð2Þ ¼ AEffiffiffi
2
p

l

1

2

1

2
� 1

2
� 1

2

1

2

1

2
� 1

2
� 1

2

� 1

2
� 1

2

1

2

1

2

� 1

2
� 1

2

1

2

1

2

26666666666664

37777777777775

½2�

½3�

½2� ½3�

Step 3: deal with construction of the global behavior.

(3a) Direct assembly:

3

 1 
x

(1)x

( )1 ( )1

 3 

 2 
x

(2)x

( )2
( )2

Figure 2.14 Local (element) and global coordinate systems.
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K ¼ AE

l

0 0 0 0 0 0

0 1 0 0 0 �1

0 0
1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

0 0
1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

0 0 � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p

0 �1 � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p 1þ 1

2
ffiffiffi
2
p

266666666666666664

377777777777777775

½1�

½2�

½3�

½1� ½2� ½3�

and

d ¼

0

0

0

0

u3x

u3y

26666664

37777775 f ¼

0

0

0

0

10

0

26666664

37777775 r ¼

r1x

r1y

r2x

r2y

0

0

26666664

37777775:

Once again notice that if the external force component at a node is prescribed, then the corresponding

displacement component at that node is unknown. On the other hand if a displacement component at a

node is prescribed, then the corresponding force component at that node is an unknown reaction.

(3b) Global system of equations:

AE

l

0 0 0 0 0 0

0 1 0 0 0 �1

0 0
1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

0 0
1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

0 0 � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p

0 �1 � 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p 1þ 1

2
ffiffiffi
2
p

266666666666666664

377777777777777775

0

0

0

0

u3x

u3y

26666666664

37777777775
¼

r1x

r1y

r2x

r2y

10

0

2666666664

3777777775
:

(3c) Reduced global system of equations:

The global system is partitioned after four rows and four columns:

�dE ¼

�u1x

�u1y

�u2x

�u2y

26664
37775 ¼

0

0

0

0

26664
37775; dF ¼

u3x

u3y

� �
; fF ¼

10

0

� �
; KF ¼

1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p

1

2
ffiffiffi
2
p 1þ 1

2
ffiffiffi
2
p

2664
3775;

rE ¼

r1x

r1y

r2x

r2y

26664
37775; KEF ¼

0 0

0 �1

� 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

� 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

266666664

377777775:
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The unknown displacement matrix is found from the solution of the reduced system of equations

AE

l

1

2
ffiffiffi
2
p 1

2
ffiffiffi
2
p

1

2
ffiffiffi
2
p 1þ 1

2
ffiffiffi
2
p

26664
37775 u3x

u3y

" #
¼

10

0

" #

and is given by

u3x

u3y

" #
¼ l

AE

10þ 20
ffiffiffi
2
p

�10

" #
:

The unknown reaction matrix r is

rE ¼

r1x

r1y

r2x

r2y

2666664

3777775 ¼ KE
�dE þKEFdF ¼

0 0

0 �1

� 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

� 1

2
ffiffiffi
2
p � 1

2
ffiffiffi
2
p

26666666664

37777777775
10þ 20

ffiffiffi
2
p

�10

" #
¼

0

10

�10

�10

2666664

3777775:

It can easily be verified that the equilibrium equations are satisfied:X
Fx ¼ 0;

X
Fy ¼ 0;

X
M2 ¼ 0:

Finally, in the postprocessing step the stresses in the two elements are computed as follows:

�e ¼ Ee u0e2x � u0e1x

le
¼ Ee

le
�1 0 1 0½ �

u0e1x

u0e1y

u0e2x

�u0e2y

266666664

377777775¼
Ee

le
�1 0 1 0½ �Rede

¼ Ee

le
� cos�e � sin�e cos�e sin�e½ �de:

For element 1, we have

�ð1Þ ¼ 90� ðcos�ð1Þ ¼ 0; sin�ð1Þ ¼ 1Þ;

dð1Þ ¼

u1x

u1y

u3x

u3y

26664
37775 ¼

0

0

10þ 20
ffiffiffi
2
p

�10

26664
37775 l

AE
;

�ð1Þ ¼ ½0 �1 0 1�

0

0

10þ 20
ffiffiffi
2
p

�10

26664
377751

A
¼ �10

A
:
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For element 2, we have

�ð2Þ ¼ 45� ðcos�ð2Þ ¼ 1=
ffiffiffi
2
p

; sin�ð2Þ ¼ 1=
ffiffiffi
2
p
Þ;

dð2Þ ¼

u2x

u2y

u3x

u3y

26664
37775 ¼

0

0

10þ 20
ffiffiffi
2
p

�10

26664
37775 l

AE
;

�ð2Þ ¼ 1ffiffiffi
2
p ½�1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p
�

0

0

10þ 20
ffiffiffi
2
p

�10

26664
37775 1

A
¼ 10

ffiffiffi
2
p

A
:

2.6 THREE-DIMENSIONAL TRUSS SYSTEMS 4

Consider a bar element in three dimensions as shown in Figure 2.15. As the element has resistance only to

extensional deformation, we can write the relationship between nodal forces and nodal displacements in

the local coordinate system as

F01x
e

F02x
e

� �
¼ ke

1 �1

�1 1

� �
u01x

e

u02x
e

� �
: ð2:55Þ

The degrees of freedom included in the above element displacement and force matrices are the only ones

that are involved in the stiffness of the system.

The element in three dimensions will have three degrees of freedom per node: translation components in

the x, y and z directions, so

de ¼ ½ue
1x ue

1y ue
1z ue

2x ue
2y ue

2z�
T: ð2:56Þ

As the force matrix must be energetically consistent,

Fe ¼ ½Fe
1x Fe

1y Fe
1z Fe

2x Fe
2y Fe

2z�
T: ð2:57Þ

2
e
xF , 2

e
xu

x

y
z

i

j

2
e
zF , 2

e
zu

x′2
e
yF , 2

e
yu

k

Figure 2.15 A three-dimensional truss element in the local coordinate.

4Optional for all tracks.
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To obtain the stiffness equation in terms of the nodal forces and displacements (2.57) and (2.56),

respectively, we now construct the rotation matrix Re for three-dimensional trusses. Note that the unit

vector along the element is given by

~i 0 ¼ 1

le
ðxe

21
~iþ ye

21
~jþ ze

21
~kÞ; ð2:58Þ

where xe
21 ¼ xe

2 � xe
1 and so on. If we treat the nodal displacements as vectors, then

u 0Ix
e~i 0 þ u0Iy

e~j0 þ u0Iz
e~k0 ¼ ue

Ix
~iþ ue

Iy
~jþ ue

Iz
~k ð2:59Þ

for I ¼ 1 and 2.

Taking a scalar product of the above with i0, we find (because of the orthogonality of the unit vectors)

that

u0Ix
e ¼ ue

Ix
~i �~i 0 þ ue

Iy
~j �~i 0 þ ue

Iz
~k �~i 0 ð2:60Þ

From Figure 2.15 we can see that substituting (2.58) into (2.60) we find that

u0Ix
e ¼ 1

le
½xe

21ue
Ix þ ye

21ue
Iy þ ze

21ue
Iz�: ð2:61Þ

Using the above to write the relations between d0e and de, we have

u01x
e

u02x
e

� �
¼ 1

le

xe
21 ye

21 ze
21 0 0 0

0 0 0 xe
21 ye

21 ze
21

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Re

de; ð2:62Þ

which defines the matrix Re. The global stiffness is then given by (2.50)

Ke ¼ ReT

6�2
K0
2�2

e Re

2�6
;

where K0e is the matrix given in (2.55) and Re is given in (2.62). The result is a 6� 6 matrix. It is not worth

multiplying the matrices; this can easily be done within a computer program. This procedure can also be

used to obtain the stiffness of the element in two dimensions: the Re matrix would then be the 2� 4 matrix

with the columns with ze
21 terms dropped and the result identical to (2.47).
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Problems

Problem 2.1
For the spring system given in Figure 2.16,

a. Number the elements and nodes.

b. Assemble the global stiffness and force matrix.

c. Partition the system and solve for the nodal displacements.

d. Compute the reaction forces.

Problem 2.2
Show that the equivalent stiffness of a spring aligned in the x direction for the bar of thickness t with a

centered square hole shown in Figure 2.17 is:

k ¼ 5Etab

ðaþ bÞl ;

where E is the Young’s modulus and t is thewidth of the bar (Hint: subdivide the bar with a square hole into 3

elements).

Problem 2.3
Consider the truss structure given in Figure 2.18. Nodes A and B are fixed. A force equal to 10 N acts in the

positive x-direction at node C. Coordinates of joints are given in meters. Young’s modulus is E ¼ 1011Pa

and the cross-sectional area for all bars are A ¼ 2 � 10�2m2.

a. Number the elements and nodes.

b. Assemble the global stiffness and force matrix.

c. Partition the system and solve for the nodal displacements.

d. Compute the stresses and reactions.

50 N 

k
3k

k 2k

Figure 2.16 Data for Problem 2.1.

2b

2b
x

a

l

l/10 l/10

Figure 2.17 Data for Problem 2.2.
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Problem 2.4
Given the three-bar structure subjected to the prescribed load at point C equal to 103 N as shown in

Figure2.19.The Young’smodulus isE ¼ 1011 Pa, thecross-sectional area of the barBCis2� 10�2 m2 and

that of BD and BF is 10�2 m2 . Note that point D is free to move in the x-direction. Coordinates of joints are

given in meters.

a. Construct the global stiffness matrix and load matrix.

b. Partition the matrices and solve for the unknown displacements at point B and displacement in the

x-direction at point D.

c. Find the stresses in the three bars.

d. Find the reactions at nodes C, D and F.

Problem 2.5
In each of the two plane structures shown in Figure 2.20, rigid blocks are connected by linear springs.

Imagine that only horizontal displacements are allowed. In each case, write the reduced global equilibrium

1k ( )2k

( )3k

( )4k

( )4k

( )1k

( )2k
( )5k ( )3k

( )6k

(a) (b)

1f 1f

2f

2f

3f

3f

4f

1u 1u2u

2u

3u

3u

4u

( )1k

Figure 2.20 Data for Problem 2.5.

xP 10=

A=1A=1

B( )0,0

y

F -1,1( ) C 0,1( ) D 1,1( )

22 10A −= ⋅
210A −=210A −=

310P =

Figure 2.19 Data for Problem 2.4.

C(1,1)
D(0,1) 10

A(0,0) B(1,0)

Figure 2.18 Data for Problem 2.3.
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equations in terms of spring stiffness ke, unknown nodal displacements uI and applied loads fI . You

may renumber the nodes so that the nodes where the displacements are prescribed are numbered

first.

Problem 2.6
The plane structure shown in Figure 2.21 consists of a rigid, weightless bar and linear springs of stiffness

kð1Þ and kð2Þ . Only small vertical displacements are permitted. The reduced stiffness matrix bK of this

structure is 2� 2 but can have various forms, depending on the choice of global displacement matrix.

Determine bK for each of the following choices of lateral translations:

a. u1y at x ¼ 0 and u2y at x ¼ L (see Figure 2.21, right).

b. u1y at x ¼ 0 and uAy at x ¼ L=2.

c. u2y at x ¼ L and uBy at x ¼ 2L.

Problem 2.7
Modify the MATLAB finite element code to enforce displacement boundary conditions using the penalty

method (see Equation (2.33)).

a. Solve for the nodal displacements and stresses of the structure shown in Figure 2.22.

b. Plot the deformed structure with MATLAB. For this purpose, add the mag� displacement to the nodal

coordinates. The factor mag is to magnify the displacements so that they are visible.

3m 3m 3m 3m 3m

4 m 
1.5 1011PaE = ⋅

2 210 mA −=
for all bars 

37 10 NP = ⋅

Figure 2.22 Data for Problem 2.7.
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1 y u 2 y u 
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L L 

1 2 

( ) 1 k ( ) 2 k 

Figure 2.21 Data for Problem 2.6.
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Problem 2.8
Using the MATLAB finite element code, find the displacements and forces in the two truss structures given

in Figure 2.23. For truss structure (b), exploit the symmetry. For the two trusses, check the equilibrium at

node 1. The Young’s modulus E ¼ 1011 Pa, cross-sectional areas of all bars 10�2 m2, forces F ¼ 103 N and

L ¼ 2 m.

(a)

LL

2

3

4
5

60o 60o 45o

(1) (2)

(3)

(4) (5)

F

5

6
4

3
1

1

2

L

L L

(1)

(2)

(6)

(5)

(3)(4)

F F F

(b)

Figure 2.23 Data for Problem 2.8.
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3
Strong and Weak Forms for
One-Dimensional Problems

In this chapter, the strong and weak forms for several one-dimensional physical problems are developed.

The strong form consists of thegoverning equations and the boundary conditions for a physical system. The

governingequations are usually partial differential equations, but in the one-dimensional case theybecome

ordinary differential equations. The weak form is an integral form of these equations, which is needed to

formulate the finite element method.

In some numerical methods for solving partial differential equations, the partial differential equations

can be discretized directly (i.e. written as linear algebraic equations suitable for computer solution). For

example, in the finite difference method, one can directly write the discrete linear algebraic equations from

the partial differential equations. However, this is not possible in the finite element method.

A roadmap for the development of the finite element method is shown in Figure 3.1. As can be seen from

the roadmap, there are three distinct ingredients that are combined to arrive at the discrete equations (also

called the system equations; for stress analysis theyare called stiffness equations), which are then solvedby

a computer. These ingredients are

1. the strong form, which consists of the governing equations for the model and the boundary conditions

(these are also needed for any other method);

2. the weak form;

3. the approximation functions.

The approximation functions are combined with the weak form to obtain the discrete finite element

equations.

Thus, the path from for the governing differential equations is substantially more involved than that for

finitedifference methods. In the finitedifference method, there isno need foraweakform; thestrong formis

directly converted to a set of discrete equations. The need for a weak form makes the finite element method

more challenging intellectually. A number of subtle points, such as the difference between various

boundary conditions, must be learned for intelligent use of the method. In return for this added complexity,

however, finite element methods can much more readily deal with the complicated shapes that need to be

analyzed in engineering design.

To demonstrate the basic steps in formulating the strong and weak forms, wewill consider axially loaded

elastic bars and heat conduction problems in one dimension. The strong forms for these problems will be

developed along with the boundary conditions. Then we will develop weak forms for these problems and

show that they are equivalent to the strong forms. We will also examine various degrees of continuity, or

smoothness, which will play an important role in developing finite element methods.

A First Course in Finite Elements J. Fish and T. Belytschko

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)



The weak form is the most intellectually challenging part in the development of finite elements, so a

student may encounter some difficulties in understanding this concept; it is probably different from

anything else that he has seen before in engineering analysis. However, an understanding of these

procedures and the implications of solving a weak form are crucial to understanding the character of finite

element solutions. Furthermore, the procedures are actually quite simple and repetitive, so once it is

understood for one strong form, the procedures can readily be applied to other strong forms.

3.1 THE STRONG FORM IN ONE-DIMENSIONAL PROBLEMS

3.1.1 The Strong Form for an Axially Loaded Elastic Bar

Consider the static response of an elastic bar of variable cross section such as shown in Figure 3.2. This is an

example of a problem in linear stress analysis or linear elasticity, where we seek to find the stress

distributionsðxÞ in the bar. The stress will results from the deformation of the body, which is characterized

by the displacements of points in the body, uðxÞ. The displacement results in a strain denoted by eðxÞ; strain

is a dimensionless variable. As shown in Figure 3.2, the bar is subjected to a body force or distributed

loading bðxÞ. The body force could be due to gravity (if the bar were placed vertically instead of

horizontally as shown), a magnetic force or a thermal stress; in the one-dimensional case, we will consider

body force per unit length, so the units of bðxÞ are force/length. In addition, loads can be prescribed at the

ends of the bar, where the displacement is not prescribed; these loads are called tractions and denoted by�t.
These loads are in units of force per area, and when multiplied by the area, give the applied force.

Strong form 
(Chapter 3) 

Weak form 
(Chapter 3) 

Discrete equations 
(Chapter 5)

Approximation of functions 
(Chapter 4) 

Figure 3.1 Roadmap for the development of the finite element method.

t

p(x)    ( )x x+ ∆

x∆

( )u x ( )u x x+ ∆

A(x) b(x)

x = 0
x = l

x

b(x+     ) p∆x
2

Figure 3.2 A one-dimensional stress analysis (elasticity) problem.
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The bar must satisfy the following conditions:

1. It must be in equilibrium.

2. It must satisfy the elastic stress–strain law, known as Hooke’s law: sðxÞ ¼ EðxÞeðxÞ.
3. The displacement field must be compatible.

4. It must satisfy the strain–displacement equation.

The differential equation for the bar is obtained from equilibrium of internal force pðxÞ and external force

bðxÞ acting on the body in the axial (along the x-axis) direction. Consider equilibrium of a segment of

the bar along the x-axis, as shown in Figure 3.2. Summing the forces in the x-direction gives

�pðxÞ þ b xþ�x

2

� �
�xþ pðxþ�xÞ ¼ 0:

Rearranging the terms in the above and dividing by �x, we obtain

pðxþ�xÞ � pðxÞ
�x

þ b xþ�x

2

� �
¼ 0:

If we take the limit of the above equation as �x! 0, the first term is the derivative dp=dx and the second

term becomes bðxÞ. Therefore, the above can be written as

dpðxÞ
dx
þ bðxÞ ¼ 0: ð3:1Þ

This is the equilibrium equation expressed in terms of the internal force p. The stress is defined as the force

divided by the cross-sectional area:

sðxÞ ¼ pðxÞ
AðxÞ ; so pðxÞ ¼ AðxÞsðxÞ: ð3:2Þ

The strain–displacement (or kinematical) equation is obtained by applying the engineering definition of

strain that we used in Chapter 2 for an infinitesimal segment of the bar. The elongation of the segment is

given by uðxþ�xÞ � uðxÞ and the original length is �x; therefore, the strain is given by

eðxÞ ¼ elongation

original length
¼ uðxþ�xÞ � uðxÞ

�x
:

Taking the limit of the above as�x! 0, we recognize that the right right-hand side is the derivativeof uðxÞ.
Therefore, the strain–displacement equation is

eðxÞ ¼ du

dx
: ð3:3Þ

The stress–strain law for a linear elastic material is Hooke’s law, which we already saw in Chapter 2:

sðxÞ ¼ EðxÞeðxÞ; ð3:4Þ

where E is Young’s modulus.
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Substituting (3.3) into (3.4) and the result into (3.1) yields

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l: ð3:5Þ

The above is a second-order ordinary differential equation. In the above equation, u(x) is the dependent

variable, which is the unknown function, and x is the independent variable. In (3.5) and thereafter the

dependence of functions on x will be often omitted. The differential equation (3.5) is a specific form of the

equilibrium equation (3.1). Equation (3.1) applies to both linear and nonlinear materials whereas (3.5)

assumes linearity in the definition of the strain (3.3) and the stress–strain law (3.4). Compatibility is

satisfied by requiring the displacement to be continuous. More will be said later about the degree of

smoothness, or continuity, which is required.

To solve the above differential equation, we need to prescribe boundary conditions at the two ends of the

bar. For the purpose of illustration, we will consider the following specific boundary conditions: at x ¼ l,

the displacement, uðx ¼ lÞ, is prescribed; at x ¼ 0, the force per unit area, or traction, denoted by �t, is

prescribed. These conditions are written as

sð0Þ ¼ E
du

dx

� �
x¼0

¼ pð0Þ
Að0Þ � �

�t;

uðlÞ ¼ �u:

ð3:6Þ

Note that the superposed bars designate denote a prescribed boundary value in the above and throughout

this book.

The traction�t has the same units as stress (force/area), but its sign is positive when it acts in the positive

x-direction regardless of which face it is acting on, whereas the stress is positive in tension and negative in

compression, so that on a negative face a positive stress corresponds to a negative traction; this will be

clarified in Section 3.5. Note that either the load or the displacement can be specified at a boundary point,

but not both.

The governing differential equation (3.5) along with the boundary conditions (3.6) is called the strong

form of the problem. To summarize, the strong form consists of the governing equation and the boundary

conditions, which for this example are

ðaÞ d

dx
AE

du

dx

� �
þ b ¼ 0 on 0 < x < l;

ðbÞ sðx ¼ 0Þ ¼ E
du

dx

� �
x¼0

¼ ��t;

ðcÞ uðx ¼ lÞ ¼ �u:

ð3:7Þ

It should be noted that�t, �u and b are given. They are the data that describe the problem. The unknown is the

displacement uðxÞ.

3.1.2 The Strong Form for Heat Conduction in One Dimension1

Heat flow occurs when there is a temperature difference within a body or between the body and its

surrounding medium. Heat is transferred in the form of conduction, convection and thermal radiation. The

heat flow through the wall of a heated room in the winter is an example of conduction. On the other hand, in

convective heat transfer, the energy transfer to the body depends on the temperature difference between the

surface of the body and the surrounding medium. In this Section, we will focus on heat conduction. A

discussion involving convection is given in Section 3.5.

1Reccommended for Science and Engineering Track.
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Consider a cross section of a wall of thickness l as shown in Figure 3.3. Our objective is to determine the

temperature distribution. Let AðxÞ be the area normal to the direction of heat flow and let sðxÞ be the heat

generated per unit thickness of thewall, denoted by l. This is often called a heat source. A common example

of a heat source is the heat generated in an electric wire due to resistance. In the one-dimensional case, the

rate of heat generation is measured in units of energy per time; in SI units, the units of energy are joules (J)

per unit length (meters, m) and time (seconds, s). Recall that the unit of power is watts (1 W ¼ 1 J s�1). A

heat source sðxÞ is considered positive when heat is generated, i.e. added to the system, and negative when

heat is withdrawn from the system. Heat flux, denoted by qðxÞ, is defined as a the rate of heat flow across a

surface. Its units are heat rate per unit area; in SI units, W m�2. It is positive when heat flows in the positive

x-direction. We will consider a steady-state problem, i.e. a system that is not changing with time.

To establish the differential equation that governs the system, we consider energy balance (or con-

servation of energy) in a control volume of the wall. Energy balance requires that the rate of heat energy

(qA) that is generated in the control volume must equal the heat energy leaving the control volume, as the

temperature, and hence the energy in the control volume, is constant in a steady-state problem. The heat

energy leaving the control volume is the difference between the flow in at on the left-hand side, qA, and the

flow out on the right-hand side, qðxþ�xÞAðxþ�xÞ. Thus, energy balance for the control volume can be

written as

sðxþ�x=2Þ�x|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
heat generated

þ qðxÞAðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
heat flow in

� qðxþ�xÞAðxþ�xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
heat flow out

¼ 0:

Note that the heat fluxesare multiplied by the area toobtain a the heat rate, whereas the source s ismultiplied

by the length of the segment. Rearranging terms in the above and dividing by �x, we obtain

qðxþ�xÞAðxþ�xÞ � qðxÞAðxÞ
�x

¼ sðxþ�x=2Þ:

If we take the limit of the above equation as �x! 0, the first term coincides with the derivative dðqAÞ=dx

and the second term reduces to sðxÞ. Therefore, the above can be written as

dðqAÞ
dx
¼ s: ð3:8Þ

s
( )A x

( ) ( )q x A x ( ) ( )q x x A x x+ ∆            + ∆
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SidingBuilding paper Building
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∆x

x

l

(x+     )∆x
2

Figure 3.3 A one-dimensional heat conduction problem.
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The constitutive equation for heat flow, which relates the heat flux to the temperature, is known as Fourier’s

law and is given by

q ¼ �k
dT

dx
; ð3:9Þ

where T is the temperature and k is the thermal conductivity (which must be positive); in SI units, the

dimensions of thermal conductivity are W m�1 oC�1. A negative sign appears in (3.9) because the heat

flows from high (hot) to low temperature (cold), i.e. opposite to the direction of the gradient of the

temperature field.

Inserting (3.9) into (3.8) yields

d

dx
Ak

dT

dx

� �
þ s ¼ 0; 0 < x < l: ð3:10Þ

When Ak is constant, we obtain

Ak
d2T

dx2
þ s ¼ 0; 0 < x < l: ð3:11Þ

At the two ends of the problem domain, either the flux or the temperature must be prescribed; these are the

boundaryconditions.Weconsider the specificboundaryconditionsof the prescribed temperature T at x ¼ l

and prescribed flux q at x ¼ 0. The prescribed flux q is positive if heat (energy) flows out of the bar, i.e.

qðx ¼ 0Þ ¼ �q. The strong form for the heat conduction problem is then given by

d

dx
Ak

dT

dx

� �
þ s ¼ 0 on 0 < x < l;

� q ¼ k
dT

dx
¼ q on x ¼ 0;

T ¼ T on x ¼ l:

ð3:12Þ

3.1.3 Diffusion in One Dimension2

Diffusion is a process where a material is transported by atomic motion. Thus, in the absence of the motion

of a fluid, materials in the fluid are diffused throughout the fluid by atomic motion. Examples are the

diffusion of perfume into a room when a heavilyperfumed person walks in, the diffusion of contaminants in

a lake and the diffusion of salt into a glass of water (the water will get salty by diffusion even in the absence

of fluid motion).

Diffusion also occurs in solids. One of the simplest forms of diffusion in solids occurs when two

materials come in contact with each other. There are two basic mechanisms for diffusion in solids: vacancy

diffusion and interstitial diffusion. Vacancy diffusion occurs primarily when the diffusing atoms are of a

similar size. A diffusing atom requires a vacancy in the other solid for it to move. Interstitial diffusion,

schematically depicted in Figure 3.4, occurs when a diffusing atom is small enough to move between the

atoms in the other solid. This type of diffusion requires no vacancy defects.

Let c be the concentration of diffusing atoms with the dimension of atoms m�3. The flux of atoms, qðxÞ
(atoms m�2 s�1), is positive in the direction from higher to lower concentration. The relationship between

flux and concentration is known as Fick’s first law, which is given as

q ¼ �k
dc

dx
;

2Recommended for Science and Engineering Track.
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where k is the diffusion coefficient, m�2 s�1. The balance equation for steady-state diffusion can be

developed from Figure 3.4 by the same procedures that we used to derive the heat conduction equation by

imposing conservation of each species of atoms and Fick’s law. The equations are identical in structure to

the steady-state heat conduction equation and differ only in the constants and variables:

d

dx
Ak

dc

dx

� �
¼ 0 on 0 < x < l:

3.2 THE WEAK FORM IN ONE DIMENSION

To develop the finite element equations, the partial differential equations must be restated in an integral

form called the weak form. A weak form of the differential equations is equivalent to the governing

equation and boundary conditions, i.e. the strong form. In many disciplines, the weak form has specific

names; for example, it is called the principle of virtual work in stress analysis.

To show how weak forms are developed, we first consider the strong form of the stress analysis

problem given in (3.7). We start by multiplying the governing equation (3.7a) and the traction boundary

condition (3.7b) by an arbitrary function wðxÞ and integrating over the domains on which they hold: for the

governing equation, the pertinent domain is the interval ½0; l�, whereas for the traction boundary condition,

it is the cross-sectional area at x ¼ 0 (no integral is needed because this condition only holds only at a point,

but we do multiply by the area A). The resulting two equations are

ðaÞ
Z l

0

w
d

dx
AE

du

dx

� �
þ b

� �
dx ¼ 0 8w;

ðbÞ wA E
du

dx
þ t

� �� �
x¼0

¼ 0 8w:

ð3:13Þ

The function wðxÞ is called the weight function; in more mathematical treatments, it is also called the test

function. In the above, 8w denotes that wðxÞ is an arbitrary function, i.e. (3.13) has to hold for all functions

x

( ) ( )q x x A x x+ ∆ + ∆( ) ( )q x A x

Lattice 
atoms

Diffusing  
atoms

Figure 3.4 Interstitial diffusion in an atomic lattice.
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wðxÞ. The arbitrariness of the weight function is crucial, as otherwise a weak form is not equivalent to the

strong form (see Section 3.7).Theweight function canbe thought ofas an enforcer: whatever it multiplies is

enforced to be zero by its arbitrariness.

You might have noticed that we did not enforce the boundary condition on the displacement in (3.13) by

theweight function. It will be seen that it is easy to construct trial or candidate solutions uðxÞ that satisfy this

displacement boundary condition, so we will assume that all candidate solutions of Equation (3.13) satisfy

this boundary condition. Similarly, you will shortly see that it is convenient to have all weight functions

satisfy

wðlÞ ¼ 0: ð3:14Þ

So we impose this restriction on the set of weight functions.

As you will see, in solving a weak form, a set of admissible solutions uðxÞ that satisfy certain

conditions is considered. These solutions are called trial solutions. They are also called candidate solutions.

One could use (3.13) to develop a finite element method, but because of the second derivative of uðxÞ
in the expression, very smooth trial solutions would be needed; such smooth trial solutions would be

difficult to construct in more than one dimension. Furthermore, the resulting stiffness matrix would not

be symmetric, because the first integral is not symmetric in wðxÞ and uðxÞ: For this reason, we will

transform (3.13) into a form containing only first derivatives. This will lead to a symmetric stiffness

matrix, allow us to use less smooth solutions and will simplify the treatment of the traction boundary

condition.

For convenience, we rewrite (3.13a) in the equivalent form:

Z l

0

w
d

dx
AE

du

dx

� �
dxþ

Z l

0

wb dx ¼ 0 8w: ð3:15Þ

To obtain a weak form in which only first derivatives appear, we first recall the rule for taking the derivative

of a product:

d

dx
ðwf Þ ¼ w

df

dx
þ f

dw

dx
) w

df

dx
¼ d

dx
ðwf Þ � f

dw

dx
:

Integrating the above equation on the right over the domain [0, l], we obtain

Z l

0

w
df

dx
dx ¼

Z l

0

d

dx
ðwf Þdx�

Z l

0

f
dw

dx
dx:

The fundamental theorem of calculus states that the integral of a derivative of a function is the function

itself. This theorem enables us to replace the first integral on the right-hand side by a set of boundary values

and rewrite the equation as

Z l

0

w
df

dx
dx ¼ ðwf Þjl0 �

Z l

0

f
dw

dx
dx � ðwf Þx¼l � ðwf Þx¼0 �

Z l

0

f
dw

dx
dx: ð3:16Þ

Theabove formula isknownas integration byparts.Wewillfindthat integrationbyparts isusefulwhenever

we relate strong forms to weak forms.
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To apply the integration by parts formula to (3.15), let f ¼ AEðdu=dxÞ. Then (3.16) can be written as

Z l

0

w
d

dx
AE

du

dx

� �
dx ¼ wAE

du

dx

� �����l
0

�
Z l

0

dw

dx
AE

du

dx
dx: ð3:17Þ

Using (3.17), (3.15) can be written as follows:

wAE
du

dx|ffl{zffl}
s

0BB@
1CCA
��������
l

0

�
Z l

0

dw

dx
AE

du

dx
dxþ

Z l

0

wb dx ¼ 0 8w with wðlÞ ¼ 0: ð3:18Þ

We note that by the stress–strain law and strain–displacement equations, the underscored boundary term is

the stress s (as shown), so the above can be rewritten as

ðwAsÞx¼l � ðwAsÞx¼0 �
Z l

0

dw

dx
AE

du

dx
dxþ

Z l

0

wb dx ¼ 0 8w with wðlÞ ¼ 0:

The first term in the above vanishes because of (3.14): this is why it is convenient to construct weight

functions that vanish on prescribed displacement boundaries. Though the term looks quite insignificant, it

would lead to loss of symmetry in the final equations.

From (3.13b), we can see that the second term equals ðwAtÞx¼0, so the above equation becomes

Z l

0

dw

dx
AE

du

dx
dx ¼ ðwAtÞx¼0 þ

Z l

0

wb dx 8w with wðlÞ ¼ 0: ð3:19Þ

Let us recapitulate what we have done. We have multiplied the governing equation and traction

boundary by an arbitrary, smooth weight function and integrated the products over the domains where

they hold. We have added the expressions and transformed the integral so that the derivatives are of lower

order.

We now come to the crux of this development: We state that the trial solution that satisfies the above for

all smooth wðxÞ with wðlÞ ¼ 0 is the solution. So the solution is obtained as follows:

Find uðxÞ among the smooth functions that satisfy uðlÞ ¼ u such thatZ l

0

dw

dx
AE

du

dx
dx ¼ ðwAtÞx¼0 þ

Z l

0

wb dx 8w with wðlÞ ¼ 0:
ð3:20Þ

The above is called the weak form. The name originates from the fact that solutions to the weak form need

not be as smooth as solutions of the strong form, i.e. they have weaker continuity requirements. This is

explained later.

Understanding how a solution to a differential equation can be obtained by this rather abstract statement,

and why it is a useful solution, is not easy. It takes most students considerable thought and experience to

comprehend the process. To facilitate this, we will give two examples in which a solution is obtained to a

specific problem.
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Wewill showin thenextsection that theweak form(3.20) is equivalent to the equilibriumequation (3.7a)

and traction boundary condition (3.7b). In other words, the trial solution that satisfies (3.20) is the solution

of the strong form. The proof of this statement in Section 3.4 is a crucial step in the theory offinite elements.

In getting to (3.19), we have gone through a set of mathematical steps that are correct, but we have no basis

for saying that the solution to the weak form is a solution of the strong form unless we can show that (3.20)

implies (3.7).

It is important to remember that the trial solutions uðxÞ must satisfy the displacement boundary

conditions (3.7c). Satisfying the displacement boundary condition is essential for the trial solutions, so

theseboundaryconditionsare oftencalledessential boundaryconditions.Wewill see inSection3.4 that the

traction boundary conditions emanate naturally from the weak form (3.20), so trial solutions need not be

constructed to satisfy the traction boundary conditions. Therefore, these boundary conditions are called

natural boundary conditions. Additional smoothness requirements on the trial solutions will be discussed

in Sections 3.3 and 3.9.

A trial solution that is smooth and satisfies the essential boundary conditions is called admissible.

Similarly, a weight function that is smooth and vanishes on essential boundaries is admissible. When weak

forms are used to solve a problem, the trial solutions and weight functions must be admissible.

Note that in (3.20), the integral is symmetric in w and u. This will lead to a symmetric stiffness matrix.

Furthermore, the highest order derivative that appears in the integral is of first order: this will have

important ramifications on the construction of finite element methods.

3.3 CONTINUITY

Although we have now developed the weak form, we still have not specified how smooth the weight

functions and trial solutions must be. Before examining this topic, we will examine the concept of

smoothness, i.e. continuity. A function is called a Cn function if its derivatives of order j for 0 � j � n

exist and are continuous functions in the entire domain. Wewill be concerned mainly with C0; C�1 and C1

functions. Examples of these are illustrated in Figure 3.5. As can be seen, a C0 function is piecewise

continuously differentiable, i.e. its first derivative is continuous except at selected points. The derivative of

a C0 function is a C�1 function. So for example, if the displacement is a C0 function, the strain is a C�1

function. Similarly, if a temperature field is a C0 function, the flux is a C�1 function if the conductivity is C0.

In general, the derivative of a Cn function is Cn�1.

The degree of smoothness of C0; C�1 and C1 functions can be remembered by some simple mnemonic

devices. As can be seen from Figure 3.5, a C�1 function can have both kinks and jumps. A C0 function has

no jumps, i.e. discontinuities, but it has kinks. A C1 function has no kinks or jumps. Thus, there is a

progression of smoothness as the superscript increases that is summarized in Table 3.1. In the literature,

jumps in the function are often called strong discontinuities, whereas kinks are called weak discontinuities.

It is worth mentioning that CAD databases for smooth surfaces usually employ functions that are at least

C1 ; the most common are spline functions. Otherwise, the surface would possess kinks stemming from the

function description, e.g. in a car there would be kinks in the sheet metal wherever C1 continuity is not

observed. We will see that finite elements usually employ C0 functions.

x 

f (x) 

0C  

C –1

1C

Jumps 
Kinks

Figure 3.5 Examples of C�1, C0 and C1 functions.
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3.4 THE EQUIVALENCE BETWEEN THE WEAK AND STRONG FORMS

In the previous section, we constructed the weak form from the strong form. To show the equivalence

between the two, we will now show the converse: the weak form implies the strong form. This will insure

that when we solve the weak form, then we have a solution to the strong form.

The proof that the weak form implies the strong form can be obtained by simply reversing the steps by

whichweobtained theweakform.So insteadofusing integrationbyparts toeliminate the secondderivative

of uðxÞ, we reverse the formula to obtain an integral with a higher derivative and a boundary term. For this

purpose, interchange the terms in (3.17), which gives

Z l

0

dw

dx
AE

du

dx
dx ¼ wAE

du

dx

� �����l
0

�
Z l

0

w
d

dx
AE

du

dx

� �
dx:

Substituting the above into (3.20) and placing the integral terms on the left-hand side and the boundary

terms on the right-hand side gives

Z l

0

w
d

dx
AE

du

dx

� �
þ b

� �
dxþ wAðt þ sÞx¼0 ¼ 0 8w with wðlÞ ¼ 0: ð3:21Þ

The keytomaking the proofpossible is the arbitrarinessof wðxÞ. It canbe assumed tobe anythingwe need in

order to prove the equivalence. Our selection of wðxÞ is guided by having seen this proof before – What we

will do is not immediately obvious, but you will see it works! First, we let

w ¼ cðxÞ d

dx
AE

du

dx

� �
þ b

� �
; ð3:22Þ

where cðxÞ is smooth, cðxÞ > 0 on 0 < x < l and cðxÞ vanishes on the boundaries. An example of a

function satisfying the above requirements is cðxÞ ¼ xðl� xÞ. Because of how cðxÞ is constructed, it

follows that wðlÞ ¼ 0, so the requirement that w ¼ 0 on the prescribed displacement boundary, i.e. the

essential boundary, is met.

Inserting (3.22) into (3.21) yields

Z l

0

c
d

dx
AE

du

dx

� �
þ b

� �2

dx ¼ 0: ð3:23Þ

The boundary term vanishes because we have constructed the weight function so that wð0Þ ¼ 0. As the

integrand in (3.23) is the product of a positive function and the square of a function, it must be positive at

Table 3.1 Smoothness of functions.

Smoothness Kinks Jumps Comments

C �1 Yes Yes Piecewise continuous

C0 Yes No Piecewise continuously differentiable

C1 No No Continuously differentiable
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every point in the problem domain. So the only way the equality in (3.23) is met is if the integrand is zero at

every point! Hence, it follows that

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l; ð3:24Þ

which is precisely the differential equation in the strong form, (3.7a).

From (3.24) it follows that the integral in (3.21) vanishes, so we are left with

ðwAðt þ sÞÞx¼0 ¼ 0 8w with wðlÞ ¼ 0: ð3:25Þ

As the weight function is arbitrary, we select it such that wð0Þ ¼ 1 and wðlÞ ¼ 0. It is very easy to construct

such a function, for example, ðl� xÞ=l is a suitable weight function; any smooth function that you can draw

on the interval [0, l] that vanishes at x ¼ l is also suitable.

As the cross-sectional area A(0) 6¼ 0 and wð0Þ 6¼ 0, it follows that

s ¼ �t at x ¼ 0; ð3:26Þ

which is the natural (prescribed traction) boundary condition, Equation (3.7b).

The last remaining equation of the strong form, the displacement boundary condition (3.7c), is satisfied

by all trial solutions by construction, i.e. as can be seen from (3.20) we required that uðlÞ ¼ u . Therefore,

we can conclude that the trial solution that satisfies the weak form satisfies the strong form.

Another way to prove the equivalence to the strong form starting from (3.20) that is more instructive

about the character of the equivalence is as follows. We first let

rðxÞ ¼ d

dx
AE

du

dx

� �
þ b for 0 < x < l

and

r0 ¼ Að0Þsð0Þ þ t:

The variable rðxÞ is called the residual; rðxÞ is the error in Equation (3.7a) and r0 is the error in the traction

boundary condition (3.7b). Note that when rðxÞ ¼ 0, the equilibrium equation (3.7a) is met exactly and

when r0 ¼ 0 the traction boundary condition (3.7b) is met exactly.

Equation (3.20) can then be written as

Z l

0

wðxÞrðxÞ dxþ wð0Þr0 ¼ 0 8w with wðlÞ ¼ 0: ð3:27Þ

We now prove that rðxÞ ¼ 0 by contradiction. Assume that at some point 0 < a < l, rðaÞ 6¼ 0. Then

assuming rðxÞ is smooth, it must be nonzero in a small neighborhood of x ¼ a as shown in Figure 3.6(a). We

have complete latitude in the construction of wðxÞ as it is an arbitrary smooth function. So we construct it as

shown in Figure 3.6(b). Equation (3.27) then becomes

Z l

0

wðxÞrðxÞ dxþ wð0Þr0 �
1

2
rðaÞ� 6¼ 0:
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The above implies that (3.27) is violated, so by contradiction rðaÞ cannot be nonzero. This can be repeated

at any other point in the open interval 0 < x < l, so it follows that rðxÞ ¼ 0 for 0 < x < l, i.e. the governing

equation (3.27) is met. We now let wð0Þ ¼ 1; as the integral vanishes because rðxÞ ¼ 0 for 0 < x < l, it

follows from (3.27) that r0 ¼ 0 and hence the traction boundary condition is also met.

We can see from the above why we have said that multiplying the equation, or to be more precise

the residual, by the weight function enforces the equation: because of the arbitrariness of the weight

function, anything it multiplies must vanish. The proofs of the equivalence of the strong and weak

forms hinge critically on the weak form holding for any smooth function. In the first proof (Equations

(3.7)–(3.20)), we selected a special arbitrary weight function (based on foresight as to how the proof would

evolve) that has to be smooth, whereas in the second proof, we used the arbitrariness and smoothness

directly. The weight function in Figure 3.6(b) may not appear particularly smooth, but it is as smooth as we

need for this proof.

Example 3.1

Develop the weak form for the strong form:

ðaÞ d

dx
AE

du

Ex

� �
þ 10Ax ¼ 0; 0 < x < 2;

ðbÞ ux¼0 � uð0Þ ¼ 10�4;

ðcÞ sx¼2 ¼ E
du

dx

� �
x¼2

¼ 10:

ð3:28Þ

Equation (3.28c) is a condition on the derivative of uðxÞ, so it is a natural boundary condition; (3.28b) is a

condition on uðxÞ, so it is an essential boundary condition. Therefore, as the weight function must vanish

on the essential boundaries, we consider all smooth weight functions wðxÞ such that wð0Þ ¼ 0. The trial

solutions uðxÞmust satisfy the essential boundary condition uð0Þ ¼ 10�4.

x  

wr  

( )w x  

a

•

x  a  

xa  

( )w x  

wr  

a  

a

1 1 

x  

( )r x  ( )r x  

a
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xx

(a)

(b)

(c)

Figure 3.6 Illustration of the equivalence between the weak and strong forms: (a) an example of the residual function;

(b)choiceof theweight functionand(c) product of residualandweight functions.On the left, theprocedure is shownfora

C� function; on the right for a C�1 function.
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We start by multiplying the governing equation and the natural boundary condition over the domains

where they hold by an arbitrary weight function:

ðaÞ
Z2

0

w
d

dx
AE

du

dx

� �� �
þ 10Ax

� �
dx ¼ 0 8wðxÞ;

ðbÞ ðwAðE du

dx
� 10ÞÞx¼2 ¼ 0 8wð2Þ:

ð3:29Þ

Nextwe integrate the first equation in the above by parts, exactly as we did in going from (3.13a) to (3.17):

Z2

0

w
d

dx
AE

du

dx

� �� �
dx ¼ wAE

du

dx

� �����x¼2

x¼0

�
Z2

0

dw

dx
AE

du

dx
dx: ð3:30Þ

We have constructed the weight functions so that wð0Þ ¼ 0; therefore, the first term on the RHS of the

above vanishes at x ¼ 0. Substituting (3.30) into (3.29a) gives

�
Z2

0

AE
dw

dx

du

dx
dxþ

Z2

0

10wAx dxþ wAE
du

dx

� �
x¼2

¼ 0 8wðxÞ with wð0Þ ¼ 0: ð3:31Þ

Substituting (3.29b) into the last term of (3.31) gives (after a change of sign)

Z2

0

AE
dw

dx

du

dx
dx�

Z2

0

10wAx dx� 10ðwAÞx¼2 ¼ 0 8wðxÞ with wð0Þ ¼ 0: ð3:32Þ

Thus, the weak form is as follows: find uðxÞ such that for all smooth uðxÞ with uð0Þ ¼ 10�4, such that

(3.32) holds for all smooth wðxÞ with wð0Þ ¼ 0.

Example 3.2

Develop the weak form for the strong form:

d2u

dx2
¼ 0 on 1 < x < 3;

du

dx

� �
x¼1

¼ 2; uð3Þ ¼ 1:

ð3:33Þ

The conditions on the weight function and trial solution can be inferred from the boundary conditions.

The boundary point x ¼ 1 is a natural boundary as the derivative is prescribed there, whereas the

boundary x ¼ 3 is an essential boundary as the solution itself is prescribed. Therefore, we require that

wð3Þ ¼ 0 and that the trial solution satisfies the essential boundary condition uð3Þ ¼ 1.

Next we multiply the governing equation by the weight function and integrate over the problem

domain; similarly, we multiply the natural boundary condition by the weight function, which yields

ðaÞ
Z3

1

w
d2u

dx2
dx ¼ 0;

ðbÞ w
du

dx
� 2

� �� �
x¼1

¼ 0:

ð3:34Þ
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Integration by parts of the integrand in (3.34a) gives

Z3

1

w
d2u

dx2
dx ¼ w

du

dx

� �
x¼3

� w
du

dx

� �
x¼1

�
Z3

1

dw

dx

du

dx
dx: ð3:35Þ

As wð3Þ ¼ 0, the first term on the RHS in the above vanishes. Substituting (3.35) into (3.34a) gives

�
Z3

1

dw

dx

du

dx
dx� w

du

dx

� �
x¼1

¼ 0: ð3:36Þ

Adding (3.34b) to (3.36) gives

Z3

1

dw

dx

du

dx
dxþ 2wð1Þ ¼ 0: ð3:37Þ

So the weak form is: find a smooth function uðxÞwith uð3Þ ¼ 1 for which (3.37) holds for all smooth wðxÞ
with wð3Þ ¼ 0.

To show that the weak form implies the strong form, we reverse the preceding steps. Integration by

parts of the first term in (3.37) gives

Z3

1

dw

dx

du

dx
dx ¼ w

du

dx

� �����3
1

�
Z3

1

w
d2u

dx2
dx: ð3:38Þ

Next we substitute (3.38) into (3.37), giving

w
du

dx

� �
x¼3

� w
du

dx

� �
x¼1

�
Z3

1

w
d2u

dx2
dxþ 2wð1Þ ¼ 0: ð3:39Þ

Since on the essential boundary, the weight function vanishes, i.e. wð3Þ ¼ 0, the first term in the above

drops out. Collecting terms and changing signs give

Z3

1

w
d2u

dx2
dxþ w

du

dx
� 2

� �� �
x¼1

¼ 0: ð3:40Þ

We now use the same arguments as Equations (3.22)–(3.26). As wðxÞ is arbitrary, let

w ¼ cðxÞ d
2uðxÞ
dx2

;

where

cðxÞ ¼
0; x ¼ 1;
> 0; 1 < x < 3;
0; x ¼ 3:

8<:
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Then (3.40) becomes

Z3

1

cðxÞ d2u

dx2

� �2

dx ¼ 0:

As the integrand is positive in the interval ½1; 3�, it follows that the only way that the integrand can

vanish is if

d2uðxÞ
dx2

¼ 0 for 1 < x < 3;

which is the differential equation in the strong form (3.33).

Now let wðxÞ be a smooth function that vanishes at x ¼ 3 but equals one at x ¼ 1. You can draw an

infinite number of such functions: any curve between those points with the specified end values will do.

As we already know that the integral in (3.40) vanishes, we are left with

w
du

dx
� 2

� �� �
x¼1

¼ 0 ) du

dx
� 2

� �
x¼1

¼ 0;

so the natural boundary condition is satisfied. As the essential boundary condition is satisfied by all trial

solutions, we can then conclude that the solution of the weak form is the solution to the strong form.

Example 3.3

Obtain a solution to the weak form in Example 3.1 by using trial solutions and weight functions of the

form

uðxÞ ¼ a0 þ a1x;

wðxÞ ¼ b0 þ b1x;

where a0 and a1 are unknown parameters and b0 and b1 are arbitrary parameters. Assume that A is

constant and E ¼ 105. To be admissible the weight function must vanish at x ¼ 0, sob0 ¼ 0. For the trial

solution to be admissible, it must satisfy the essential boundary condition uð0Þ ¼ 10�4, so a0 ¼ 10�4.

From this simplification, it follows that only one unknown parameter and one arbitrary parameter

remain, and

uðxÞ ¼ 10�4 þ a1x;
duðxÞ

dx
¼ a1;

wðxÞ ¼ b1x;
dw

dx
¼ b1:

ð3:41Þ

Substituting the above into the weak form (3.32) yields

Z2

0

b1a1E dx�
Z2

0

b1x 10 dx� ðb1x 10Þx¼2 ¼ 0:

Evaluating the integrals and factoring out b1 gives

b1ð2a1E � 20� 20Þ ¼ 0:
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As the above must hold for all b1, it follows that the term in the parentheses must vanish, so

a1 ¼ 20=E ¼ 2� 10�4. Substituting this result into (3.41) gives the weak solution, which we indicate

by superscript ‘lin’ as it is obtained from linear trial solutions: ulin ¼ 10�4ð1þ 2xÞ and slin ¼ 20 (the

stress-strain law must be used to obtain the stresses). The results are shown in Figure 3.7 and compared to

the exact solution given by

uexðxÞ ¼ 10�4ð1þ 3x� x3=6Þ; sexðxÞ ¼ 10ð3� x2=2Þ:

Observe that even this very simple linear approximation for a trial solution gives a reasonably accurate

result, but it is not exact. We will see the same lack of exactness in finite element solutions.

Repeat the above with quadratic trial solutions and weight functions

uðxÞ ¼ a0 þ a1xþ a2x2; wðxÞ ¼ b0 þ b1xþ b2x2:

As before, because of the conditions on the essential boundaries, a0 ¼ 10�4 andb0 ¼ 0. Substituting the

above fields with the given values of a0 and b0 into the weak form gives

Z2

0

ðb1 þ 2b2xÞðEða1 þ 2a2xÞÞdx�
Z2

0

ðb1xþ b2x2Þ10 dx� ððb1xþ b2x2Þ 10Þx¼2 ¼ 0:

Integrating, factoring out b1, b2 and rearranging the terms gives

b1½Eð2a1 þ 4a2Þ � 40� þ b2 4a1 þ
32a2

3

� �
E � 200

3

� �
¼ 0:

As the above must hold for arbitrary weight functions, it must hold for arbitraryb1 andb2. Therefore, the

coefficients ofb1 andb2 must vanish (recall the scalar product theorem), which gives the following linear

algebraic equation in a1 and a2:
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Figure 3.7 Comparison of linear (lin) and quadratic (quad) approximations to the exact solution of (a) displace-

ments and (b) stresses.
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The solution is a1 ¼ 3� 10�4 and a2 ¼ �0:5� 10�4. The resulting displacements and stresses are

uquad ¼ 10�4ð1þ 3x� 0:5x2Þ; squad ¼ 10ð3� xÞ:

The weak solution is shown in Figure 3.7, from which you can see that the two-parameter, quadratic trial

solution matches the exact solution more closely than the one-parameter linear trial solution.

3.5 ONE-DIMENSIONAL STRESS ANALYSIS WITH ARBITRARY
BOUNDARY CONDITIONS

3.5.1 Strong Form for One-Dimensional Stress Analysis

We will now consider a more general situation, where instead of specifying a stress boundary condition

at x ¼ 0 and a displacement boundary condition at x ¼ l, displacement and stress boundary conditions

can be prescribed at either end. For this purpose, we will need a more general notation for the

boundaries.

The boundary of the one-dimensional domain, which consists of two end points, is denoted by �. The

portion of the boundary where the displacements are prescribed is denoted by �u ; the boundary where the

traction is prescribed is denoted by �t. In this general notation, both �u and �t can be empty sets (no points),

one point or two points. The traction and displacement both cannot be prescribed at the same boundary

point. Physically, this can be seen to be impossible by considering a bar such as that in Figure 3.2. If

we could prescribe both the displacement and the force on the right-hand side, this would mean that

the deformation of the bar is independent of the applied force. It would also mean that the material

properties have no effect on the force–displacement behavior of the bar. Obviously, this is physically

unrealistic, so any boundary point is either a prescribed traction or a prescribed displacement

boundary. We write this as �t \ �u ¼ 0. We will see from subsequent examples that this can be

generalized to other systems: Natural boundary conditions and essential boundary conditions cannot

be applied at the same boundary points.

We will often call boundaries with essential boundary conditions essential boundaries; similarly,

boundaries with natural boundary conditions will be called natural boundaries. We can then say that a

boundary cannot be both a natural and an essential boundary. It also follows from the theory of boundary

value problems that one type of boundary condition is needed at each boundary point, i.e. we cannot have

any boundary at which neither an essential nor a natural boundary condition is applied. Thus, any boundary

is either an essential boundary or a natural boundary and their union is the entire boundary. Mathematically,

this can be written as �t [ �u ¼ �.

To summarize the above, at any boundary, either the function or its derivative must be specified, but we

cannot specify both at the same boundary. So any boundary must be an essential boundary or a natural

boundary, but it cannot be both. These conditions are very important and can be mathematically expressed

by the two conditions that we have stated above:

�t [ �u ¼ �; �t \ �u ¼ 0: ð3:42Þ

The two boundaries are said to be complementary: the essential boundary plus its complement, the natural

boundary, constitute the total boundary, and vice versa.

Using the above notation, we summarize the strong form for one-dimensional stress analysis (3.7) in

Box 3.1.
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Box 3.1. Strong form for 1D stress analysis

d

dx
AE

du

dx

� �
þ b ¼ 0; 0 < x < l;

sn ¼ En
du

dx
¼ t on �t;

u ¼ u on �u:

ð3:43Þ

In the above, we have added a unit normal to the body and denoted it by n; as can be seen from Figure 3.2,

n ¼ �1 at x ¼ 0 and n ¼ þ1 at x ¼ l. This trick enables us towrite the boundary condition in terms of the

tractions applied at either end. For example, when a positive force per unit area is applied at the left-hand

end of the bar in Figure 3.2, the stress at that end is negative, i.e. compressive, and sn ¼ �s ¼ t. At any

right-hand boundary point, n ¼ þ1 and so sn ¼ s ¼ t.

3.5.2 Weak Form for One-Dimensional Stress Analysis

In this section, we will develop the weak form for one-dimensional stress analysis (3.43), with arbitrary

boundary conditions. We first rewrite the formula for integration by parts in the notation introduced in

Section 3.2:

Z
�

w
df

dx
dx ¼ ðwfnÞj� �

Z
�

f
dw

dx
dx ¼ ðwfnÞj�u

þ ðwfnÞj�t
�
Z
�

f
dw

dx
dx: ð3:44Þ

In the above, the subscript �on the integral indicates that the integral is evaluated over the one-dimensional

problem domain, i.e. the notation � indicates any limits of integration, such as ½0; l�, ½a; b�. The subscript �
indicates that the preceding quantity is evaluated at all boundary points, whereas the subscripts �u and �t

indicate that the preceding quantities are evaluated on the prescribed displacement and traction boundaries,

respectively. The second equality follows from the complementarity of the traction and displacement

boundaries: Since, as indicated by (3.42), the total boundary is the sum of the traction and displacement

boundaries, the boundary term can be expressed as the sum of the traction and displacement boundaries.

The weight functions are constructed so that w ¼ 0 on �u, and the trial solutions are constructed so that

u ¼ u on �u.

We multiply the first two equations in the strong form (3.43) by theweight functionand integrateover the

domains over which they hold: the domain � for the differential equation and the domain �t for the traction

boundary condition. This gives

ðaÞ
Z
�

w
d

dx
AE

du

dx

� �
þ b

� �
dx ¼ 0 8w;

ðbÞ ðwAðt � snÞÞj�t
¼ 0 8w:

ð3:45Þ

Denoting f ¼ AEðdu=dxÞ and using integration by parts (3.44) of the first term in (3.45a) and combining

with (3.45b) yields

ðwAsnÞj�u
þ ðwAtÞj�t

�
Z
�

dw

dx
AE

du

dx
dxþ

Z
�

wb dx ¼ 0 8w with w ¼ 0 on �u: ð3:46Þ
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The boundary term on �u vanishes because wj�u
¼ 0. The weak form then becomesZ

�

dw

dx
AE

du

dx
dx ¼ ðwAtÞj�t

þ
Z
�

wb dx 8w with w ¼ 0 on �u:

Atthispoint,weintroducesomenewnotation, sowewillnotneedtokeeprepeating thephrase‘uðxÞ issmooth

enoughand satisfies the essentialboundarycondition’. For this purpose,wewilldenote the set of all functions

thataresmoothenoughbyH1.H1 functionsareC0 continuous.Mathematically, this isexpressedasH1 � C0.

However,not allC0 functionsare suitable trial solutions.Wewill furtherelaborateonthis inSection3.9; H1 is

a space of functions with square integrable derivatives.

We denote the set of all functions that are admissible trial solutions by U, where

U ¼ uðxÞ uðxÞ 2 H1; u ¼ u on �u

��� �
: ð3:47Þ

Anyfunction in the set U has to satisfy all conditions that follow thevertical bar. Thus, the abovedenotes the

set of all functions that are smooth enough (the first condition after the bar) and satisfy the essential

boundary condition (the condition after the comma). Thus, we can indicate that a function uðxÞ is an

admissible trial solution by stating that uðxÞ is in the set U, or uðxÞ 2 U.

We will similarly denote the set of all admissible weight functions by

U0 ¼ wðxÞ wðxÞ 2 H1; w ¼ 0 on �u

��� �
: ð3:48Þ

Notice that this set of functions is identical to U, except that the weight functions must vanish on the

essential boundaries. This space is distinguished from U by the subscript nought.

Such sets of functions are often called function spaces, or just spaces. The function space H1 contains an

infinite number of functions. Therefore, it is called an infinite-dimensional set. For a discussion of various

spaces, the reader may wish to consult Ciarlet (1978), Oden and Reddy (1978) and Hughes (1987).

With these definitions, we can write the weak form ((3.45), (3.47) and (3.48)) as in Box 3.2.

Box 3.2. Weak form for 1D stress analysis

Find uðxÞ 2 U such thatZ
�

dw

dx
AE

du

dx
dx ¼ ðwAtÞj�t

þ
Z
�

wb dx 8w 2 U0: ð3:49Þ

Note that the functions wðxÞ and uðxÞ appear symmetrically in the first integral in (3.49), whereas they do

not in (3.45a). In (3.49), both the trial solutions and weight functions appear as first derivatives, whereas in

the first integral in (3.45a), the weight functions appear directly and the trial solution appears as a second

derivative. It will be seen that consequently (3.49) leads to a symmetric stiffness matrix and a set of

symmetric linear algebraic equations, whereas (3.45a) does not.

3.6 ONE-DIMENSIONAL HEAT CONDUCTION WITH ARBITRARY
BOUNDARY CONDITIONS 3

3.6.1 Strong Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

Following the same procedure as in Section 3.5.1, the portion of the boundary where the temperature is

prescribed, i.e. the essential boundary, is denoted by �T and the boundary where the flux is prescribed is

3Recommended for Science and Engineering Track.
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denoted by �q ; these are the boundaries with natural boundary conditions. These boundaries are

complementary, so

�q [ �T ¼ �; �q \ �T ¼ 0: ð3:50Þ

With the unit normal used in (3.43), we can express the natural boundary condition as qn ¼ q. For example,

positive flux q causes heat inflow (negative q ) on the left boundary point where qn ¼ �q ¼ q and heat

outflow (positive q ) on the right boundary point where qn ¼ q ¼ q.

We can then rewrite the strong form (3.12) as shown in Box. 3.3.

Box 3.3. Strong form for 1D heat conduction problems

d

dx
Ak

dT

dx

� �
þ s ¼ 0 on �;

qn ¼ �kn
dT

dx
¼ q on �q;

T ¼ T on �T :

ð3:51Þ

3.6.2 Weak Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

We again multiply the first two equations in the strong form (3.51) by theweight function and integrate over

the domains over which they hold, the domain � for the differential equation and the domain �q for the flux

boundary condition, which yields

ðaÞ
Z
�

w
d

dx
Ak

dT

dx

� �
dxþ

Z
�

ws dx ¼ 0 8w;

ðbÞ ðwAðqn� qÞÞj�q
¼ 0 8w:

ð3:52Þ

Using integration by parts of the first term in (3.52a) gives

Z
�

dw

dx
Ak

dT

dx
dx ¼ wAk

dT

dx
n

� �����
�

þ
Z
�

ws dx 8w with w ¼ 0 on �T : ð3:53Þ

Recalling that w ¼ 0 on �T and combining (3.53) with (3.52b) gives

Box 3.4: Weak form for 1D heat conduction problems

Find TðxÞ 2 U such thatZ
�

dw

dx
Ak

dT

dx
dx ¼ �ðwAqÞ

���
�q

þ
Z
�

ws dx 8w 2 U0: ð3:54Þ

Notice the similarity between (3.54) and (3.49).
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3.7 TWO-POINT BOUNDARY VALUE PROBLEM WITH GENERALIZED
BOUNDARY CONDITIONS 4

3.7.1 Strong Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

The equations developed in this chapter for heat conduction, diffusion and elasticity problems are all of the

following form:

d

dx
A�

d�

dx

� �
þ f ¼ 0 on �: ð3:55Þ

Such one-dimensional problems are called two-point boundary value problems. Table 3.2 gives the

particular meanings of the above variables and parameters for several applications. The natural boundary

conditions can also be generalized as (based on Becker et al. (1981))

�n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on ��: ð3:56Þ

Equation (3.56) is a natural boundary condition because the derivative of the solution appears in it. (3.56)

reduces to the standard natural boundary conditions considered in the previous sections when bðxÞ ¼ 0.

Notice that the essential boundary condition can be recovered as a limiting case of (3.56) when bðxÞ is a

penalty parameter, i.e. a large number (see Chapter 2). In this case, � � ��and Equation (3.56) is called a

generalized boundary condition.

An example of the above generalized boundary condition is an elastic bar with a spring attached as

shown in Figure 3.8. In this case, bðlÞ ¼ k and (3.56) reduces to

EðlÞnðlÞ du

dx
ðlÞ � t

� �
þ kðuðlÞ � uÞ ¼ 0 at x ¼ l; ð3:57Þ

where bðlÞ ¼ k is the spring constant. If the spring stiffness is set to a very large value, the above boundary

condition enforces uðlÞ ¼ u; if we let k ¼ 0, the above boundary condition corresponds to a prescribed

traction boundary. In practice, such generalized boundary conditions (3.57) are often used to model the

influence of the surroundings. For example, if the bar is a simplified model of a building and its foundation,

the spring can represent the stiffness of the soil.

4Recommended for Advanced Track.

Table 3.2 Conversion table for alternate physical equations of the general form (3.55)

and (3.56).

Field/parameter Elasticity Heat conduction Diffusion

� u T c

� E k k

f b s s
�� �t ��q ��q
�� �u �T �c

�� �t �q �q

�� �u �T �c

b k h h
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Another example of the application of this boundary condition is convective heat transfer, where energy is

transferred between the surface of the wall and the surrounding medium. Suppose convective heat transfer

occurs at x ¼ l. Let TðlÞ be the wall temperature at x ¼ l and T be the temperature in the medium. Then the

flux at the boundary x ¼ l is given by qðlÞ ¼ hðTðlÞ � TÞ, so bðlÞ ¼ h and the boundary condition is

kn
du

dx
þ hðTðlÞ � TÞ ¼ 0; ð3:58Þ

where h is convection coefficient, which has dimensions of W m�2 oC�1. Note that when the convection

coefficient is very large, the temperature T is immediately felt at x ¼ l and thus the essential boundary

condition is again enforced as a limiting case of the natural boundary condition.

There are two approaches to deal with the boundary condition (3.56). We will call them the penalty and

partition methods. In the penalty method, the essential boundary condition is enforced as a limiting case of

the natural boundary condition by equating bðxÞ to a penalty parameter. The resulting strong form for the

penalty method is given in Box. 3.5.

Box 3.5. General strong form for 1D problems-penalty method

d

dx
A�

d�

dx

� �
þ f ¼ 0 on �;

�n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on �:

ð3:59Þ

In the partition approach, the total boundary is partitioned into the natural boundary, ��, and the

complementary essential boundary, ��. The natural boundary condition has the generalized form defined

by Equation (3.56). The resulting strong form for the partition method is summarized in Box 3.6.

Box 3.6. General strong form for 1D problems-partition method

ðaÞ d

dx
A�

d�

dx

� �
þ f ¼ 0 on �;

ðbÞ �n
d�

dx
� �

� �
þ bð�� �Þ ¼ 0 on ��;

ðcÞ � ¼ � on ��:

ð3:60Þ

3.7.2 Weak Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

In this section, we will derive the general weak form for two-point boundary value problems. Both the

penalty and partition methods described in Section 3.7.1 will be considered. To obtain the general weak

( )u l

( )ku l-

u

t

k

Figure 3.8 An example of the generalized boundary for elasticity problem.
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form for the penalty method, we multiply the two equations in the strong form (3.59) by theweight function

and integrate over the domains over which they hold: the domain � for the differential equation and the

domain � for the generalized boundary condition.

ðaÞ
Z
�

w
d

dx
A�

d�

dx

� �
þ f

� �
dx ¼ 0 8w;

ðbÞ wA �n
d�

dx
� �

� �
þ bð�� �Þ

� �����
�

¼ 0 8w:
ð3:61Þ

After integrating by parts the first term in (3.61a) and adding (3.61b), the general weak form for 1D

problems is summarized in Box 3.7.

BOX 3.7. General weak form for 1D problems-penalty method

Find �ðxÞ 2 H1 such thatZ
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð�� bð�� �ÞÞ
��
�
¼ 0 8w 2 H1: ð3:62Þ

Note that in the penalty method, �� � �, the weight function is arbitrary on �, i.e. 8wðxÞ 2 H1, and the

solution is not a priori enforced to vanish on the essential boundary, i.e. �ðxÞ 2 H1. The essential boundary

condition is obtained as a limiting case of the natural boundary condition by making bðxÞ very large, i.e. a

penalty parameter.

In the partition method, the general weak form for one-dimensional problems is given in Box 3.8.

Box 3.8. General weak form for 1D problems-partition method

Find �ðxÞ 2 U such thatZ
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð�� bð�� �ÞÞ
���
��

¼ 0 8w 2 U0; ð3:63Þ

where U and U0 are given in (3.47) and (3.48), respectively. Notice that in the partition approach, the

weight function vanishes on the essential boundary, ��, i.e., 8w 2 U0. The boundaries �� and �� are

complementary.

3.8 ADVECTION–DIFFUSION 5

In many situations, a substance is both transported and diffused through a medium. Forexample, a pollutant

in an aquifer is dispersed by both diffusion and the movement of the water in the aquifer. In cooling ponds

for power plants, heat energy moves through the pond by both diffusion and transport due to motion of the

water. If sugar is added to a cup of coffee, it will disperse throughout the cup by diffusion; dispersal is

accelerated by stirring, which advects the sugar. The dispersal due to motion of the fluid has several names

besides advection: convection and transport are two other widely used names.

5Recommnded for Advanced Track.
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3.8.1 Strong Form of Advection–Diffusion Equation

Consider the one-dimensional advection–diffusion of a species in a one-dimensional model of cross-

sectional area AðxÞ, it could be a pipe or an aquifer; the concentration of the species or energy is denoted by

�ðxÞ. In an aquifer, the flow may extend to a large distance normal to the plane, so we consider a unit depth,

where depth is the dimension perpendicular to the plane. In a pipe, AðxÞ is simply the cross-sectional area.

The velocity of the fluid is denoted by vðxÞ, and it is assumed to be constant in the cross section at each

point along the axis, i.e. for each x. A source sðxÞ is considered; it may be positive or negative. The latter

indicates decay or destruction of the species. For example, in the transport of a radioactive contaminant,

sðxÞ is the change in a particular isotope, which may decrease due to decay or increase due to formation. The

fluid is assumed to be incompressible, which has some ramifications that you will see later.

The conservation principle states that the species (be it a material, an energy or a state) is conserved in

each control volume �x. Therefore, the amount of species entering minus the amount of leaving equals the

amount produced (a negative volume when the species decays). In this case, we have two mechanisms for

inflow and outflow, the advection, which is ðAv�Þx, and diffusion, which is qðxÞ. The conservation principle

can then be expressed as

ðAv�Þx þ ðAqÞx � ðAv�Þxþ�x � ðAqÞxþ�x þ�xsxþ�x=2 ¼ 0:

Dividing by �x and taking the limit �x! 0, we obtain (after a change of sign)

dðAv�Þ
dx

þ dðAqÞ
dx
� s ¼ 0: ð3:64Þ

We now consider the incompressibility of the fluid. For an incompressible fluid, the volume of material

entering a control volume equals the volume of material leaving, which gives

ðAvÞx ¼ ðAvÞxþ�x:

Putting the right-hand side on the left-hand side, dividing by �x and letting �x! 0, we obtain

dðAvÞ
dx
¼ 0: ð3:65Þ

If we use the derivative product rule on the first term of (3.64), we obtain

dðAv�Þ
dx

¼ dðAvÞ
dx

�þ Av
d�

dx
; ð3:66Þ

where the first term on the RHS vanishes by (3.65), so substituting (3.66) into (3.64) yields

Av
d�

dx
þ dðAqÞ

dx
� s ¼ 0: ð3:67Þ

This is the conservation equation for a species in a moving incompressible fluid. If the diffusion is linear,

Fick’s first law holds, so

q ¼ �k
d�

dx
; ð3:68Þ
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where k is the diffusivity. Substituting (3.68) into (3.67) gives

Av
d�

dx
� d

dx
Ak

d�

dx

� �
� s ¼ 0: ð3:69Þ

The above is called the advection–diffusion equation. The first term accounts for the advection (sometimes

called the transport) of the material. The second term accounts for the diffusion. The third term is the source

term.

We consider the usual essential and natural boundary conditions

ðaÞ � ¼ � on ��;

ðbÞ � k
d�

dx
n ¼ qn ¼ q on �q;

ð3:70Þ

where �� and �q are complementary, see (3.50).

The advection–diffusion equation is important in its own right, but it is also a model for many other

equations. Equations similar to the advection–diffusion equation are found throughout the field of

computational fluid dynamics. For example, the vorticity equation is of this form. If we replace � by v,

then the second term in (3.66) corresponds to the transport term in the Navier–Stokes equations, which are

the fundamental equations of fluid dynamics.

3.8.2 Weak Form of Advection–Diffusion Equation

We obtain the weak form of (3.69) by multiplying the governing equation by an arbitrary weight function

wðxÞ and integrating over the domain. Similarly, the weak statement of the natural boundary conditions is

obtained by multiplying (3.70b) with the weight function and the area A. The resulting weak equations are

ðaÞ
ð

�

w Av
d�

dx

� �
� d

dx
Ak

d�

dx

� �
� s

� �
dx ¼ 0 8w;

ðbÞ Aw kn
d�

dx
þ q

� �����
�q

¼ 0 8w:
: ð3:71Þ

The spaces of trial solution and weight function are exactly as before, see (3.47) and (3.48).

We can see that the second term in Equation (3.71a) is unsymmetric in w and � and involves a second

derivative, which we want to avoid as it would require smoother trial solutions than is convenient. We can

reduce the order of the derivatives by integration by parts.

The first term in (3.71a) is puzzling as it involvesa first derivative only, but it is not symmetric. It turns out

that we cannot make this term symmetric via integration by parts, as the integrand then becomes

ðdw=dxÞAv�: In this case, integration by parts just switches the derivative from the trial solution to the

weight function. So we leave this term as it is.

Integration by parts of the second term in (3.71a) and combining with (3. 71b) givesZ
�

wAv
d�

dx

� �
dx þ

Z
�

dw

dx
Ak

d�

dx

� �
dx �

Z
�

ws dxþ ðAwqÞ
���
�q
¼ 0; ð3:72Þ

Theweak form is thenas follows: find the trial solution�ðxÞ 2 U such that (3.72) holds forall wðxÞ 2 U0.

We will not prove that the weak form implies the strong form; the procedure is exactly like before and

consists of simply reversing the preceding steps. An important property of (3.72) is that the first term is not

symmetric in wðxÞ and �ðxÞ. Therefore, the discrete equations for this weak form will not be symmetric.
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Equation (3.72) and its boundary conditions become tricky when k ¼ 0. In that case, there is no diffusion,

only transport. Treatment of this special case is beyond this book, see Donea and Huerta (2002).

Instead of the flux boundary condition (3.70b), the total inflow of material at the boundary is often

prescribed by the alternate boundary condition

ð�k
d�

dx
þ v�Þn ¼ qT : ð3:73Þ

Integrating the first term in (3.72) by parts and adding the product of the weight function, area A and (3.73)

gives

�
Z

�

dw

dx
Av� dxþ

Z
�

dw

dx
Ak

d�

dx

� �
dx�

Z
�

ws dxþ ðAwqTÞ
���
�q
¼ 0: ð3:74Þ

The weak form then consists of Equation (3.74) together with an essential boundary condition (3.70a) and

the generalized boundary condition (3.73).

3.9 MINIMUM POTENTIAL ENERGY 6

An alternative approach for developing the finite element equations that is widely used is based on

variational principles. The theory that deals with variational principles is called variational calculus, and

at first glance it can seem quite intimidating to undergraduate students. Here we will give a simple

introduction in the context of one-dimensional stress analysis and heat conduction. We will also show that

the outcome of these variational principles is equivalent to the weak form for symmetric systems such as heat

conductionandelasticity.Therefore, thefiniteelementequationsarealso identical.Finally,wewill showhow

variationalprinciplescanbedevelopedfromweakforms.Thevariationalprinciplecorresponding totheweak

form for elasticity is called the theorem of minimum potential energy. This theorem is stated in Box 3.9.

Box 3.9. Theorem of minimum potential energy

The solution of the strong form is the minimizer of

WðuðxÞÞ for 8uðxÞ 2 U where WðuðxÞÞ ¼ 1

2

Z
�

AE
du

dx

� �2

dx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wint

�
Z
�

ub dxþ ðuAtÞj�t

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Wext

:ð3:75Þ

In elasticity, W is the potential energy of the system. We have indicated by the subscripts ‘int’ and ‘ext’ that

the first term is physically the internal energy and the second term the external energy.

We will now show that the minimizer of WðuðxÞÞ corresponds to the weak form, which we already know

implies the strong form. Showing that the equation for the minimizer of WðuðxÞÞ is the weak form implies

that the minimizer is the solution, as wehave already shown that the solution to theweak form is the solution

of the strong form.

One of the major intellectual hurdles in learning variational principles is to understand the meaning of

WðuðxÞÞ. WðuðxÞÞ is a function of a function. Such a function of a function is called a functional. We will

now examine how WðuðxÞÞ varies as the function uðxÞ is changed (or varied). An infinitesimal change in a

function is called a variation of the function and denoted by �uðxÞ � �wðxÞ, where wðxÞ is an arbitrary

function (we will use both symbols) and 0 < � 	 1, i.e. it is a very small positive number.

6Recommended for Structural Mechanics and Advanced Tracks.
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The corresponding change in the functional is called the variation in the functional and denoted by �W,

which is defined by

�W ¼ WðuðxÞ þ �wðxÞÞ �WðuðxÞÞ � WðuðxÞ þ �uðxÞÞ �WðuðxÞÞ: ð3:76Þ

Thisequation is analogous to thedefinitionofadifferential except that in the latteroneconsidersachange in

the independent variable see Oden and Reddy (1983) and Reddy (2000) for details on variational calculus.

A differential gives the change in a function due to a change of the independent variable. A variation of a

functional gives the change in a functional due to a change in the function. If you replace ‘function’ by

‘functional’ and ‘independent variable’ by ‘function’ in the first sentence, you have the second sentence.

From the statement of minimum potential energy given in Box 3.9, it is clear that the function

uðxÞ þ �wðxÞmust still be in U. To meet this condition, wðxÞmust be smooth and vanish on the essential

boundaries, i.e.

wðxÞ 2 U0: ð3:77Þ

Let us evaluate the variation of the first term in �Wint. From the definition of the variation of a functional,

Equation (3.76), it follows that

�Wint ¼
1

2

Z
�

AE
du

dx
þ � dw

dx

� �2

dx� 1

2

Z
�

AE
du

dx

� �2

dx

¼ 1

2

Z
�

AE
du

dx

� �2

þ 2�
du

dx

dw

dx
þ �2 dw

dx

� �2
 !

dx� 1

2

Z
�

AE
du

dx

� �2

dx:

ð3:78Þ

The first and fourth terms in the above cancel. The third term can be neglected because � is small, so its

square is a second-order term. We are left with

�Wint ¼ �
Z
�

AE
dw

dx

� �
du

dx

� �
dx: ð3:79Þ

The variation in the external work is evaluated by using the definition of a variation and the second term in

Equation (3.75); we divide it into the parts due to the body force and traction for clarity. This gives

�W�
ext ¼

Z
�

ðuþ �wÞb dx�
Z
�

ub dx ¼ �

Z
�

wb dx

�W�
ext ¼ ðuþ �wÞA�tj�t

�ðu�tÞAj�t
¼ �ðwA�tÞj�t

ð3:80Þ

�Wext ¼ �W�
ext þ �W�

ext ¼ �
Z
�

wb dxþ ðwA�tÞj�t

0@ 1A ð3:81Þ

At the minimum of WðuðxÞÞ, the variation of the functional must vanish, just as the differentials or the

derivatives of a function vanish at a minimum of a function. This is expressed as �W ¼ 0. Thus, we have

0 ¼ �W ¼ �Wint � �Wext: ð3:82Þ

Substituting (3.79)–(3.81) into the above and dividing by � yields the following: for uðxÞ 2 U,

�W=� ¼
Z
�

AE
dw

dx

� �
du

dx

� �
dx�

Z
�

wb dx� ðwAtÞ
����
�t

¼ 0; wðxÞ 2 U0: ð3:83Þ

68 STRONG AND WEAK FORMS FOR ONE-DIMENSIONAL PROBLEMS



Do you recognize the above? It is precisely the statement of the weak form, Equation (3.49) that we

developed in Section 3.6. Also recall that we have shown in Section 3.4 that the weak form implies the

strong form, so it follows that the minimizer of the potential energy functional gives the strong form.

To be precise, we have only shown that a stationary point of the energy corresponds to the strong form. It

can also be shown that the stationary point is a minimizer, see Equation (3.75) or Becker, Carey and Oden

(1981, pp. 60–62).

In most books on variational principles, the change in the function uðxÞ, instead of being denoted by

�wðxÞ, is denoted by �uðxÞ. Equation (3.83) is then written as follows. Find u 2 U such that

�W ¼
Z
�

AE
du

dx

� �
dð�uÞ

dx

� �
dx�

Z
�

�ub dx� ð�uA tÞ
���
�t

¼ 0 8�u 2 U0: ð3:84Þ

Thiscanbe further simplified byusing the strain–displacement equationand the stress-strain lawin the first

terms in the first integrand in (3.84), which gives

�W ¼
Z
�

As �edx

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�Wint

�
Z
�

b�udxþ ð�tA�u Þj�t

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Wext

¼ 0
ð3:85Þ

The above is called the principle of virtual work: the admissible displacement field (u 2 U) for which the

variation in the internal work �Wint equals the variation in the external work �Wext for all8�u 2 U0 satisfies

equilibrium and the natural boundary conditions. Note that (3.85) is identical to the weak forms (3.49) and

(3.83), just the nomenclature is different.

Avery interesting feature of the minimum potential energy principle is its relationship to the energy of

the system. Consider the term Wint in Equation (3.75). Substituting the strain–displacement equation (3.3)

and Hooke’s law (3.4) enables us to write it as

Wint ¼
Z
�

wint A dx ¼ 1

2

Z
�

AEe2 dx: ð3:86Þ

If we examine a graph of a linear law, Figure 3.9, we can see that the energy per unit volume is

wint ¼ ð1=2ÞEe2. Thus, Wint, the integral of the energy density over the volume, is the total internal energy

int
1
2

w σε=
dwint

de

e

s

Figure 3.9 Definition of internal energy density or strain energy density wint.
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of the system, which is why the subscript ‘int’, which is short for ‘internal’, is appended to this term. This

energy is also called the strain energy, which is the potential energy that is stored in a body when it

is deformed. This energy can be recoveredwhen the body is unloaded. Think of a metal ruler that is bent or a

spring that is compressed; when the force is released, they spring back releasing the stored energy. The

second term is also an energy, as the two terms that comprise Wext are products of force (b or t) and

displacement u; in any case, it has to be an energy for the equation to be dimensionally consistent.

We can rewrite the functional in Equation (3.75) as

W ¼ Wint �Wext ð3:87Þ

by using the definitions underscored, and the variational principle is �W ¼ 0. This clarifies the physical

meaning of the principle of minimum potential energy: the solution is the minimizer (i.e. a stationary point)

of the potential energy W among all admissible displacement functions.

Many finite element textsuse the theorem of minimum potential energy as a means for formulating finite

element methods.The natural question that emerges in these approaches to teachingfiniteelements is: How

did this theorem come about and how can corresponding principles be developed for other differential

equations? In fact, the development of variational principles took many years and was a topic of intense

research in the eighteenth and nineteenth centuries. Variational principles cannot be constructed by simple

rules like we have used for weak forms. However, some weak forms can be converted to variational

principles, and in the next section, we show how to construct a variational principle for 1D stress analysis

and heat conduction.

An attractive feature of the potential energy theorem is that it holds for any elastic system. Thus, if we

write the energy for any other system, we can quickly derive finite element equations for that system; this

will be seen in Chapter 10 for beams. Variational principles are also very useful in the study of the accuracy

and convergence of finite elements.

The disadvantage of variational approach is that there are many systems to which they are not readily

applicable. Simple variational principles cannot be developed for the advection–diffusion equation for

which we developed a weak form in Section 3.7 by the same straightforward procedure as for the other

equations. Variational principles can only be developed for systems that are self-adjoint. Theweak form for

the advection–diffusion equation is not symmetric, and it is not a self-adjoint system (see Becker, Carey

and Oden (1981) for definition of self-adjoint systems).

Variational principles identical to those forelasticityapply to heat transfer and other diffusionequations.

This is not surprising, as the equations are identical except for the parameters. As an example, the

variational principle for heat conduction is given in Box 3.10.

Box 3.10. Variational principle for heat conduction

Let WðTðxÞÞ ¼ 1

2

Z
�

Ak
dT

dx

� �2

dx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wint

�
Z
�

Ts dx� ðTAqÞ
���
�q

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Wext

;

then the solution of the strong form of (3.51) is the minimizer of WðTðxÞÞ for 8TðxÞ 2 U.

The functional in this variational principle is not a physical energy; in fact, the temperature itself

corresponds to the physical energy. However, the functional is often called an energy even for diffusion

equations; we will call it a mathematical energy. The proof of the equivalence of this principle to the weak

form (and hence to the strong form) of the heat conduction equations just involves replacing the symbols in

(3.78)–(3.83) according to Table 3.2; the mathematics is identical regardless of the symbols.
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3.10 INTEGRABILITY 7

So far we have left the issue of the smoothness of the weight functions and trial solutions rather nebulous.

We will now define the degree of smoothness required in weak forms more precisely. Many readers may

want to skip this material on an initial reading, as the rest of the book is quite understandable without an

understanding of this material.

The degree of smoothness that is required in the weight and trial functions is determined by how smooth

they need to be so that the integrals in the weak form, such as (3.54), can be evaluated. This is called the

integrability of the weak form. If the weight and trial functions are too rough, then the integrals cannot be

evaluated, so then obviously the weak form is not usable.

We next roughly examine howsmooth is smooth enough. If you look at a C�1 function that is not singular

(does not become infinite), you can see that it is obviously integrable, as the area under such a function is

well defined. Even the derivative of a C�1 function is integrable, for at a point of discontinuity x ¼ a of

magnitude p, the derivative is the Dirac delta function p�ðx� aÞ. By the definition of a Dirac delta function

(See Appendix A5), Z x2

x1

p�ðx� aÞ dx ¼ p if x1 � a � x2:

So the integral of the derivative of a C�1 function is well defined. However, the product of the derivatives

of the weight and trial functions appears in the weak form. If both of these functions are C�1, and the

discontinuities occur at the same point, say x ¼ a, then the weak form will contain the termR x2

x1

p2�ðx� aÞ2 dx. The integrand here can be thought of as ‘infinity squared’: there is no meaningful

way to obtain this integral. So C�1 continuity of the weight and trial functions is not sufficient.

On the contrary, if the weight and trial functions are C0 and not singular, then the derivatives are C�1 and

the integrand will be the product of two C�1 functions. You can sketch some functions and see that the

product of the derivatives of two C�1 functions will also be C�1 as long as the functions are bounded (do not

become infinite). Since a bounded C�1 function is integrable, C0 continuity is smooth enough for the

weight and trial functions.

This continuity requirement can also be justified physically. For example, in stress analysis, a C�1

displacement field would have gaps or overlaps at the points of discontinuity of the function. This would

violate compatibility of the displacement field. Although gaps are dealt with in more advanced methods to

model fracture, they are not within the scope of the methods that we are developing here. Similarly in heat

conduction, a C�1 temperature field would entail an infinite heat flux at the points of discontinuity, which is

not physically reasonable. Thus, the notions of required smoothness, which arise from the integrability of

the weak form, also have a physical basis.

In mathematical treatments of the finite element method, a more precise description of the required

degree of smoothness is made: the weight and trial functions are required to possess square integrable

derivatives. A derivative of a function uðxÞ is called square integrable if Wintð�Þ, defined as

Wintð�Þ ¼
1

2

Z
�

�A
d�

dx

� �2

dx; ð3:88Þ

is bounded, i.e. Wintð�Þ <1. The value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wintð�Þ

p
is often called an energy norm. For heat conduction,

� ¼ T and �ðxÞ ¼ kðxÞ > 0. In elasticity, �ðxÞ ¼ EðxÞ > 0 and � ¼ u and (3.88) corresponds to the strain

energy, which appears in the principle of minimum potential energy.

It can be proven that H1 is a subspace of C0, i.e. H1 � C0, so any function in H1 is also a C0 function.

However, the converse is not true: C0 functions that are not in H1 exist. An example of a function that is C0,

7Recommended for Advanced Track.
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but not H1, is examined in Problem 3.8. However, such functions are usually not of the kind found in

standard finite element analysis (except in fracture mechanics), so most readers will find that the

specification of the required degree of smoothness by C0 continuity is sufficient.
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Problems

Problem 3.1
Show that the weak form of

d

dx
AE

du

dx

� �
þ 2x ¼ 0 on 1 < x < 3;

sð1Þ ¼ E
du

dx

� �
x¼1

¼ 0:1;

uð3Þ ¼ 0:001

is given by

Z3

1

dw

dx
AE

du

dx
dx ¼ �0:1ðwAÞx¼1 þ

Z3

1

2xw dx 8w with wð3Þ ¼ 0:

Problem 3.2
Show that the weak form in Problem 3.1 implies the strong form.

Problem 3.3
Consider a trial (candidate) solution of the form uðxÞ ¼ a0 þ a1ðx� 3Þ and a weight function of the same

form. Obtain a solution to the weak form in Problem 3.1. Check the equilibrium equation in the strong form

in Problem 3.1; is it satisfied?

Check the natural boundary condition; is it satisfied?

Problem 3.4
Repeat Problem 3.3 with the trial solution uðxÞ ¼ a0 þ a1ðx� 3Þ þ a2ðx� 3Þ2.
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Problem 3.5
Obtain the weak form for the equations of heat conduction with the boundary conditions Tð0Þ ¼ 100 and

qð10Þ ¼ hT . The condition on the right is a convection condition.

Problem 3.6
Given the strong form for the heat conduction problem in a circular plate:

k
d

dr
r

dT

dr

� �
þ rs ¼ 0; 0 < r � R:

natural boundary condition :
dT

dr
ðr ¼ 0Þ ¼ 0;

essential boundary condition : Tðr ¼ RÞ ¼ 0;

where R is the total radius of the plate, s is the heat source per unit length along the plate radius, T is the

temperature and k is the conductivity. Assume that k, s and R are given:

a. Construct the weak form for the above strong form.

b. Use quadratic trial (candidate) solutions of the form T ¼ a0 þ a1r þ a2r2 and weight functions of the

same form to obtain a solution of the weak form.

c. Solve the differential equation with the boundary conditions and show that the temperature distribution

along the radius is given by

T ¼ s

4k
ðR2 � r2Þ:

Problem 3.7
Given the strong form for the circular bar in torsion (Figure 3.10):

d

dx
JG

d�

dx

� �
þ m ¼ 0; 0 � x � l;

natural boundary condition : Mðx ¼ lÞ ¼ JG
d�

dx

� �
l

¼ M;

essential boundary condition : �ðx ¼ 0Þ ¼ �;

( )m x

x

( )M x l M= =  

(          )0xf f= =

l

0=x x l=

Figure 3.10 Cylindrical bar in torsion of Problem 3.7.
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where mðxÞ is a distributed moment per unit length, M is the torsion moment, � is the angle of rotation, G

is the shear modulus and J is the polar moment of inertia given byJ ¼ �C4=2, where C is the radius of the

circular shaft.

a. Construct the weak form for the circular bar in torsion.

b. Assume that m(x) = 0 and integrate the differential equation given above. Find the integration constants

using boundary conditions.

Problem 3.8
Consider a problem on 0 � x � l which has a solution of the form

u ¼
� 1

2

� �l
x

l
; x � l

2
;

x

l
� 1

2

� �l

� 1

2

� �l
x

l
; x >

l

2
:

8>>><>>>:
a. Show that for l > 0 the solution u is C0 in the interval 0 � x � l.

b. Show that for 0 < l � 1=2 the solution u is not in H1.

Problem 3.9
Consider an elastic bar with a variable distributed spring pðxÞ along its length as shown in Figure 3.11. The

distributed spring imposes an axial force on the bar in proportion to the displacement.

Consider a bar of length l, cross-sectional area AðxÞ, Young’s modulus EðxÞ with body force bðxÞ and

boundary conditions as shown in Figure 3.11.

a. Construct the strong form.

b. Construct the weak form.

Problem 3.10
Consider an elastic bar in Figure 3.2. The bar is subjected to a temperature field TðxÞ. The temperature

causes expansion of the bar and the stress-strain law is

sðxÞ ¼ EðxÞðeðxÞ � aðxÞTðxÞÞ;

where a is the coefficient of thermal expansion, which may be a function of x.

p(x) 

t

l

x

b x( )

Figure 3.11 Elastic bar with distributed springs of Problem 3.9.
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a. Develop the strong form by replacing the standard Hooke’s law with the above in the equilibrium

equation; use the boundary conditions given in Problem 3.1.

b. Construct the weak form for (3.43) when the above law holds.

Problem 3.11
Find the weak form for the following strong form:

�
d2u

dx2
� luþ 2x2 ¼ 0; �; l are constants; 0 < x < 1;

subject to uð0Þ ¼ 1; uð1Þ ¼ �2.

Problem 3.12
The motion of an electric charge flux qV is proportional to the voltage gradient. This is described by Ohm’s

law:

qV ¼ �kV

dV

dx
;

where kV is electric conductivity and V is the voltage. Denote QV as the electric charge source.

Construct the strong form by imposing the condition that the electric charge is conserved.

Problem 3.13
Find the weak form for the following strong form:

x
d2u

dx2
þ du

dx
� x ¼ 0; 0 � x � 1;

subject to uð0Þ ¼ uð1Þ ¼ 0.

Problem 3.14
Consider a bar in Figure 3.12 subjected to linear body force bðxÞ ¼ cx. The bar has a constant cross-

sectional area A and Young’s modulus E. Assume quadratic trial solution and weight function

uðxÞ ¼ a1 þ a2xþ a3x2; wðxÞ ¼ b1 þ b2xþ b3x2;

where ai are undetermined parameters.

a. For what value of aI is uðxÞ kinematically admissible?

321

x

L/2 L/2

Figure 3.12 Elastic bar subjected to linear body force of Problem 3.14.
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b. Using the weak form, set up the equations for aI and solve them. To obtain the equations, express the

principle of virtual work in the form b2ð
 
 
Þ þ b3ð
 
 
Þ ¼ 0. By the scalar product theorem, each of the

parenthesized terms, i.e. the coefficients of bI , must vanish.

c. Solve the problem in Figure 3.12 using two 2-node elements considered in Chapter 2 of equal size.

Approximate the external load at node 2 by integrating the body force from x ¼ L=4 to x ¼ 3L=4.

Likewise, compute the external at node 3 by integrating the body force from x ¼ 3L=4 to x ¼ L.

Problem 3.15
Consider the bar in Problem 3.14.

a. Using an approximate solution of the form uðxÞ ¼ a0 þ a1xþ a2x2, determine uðxÞ by the theorem of

minimum potential energy. Hint: after enforcing admissibility, substitute the above trial solution into

(3.75) and minimize with respect to independent parameters.

b. Compare the solution obtained in part (a) to an exact solution of the equation E
d2u

dx2
þ cx ¼ 0.

c. Does sðLÞ ¼ 0 for the approximate solutions?

d. Check whether the stress obtained from uðxÞ by s ¼ E
du

dx
satisfies the equilibrium.
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4
Approximation of Trial
Solutions, Weight Functions
and Gauss Quadrature for
One-Dimensional Problems

We now consider the next important ingredient of the finite element method (FEM): the construction of

the approximations. In Chapter 3, we derived weak forms for the elasticity and heat conduction

problems in one dimension. The weak forms involve weight functions and trial solutions for the

temperature, displacements, solute concentrations and so on. In the FEM, the weight functions and

trial solutions are constructed by subdividing the domain of the problem into elements and constructing

functions within each element. These functions have to be carefully chosen so that the FEM is

convergent: The accuracy of a correctly developed FEM improves with mesh refinement, i.e. as element

size, denoted by h, decreases, the solution tends to the correct solution. This property of the FEM is of

great practical importance, as mesh refinement is used by practitioners to control the quality of the finite

element solutions.

For example, the accuracy of a solution is often checked by rerunning the same problem with a finer

mesh; if the difference between the coarse and fine mesh solutions is small, it can be inferred that the coarse

meshsolution isquiteaccurate.Onthecontrary, ifa solutionchangesmarkedlywith refinementof themesh,

the coarse mesh solution is inaccurate, and even the finer mesh may still be inadequate.

Although the mathematical theory of convergence is beyond the scope of the book, loosely speaking, the

two necessary conditions for convergence of the FEM are continuity and completeness. This can

schematically be expressed as

Continuity þ Completeness ! Convergence

Bycontinuitywemean that the trial solutionsandweight functionsaresufficiently smooth.Thedegreeof

smoothness that is required depends on the order of the derivatives that appear in the weak form. For the

second-order differential equations considered inChapter 3, where the derivatives in theweak form are first

derivatives, we have seen that the weight functions and trial solutions must be C0 continuous.

Completeness is a mathematical term that refers to the capability of a series offunctions toapproximate a

given smooth function with arbitrary accuracy. For convergence of the FEM, it is sufficient that as the

element sizes approach zero, the trial solutions and weight functions and their derivatives up to and
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including the highest order derivative appearing in the weak form be capable of assuming constant values.

This can be interpreted physically for various types of problems. For instance, for elasticity, this requires

that the displacement field and its derivative can take constant values so that the finite elements can

represent rigid body motion and constant strain states exactly.

Before we discuss continuity and completeness, wewould like to say a few words about our notation and

nomenclature. The finite element functions, weight functions and trial solutions, will collectively be called

approximations or functions. We will use the symbol �ðxÞ for all functions in this chapter, whether they be

temperature, displacement or any other variable. The global finite element approximation will be denoted

by �hðxÞ; this function for a particular element e will be denoted by �eðxÞ, and it is assumed that �eðxÞ is

nonzero only in element e. As in the previous chapters, numerical superscripts refer to a specific element.

For nodal variables, a subscript denotes the node number; for element-related nodal variables, local node

numbers are used; so, for example, xe
1 is the x-coordinate of local node 1 of element e.

To fix the concepts of continuity and completeness, consider a one-dimensional domain modeled by two

elements as shown in Figure 4.1. We will examine how to construct a continuous approximation in the

entire domain by the FEM.

In constructing a finite element approximation, we approximate the approximation in each element by

�eðxÞ. In each element, we will employ a polynomial for �eðxÞ of the form

�e¼ ae
0 þ ae

1xþ ae
2x2 þ ae

3x3 þ � � � ;

where ae
i are coefficients that are selected so that continuity is satisfied. It can be seen from the above

that within each element the approximation �eðxÞ is obviously continuous. However, for arbitrary values

of ae
i , the approximation will not be continuous between elements. To meet the C0 continuity requirement,

the field �hðxÞ must be continuous (or compatible) between elements, i.e. it is necessary that

�ð1Þðxð1Þ2 Þ ¼ �ð2Þðx
ð2Þ
1 Þ in Figure 4.1. We will see in the following that if the coefficients ae

i are expressed

in terms of nodal values, it will be easy to construct continuous approximations.

The second requirement for the FEM to converge to the correct solution is completeness. According

to the guidelines given above, elements with a linear approximation �e¼ ae
0 þ ae

1x are complete. The term

ae
0 can represent any constant function as it is arbitrary, and the term ae

1x can represent any function

with a constant derivative. Thus, the polynomial �e¼ ae
0 þ ae

1x can be used to construct finite element

approximations that will converge.

Trial solutions approximated by incomplete polynomials but with a complete linear approximation,

such as �e¼ ae
0 þ ae

1xþ ae
2x4, will converge, but at a rate comparable to that of linear approximations.

1

(2)( )xq

(1)( )xq

1 2

2

(2)(1) 

(1) 

(2) 

Figure 4.1 A two-element mesh and the approximations in each element.
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However, an incompleteapproximation, suchas�e ¼ ae
0 þ ae

1x2, cannotbeused todevelopafiniteelement.

This approximation lacks the necessary linear term, and consequently when it is used as a starting point for

constructing a finite element approximation, the resulting elements do not converge.

4.1 TWO-NODE LINEAR ELEMENT

Consider the simplest one-dimensional element, an element with two nodes as shown in Figure 4.2. The

nodal values of the function are denoted by �eðxe
1Þ � �e

1 and �eðxe
2Þ � �e

2. We will now develop a procedure

for constructing a complete and C0 continuous function for this element. As we indicated in the previous

section, toachievecontinuity,wewill express theapproximation in theelement in termsof the nodalvalues.

To meet the completeness condition, we need to choose at least a linear polynomial

�eðxÞ ¼ ae
0 þ ae

1x: ð4:1Þ

Notice the rather nice coincidence: If we select two nodes at the ends of the element, we have the same

number of nodal values as parameters in (4.1), so we should be able to express the parameters uniquely in

terms of the nodal values. We will now proceed to do this. We can write (4.1) in the matrix form as

�eðxÞ ¼ ½ 1 x �|fflfflffl{zfflfflffl}
pðxÞ

ae
0

ae
1

� �
|fflffl{zfflffl}

ae

¼ pðxÞae: ð4:2Þ

Next we express the coefficients ae
0 and ae

1 in terms of the values of the approximation at nodes 1 and 2:

�eðxe
1Þ � �e

1 ¼ ae
0 þ ae

1xe
1

�eðxe
2Þ � �e

2 ¼ ae
0 þ ae

1xe
2

! �e
1

�e
2

� �
|fflffl{zfflffl}

de

¼ 1 xe
1

1 xe
2

� �
|fflfflfflfflffl{zfflfflfflfflffl}

Me

ae
0

ae
1

� �
|fflffl{zfflffl}

ae

; ð4:3Þ

where de is the nodal matrix for element e, which is defined as shown above. In the matrix form, the inverse

of (4.3) is given by

ae ¼ ðMeÞ�1
de: ð4:4Þ

Substituting (4.4) into (4.2) yields

�eðxÞ ¼ NeðxÞde; where NeðxÞ ¼ pðxÞðMeÞ�1: ð4:5Þ

The row matrix NeðxÞ ¼ ½Ne
1ðxÞ Ne

2ðxÞ� ¼ pðxÞðMeÞ�1
is called the element shape function matrix. It

consists of the element shape functions associated with element e.

We will see that shape functions play a central role in the FEM; shape functions of various orders and

dimensions enable the FEM to solve problems of many types with varying degrees of accuracy.

We next develop the expressions for the element shape function matrix Ne by evaluating the matrices in

(4.5). From the expression for Me given in (4.3), it follows that

ðMeÞ�1 ¼ 1

xe
2 � xe

1

xe
2 �xe

1

�1 1

� �
¼ 1

le

xe
2 �xe

1

�1 1

� �
;

1 2e
1
ex 2

ex

el

Figure 4.2 A two-node element.
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where le is the length of the element e. Then using (4.5) we obtain

Ne ¼ Ne
1 Ne

2½ � ¼ pðxÞðMeÞ�1 ¼ 1 x½ � xe
2 �xe

1

�1 1

� �
1

le
¼ 1

le
xe

2 � x x� xe
1½ �: ð4:6Þ

In the above, Ne
1ðxÞ and Ne

2ðxÞ are the element shape functions corresponding to nodes 1 and 2, respectively.

These shape functions are shown in Figure 4.3. Note that they are nonzero only in element e.

It can be seen that the shape functions are linear in the element, as expected. In addition, the shape

functions have the following properties:

Ne
1ðxe

1Þ ¼ 1; Ne
1ðxe

2Þ ¼ 0;

Ne
2ðxe

1Þ ¼ 0; Ne
2ðxe

2Þ ¼ 1:

In the concise notation, the above can be written as

Ne
I ðxe

JÞ ¼ �IJ ; ð4:7Þ

where �IJ is called the Kronecker delta (which is defined exactly like the unit matrix) and is given by

�IJ ¼
1 if I ¼ J;
0 if I 6¼ J:

�
ð4:8Þ

Equation (4.7) is known as the Kronecker delta property and is related to a fundamental property of

shape functions called the interpolation property. Interpolants are functions that pass exactly through

the data. If you think of nodal values as data, then shape functions are interpolants of the nodal data.

In fact, shape functions can be used as interpolants to fit any data.

To show the interpolation property, we write (4.5) in terms of the shape functions and nodal values:

�eðxÞ ¼ NeðxÞde ¼
Xnen

I¼1

Ne
I ðxÞ�e

I :

wherenen is the numberofelement nodes; in thiscase nen ¼ 2.Wewant to showthat�eðxIÞ ¼ �e
I .Therefore,

we let x ¼ xe
J in the above, which gives

�eðxe
JÞ ¼

X2

I¼1

Ne
I ðxe

JÞ�e
I ¼

X2

I¼1

�IJ�
e
I ¼ �e

J ;

1

1 2
x

2 ( )eN x
1 ( )eN x

1
ex 2

ex

e
IN

Figure 4.3 Shape functions of the two-node element.
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wherewe have used (4.7) and the last step follows from the definition of the Kronecker delta (4.8). Thus, the

finite element approximation is exactly equal to the nodal values at the nodes. This is not surprising as we

evaluated the coefficients ae
i by this requirement.

In the weak form developed in the previous chapter, we need to evaluate the derivatives of the trial

solutions and weight functions. For the two-node element, we can derive an expression for the derivative as

follows:

d�e

dx
¼ d

dx
ðNedeÞ ¼ dNe

dx
de ¼ dNe

1

dx
�e

1 þ
dNe

2

dx
�e

2:

In the matrix form, this can be written as

d�e

dx
¼ dNe

1

dx

dNe
2

dx

� �
�e

1

�e
2

� �
¼ Bede; ð4:9Þ

where

Be ¼ dNe
1

dx

dNe
2

dx

� �
¼ 1

le
½�1 þ1�: ð4:10Þ

The last step in (4.10) follows from taking derivatives of the terms in (4.6).

As we have already mentioned, in each element, we have used a complete polynomial expansion, so we

have satisfied the completeness requirement. We have expressed the function in terms of nodal values, so it

will be easy to construct globally C0 functions. We will examine the continuity requirement in more detail

in Section 4.5.

4.2 QUADRATIC ONE-DIMENSIONAL ELEMENT

To develop a quadratic element, we start with a complete second-order polynomial approximation:

�eðxÞ ¼ ae
0 þ ae

1xþ ae
2x2 ¼ ½ 1 x x2 �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

pðxÞ

ae
0

ae
1

ae
2

24 35
|fflffl{zfflffl}

ae

¼ pðxÞae: ð4:11Þ

The element is shown in Figure 4.4. We need three nodes, because it would otherwise not be possible to

uniquely express the constants ðae
0; a

e
1; a

e
2Þ in terms of nodal values of the trial solution: �eðxe

1Þ ¼
�e

1; �
eðxe

2Þ ¼ �e
2; �

eðxe
3Þ ¼ �e

3. Two of the nodes are placed at the ends of the element so that the global

approximation will be continuous. The third node can be placed anywhere, but it is convenient and

symmetrically pleasing to put it at the center of the element. In general, these elements perform better if the

third node is at the midpoint.

1 2

e

3

Figure 4.4 A three-node element.
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To obtain the shape functions, we first express ðae
0; a

e
1; a

e
2Þ in terms of nodal values of the function nodal

values ð�e
1; �

e
2; �

e
3Þ:

�e
1 ¼ ae

0 þ ae
1xe

1 þ ae
2xe2

1

�e
2 ¼ ae

0 þ ae
1xe

2 þ ae
2xe2

2

�e
3 ¼ ae

0 þ ae
1xe

3 þ ae
2xe2

3

!
�e

1

�e
2

�e
3

24 35
|fflffl{zfflffl}

de

¼
1 xe

1 xe2

1

1 xe
2 xe2

2

1 xe
3 xe2

3

264
375

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Me

ae
0

ae
1

ae
2

24 35
|fflffl{zfflffl}

ae

: ð4:12Þ

As shown above, we can write (4.12) in the matrix form as de ¼Meae. Combining (4.11) and (4.12) yields

�e ¼ pðMeÞ�1|fflfflfflfflffl{zfflfflfflfflffl}
Ne

de ¼ Nede ¼
Xnen

I¼1

Ne
I ðxÞ�e

I ; ð4:13Þ

where nen ¼ 3: The shape functions are given by

Ne ¼ 2

le2 ½ðx� xe
2Þðx� xe

3Þ �2ðx� xe
1Þðx� xe

3Þ ðx� xe
1Þðx� xe

2Þ�: ð4:14Þ

It can easily be shown that these shape functions satisfy the Kronecker delta property. The shape functions

are shown in Figure 4.5. As can be seen, because of the Kronecker delta property, each shape function is

nonzero only at a single node and at that node its value is unity. Within the element, the shape functions are

quadratic; the mid-node shape function can readily be recognized as an upside-down parabola.

4.3 DIRECT CONSTRUCTION OF SHAPE FUNCTIONS IN ONE DIMENSION

The shape functions in one dimension that we have developed are called Lagrange interpolants. The theory

of Lagrange interpolation is very useful for constructing interpolants of various orders, particularly higher

order functions, such as quadratic or cubic. Such higher order elements, as will be seen from the exercises,

can provide far more accuracy than linear elements.

Lagrange interpolants can be developed more directly than described in the above by a simple procedure

that takes advantage of the Kronecker delta property of the shape functions. Because of this property,

shape function I must vanish at all nodes other than node I and be unity at node I. To see how we use these

properties to construct the shape functions, consider the quadratic shape functions for a three-node

element.

21 3

1 ( )eN x 2 ( )eN x
3( )eN x

x

e
iN

Figure 4.5 The quadratic shape functions for a three-node element.
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First wewill construct Ne
1ðxÞ.As the shape function Ne

1ðxÞ is at most quadratic inx, it consistsof a product

of two linear monomials in x. The most general form of such a quadratic product of monomials is

Ne
1ðxÞ ¼

ðx� aÞðx� bÞ
c

;

where a, b and c are constants that will set so as to satisfy the Kronecker delta property. We want Ne
1ðxÞ to

vanish at xe
2 and xe

3, which can be accomplished by letting a ¼ xe
2 and b ¼ xe

3. This gives

Ne
1ðxÞ ¼

ðx� xe
2Þðx� xe

3Þ
c

:

Now we have met two of the conditions on the shape function: that it must vanish at nodes 2 and 3. It

remains to satisfy the condition that Ne
1ðxe

1Þ ¼ 1. This condition is met by letting the denominator c equal

the numerator evaluated at xe
1, which gives

Ne
1ðxÞ ¼

ðx� xe
2Þðx� xe

3Þ
ðxe

1 � xe
2Þðxe

1 � xe
3Þ
:

We leave it to the reader to show that N1ðxe
JÞ ¼ �1J . The other two shape functions are constructed in an

identical manner giving

Ne
2ðxÞ ¼

ðx� xe
1Þðx� xe

3Þ
ðxe

2 � xe
1Þðxe

2 � xe
3Þ
; Ne

3ðxÞ ¼
ðx� xe

1Þðx� xe
2Þ

ðxe
3 � xe

1Þðxe
3 � xe

2Þ
:

The above gives the same result as (4.14) if we note that le ¼ xe
3 � xe

1.

The same procedure can be used to construct the cubic shape functions. The element with cubic shape

function will have four nodes, as there are four constants in an arbitrary cubic polynomial. The shape

functions are

Ne
1 ¼

ðx� xe
2Þðx� xe

3Þðx� xe
4Þ

ðxe
1 � xe

2Þðxe
1 � xe

3Þðxe
1 � xe

4Þ
; Ne

3 ¼
ðx� xe

1Þðx� xe
2Þðx� xe

4Þ
ðxe

3 � xe
1Þðxe

3 � xe
2Þðxe

3 � xe
4Þ
;

Ne
2 ¼

ðx� xe
1Þðx� xe

3Þðx� xe
4Þ

ðxe
2 � xe

1Þðxe
2 � xe

3Þðxe
2 � xe

4Þ
; Ne

4 ¼
ðx� xe

1Þðx� xe
2Þðx� xe

3Þ
ðxe

4 � xe
1Þðxe

4 � xe
2Þðxe

4 � xe
3Þ
:

These shape functions are shown in Figure 4.6.

1 0.5 2 1.5 3 2.5 4
-0.5

0

0.5

1
1
eN

3
eN

4
eN

2
eN

Figure 4.6 Cubic shape functions of the four-node one-dimensional element; note that each shape function is nonzero

only at one node, where it is unity.
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4.4 APPROXIMATION OF THE WEIGHT FUNCTIONS

It isnot required that theweight functionsbeapproximatedbythesameinterpolants thatareusedfor the trial

solutions approximation; however, for most problems it is advantageous to use the same approximation

for the weight functions and the trial solutions, and this is the most common practice. The resulting

method is called the Galerkin FEM. This method is used in the material presented in this book. The weight

functions and their derivatives are then given by

weðxÞ ¼ NeðxÞwe;
dwe

dx
¼ Bewe:

4.5 GLOBAL APPROXIMATION AND CONTINUITY

In the previous sections of this chapter, we approximated the trial solutions and weight functions on each

element separately. The global approximation of the trial solutions and weight functions, denoted hereafter

by �h and wh, respectively, is obtained by gathering the contributions from individual elements. For a mesh

of nel elements,

�h ¼
Xnel

e¼1

Nede ¼
Xnel

e¼1

NeLe

 !
d;

wh ¼
Xnel

e¼1

Newe ¼
Xnel

e¼1

NeLe

 !
w;

ð4:15Þ

where we have used de ¼ Led following Equation (2.21). The global shape functions are defined as

N ¼
Xnel

e¼1

NeLe; ð4:16Þ

and it can be seen from (4.15) that the global approximation of the trial solutions and weight functions can

be expressed as

�h ¼ Nd ¼
Xnnp

I¼1

NIdI ;

wh ¼ Nw ¼
Xnnp

I¼1

NIwI ;

ð4:17Þ

where nnp is the number of nodes in the mesh. Note that (4.15) and (4.17) are identical functions, as can be

seen by substituting (4.16) into (4.17).

Writing the approximation in the global form is very useful for studying continuity and convergence

properties of the finite element solution.

The matrices of global shape functionsNðxÞand ofelement shape functionsNeðxÞare both rowmatrices.

To express the shape functions in a column matrix, we take the transpose of (4.16)

NT ¼
Xnel

e¼1

LeTNeT: ð4:18Þ

84 APPROXIMATION OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS AND GAUSS QUADRATURE



Equation (4.18) shows that the global shape functions can be obtained by a gather that is identical to that

used in Chapter 2 to assemble the force matrix.

To explain the characteristics of the global shape functions, we consider the two-element mesh depicted

in Figure 4.7. Here the global nodes have been numbered sequentially; recall that the presence of a

superscript on a variable indicates that the subscripts refer to local node numbers.

For the example in Figure 4.7, the scatter matrices Le, which were introduced in Chapter 2, are given by

dð1Þ ¼
�
ð1Þ
1

�
ð1Þ
2

" #
¼

�1

�2

� �
¼

1 0 0

0 1 0

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Lð1Þ

�1

�2

�3

264
375 ¼ Lð1Þd;

dð2Þ ¼
�
ð2Þ
1

�
ð2Þ
2

" #
¼

�2

�3

� �
¼

0 1 0

0 0 1

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Lð2Þ

�1

�2

�3

264
375 ¼ Lð2Þd:

From (4.16) we obtain

N ¼ Nð1ÞLð1Þ þ Nð2ÞLð2Þ ¼
N
ð1Þ
1|{z}

N1

N
ð1Þ
2 þ N

ð2Þ
1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N2

N
ð2Þ
2|{z}

N3

" #
: ð4:19Þ

The number of global shape functions is equal to the number of nodes. The global shape functions, as

obtained from the above, are shown in Figure 4.8. Notice that the global and element shape functions are

identical over an element domain.

It can be seen that the global shape functions also satisfy the Kronecker delta property. One of the salient

features of the global shape functions is that they are C0 continuous. As can be seen from (4.17), the finite

element trial solutions and weight functions are linear combinations of the shape functions. As the global

shape functions are C0, any linear combination must be C0, so the C0 continuity of both �h and wh is

guaranteed.

Moreover, as these shape functions are polynomials, the resulting integrals in theweak form are finite, so the

square integrability requirement of the trial solutions and weight functions discussed in Section 3.10 is met.

Mathematically, we say that shape functions are H1, i.e. NI 2 H1 (See Section 3.5.2 for definition of H1).

4.6 GAUSS QUADRATURE

In general, the weak form derived in Chapter 3 cannot be integrated in closed form. Therefore, numerical

integration is needed. Although there are many numerical integration techniques, Gauss quadrature, which

1 2

(1) 

1 2

1 2 3

(2) 

(1) (2)

Figure 4.7 Global and local node numbers for a finite element mesh.
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is described in this section, is one of the most efficient techniques for functions that are polynomials or

nearly polynomials. In FEM, the integrals usually involve polynomials, so Gauss quadrature is a natural

choice.

Consider the following integral:

I ¼
Z b

a

f ðxÞdx ¼ ? ð4:20Þ

The Gauss quadrature formulas are always given over a parent domain [�1, 1]. Therefore, we will map the

one-dimensional domain from the parent domain [�1, 1] to the physical domain [a, b] using a linear

mapping as shown in Figure 4.9. Note that at x ¼ a; � ¼ �1 and at x ¼ b; � ¼ 1.

This gives us the following equation relating x and �:

x ¼ 1

2
ðaþ bÞ þ 1

2
�ðb� aÞ: ð4:21Þ

−1 1 0 

ξ

l

a b

x

Figure 4.9 Mapping of the one-dimensional domain from the parent domain [�1, 1] to the physical domain [a, b].
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Figure 4.8 Linear global (top) and element (bottom) shape functions for a two-element mesh.
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The above map can also be written directly in terms of the linear shape functions:

x ¼ x1N1ð�Þ þ x2N2ð�Þ ¼ a
1� �

2
þ b

� þ 1

2
:

From (4.21) we get the following:

dx ¼ 1

2
ðb� aÞ d� ¼ l

2
d� ¼ Jd�; ð4:22Þ

where J is the Jacobian given by J ¼ ðb� aÞ=2. We now write the integral (4.20) as

I ¼ J

Z1

�1

f ð�Þd� ¼ JÎI; where ÎI ¼
Z1

�1

f ð�Þd�:

In the Gauss integration procedure outlined below, we approximate the integral by

ÎI ¼ W1f ð�1Þ þW2f ð�2Þ þ � � � ¼ W1 W2 � � � Wn½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
WT

f ð�1Þ
f ð�2Þ

..

.

f ð�nÞ

26664
37775

|fflfflfflfflffl{zfflfflfflfflffl}
f

¼WTf; ð4:23Þ

where Wi are the weights and �i are the points at which the integrand is to be evaluated.

The basic idea of the Gauss quadrature is to choose the weights and the integration points so that the

highest possible polynomial is integrated exactly. To obtain this formula, the function f ð�Þ is approximated

by a polynomial as

f ð�Þ ¼ a1 þ a2� þ a3�
2 þ � � � ¼ 1 � �2 � � �

� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
p

a1

a2

a3

..

.

26664
37775

|fflffl{zfflffl}
a

¼ pðnÞa: ð4:24Þ

We next express the values of the coefficients ai in terms of the function f ð�Þ at the integration points:

f ð�1Þ ¼ a1 þ a2�1 þ a3�
2
1 þ � � �

f ð�2Þ ¼ a1 þ a2�2 þ a3�
2
2 þ � � �

..

.

f ð�nÞ ¼ a1 þ a2�n þ a3�
2
n þ � � �

or

f ð�1Þ
f ð�2Þ

..

.

f ð�nÞ

2666664

3777775
|fflfflfflfflffl{zfflfflfflfflffl}

f

¼

1 �1 �2
1 � � �

1 �2 �2
2 � � �

..

. ..
. ..

. ..
.

1 �n �2
n � � �

26666664

37777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

a1

a2

..

.

an

2666664

3777775
|fflffl{zfflffl}

a

: ð4:25Þ

Based on (4.25) and (4.23), the integral ÎI will be written as

ÎI ¼WTMa: ð4:26Þ
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Gauss quadrature provides the weights and integration points that yield an exact integral of a polynomial of

a given order. To determine what the weights and quadrature points should be, we integrate the polynomial

f ð�Þ:

ÎI ¼
Z1

�1

f ð�Þ d� ¼
Z1

�1

1 � �2 �3 � � �
� � a1

a2

..

.

an

266664
377775 d� ¼ �

�2

2

�3

3

�4

4
� � �

� �1

�1

a

¼ 2 0
2

3
0 � � �

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P̂P

a ¼ P̂Pa:

ð4:27Þ

The weights and quadrature points are selected so that ÎI in (4.27) equals ÎI in (4.26) so that, the quadrature

formula gives the exact integral for a polynomial of a given order. This yields

WT Ma ¼ P̂Pa ) MTW ¼ P̂PT : ð4:28Þ

(4.28) is a system of nonlinear algebraic equations for the unknown matrices M and W.

Note that if ngp is the number of Gauss points, the polynomial of order p that can be integrated exactly is

given by

p � 2ngp � 1:

Thereason for this is that apolynomialoforder p isdefinedbypþ 1parameters.Asboth theweights and the

integration points are adjustable, the ngp-point Gauss integration scheme has 2ngp parameters that can be

adjusted to integrate a polynomial of order p exactly. Thus, an ngp-point Gauss formula can integrate a

(2ngp � 1)-order polynomial exactly. It follows that the number of integration points needed to integrate a

polynomial of order p exactly is given by

ngp �
pþ 1

2
:

For example, to integrate a quadratic polynomial (p ¼ 2) exactly, we need a minimum of ngp ¼ 2

integration points.

Example 4.1: Gauss quadrature

Evaluate the integral below using two-point Gauss quadrature.

I ¼
Z5

2

ðx3 þ x2Þdx; 2ngp � 1 ¼ 3 ) ngp ¼ 2:

As ngp ¼ 2 (two-point integration), the above integral can be evaluated exactly. We use (4.28) to compute

ðW1; �1Þ and ðW2; �2Þ:

1 1

�1 �2

�2
1 �2

2

�3
1 �3

2

266664
377775 W1

W2

" #
¼

2

0

2

3

0

2666664

3777775 )
W1 ¼ W2 ¼ 1

�1 ¼ �
1ffiffiffi
3
p �2 ¼

1ffiffiffi
3
p :
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To obtain the above solution of four nonlinear algebraic equations in four unknowns, we note that by

symmetry W1 ¼ W2 and �1 ¼ ��2. The first equation can then be used to obtain the weights and the third

equation the integration points.

Next, we will use (4.22) with a ¼ 2 and b ¼ 5 to express x and f in terms of �:

x ¼ 1

2
ðaþ bÞ þ 1

2
�ðb� aÞ ¼ 3:5þ 1:5�;

f ð�Þ ¼ ð3:5þ 1:5�Þ3 þ ð3:5þ 1:5�Þ2:

Using (4.23), the integral becomes

I ¼ JÎI ¼ l

2

Z1

�1

ðð3:5þ 1:5�Þ3 þ ð3:5þ 1:5�Þ2Þ d�

¼ l

2
W1ðð3:5þ 1:5�1Þ3 þ ð3:5þ 1:5�1Þ2Þ þ

l

2
W2ðð3:5þ 1:5�2Þ3 þ ð3:5þ 1:5�2Þ2Þ

¼ 37:818þ 153:432 ¼ 191:25:

In this case, as Gauss quadrature is exact we can check the result by performing analytical integration,

which yields

Z5

2

ðx3 þ x2Þdx ¼ x4

4
þ x3

3

� 	



5
2

¼ 197:917� 6:667 ¼ 191:25:

The Gauss quadrature points and weights ðWi; �iÞ can be calculated for any number of integration points.

These results are tabulated in Table 4.1. In the finite element program, these values can be programmed

once so that (4.28) does not have to be repeatedly solved.

Table 4.1 Position of Gauss points and corresponding weights.

ngp Location, �i Weights, Wi

1 0.0 2.0

2 �1=
ffiffiffi
3
p
¼ �0:5773502692 1.0

3 �0:7745966692 0.555 555 5556

0.0 0.888 888 8889

4 �0:8611363116 0.347 854 8451

�0:3399810436 0.652 145 1549

5 �0:9061798459 0.236 926 8851

�0:5384693101 0.478 628 6705

0.0 0.568 888 8889

6 �0:9324695142 0.171 324 4924

�0:6612093865 0.360 761 5730

�0:2386191861 0.467 913 9346
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The Gauss formulas of higher order are usually obtained from special functions called Bernstein

polynomials, see Bernstein (1912).

REFERENCE

Bernstein, S. (1912) Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities. Commun. Soc.

Math. Kharkov, 13, 1–2.

Problems

Problem 4.1
Consider a four-nodecubic element in one dimension. The element length is 3 with x1 ¼ �1; the remaining

nodes are equally spaced.

a. Construct the element shape functions.

b. Find the displacement field in the element when

de ¼

u1

u2

u3

u4

2664
3775 ¼ 10�3

1

0

1

4

2664
3775:

c. Evaluate the Be matrix and find the strain for the above displacement field.

d. Plot the displacement uðxÞ and strain "ðxÞ.
e. Find the strain field when the nodal displacements are deT ¼ ½1 1 1 1�. Why is this result

expected?

Problem 4.2
Consider a five-node element in one dimension. The element length is 4, with node 1 at x ¼ 2, and the

remaining nodes are equally spaced along the x-axis.

a. Construct the shape functions for the element.

b. The temperatures at the nodes are given by T1 ¼ 3 �C; T2 ¼ 1 �C; T3 ¼ 0 �C; T4 ¼ �1 �C; T5 ¼ 2 �C.

Find the temperature field at x ¼ 3:5 using shape functions constructed in (a).

Problem 4.3
Derive the shape functions for a two-node one-dimensional element which is C1 continuous. Note that the

shape functions derived in Chapter 4 are C0 continuous. To enforce C1 continuity, it is necessary to enforce

continuity of displacements and their derivatives. Start by considering a complete cubic approximation

ue ¼ ae
0 þ ae

1xþ ae
2x2 þ ae

3x3 and derive four shape functions corresponding to the displacements and their

derivatives at each node. For clarity of notation, denote the derivatives at the nodes by �i; i ¼ 1; 2.

Problem 4.4
Consider the displacement field uðxÞ ¼ x3; 0 � x � 1. Write a MATLAB program that performs the

following tasks. (The instructor should specify how many of these parts should be done.)
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a. Subdivide the interval [0, 1] into two elements. Compute the displacement field in each element by

letting the nodal displacements be given by uI ¼ x3
I and using a linear two-node element so that the

displacement field ineachelement isgiven byueðxÞ ¼ NeðxÞde ¼ NeðxÞLed,whereNeðxÞare the linear

shape functions given by (4.6). Plot uðxÞand the finite element field ueðxÞon the same plot in the interval

[0, 1].

b. Compute the strain in each element by "eðxÞ ¼ BeðxÞde ¼ BeðxÞLed and plot the finite element strain

and the exact strain. How do these compare?

c. Repeat parts (a) and (b) for meshes of four and eight elements. Does the interpolation of the strain

improve?

d. The error of an interpolation is generally measured by what is called a L2 norm. The error in the L2 norm,

which we denote by e, is given by

e2 ¼
Z L

0

ðue � uÞ2 dx;

where uðxÞ ¼ x3 in this case. Compute the error e for meshes of two, four and eight linear displacement

elements. Use Gauss quadrature for integration. Then plot (this can be done manually) the error versus

the element size on a log-log plot. This should almost be a straight line. What is its slope? This slope is

indicative of the rate of convergence of the element.

e. Repeat part (d) using quadratic two-node quadratic elements.

Problem 4.5
Modify the functions Nmatrix1D.m and Bmatrix1D.m in Section 12.4 to include four-node elements.

Problem 4.6
Use Gauss quadrature to obtain exact values for the following integrals. Verify by analytical integration:

ðaÞ
Z4

0

ðx2 þ 1Þ dx;

ðbÞ
Z1

�1

ð�4 þ 2�2Þ d�:

(c) Write a MATLAB code that utilizes function gauss.m and performs Gauss integration. Check your

manual calculations against the MATLAB code.

Problem 4.7
Use three-point Gauss quadrature to evaluate the following integrals. Compare to the analytical

integral.

ðaÞ
Z1

�1

�

�2 þ 1
dx;

ðbÞ
Z1

�1

cos2 �� d�:
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Write a MATLAB code that utilizes function gauss.m and performs Gauss integration. Check your manual

calculations against the MATLAB code.

Problem 4.8

The integral
R1
�1

ð3�3 þ 2Þd� can be integrated exactly using two-point Gauss quadrature. How is the

accuracy affected if

a. one-point quadrature is employed;

b. three-point quadrature is employed.

Check your calculations against MATLAB code.

Problem 4.9
Verify that the shape functions of two-, three- and four-node elements derived in this chapter satisfy the

following conditions:

Xnen

I¼1

Ne
I ðxÞ ¼ 1:

Explain why the above condition always has to be satisfied.
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5
Finite Element Formulation for
One-Dimensional Problems

We have now prepared all of the ingredients needed for formulating the finite element equations: (1) the

weak form, which is equivalent to the strong form we wish to solve, and (2) the finite element weight and

trial functions, which will be plugged into the weak form. So we are ready to develop the finite element

equations for the physical systems we have described in Chapter 3: heat conduction, stress analysis and the

advection–diffusion equation. This is the last step in the roadmap in Figure 3.1. This step is often called the

discretization, as we now obtain a finite number of discrete equations from the weak form.

The procedure is similar to the one we used in Example 3.3. We first construct admissible weight

functions and trial solutions in terms of arbitrary parameters. However, in the finite element method, the

parameters are the nodal values of the functions. From the arbitrariness of the nodal values for the weight

function, we then deduce the finite element equations, which are linear algebraic equations. We often call

these the discrete equations the system equations; in stress analysis, they are called the stiffness equations.

The finite element analysis procedure is often broken up into four steps:

1. preprocessing, in which the mesh is constructed;

2. formulation of the discrete finite element equations;

3. solving the discrete equations;

4. postprocessing, where the solution is displayed and various variables that do not emanate directly from

the solution are calculated.

In one dimension, preprocessing and postprocessing are quite straightforward, so we will have little to say

about these in this chapter. However, in multidimensional problems, these are quite challenging and

important steps for users of software.

5.1 DEVELOPMENT OF DISCRETE EQUATION: SIMPLE CASE

In order to minimize the abstractness of this description, we first consider the specific problem discussed in

Section 3.2,witha finiteelement model consisting of two linear elements as shown inFigure 5.1a.As canbe

seen, at x ¼ 0, the problem has a traction (natural) boundary condition, and an essential boundary condition

is applied at x ¼ l. Nodes on the essential boundary are numbered first as shown in Figure 5.1a.

The weak form has been developed in Chapter 3 and is given as follows.

A First Course in Finite Elements J. Fish and T. Belytschko

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)



Find uðxÞ among the smooth trial solutions that satisfy the essential boundary condition uðlÞ ¼ �u1 such

that

Z l

0

dw

dx

� �T

AE
du

dx

� �
dx�

Z l

0

wT b dx� ðwT�tAÞ
����
x¼0

¼ 0 8wðxÞ with wðlÞ ¼ 0: ð5:1Þ

In the above,wehave taken the transpose of theweight functions; as wðxÞ is a scalar, this doesnotchange the

value of the expression, but it is necessary for consistency when we substitute matrix expressions for wðxÞ
or its derivative.

The procedure we will follow is similar to Example 3.3: We will evaluate the weak form for the finite

element trial solutionsandweight functions.Then,by invoking the arbitrarinessof theweight functions, we

will deduce a set of linear algebraic (discrete) equations.

The finite element weight functions are

wðxÞ � whðxÞ ¼ NðxÞw; ð5:2Þ

where � denotes an approximation and NðxÞ is the matrix of shape functions. For this mesh,

wðxÞ ¼ w1N1ðxÞ þ w2N2ðxÞ þ w3N3ðxÞ. The finite element trial solutions are approximated by the same

shape functions:

uðxÞ � uhðxÞ ¼ NðxÞd: ð5:3Þ

For this mesh, uðxÞ ¼ u1N1ðxÞ þ u2N2ðxÞ þ u3N3ðxÞ. Notice that we refer to the weight functions and trial

solutions in the plural case as there are infinitely many; our task will be to find that trial solution which

satisfies the weak form. Various shape functions were developed in Chapter 4, and the procedure we will

develop will be applicable to all of them, but first we will focus on the two-node element with linear shape

functions. These finite element shape functions, as we learned in Chapter 4, are sufficiently smooth to be

employed in the weak form.

x
3 12

(1) (2)

(1) (2)

(1) (2)

x3 = 0

u2u3 u1

x1 = l

N1 (x)
N2 (x)

N3 (x)

Γu
Γt

x
3

(a)

(b)

(c)

12

x
3 12

Figure 5.1 (a) Two-element mesh, (b) global shape functions and (c) an example of a trial solution that satisfies an

essential boundary condition.
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The trial solutions must be constructed so that they satisfy the essential boundary condition. This can be

easily accomplished by letting

u1 ¼ �u1: ð5:4Þ

The other nodal displacements are unknown and will be determined by the solution of the weak form. The

global shape functions are shown in Figure 5.1(b). Notice that they are the tent functions we have described

in Chapter 4. The finite element approximation is a linear combination of these shape functions. An

example of a finite element trial solution is shown in Figure 5.1(c). Because of (5.4) and the smoothness of

the finite element approximation, all of the trial solutions are admissible.

On the essential boundary, the weight functions must vanish. To meet this requirement, we set

w1 ¼ 0: ð5:5Þ

The remaining nodal values, w2 and w3, are arbitrary, as the weight functions must be arbitrary.

The element and global matrices are related by gather matrices just as in Chapter 2, so we have

we ¼ Lew; de ¼ Led: ð5:6Þ

The gather matrices follow from the relation between local and global node numbers.

As the finite element functions and their derivatives have kinks and jumps at the element interfaces,

respectively (see Figure 3.5), efficient integration of the weak form (5.1) necessitates evaluation of the

integral over ½0; l� as a sum of integrals over individual element domains ½xe
1; x

e
2�. So we replace the integral

over the entire domain in (5.1) by the sum of the integrals over the element domains:

Xnel

e¼1

Z xe
2

xe
1

dwe

dx

� �T

AeEe due

dx

� �
dx�

Z xe
2

xe
1

weT b dx� ðweTAe�tÞ
����
x¼0

( )
¼ 0 ð5:7Þ

where we have placed superscript ‘e’ on the weight and trial functions to indicate that these are the parts of

those functions that pertain to element e. In each element e, the weight function (5.2) and trial solution (5.3)

can be written as

ueðxÞ ¼ Nede;
due

dx
¼ Bede;

weT ¼ weTNeT;
dwe

dx

� �T

¼ weTBeT;

ð5:8Þ

where de and we are given in terms of the global nodal values by (5.6). Equation (5.8) is the same

approximation as (5.2) and (5.3), and these functions are also admissible. They are a localization of the

global approximations to the elements; they follow from the fact that in element e, the global N and element

shape functions Ne are identical (see Figure 4.8). Henceforth in this book, we will write the finite element

approximations at the element level in the form (5.8); the essential boundary conditions will be met on the

global level and it will be implicit that de and we are given in terms of the global nodal values by (5.6).

Substituting (5.8) into (5.7) gives

Xnel

e¼1

weT

Zxe
2

xe
1

BeTAeEe Bedx

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ke

de �
Zxe

2

xe
1

NeTb dx

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f�e

�ðNeTAe�t|fflfflffl{zfflfflffl}
f�e

Þx¼0

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ 0: ð5:9Þ
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In the above, we have defined two matrices that will be very useful in the finite element method (FEM):

(i) the element stiffness matrix

Ke ¼
Zxe

2

xe
1

BeTAeEe Be dx ¼
Z

�e

BeTAeEe Be dx; ð5:10Þ

(ii) the element external force matrix

fe ¼
Zxe

2

xe
1

NeTb dxþðNeTAe�tÞx¼0 ¼
Z

�e

NeTb dx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f

e

�

þðNeTAe�tÞ
����
�e

t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f

e

�

ð5:11Þ

where �t
e is the portion of the element boundary on the natural boundary and fe

� and fe
� in (5.11) are the

element external body and boundary force matrices, respectively. The element matrices will play the same

key roles as in the analysis of discrete systems in Chapter 2: They are the building blocks of the global

equations. We will examine these matrices for stress analysis and heat conduction in more detail later. In

(5.10) and (5.11), the far right-hand side expressions use a notation that we will introduce in the next

section.

Substituting (5.10) and (5.11) into (5.9) and using (5.6) gives

wT
Xnel

e¼1

LeT Ke Le d�
Xnel

e¼1

LeTfe

 !
¼ 0: ð5:12Þ

InderivingEquation (5.12) recall thatw isnot a functionofxand isaglobalmatrix, andhence it canbe taken

outside of the summation symbol. Moreover, the scatter operator Le is not a function of x, but is element

dependent. Therefore, it has been taken out of the integral, but should remain inside the summation over the

elements.

If you compare the first sum in (5.12) to Equation (2.25), the expression can be recognized as the

assembled system (stiffness) matrix

K ¼
Xnel

e¼1

LeT Ke Le: ð5:13Þ

The system matrix for the differential equation is assembled by exactly the same operations as for the

discrete systems: matrix scatter and add, which is also equivalent to direct assembly. It should be stressed

that we do not need to perform the large matrix multiplications indicated above to assemble the global

matrices. The assembly processes are identical to the assembly procedures we have learned in Chapter 2.

The second term in (5.12) is the assembled external force matrix

f ¼
Xnel

e¼1

LeTfe: ð5:14Þ

This is the column matrix assembly operation. It consists of a column matrix scatter and add and is actually

easier to learn than matrix assembly; it will be illustrated in the examples that follow.

Substituting Equations (5.13) and (5.14) into Equation (5.12) yields

wTðK d� fÞ ¼ 0 8w except w1 ¼ wðlÞ ¼ 0; ð5:15Þ
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where we have indicated the arbitrariness of the nodal values, w, which emanates from the arbitrariness of

the weight functions in the statement of the weak form (5.1) and the restriction on w, (5.5). Let

r ¼ Kd� f; ð5:16Þ

where r is called the residual. Then (5.15) becomes

wTr ¼ 0 8w except w1 ¼ 0: ð5:17Þ

If we write Equation (5.15) for the specific model in Figure 5.1, we have

w2r2 þ w3r3 ¼ 0;

where the first term has dropped out because w1 ¼ 0. As the above holds for arbitrary w2 and w3, we can

deduce that r2 ¼ r3 ¼ 0, but we cannot say anything about r1, and in fact, as it is the unbalanced force at

node 1, so it is the reaction force. If we write the equations, we obtain

r ¼
r1

0

0

24 35 ¼ K11 K12 K13

K21 K22 K23

K31 K32 K33

24 35 �u1

u2

u3

24 35� f1

f2

f3

24 35: ð5:18Þ

Rearranging the term in (5.18) gives

K11 K12 K13

K21 K22 K23

K31 K32 K33

24 35 �u1

u2

u3

24 35 ¼ f1 þ r1

f2

f3

24 35: ð5:19Þ

Equation (5.19) is a system of three equations with three unknowns, u2, u3 and r1. It is similar to Equation

(2.27) derived in Chapter 2. Various solution procedures such as partition and penalty methods have been

discussed in Chapter 2. For instance, using the partition approach, the nodal displacements u2 and u3 are

found first by solving

K22 K23

K32 K33

� �
u2

u3

� �
¼ f2 � K21�u1

f3 � K31�u1

� �
;

followed by the calculation of unknown reactions at node 1:

r1 ¼ f1 � ½K11 K12 K13�
�u1

u2

u3

24 35:
Like the equations for discrete systems, Equation (5.19) can beviewed as equations of discrete equilibrium

at the nodes. The left-hand side is the matrix of internal forces and the right-hand side is that of the external

forces and reactions.Note that the stiffnessmatrix in (5.19) is still singular.However, the partition approach

does not require its inversion.

5.2 ELEMENT MATRICES FOR TWO-NODE ELEMENT

Consider a two-node linear element with constant cross-sectional area Ae and Young’s modulus Ee

subjected to linear distribution of body forces as shown in Figure 5.2. In this section, we derive the element

stiffness matrix and the external force matrix.

ELEMENT MATRICES FOR TWO-NODE ELEMENT 97



Recall that in Section 4.1 we showed that the two-node element shape functions and their derivatives are

given as

Ne ¼
�

x� xe
2

xe
1 � xe

2

x� xe
1

xe
2 � xe

1

�
¼ 1

le

	
ðxe

2 � xÞ ðx� xe
1Þ


;

Be ¼ d

dx
Ne ¼ � 1

le
1

le

� �
¼ 1

le

	
�1 1



:

ð5:20Þ

The element stiffness matrix is then

Ke ¼
Zxe

2

xe
1

BeTAeEe Be dx ¼
Zxe

2

xe
1

1

le

�1

1

" #
|fflfflfflfflffl{zfflfflfflfflffl}

BeT

AeEe 1

le
½�1 1�|fflfflfflfflffl{zfflfflfflfflffl}
Be

dx ¼ AeEe

ðleÞ2
�1

1

" #
½�1 1�

Zxe
2

xe
1

dx

¼ AeEe

ðleÞ2
1 �1

�1 1

" #
xe

2 � xe
1|fflfflffl{zfflfflffl}

le

0B@
1CA;

Ke ¼ AeEe

le
1 �1

�1 1

� �
: ð5:21Þ

Note that this result is identical to that for the bar element derived in Chapter 2 based on physical arguments.

In other words, the stiffness matrix of the two-node element with constant cross-sectional area and constant

Young’s modulus when derived from the weak form is identical to that obtained by physical arguments. It

then may occur to you, why go to all this trouble? The reason is that for higher order elements and in

multidimensions, the procedures described inChapter 2 do not work, whereas theweak form can be applied

to higher order elements and two and three dimensions.

We now turn to the evaluation of the external nodal body forces, the first term in Equation (5.11):

fe
� ¼

Zxe
2

xe
1

NeTbðxÞ dx:

As the body force distribution is linear, it can be expressed in terms of linear shape functions as

bðxÞ ¼ Neb; b ¼ b1

b2

� �
:

x
1

1
ex

2

2
ex

E e Ae

b2
b1

Figure 5.2 Two-node element with linear distribution of body force.
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The element body force matrix is then given as

fe
� ¼

Zxe
2

xe
1

NeTNe dx b ¼ 1

ðleÞ2
Zxe

2

xe
1

ðxe
2 � xÞ2 ðxe

2 � xÞðx� xe
1Þ

ðxe
2 � xÞðx� xe

1Þ ðx� xe
1Þ

2

" #
dx b

¼ le

6

2 1

1 2

� �
b1

b2

� �
:

It can be seen that the sum of forces acting on the element is leðb1 þ b2Þ=2, which is exactly the integral of

the body force over the element domain, i.e. the total force. As expected, for b1 ¼ b2, half of the force goes

to node 1 and half to node 2.

5.3 APPLICATION TO HEAT CONDUCTION AND DIFFUSION PROBLEMS1

The expressions for heat conduction and other diffusion equations can be obtained by just replacing the

fieldsand parameters using theconversion table introduced inChapter 3 (Table 3.2).The terminologyof the

matrices in the discrete heat conduction and diffusion equations is summarized in Table 5.1. The element

matrices are given by

Ke ¼
Z

�e

BeTAe�e Be dx;

fe ¼
Z

�e

NeTf dx|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
f

e

�

þðNeTAe ��Þ
����
� e

�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
f

e

�

ð5:22Þ

with parameters defined by using the equivalences given in Table 3.2.

Example 5.1. Heat conduction

We will first use a heat conduction problem to illustrate how the finite element procedure is applied. This

example will illustrate the construction and solution of the finite element equations and discuss the

accuracyoffinite element solutions. Most of the procedures and discussion in this exampleapplyequally

to stress analysis.

Consider a bar with a uniformly distributed heat source of s ¼ 5 W m�1. The bar has a uniform cross-

sectional area of A ¼ 0:1 m2 and thermal conductivity k ¼ 2 W �C�1 m�1. The length of the bar is 4 m.

The boundary conditions are Tð0Þ ¼ 0 �C and �qðx ¼ 4Þ ¼ 5 W m�2 as shown in Figure 5.3. Divide the

problem domain into two linear temperature two-node elements and solve it by the FEM.

Preprocessing

We start by numbering the nodes on �T . The finite element mesh is shown in Figure 5.4.

Table 5.1 Terminology for finite element matrices.

Matrices Elasticity Diffusion Heat conduction

K Stiffness Diffusivity Conductance

f Force Flux Flux

d Displacement Concentration Temperature

1Recommended for Science and Engineering Track.
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Element conductance matrix

The two-node element shape functions, their derivatives and the resulting conductance matrix (replace

Ee by ke in (5.21))

Ke ¼
Z
�e

BeTAekeBe dx ¼ Aeke

le
1 �1

�1 1

� �

werederived inSection5.2.Note that this result is similar to thebarelement, except thatYoung’s modulus

is replaced by conductivity.

For element 1, we have

x
ð1Þ
1 ¼ 0; x

ð1Þ
2 ¼ 2; lð1Þ ¼ 2; ðAkÞð1Þ ¼ 0:2;

Kð1Þ ¼ 0:2

2

1 �1

�1 1

" #
¼

0:1 �0:1

�0:1 0:1

" #
;

and similarly for element 2:

Kð2Þ ¼ 0:1 �0:1
�0:1 0:1

� �
:

Conductance matrix

The (global) conductance matrix is obtained by the matrix assembly operation:

K ¼
Xnel

e¼1

LeTKeLe ¼ Lð1ÞTKð1ÞLð1Þ þ Lð2ÞTKð2ÞLð2Þ: ð5:23Þ

We can use direct matrix assembly to obtain it, but to show that the two procedures are identical we will

first obtain the global conductance matrix by the above equation. We will assemble the entire con-

ductance matrix without taking into account the essential boundary conditions. This means that just as in

Chapter 2, we will obtain equations for which the right-hand side contains unknowns. However, by

assembling all of the equations, we will be able to evaluate the boundary flux matrix at the essential

boundaries.

x

x = 0 x = 4 ms = 5 W m−1

T (x = 0) = T = 0°C q (x = 4)n = q = 5 Wm−2

Figure 5.3 Problem definition of Example 5.1.

x
1 3(1) (2)2

x1 = 0 x2 = 2 x3 = 4

ΓT

Figure 5.4 Finite element mesh of Example 5.1.
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The gather operators for the two elements are

dð1Þ ¼
T
ð1Þ
1

T
ð1Þ
2

24 35 ¼ T1

T2

" #
¼

1 0 0

0 1 0

" # T1

T2

T3

264
375 ¼ Lð1Þd;

dð2Þ ¼
T
ð2Þ
1

T
ð2Þ
2

24 35 ¼ T2

T3

" #
¼

0 1 0

0 0 1

" # T1

T2

T3

264
375 ¼ Lð2Þd:

The scatter of the conductance matrices gives

~K
ð1Þ¼ Lð1ÞTKð1ÞLð1Þ ¼

1 0

0 1

0 0

24 35 0:1 �0:1
�0:1 0:1

� �
1 0 0

0 1 0

� �
¼

0:1 �0:1 0

�0:1 0:1 0

0 0 0

24 35

~K
ð2Þ¼ Lð2ÞTKð2ÞLð2Þ ¼

0 0

1 0

0 1

24 35 0:1 �0:1
�0:1 0:1

� �
0 1 0

0 0 1

� �
¼

0 0 0

0 0:1 �0:1
0 �0:1 0:1

24 35
The total stiffness is obtained by adding the scattered element stiffnesses given above

K ¼ ~K
ð1Þ þ ~K

ð2Þ ¼
0:1 �0:1 0

�0:1 0:2 �0:1
0 �0:1 0:1

24 35: ð5:24Þ

In practice, the above triple products are not performed, but rather a direct assembly, as previously

described in Chapter 2, is employed. The direct assembly for the process is shown below

Kð1Þ ¼ 0:1 �0:1
�0:1 0:1

� �
½1�
½2� Kð2Þ ¼ 0:1 �0:1

�0:1 0:1

� �
½2�
½3�

½1� ½2� ½2� ½3�

The resulting global conductance matrix is

K ¼
0:1 �0:1 0

�0:1 0:2 �0:1
0 �0:1 0:1

24 35 ½1�½2�
½3�
:

½1� ½2� ½3�

This matrix, obtained by direct assembly, is identical to (5.24)

Boundary flux matrix

The element boundary flux matrices are calculated by (5.11) where �t has been replaced by

��q according to Table 3.2

fe
� ¼ �ðNeTAe � �qÞ

����
�e

q

¼ �NeTðx3Þ � 0:1� 5 ¼ �0:5 NeTðx3Þ:

Note that the shape functions for element 1 (shown in Figure 5.5) vanish on �q. Only shape functions

that are nonzero on the natural boundary �q will contribute to the nodal boundary flux. Therefore, in

computing the boundary flux matrix we need to consider only those elements that are on the natural

boundary.
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Using the above equation, the element boundary flux matrices for the two elements are

f
ð1Þ
� ¼ �0:5

N
ð1Þ
1 ðx3Þ

N
ð1Þ
2 ðx3Þ

" #
¼ �0:5

0

0

� �
¼

0

0

� � ½1�
½2�

f
ð2Þ
� ¼ �0:5

N
ð2Þ
1 ðx3Þ

N
ð2Þ
2 ðx3Þ

" #
¼ �0:5

0

1

� �
¼

0

�0:5

� � ½2�
½3�

The scatter (or direct assembly process) then gives the global boundary flux matrix:

f� ¼
X2

e¼1

LeTfe
�;

f� ¼
1 0

0 1

0 0

264
375 0

0

� �
þ

0 0

1 0

0 1

264
375 0

�0:5

� �
¼

0

0

�0:5

264
375 ½1�½2�
½3�
:

Note that this result is the same as assigning ð�A�qÞj�q
to the node where the flux is prescribed and zero at

all other nodes. In this way, the boundary matrix can be computed directly.

Source flux matrix

The element source flux matrix is derived in Section 5.2 and is given as

fe
� ¼

Zxe
nen

xe
1

NeTs dx ¼ le

6

2 1

1 2

� �
s1

s2

� �
:

where b in (5.11) has been replaced by s according to Table 3.2. Since s1 ¼ s2 ¼ s, the above reduces to

fe
� ¼

les

2

1

1

� �
:

It can be seen that half of the heat goes to node 1 and half to node 2. This also follows from the fact that the

integral of linear shape functions over the element can be computed as an area of a triangle with height

equal to 1 and the base equal to the element length; this follows easily from Figures 5.5 and 5.6.

In the present example, lð1Þ ¼ lð2Þ ¼ 2 and s ¼ 5, which gives

f
ð1Þ
� ¼ f

ð2Þ
� ¼

5

5

� �
:

The element source flux matrix is then assembled:

f� ¼
X2

e¼1

LeTfe
� ¼

1 0

0 1

0 0

24 35 5

5

� �
þ

0 0

1 0

0 1

24 35 5

5

� �
¼

5

10

5

24 35:

(1)
1N (1)

2N
1

x1 x2 x3
0

0

1 2

(1) (2)

3
x

q  = 5 at x3

A = 0.1 = constant 

Figure 5.5 Shape functions for element 1.
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In practice, a direct assembly is used instead:

f
ð1Þ
� ¼

5

5

� �
½1�
½2�

f
ð2Þ
� ¼

5

5

� �
½2�
½3�

) f� ¼
5

5þ 5

5

24 35 ½1�½2�
½3�
:

Partition and solution

The global system of equations is given by

0:1 �0:1 0

�0:1 0:2 �0:1
0 �0:1 0:1

24 35 0

T2

T3

24 35 ¼ 5

10

5

24 35þ 0

0

�0:5

24 35þ r1

0

0

24 35 ¼ r1 þ 5

10

4:5

24 35:
Since node 1 is on the essential boundary, we partition after the first row, which gives

0:2 �0:1
�0:1 0:1

� �
T2

T3

� �
¼ 10

4:5

� �
) T2

T3

� �
¼ 145

190

� �
:

Postprocessing

The temperature gradient is given as

dT ð1Þ

dx
¼ Bð1ÞLð1Þd ¼ 1

2
½�1 1�

1 0 0

0 1 0

� � 0

145

190

264
375 ¼ 72:5;

dT ð2Þ

dx
¼ Bð2ÞLð2Þd ¼ 1

2
½�1 1�

0 1 0

0 0 1

� � 0

145

190

264
375 ¼ 22:5:

Note that the temperature gradient is piecewise constant and, as will be seen in plotting it, a C�1 function.

Evaluation of solution quality

The finite element solution will now be compared to the exact analytical solution. This type of

comparison can be done only for some simple problems (primarily in one dimension) for which the

exact solution is known.

We start from the strong form from Chapter 3:

d

dx
Ak

dT

dx

� �
þ s ¼ 0; 0 < x < l;

d

dx
0:2

dT

dx

� �
þ 5 ¼ 0 ) d2T

dx2
¼ �25;

Tð0Þ ¼ 0; �qð4Þ ¼ �k
dT

dx
njx¼4 ¼ 5 ) dT

dx
ð4Þ ¼ 5

�2
¼ �2:5:

(2)
1N (2)

2N
1

0
0

1 2 3 x

q  = 5 at x3

A = 0.1 = constant 

x3x2x1 (1) (2)

Figure 5.6 Shape functions for element 2.
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Integrating the governing differential equation gives

d2T

dx2
¼ �25) dT

dx
¼ �25xþ c1 )

dT

dx
ð4Þ ¼ �2:5 ¼ �25� 4þ c1 ) c1 ¼ 97:5:

The expression for the temperature is obtained by integrating the temperature gradient, which gives

dT

dx
¼ �25xþ 97:5) T ¼ �12:5x2 þ 97:5xþ c2;

Tð0Þ ¼ 0) �12:5ð0Þ2 þ 97:5ð0Þ þ c2 ¼ 0) c2 ¼ 0:

Thus, the exact temperature and temperature gradient are

Tex ¼ �12:5x2 þ 97:5x;
dTex

dx
¼ �25xþ 97:5:

Figure 5.7 compares the FEM solution with the exact solution. It can be seen that the nodal temperatures

for the FEM solution are exact. This is an unusual anomaly of finite element solutions in one dimension

and does not occur in multidimensional solutions. It is explained in Hughes (1987) p.25. Note that the

essential boundary condition is satisfied exactly. This is not surprising as the trial solution was

constructed so as to satisfy the essential boundary condition. In finite element solutions, essential

boundary conditions will always be satisfied exactly.

Figure 5.8 compares the derivative of the finite element solution with the exact derivative (the

derivative is proportional to the flux). As can be seen from Figure 5.8 and as mentioned before, the

derivative is a C�1 function; the derivative of the temperature and hence the flux in the finite element

solution is discontinuous between elements. As pointed out in Figure 5.8, the natural boundary condition

at x ¼ 4 is not satisfied by the finite element solution. However, we will see in other examples and in

exercises that the natural boundary condition is met more accurately as the mesh is refined. Thus,

although we do not have to construct the finite element approximations to satisfy the natural boundary

conditions, they are met approximately.

It is also informative to see how well the heat conduction equation is met by the finite element solution.

Recall the heat conduction equation (3.12) and substitute the finite element solution for the temperature:

Ak
d2

dx2
ðNðxÞdÞ þ sðxÞ ¼ errðxÞ: ð5:25Þ

T

x

212.5 97.5   exT x x= – +

hT

Figure 5.7 Comparison of the exact and finite element solutions of temperature.
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In the above, we have replaced the zero on the RHS of the heat conduction equation by ‘err’ as the

deviation from zero is indicative of the error in the finite element solution. The first term of Equation

(5.25) will vanish inside an element, as the shape functions are linear in x. Therefore, inside the elements,

the error in the heat conduction equation will be

errðxÞ ¼ sðxÞ for x 6¼ xI :

This error actually appears to be quite large and furthermore would not decrease with refinement of the

mesh. The behavior at the nodes is more complicated and will not be considered here.

Thus, both the natural boundary condition and the balance equations are met approximately only by

the finite element solution. However, it can be shown that the finite element solution converges to the

exact solution as the mesh is refined, although this is not readily apparent from the weak form.

Convergence of the finite element solution to the exact solution is discussed in Section 5.6.

5.4 DEVELOPMENT OF DISCRETE EQUATIONS FOR ARBITRARY
BOUNDARY CONDITIONS

We will now consider the development of the finite element equations for the weak form with arbitrary

boundary conditions, Equation (3.49). For convenience, we write it again:

find uðxÞ 2 U such that

Z
�

dw

dx

� �T

AE
du

dx
dx�

Z
�

wTb dx� ðwTA�tÞ
����
�t

¼ 0 8w 2 U0: ð5:26Þ

Consider the finite element mesh shown in Figure 5.9. The elements can be of any size, and as we will see

later, smaller elements are usually used where they are needed for accuracy. The nodes on the essential

boundary are numbered first as we will use the partitioning method described in Chapter 2. The actual data

Figure 5.8 Comparison of the exact and finite element solutions of temperature gradient.
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need not be of that form, as the nodes can be renumbered in the program; most commercial software do not

use partitioning. But for the purpose of the following development, it is assumed that the essential boundary

nodes appear first in all matrices.

Having selected the finite element mesh and constructed smooth approximation functions over

individual element domains (5.8), we now express the integral over � in (5.26) as a sum of integrals

over element domains:

Xnel

e¼1

Z
�e

dwe

dx

� �T

AeEe due

dx
dx�

Z
�e

weTb dx� ðweTAe�tÞ
����
�e
t

8<:
9=;¼ 0 8w 2 U0; ð5:27Þ

where �e are the element domains; integration over �e is equivalent to integration over the interval

½xe
1; x

e
nen
�.

We will use the same global approximations for the weight functions and trial solutions, (5.2) and (5.3),

respectively. To deal with arbitrary boundary conditions, we will partition the global solution and weight

function matrices as

d ¼
�dE

dF

� �
; w ¼ wE

wF

� �
¼ 0

wF

� �
:

The part of the matrix denoted by the subscript ‘E’ contains the nodal values on the essential boundaries. As

indicated by the overbar on �dE, these values of the solution are set to satisfy the essential boundary

conditions, so theycanbeconsideredasknown. Thesubmatricesdenoted by the subscript ‘F’containall the

remaining nodal values: these entries are arbitrary for the weight function and unknown for the trial

solution. The resulting weight functions and trial solutions will therefore be admissible.

Substituting (5.8) into (5.27) gives

Xnel

e¼1

weT

Z
�e

BeTEeAeBe dx de �
Z
�e

NeTb dx� ðNeTAe �tÞ
����
�e
t

8<:
9=; ¼ 0 8wF: ð5:28Þ

Note that (5.28) is for arbitrary wF as wE is not arbitrary but instead must vanish.

Substituting (5.10) and (5.11) into (5.28) and using (5.6), we ¼ Lew and de ¼ Led, gives

wT
Xnel

e¼1

LeTKeLe

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

K

d�
Xnel

e¼1

LeTfe

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

f

266664
377775 ¼ 0 8wF: ð5:29Þ

x
1 2 nnp

x = a x = b

nel(1) (2) e… …

               I… …

Figure 5.9 Finite element mesh in one dimension.
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The above system can be written as

wTr ¼ 0 8wF; ð5:30Þ

where r ¼ Kd� f as in (5.16).

Partitioning r in Equation (5.30) congruent with w gives

½wE wF�T
rE

rF

� �
¼ wT

ErE þ wT
FrF ¼ 0 8wF: ð5:31Þ

As wE ¼ 0 and wF is arbitrary, it follows from the scalar product theorem that rF ¼ 0. Equation (5.16) can

then be written in the partitioned form as

r ¼ rE

0

� �
¼ KE KEF

KT
EF KF

� �
�dE

dF

� �
� fE

fF

� �
;

where KE, KF and KEF are partitioned to be congruent with the partitions of d and f.

The above equation can be rewritten as

KE KEF

KT
EF KF

� �
�dE

dF

� �
¼ fE þ rE

fF

� �
: ð5:32Þ

Using the two-step approach discussed in Section 5.1, we first solve for the unknown discrete solution dF by

using the second row in the above:

KFdF ¼ fF �KT
EF

�dE: ð5:33Þ

Once dF is known, the unknown reactions can be computed from the first row of (5.32):

rE ¼ KE
�dE þKEFdF � fE: ð5:34Þ

For purposes of postprocessing, the displacements and stresses are computed in each element using

Equation (5.8) and the stress–strain law:

ueðxÞ ¼ NeðxÞde; �eðxÞ ¼ EeðxÞBeðxÞde:

The element nodal values are obtained by the gather operator Le using de ¼ Led.

An important part of postprocessing is the visual depiction of these results. These are invaluable in

interpreting the results and assessing whether the model is appropriate and has been solved correctly. The

variety and richness of visualization in one-dimensional problems is limited, but we will see that

visualization in two dimensions is quite important.

Example 5.2. Tapered elastic bar

Consider a problem of an axially loaded elastic bar as shown in Figure 5.10. Dimensions are in meters.

Solve for the unknown displacement and stresses with a finite element (nel=3, nel=1) mesh consisting of

a single three-node element (nen¼3, nel¼1) as shown in Figure 5.11.
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Recall that the element shape functions for the three-node quadratic element are

N
ð1Þ
1 ¼

ðx� x
ð1Þ
2 Þðx� x

ð1Þ
3 Þ

ðxð1Þ1 � x
ð1Þ
2 Þðx

ð1Þ
1 � x

ð1Þ
3 Þ
¼ ðx� 4Þðx� 6Þ
ð�2Þð�4Þ ¼ 1

8
ðx� 4Þðx� 6Þ;

N
ð1Þ
2 ¼

ðx� x
ð1Þ
1 Þðx� x

ð1Þ
3 Þ

ðxð1Þ2 � x
ð1Þ
1 Þðx

ð1Þ
2 � x

ð1Þ
3 Þ
¼ ðx� 2Þðx� 6Þ

ð2Þð�2Þ ¼ � 1

4
ðx� 2Þðx� 6Þ;

N
ð1Þ
3 ¼

ðx� x
ð1Þ
1 Þðx� x

ð1Þ
2 Þ

ðxð1Þ3 � x
ð1Þ
1 Þðx

ð1Þ
3 � x

ð1Þ
2 Þ
¼ ðx� 2Þðx� 4Þ

ð4Þð2Þ ¼ 1

8
ðx� 2Þðx� 4Þ;

and the corresponding B-matrix is

B
ð1Þ
1 ¼

dN
ð1Þ
1

dx
¼ 1

4
ðx� 5Þ; B

ð1Þ
2 ¼

dN
ð1Þ
2

dx
¼ 1

2
ð4� xÞ; B

ð1Þ
3 ¼

dN
ð1Þ
3

dx
¼ 1

4
ðx� 3Þ;

Bð1Þ ¼ 1

4
½ðx� 5Þ ð8� 2xÞ ðx� 3Þ�:

Stiffness matrix

The element stiffness matrix is given by

Kð1Þ ¼ K ¼
Zx3

x1

Bð1ÞTAð1ÞEð1ÞBð1Þ dx ¼
Z6

2

1

4

ðx� 5Þ
ð8� 2xÞ
ðx� 3Þ

264
375ð2xÞð8Þ 1

4
½ðx� 5Þ ð8� 2xÞ ðx� 3Þ� dx

¼
Z6

2

xðx� 5Þ2 xðx� 5Þð8� 2xÞ xðx� 5Þðx� 3Þ
xð8� 2xÞðx� 5Þ xð8� 2xÞ2 xð8� 2xÞðx� 3Þ
xðx� 3Þðx� 5Þ xðx� 3Þð8� 2xÞ xðx� 3Þ2

2664
3775 dx:

x

E = 8 P a
A = 2x

u(x =2) = 0

t (x = 6) = 0

P(x = 5) = 24 N

x = 2
x = 6b = 8 N / m−1

Figure 5.10 Geometry, loads and boundary conditions of Example 5.2.

3

(1)
1 2x = (1)

2 4x = (1)
3 6x =

1 2

P

x

Figure 5.11 Finite element mesh of Example 5.2.
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It can be seen that the integrand is cubic ðp ¼ 3Þ. So the number of quadrature points required for exact

integration is 2ngp � 1 � 3, i.e. ngp � 2, that is, two-point Gauss quadrature is adequate for exact

integration of the integrand. The Jacobian is

J ¼ b� a

2
¼ 2:

Writing x in terms of � and transforming to the parent domain, we have

Z6

2

f ðxÞ dx ¼ 2

Z1

�1

f ðxð�ÞÞ d� ¼ J W1|{z}
1

f ðxð�1ÞÞ þ W2|{z}
1

f ðxð�2ÞÞ

24 35 ¼ 2½ f ðx1Þ þ f ðx2Þ�; ð5:35Þ

where

x1 ¼ xð�1Þ ¼ 4þ 2�1 ¼ 4þ 2 � 1ffiffiffi
3
p

� �
¼ 2:8453;

x2 ¼ xð�2Þ ¼ 4þ 2�2 ¼ 4þ 2
1ffiffiffi
3
p
� �

¼ 5:1547:

Using (5.35), K11 is given by

K11 ¼
Z6

2

xðx� 5Þ2 dx ¼ 2ð2:8453ð2:8453� 5Þ2 þ 5:1547ð5:1547� 5Þ2Þ ¼ 26:667:

The stiffness matrix is given by

K ¼
26:67 �32 5:33

85:33 �53:33

sym 48

24 35 ¼ 26:67 �32 5:33

�32 85:33 �53:33

5:33 �53:33 48

24 35:
Note that the stiffness matrix is symmetric and the sum of the terms in each row (or column) is equal to

zero. The latter follows from the fact that under rigid body motion (for instance, when the nodal

displacements are all equal to 1) the resulting nodal forces must be zero.

Body force matrix

The matrix of the nodal body forces is obtained by adding the contributions from the distributed loading b

(first term in (5.36)) and the point force P (second term in (5.36)).

f� ¼ f
ð1Þ
� ¼

Zx3

x1

NeTb dxþ ðNeTPÞjx¼5|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
contribution from the point force

: ð5:36Þ

The derivation details of the nodal body forces arising from point forces are given in Appendix A5. Note

that the second term in (5.36) consists of a product of the element shape functions evaluated at the point

where the point force is acting and the value of the point force (positive if it acts in the positive

x-direction). For instance, if the point force is acting in the middle of a linear element, the value of the

shape function in the middle is half, so half of the force flows to each node.
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In the present example, (5.36) gives

f� ¼
Z6

2

0:125ðx� 4Þðx� 6Þ
�0:25ðx� 2Þðx� 6Þ
0:125ðx� 2Þðx� 4Þ

24 35� 8 dxþ
0:125ðx� 4Þðx� 6Þ
�0:25ðx� 2Þðx� 6Þ
0:125ðx� 2Þðx� 4Þ

24 35
x¼5

�24:

Two-point Gauss quadrature is needed because the function is quadratic, so

Z6

2

f ðxÞ dx ¼ 2½ f ðx1Þ þ f ðx2Þ�:

Thus,

f� ¼ 8

2 N
ð1Þ
1 ðx1Þ þ N

ð1Þ
1 ðx2Þ

h i
2½Nð1Þ2 ðx1Þ þ N

ð1Þ
2 ðx2Þ�

2½Nð1Þ3 ðx1Þ þ N
ð1Þ
3 ðx2Þ�

2664
3775þ 3ð5� 4Þð5� 6Þ

�6ð5� 2Þð5� 6Þ
3ð5� 2Þð5� 4Þ

24 35

¼
2ðð2:8453� 4Þð2:8453� 6Þ þ ð5:1547� 4Þð5:1547� 6ÞÞ
�4ðð2:8453� 2Þð2:8453� 6Þ þ ð5:1547� 2Þð5:1547� 6ÞÞ
2ðð2:8453� 2Þð2:8453� 4Þ þ ð5:1547� 2Þð5:1547� 4ÞÞ

264
375þ �3

18

9

264
375

|fflfflffl{zfflfflffl}
sum ¼ 24

¼
5:33

21:33

5:33

24 35
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

8 � 4

þ
�3

18

9

24 35
|fflfflffl{zfflfflffl}

24

¼
2:33

39:33

14:33

24 35:

Note that the boundary force matrix vanishes, except for the reaction at node 1. Thus the RHS of (5.32) is:

f þ r ¼
r1 þ 2:33

39:33

14:33

24 35:
The resulting global system of equations is

where we have partitioned the equations after the first row and column. The reduced system of equations

are:

KFdF ¼ fF �KT
EF

�dE|fflfflffl{zfflfflffl}
0

:

Solving the above

85:33 �53:33

�53:33 48

� �
u2

u3

� �
¼ 39:33

14:33

� �
) u2

u3

� �
¼ 2:1193

2:6534

� �
:
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Postprocessing

Once the nodal displacements have been calculated, the displacement field can be obtained by (5.3).

Writing this equation for the three-node element gives

u ¼ N
ð1Þ
1 u1 þ N

ð1Þ
2 u2 þ N

ð1Þ
3 u3; d ¼ dð1Þ ¼

0

2:1193

2:6534

264
375:

uðxÞ ¼ 1

8
ðx� 4Þðx� 6Þð0Þ þ �1

4
ðx� 2Þðx� 6Þð2:1193Þ þ 1

8
ðx� 2Þðx� 4Þð2:6534Þ

¼ �0:198 15x2 þ 2:248 55x� 3:7045:

The stress field is given by

�ðxÞ ¼ E
du

dx
¼ E

d

dx
ðNð1Þdð1ÞÞ ¼ EBð1Þdð1Þ

¼ 8
1

4
½ðx� 5Þ ð8� 2xÞ ðx� 3Þ�

0

2:1193

2:6534

264
375 ¼ �3:17xþ 17:99:

Estimation of solution quality

For brevity, only the quality of the stress will be assessed. As the problem is statically determinate, the

exact stress field can be calculated from the axial force pðxÞ by dividing it by the cross-sectional area

�ex ¼ pðxÞ
2x

. Figure 5.12 compares the FE solution of the stress field (shown with a solid line) with the

exact stress field (shown with a dashed line). Notice that the FE stress field does not capture the jump that

occurs at the location of the point force.

5.5 TWO-POINT BOUNDARY VALUE PROBLEM WITH GENERALIZED
BOUNDARY CONDITIONS 2

We will now consider a two-point boundary value problem with generalized boundary conditions. We will

first consider the penalty method (Equation (3.62)), followed by the partition method (Equation (3.63)).

36– 4x

2 4 6

x

5

10

15

s

x

24– 4x
x

Figure 5.12 Comparison of the finite element (solid line) and exact stresses (dashed line) for Example 5.2.

2Recommended for Advanced Track.
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In the penalty method, the essential boundary conditions are considered as a limiting case of the natural

boundary conditions; thus, the natural boundary extends over the entire boundary. The weak form is

repeated here for convenience:

find �ðxÞ 2 H1 such that

Z
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð��� bð�� ��ÞÞ
����
�

¼ 0 8w 2 H1; ð5:37Þ

where the fields and parameters are defined in Table 3.2.

In this approach, there are no essential boundary conditions, so all of the nodal values in d and w are free.

Integrating the weak (5.37) over element domains and substituting interpolants (5.8) into the weak form

yields

Xnel

e¼1

weT

Z
�e

BeT�eAeBe dx de þ ðNeTAe bNeÞ
����
�e

de �
Z
�e

NeTf dx� ðNeTAe ð��þ b��ÞÞ
����
�e

8<:
9=; ¼ 0 8w:

ð5:38Þ

where �e is a portion of element boundary on external boundary. We define the finite element matrices:

Ke ¼
Z
�e

BeT�eAeBe dxþ ðNeTAe bNeÞ
����
�e

fe ¼
Z
�e

NeTf dxþ ðNeTAe ð��þ b��ÞÞ
����
�e

:

ð5:39Þ

Substituting (5.39) into (5.38), using we ¼ Lew, de ¼ Led and defining global matrices by (5.13) and

(5.14) gives the discrete weak form

wTr ¼ 0 8w; ð5:40Þ

where r is the residual matrix defined in (5.16). Due to arbitrariness of w, it follows that

r ¼ Kd� f ¼ 0 or Kd ¼ f: ð5:41Þ

In (5.41), no partitioning or node renumbering is required; the essential boundary conditions are easily

enforced by selecting b to be a large penalty parameter.

We now turn to the partition method, which was used in Section 5.1. The general weak form is stated (see

Box 3.6) as

find �ðxÞ 2 U such that

Z
�

dw

dx
A�

d�

dx
dx�

Z
�

wf dx� wAð��� bðxÞð�ðxÞ � ��ðxÞÞÞ
����
��

¼ 0 8w 2 U0: ð5:42Þ
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The global matrices are partitioned as follows:

d ¼
�dE

dF

� �
; w ¼ wE

wF

� �
¼ 0

wF

� �
:

The part of the matrix denoted by the subscript ‘E’ contains the nodal values on the essential boundaries. As

indicated by the overbar on �dE, these values are known. The submatrices denoted by the subscript ‘F’

contain all remaining degrees of freedom: These entries are arbitrary, or free, for the weight function and

unknown for the trial solution.

Substituting (5.27) into the weak form given in (5.42) yields

Xnel

e¼1

weT

Z
�e

BeT�eAeBe dx de þ ðNeTAe bNeÞ
����
�e

�

de�
Z
�e

NeTf dx�ðNeTAe ð��þ b��ÞÞ
����
�e

�

8<:
9=; ¼ 0 8wF:

ð5:43Þ

Note that (5.43) is similar to (5.38) except that boundary terms in (5.43) are defined over �� and (5.43) is

arbitrary for wF rather than for w. The resulting element matrices are identical to (5.39) except that the

boundary term is over ��.

5.6 CONVERGENCE OF THE FEM

In theassessment of solutionquality forvarious typesofelements, abettermeasureofelementperformance

is needed than the residual for ‘eyeballing’ the difference between an exact solution and the finite element

solution. In this section, we describe some general methods for quantifying the error in a finite element

solution. For these purposes, an exact solution is needed, but as we will see in Chapter 8, such exact

solutions can usually be constructed by ‘manufacturing’ the solution.

The basic question addressed in this section is: How can the error in a finite element solution uhðxÞ be

quantified if we know the exact solution? Obviously, comparing the FE solution to the exact solution at a

single point may not be helpful; if the point is a node, the FE solution in one dimension always gives the

exact value, so there is no error. The answer to our question is provided by norms of functions. A norm of a

function is a measureof the ‘size’ of the function, just like the length ofavector is ameasureof the size of the

vector. The length of a vector~a, sometimes called the norm of the vector and denoted by k~a k, is given by

k~a k¼
Xn

i¼1

a2
i

 !1
2

; ð5:44Þ

where n is the number ofcomponents of thevector.This is the standard formula for the length of avector; for

example in two dimensions,n =2 and thexand ycomponentsof thevector aregiven byax ¼ a1 anday ¼ a2.

Then (5.44) gives k a k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y

q
, which is the formula for the length of a vector in two dimensions.

The norm of a function is defined by

k f ðxÞ kL2
¼

Zx2

x1

f 2ðxÞ dx

0@ 1A
1
2

; ð5:45Þ
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where [x1, x2] is the interval over which the function is defined. The above norm is called the Lebesque ðL2Þ
norm.

The similarity between the norm of avector and the norm of a function can be seen if we normalize (5.44)

by dividing by the number of components, which gives

k a! k¼ 1

n

Xn

i¼1

a2
i

 !1
2

: ð5:46Þ

Now if you let aðxiÞ ¼ ai; �x ¼ 1

n
, and let n!1, then the above becomes

k a! k¼ 1

n

Xn

i¼1

a2
i

 !1
2

¼
Xn

i¼1

a2ðxiÞ�x

 !1
2

�
Z1

0

a2ðxÞ dx

0@ 1A
1
2

:

Thus, the norm of a function is like the length of an n-component vector, with n tending to infinity. Like

length it must be positive, and as the length of a vector measures its magnitude, the norm of a function

measures the magnitude of the function.

Using this definition of a norm, we can define the error in a finite element solution by

kekL2
¼kuexðxÞ � uhðxÞk¼

Zx2

x1

ðuexðxÞ � uhðxÞÞ2 dx

0@ 1A
1
2

; ð5:47Þ

where uexðxÞ is the exact solution and uhðxÞ is the finite element solution, so the pointwise error is

uexðxÞ � uhðxÞ. If we think of norms as measures of distance between two functions, then the above is a

measure of the distance between the exact and the FE displacement solution. The error at any point in the

interval contributes to this measure of error because the integrand is the square of the error at any point. The

above can be considered a root-mean-square measure of the error. Thus, the above provides a measure of

error that is not affected by a serendipitous absence of error at a few points.

In comparing errors of different solutions, it is preferable to normalize the error by the norm of the exact

solution. The normalized error is given by

�eL2
¼ kuexðxÞ � uhðxÞkL2

kuexðxÞkL2

¼

Rx2

x1

ðuexðxÞ � uhðxÞÞ2 dx

 !1
2

Rx2

x1

ðuexðxÞÞ2 dx

 !1
2

: ð5:48Þ

The normalized error can be interpreted quite easily: If the normalized error eL2
is of the order of 0.02, then

the average error in the displacement is of the order of 2%.

Although the L2 error in the displacement is quite useful, often we are more interested in the error in the

derivative of the function. For example, in stressanalysis, error in the stress, which isproportional toerror in

the strain, is often of interest. In heat conduction, we are often interested in the heat flux. An error in strain

can be computed by the same formula as (5.47) with the function replaced by its derivative. However, a

more frequently used approach is to compute the error in energy. The error in energy is defined by

keken¼kuexðxÞ � uhðxÞken¼
1

2

Zx2

x1

E eexðxÞ � ehðxÞ
� 
2

dx

0@ 1A
1
2

: ð5:49Þ
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Comparing the above with Wint in the principle of minimum potential energy, we can see that the above is

the square root of the energy of the error in the strain, hence the name error in energy. Furthermore, as the

strain is the derivative of the displacement field, it follows that the error in energy is similar to the error in the

derivative of the displacement field. Again, it is preferable in applications to examine the normalized error

in energy, which is given by

�een ¼
kuexðxÞ � uhðxÞken

kuexðxÞken

¼

1

2

Zx2

x1

EðeexðxÞ � ehðxÞÞ2 dx

0B@
1CA

1
2

1

2

Zx2

x1

EðeexðxÞÞ2 dx

0B@
1CA

1
2

: ð5:50Þ

When the exact solution is known, the norm of the error in displacements and the energy error are

computed easily. The integrals are computed by subdividing the domain into elements, and then using

Gauss quadrature in each element. Higher order Gauss quadrature formulas are usually needed

because the exact solution is generally not a polynomial, so the efficiencies of Gauss quadrature

for polynomials are lost.

In the next example, we will examine the errors as measured by these norms for two elements. For this

purpose, wewill need exact solutions. In one dimension, exact solutions caneasily be obtained for the stress

analysis and heat conduction equations. As a matter of fact, finite elements are usually not needed in one-

dimensional problems, because the equations can be integrated by software such as MATLAB or MAPLE.

So we have described finite elements in one dimension only because it is the simplest setting in which to

learn the method. In multidimensions, obtaining exact solutions is more difficult, and we will learn how to

manufacture solutions in Chapter 7.

5.6.1 Convergence by Numerical Experiments

We consider a bar of length 2l, cross-sectional area A and Young’s modulus E. The bar is fixed at x ¼ 0,

subjected to linear body force cx and applied traction�t ¼ �cl2=A at x ¼ 2l as shown in Figure 5.13.

The strong form is given as

d

dx
AE

du

dx

� �
þ cx ¼ 0;

uð0Þ ¼ 0;

�t ¼ E
du

dx
n

����
x¼2l

¼ � cl2

A
:

b(x) = cx

2l

2clt A= −

Figure 5.13 A bar under compression.
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The exact solution for the above problem can be obtained in the closed form and is given as

uexðxÞ ¼ c

AE
� x3

6
þ l2x

� �
;

eexðxÞ ¼ du

dx
¼ c

AE
� x2

2
þ l2

� �
:

The above problem is solved using the FEM. We study the rate of convergence of the FEM with linear and

quadratic finite element meshes. The material parameters considered are E ¼ 104 N m�2, A ¼ 1 m2,

c ¼ 1N m�2 and l ¼ 1 m.

Figure 5.14 shows the log of the error norm as a function of the log of element size h. As can be seen from

these results, the log of the error varies linearly with element size and the slope depends on the order of the

element and whether the error is in the function or its derivative. If we denote the slope bya, then the error in

the function (the L2 norm) can be expressed as

logðkekL2
Þ ¼ C þ a log h; ð5:51Þ

where C is an arbitrary constant, the y-intercept of the curve. The slope a is the rate of convergence of the

element. Taking the power of both sides gives

kekL2
¼ Cha: ð5:52Þ

For linear two-node elements, a ¼ 2, whereas for quadratic elements, a ¼ 3. It is said that the error for

the two-node element is quadratic, whereas the error in the three-node element is of third order. The

constantCdepends on the problemand the mesh, and it is notofmuch importance. Thecrucial concept tobe

learned from this equation is how the error decreases with element size. It can be seen from (5.52) that if the

element size is halved, the error in the function decreases by a factor of 4 for linear elements. The formula

given above hasbeengeneralized in the mathematics literature. Theessence of thisgeneralization is that if a

finite element contains the compete polynomial of order p, then the error in the L2 norm of the displacement

varies according to

kekL2
¼ Ch pþ1: ð5:53Þ

Quadratic element

y=7.8×10–3x3

10–2

10–3
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Linear element

y=1.4×10–1x2

100

10–1

10–2

10–3

10–4

10–2 10–1

Element length (m)
100

L 2 
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ro
r

Figure 5.14 L2 norm of error for linear (left) and quadratic (right) finite element meshes.
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You can see from the above that this formula agrees with our results for errors for the linear and quadratic

elements (p ¼ 1 for linear elements, p ¼ 2 for quadratic elements) considered in the above example. It

can similarly be seen from Figure 5.15 that the slope of the convergence plot for derivatives, i.e. the

error inenergy, isone order lower.So the error inenergyforan element that is complete up toorder p isgiven

by

keken¼ Ch p: ð5:54Þ

Thus, the accuracy in the derivative is one order less than the accuracy in the function.

The implications of these results are many. The most important is that if the element size is halved, the

error in the derivative (error in energy) decreases by factors of 2 and 4 for linear and quadratic elements,

respectively.This isone of the important lessons in thischapter; quadratic elements giveyoumore accuracy

for the buck. In fact, in linear analysis, quadratic elements are almost always preferred. Their advantages in

accuracy are overwhelming and come at little cost.

The conditioning of the linear system equations deteriorates for higher order Lagrange elements. The

best tradeoff between accuracy and complexity for Lagrange interpolants seems to be offered by quadratic

elements. This rate of convergence of higher order elements is superior provided that the solution is

sufficiently smooth, i.e., pþ1 derivatives of the exact solution should be finite. If the solution is not smooth,

such as for instance u¼x1/2 (see also Problem 3.8) the estimate in Eq. (5.53) is no longer valid. Gui and

Babuska (1986) showed that

keken� Chb; ð5:55Þ

where

b ¼ min p; l� 1

2

� �
; l > 1=2; p � 1: ð5:56Þ

For the bounds (5.55) and (5.56) to bevalid, three requirements must be met: (i) the exact solution has to live

in H1 (integrability), so the smoothness parameter l > 1=2 in Equation (5.56); (ii) the finite element

solution has to be at least C0 continuous (continuity) with square integrable derivatives; and (iii) the trial

solution has to be complete up to order p with p � 1 (completeness).

Linear element

y=4.7×10–1x
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Quadratic element

y=5×10–2x2

10–1

10–2

10–3

10–4

10–5

10–2 10–1

Element length (m)
100

E
ne

rg
y 

er
ro

r

Figure 5.15 Energy norm of error for linear (left) and quadratic (right) finite element meshes.
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The fact that finite element solutions are only approximate is very important to bear in mind in their

application. It is crucial that the user of a finite element program has some way for assessing the quality of

the solution. One way this can be done is by refining the mesh and seeing how much the solution changes

with refinement; if there are large changes, then the original mesh is inadequate and the new mesh may also

be inadequate, so that further refinement may be necessary. Finite element software today often includes

error indicators that provide estimates of the FE solution error. These error indicators make estimates of the

error in the finite element solution on an element-by-element basis. Such error indicators arevery useful for

gauging the accuracy of the solution.

5.6.2 Convergence by Analysis 3

We now turn to formal discussion of convergence. The approximate character of the finite element solution

stems from the replacement of the space of all functions in U and U0 by finite-dimensional subspaces

Uh 	 U and Uh
0 	 U0, which are defined as

Uh ¼ f�hðxÞj�hðxÞ ¼ NðxÞd;N 2 H1; � ¼ �� on ��g;
Uh

0 ¼ fwhðxÞjwhðxÞ ¼ NðxÞw;N 2 H1; w ¼ 0 on ��g:
ð5:57Þ

The above means that Uh and Uh
0 are sets of functions interpolated with C0 shape functions and satisfy the

essential boundary condition on �� or vanish at the essential boundary, respectively.

There are an infinite number of functions in U and U0, i.e. these spaces are of infinite dimension. When

we represent the weight functions by shape functions, then the space of weight functions Uh
0 becomes finite

dimensional (equal to the number of nodes excluding those on essential boundary). Similarly, the space Uh

inwhich we seek our finite element solution becomes finitedimensional. Although theweak form isexactly

equivalent to the strong form for the infinite-dimensional spaces U and U0, it is only approximately

equivalent for the finite-dimensional spaces Uh 	 U and Uh
0 	 U0, which are used in the FEM. Therefore,

the equations that emanate from the weak form, the balance equation, and the natural boundary conditions

are only satisfied approximately. In this section, wewill distinguish between theweak forms defined for the

exact and finite element solutions. For the elasticity problem, these equations are given as follows. Find

uðxÞ 2 U and uhðxÞ 2 Uh such that

ðaÞ
Z
�

dw

dx
Ak

du

dx
dx ¼ ðwA�tÞj�t

þ
Z
�

wb dx 8w 2 U0;

ðbÞ
Z
�

dwh

dx
Ak

duh

dx
dx ¼ ðwhA�tÞj�t

þ
Z
�

whb dx 8wh 2 Uh
0 :

ð5:58Þ

To analyze how close is uhðxÞ to uðxÞ, we start by showing that uhðxÞminimizes the energy norm of error

keken¼ku� uh ken, i.e.

k u� uh ken¼ min
u
2Uh

k u� u
 ken : ð5:59Þ

To prove (5.59), we expand the right-hand side as

k u� u
 k2
en¼

�����
�����ðu� uhÞ|fflfflfflffl{zfflfflfflffl}

e

þðuh � u
Þ|fflfflfflfflffl{zfflfflfflfflffl}
wh 2 Uh

0

�����
�����
2

en

:

3Recommended for Advanced Track.
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Note that as uh and u
 satisfy essential boundary conditions, it follows that ðuh � u
Þ � wh 2 Uh
0 and thus

k eþ wh k2
en¼k e k2

en þ k wh k2
en þ

Z
�

dwh

dx
AE

de

dx
dx:

Subtracting the two weak forms in (5.58) and choosing w ¼ wh 2 Uh
0 in (5.58a) yieldsZ

�

dwh

dx
Ak

de

dx
dx ¼ 0:

As k wh ken> 0 for any wh 6¼ 0, we get that k e ken is minimum. From (5.59) we can obtain a quantitative

estimate for the energy norm of error k e ken by estimating k u� ~u ken, where ~u 2 Uh is a suitably chosen

auxiliary function defined in the same subspace as the finite element solution. We denote the error of

auxiliary function in element i as ~ei ¼ u� ~u for ði� 1Þh � x � ih, where h ¼ l=n is the length of n equal-

size elements.

Let us choose the auxiliary function~u 2 Uh to be a linear interpolation function such that it is equal to the

exact solution at the finite element nodes, i.e. ~uðxJÞ ¼ uðxJÞ as shown in Figure 5.16. Note that for

one-dimensional problems the interpolation function coincides with the finite element solution (see

Example 5.1).

The derivative of the interpolation function
d~u

dx
in element i is given by

d~u

dx
ðxÞ ¼ ~uðxJþ1Þ � ~uðxJÞ

xJþ1 � xJ

;

where xJ ¼ ði� 1Þh and xJþ1 ¼ ih. By mean value theorem (see Appendix A3), there is a point c in the

interval xJ � c � xJþ1 such that

d~u

dx
¼ du

dx
ðcÞ ð5:60Þ

We now expand the derivative of the exact solution
du

dx
ðxÞ using Taylor’s formula with remainder (see

Appendix A3) around point c satisfying (5.60):

du

dx
ðxÞ ¼ du

dx
ðcÞ þ ðx� cÞ d

2u

dx2
ð�Þ; ð5:61Þ

where c � � � x.

x

u u

u~

element i

h

xJ xJ + 1

Figure 5.16 Interpolation function approximation of the exact solution.
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Subtracting (5.60) from (5.61) and assuming that
du

dx
ð�Þ

���� ���� � a, we have

dei

dx

���� ���� ¼ du

dx
� d~u

dx

���� ���� � ajx� xJ j � ah; ði� 1Þh � x � ih: ð5:62Þ

The energy norm of error in the interpolation function can be bounded as

k ~e k2
en¼

1

2

Z
�

AE

�
d~e

dx

�2

dx ¼ 1

2

Xn

i¼1

Zih

ði�1Þh

AE

�
d~ei

dx

�2

dx � 1

2
nhKðhaÞ2; ð5:63Þ

where AðxÞEðxÞ � K. Denoting nh ¼ l and recalling that the energy norm of the finite element solution

error is less than or equal to the energy norm of the interpolation function error, we have

k e ken�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Kla2h2

r
¼ Ch: ð5:64Þ

The error estimate for higher order elements can be obtained in a similar fashion as for the linear element

except that a higher order Taylor’s formula with remainder has to be used instead (see Problem 5.5 for error

estimation inquadratic elements). It canbeshownthat theenergynormoferror forfiniteelements oforder p

is bounded by (5.54), provided that p+1 derivative of the exact solution is bounded,
dpþ1u

dxpþ1
ð�Þ

���� ���� � a. In

(5.54), C is independent of h see Strang and Fix (1981).

5.7 FEM FOR ADVECTION–DIFFUSION EQUATION 4

To obtain the discrete equations for the diffusion–advection problem, we use the same procedure as before:

We express the weight function and trial solution in terms of shape functions, substitute these into the weak

form and use the arbitrariness of the weight functions to deduce the equation.

The weak form developed in Section 3.8.2 is used with the usual finite element approximations for the

weight functions and trial solutions, (5.2) and (5.3), respectively. The nodal variables are partitioned into

the essential and free nodes, and the nodal values of the trial solution and weight function are given by

d ¼
�dE

dF

� �
; w ¼ 0

wF

� �
;

where �dE are set to satisfy the essential boundary conditions. Therefore, the weight functions and trial

solutions are admissible.

We subdivide the domain � into elements �e. Substituting (5.2) and (5.3) into (3.74) and following the

procedure given in Section 5.1 yields

Xnel

e¼1

ðweÞT
Z
�e

AeveNeTBe dx de

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ke

A

þ
Z
�e

AekeBeTBe dx de

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ke

D

0BBBBBB@

1CCCCCCA�
Z
�e

NeTs dx� ðAeNeT�qÞ
����
�e

q|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fe

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ 0:

ð5:65Þ
4Recommended for Advanced Track.
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The element matrices as indicated by the underscored terms are

ðaÞ Ke
D ¼

Z
�e

AekeBeTBe dx;

ðbÞ Ke
A ¼

Z
�e

AeveNeTBe dx:

ð5:66Þ

The matrix Ke
D accounts for the diffusion and is identical to the matrix we have developed in Section 5.3,

which is given in (5.22). The matrix Ke
A accounts for the advection (convection). The product of the area

and velocity must be constant according to (3.65).

The element matrices are

Ke ¼ Ke
D þKe

A:

The element force matrix fe is identical to that for the heat conduction equation or diffusion equation,

Equation (5.22), as indicated by the underscored term in (5.65).

The element matrices are assembled by scatter and add procedures described previously and the

resulting linear algebraic equations will be solved as in Equations (5.32)–(5.34).

Ascan be seen from (5.66b), the advection matrix is not symmetric. To providea concrete example of the

lack of symmetry, we evaluate the advection matrix for a two-node linear element with constant area Ae and

velocity ve using (5.66b):

Ke
A ¼ veAe

Z1

0

1� �
�

� �
1

l
½�1 1�l d�

¼ veAe

Z1

0

�ð1� �Þ 1� �
�� �

� �
d�

¼ veAe
� 1

2

1

2

� 1

2

1

2

264
375 ¼ veAe

2

�1 1

�1 1

� �
:

The system matrix, which is obtained by assembling the above advection matrices and diffusivity matrices,

will also not be symmetric. This is a major difference from the previous finite element models that we have

studied.

The system matrix in general is not positive definite. This can be seen by considering the case when

k ¼ 0. Letting zT ¼ ½1; 0� and evaluating zTKe
Az yields zTKe

Az ¼ �ðveAe=2Þ < 0. It will be seen in

Example 5.3 that the loss of symmetry and positive definiteness leads to some exceptional difficulties in

solving these systems.

Example 5.3. Advection–diffusion problem

Solve the one-dimensional advection–diffusion equation

v
d�

dx
� k

d2�

dx2
¼ 0; ð5:67Þ

with boundary conditions

�ð0Þ ¼ 0; �ð10Þ ¼ 1:
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The area Ae ¼ A ¼ 1:0. Use linear�finite elements and a 20-element mesh with uniformly spaced nodes.

Let v ¼ 2 and k ¼ 5 so that the Peclet number Pe �
vle

2k
¼ 0:1. Repeat for Pe ¼ 3:0.

The element matrices for all elements are the same. The element matrices are given by

Ke ¼ Ke
D þKe

A ¼
vAe

2

�1 þ1

�1 þ1

� �
þ kAe

le
1 �1

�1 1

� �
¼ kAe

le
1� Pe �1þ Pe

�1� Pe 1þ Pe

� �
:

Substituting in the values for k, Ae and le, we obtain the following:

� for nodes I with 1 < I < 21, the system equation is assembled to be

ð�1� PeÞdI�1 þ2dI þ ð�1þ PeÞdIþ1 ¼ 0;

� for node 1: d1 þ ð�1þ PeÞd2 ¼ 0;

� for node 21: ð�1� PeÞd20 þ 2d21 ¼ 0.

The solutions for Pe ¼ 0:1 and Pe ¼ 3:0 are compared to the exact solution in Figure 5.17. It can be seen

that the FE solution is quite good for Pe ¼ 0:1.

However, the solution oscillates wildly for Pe ¼ 3:0. This is called a spatial instability. For high values

of the Peclet number, i.e. when advection dominates, special techniques must be developed to obtain

accurate solutions of the advection–diffusionequation. Oneof these techniques is described in Chapter 8;

textbook accounts may be found in Donea and Huerta (2003). These techniques are very important in

computational fluid dynamics because many of the equations found there are of this form.
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Figure 5.17 Exact and FEM solutions of Equation (5.67) for Pe ¼ 0:1 (left) and Pe ¼ 3 (right).
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Problems

Problem 5.1
Consider a heat conduction problem in the domain [0, 20] m. The bar has a unit cross section, constant

thermal conductivity k ¼ 5 W �C�1 m�1 and a uniform heat source s ¼ 100 W m�1. The boundary

conditions are Tðx ¼ 0Þ ¼ 0 �C and �qðx ¼ 20Þ ¼ 0 W m�2. Solve the problem with two equal linear

elements. Plot the finite element solution ThðxÞ and dThðxÞ=dx and compare to the exact solution which is

given by TðxÞ ¼ �10x2 þ 400x.

Problem 5.2
Repeat Problem 5.1 with 4-, 8- and 16-element uniform meshes (equal-size elements) using MATLAB

program. Compare the finite element solutions to the exact solution. Plot the error in the natural boundary

condition as the mesh is refined. What is the pattern?

Problem 5.3
Consider a heat conduction problem shown in Figure 5.18. The dimensions are in meters. The bar has a

constant unit cross section, constant thermal conductivity k ¼ 5 W �C�1 m�1 and a linear heat source s as

shown in Figure 5.18.

The boundary conditions are Tðx ¼ 1Þ ¼ 100 �C and Tðx ¼ 4Þ ¼ 0 �C.

Divide the bar into two elements ðnel ¼ 2Þ as shown in Figure 5.19.

Note that element 1 is a three-node (quadratic) element (nen¼3), whereas element 2 is a two-node (nen¼2)

element.

a. State the strong form representing the heat flow and solve it analytically. Find the temperature and flux

distributions.

b. Construct the element source matrices and assemble them to obtain the global source matrix. Note that

the boundary flux matrix is zero.

c. Construct the element conductance matrices and assemble them to obtain the global conductance

matrix.

d. Find the temperature distribution using the FEM. Sketch the analytical (exact) and the finite element

temperature distributions.

e. Find the flux distribution using the FEM. Sketch the exact and the finite element flux distributions.

x

50
( 2)

3
s x= +

x = 4x = 1

Figure 5.18 Heat conduction of Problem 5.3.

x
x = 1 x = 2 x = 3 x = 4

(1) (2)

Figure 5.19 Finite element mesh for Problem 5.3.
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Problem 5.4
Given a one-dimensional elasticity problem as shown in Figure 5.20. The bar is constrained at both ends

(A and C). Its cross-sectional area is constant (A ¼ 0:1 m2) on segment AB and varies linearly

A ¼ 0:5ðx� 1Þm2 on BC. The Young’s modulus is E ¼ 2� 107 Pa. A distributed load b ¼ 10 N m�1 is

applied along the left portion of the bar AB and a point force P ¼ 150 N acts at point B. The geometry,

material properties, loads and boundary conditions are given in Figure 5.20a.Use a three-node element on

AB (nen¼3) and a two-node element on BC (nen¼2) as shown in Figure 20b. The dimensions in Figure 5.20

are in meters.

a. Construct the element body force matrices and assemble them to obtain the global force matrix.

b. Construct the element stiffness matrices and assemble them to obtain the global stiffness matrix.

c. Find and sketch the finite element displacements.

d. Find and sketch the finite element stresses.

Problem 5.5
Consider an axial tension problem given in Figure 5.21. The bar has a linearly varying cross-sectional area

A ¼ ðxþ 1Þm2 in the region 0 m < x < 1 m and a constant cross-sectional area A ¼ 0:2 m2 in the region

1 m < x < 2 m. The Young’s modulus is E ¼ 5� 107 Pa. The bar is subjected to the point load

P ¼ �200 N at x ¼ 0:75 m and a quadratically varying distributed loading b ¼ x2 N m�1 in the region

1 m < x < 2 m. The bar is constrained at x ¼ 0 m and is traction free at x ¼ 2 m.

Use a single quadratic element (nen¼3, nel¼1) with a center node at x ¼ 1.

1. Construct the element stiffness matrix and force matrix and carry out Gauss quadrature of the element

stiffness matrix using one-point integration and the body force matrix using two-point Gauss

quadrature.

2. Solve the system of linear equations and find the nodal displacements and element stresses.

x
P = 150 N

A B C

A B CD

1 3 4 2
(1) (2)

b = 10 Nm−1 E = 2×107 Pa

xB = 3xA = 1 xC = 5

(a)

(b)

Figure 5.20 (a) Geometry, material properties, loads and boundary conditions for a bar with a variable cross-sectional

area (b) the finite element model.

x

( 0) 0= =u x

x = 0 x = 1 x = 2

P (x = 3/4) = −200
2( ) =b x x

( 2) 0σ = =x

Figure 5.21 Data for Problem 5.5.
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3. Find the exact stress distribution and compare it to the finite element solution.

4. Suggest how to improve the finite element model to get more accurate results.

Problem 5.6
Consider a weak form given in (5.26). Prove that for sufficiently smooth functions (having pþ 1 bounded

derivatives) the error in energy norm of the finite solution of order p ¼ 2 is bounded by k e k�� a=N2.

Follow the steps below to prove the bound.

a. In each element, expand the exact temperature using Taylor’s formula with remainder up to quadratic

order. Show that there is a point c within the element domain such that

d2T

dx2
ðcÞ ¼ Tðx3Þ � 2Tðx2Þ þ Tðx1Þ

ðl=2Þ2
; 0 � c � l;

where l ¼ x3 � x1, x2 � x1 ¼ l=2.

b. On each element domain, assume a quadratic interpolation function ~T to be exact at three points:
~Tðx1Þ ¼ Tðx1Þ, ~Tðx2Þ ¼ Tðx2Þ, ~Tðx3Þ ¼ Tðx3Þ, and construct a quadratic approximation.

c. Using Taylor’s formula with remainder up to quadratic order, expand
dT

dx
around point c found in (a).

d. Write the derivative of the interpolation function constructed in (b) as

d~T

dx
¼ aþ bx;

where a and b are expressed in terms of the exact nodal temperatures.

e. Show that there is a constant c in the interval 0 � c � l for which the coefficients of the exact and

interpolation temperatures up to linear order are identical.

Problem 5.7
Modify the MATLAB finite element code for heat conduction problem in one dimension.

a. Rename the variables to eliminate confusion.

b. Use your code to solve Problem 5.1.

c. Compare the results of MATLAB program to your manual calculations in Problem 5.1.

Problem 5.8
Develop the finite element equations for heat conduction with surface convection. The strong form in this

case is given by

kA
d2T

dx2
¼ bhðT � T1Þ; 0 � x � l;

where k, A, h, b and T1 are constants. b ¼ 2�r is the perimeter of the fin.

Problem 5.9
Modify the MATLAB finite element code to solve the heat conduction problem with surface convection

(see Problem 5.8). Consider also convection boundary conditions

�q ¼ hðT � T1Þ on x ¼ 0 or x ¼ l:

Using the MATLAB finite element code, solve the problem with the following parameters:

k ¼ 400 W m�1 �C�1; l ¼ 0:1 m; h ¼ 3000 W m�2 �C�1; r ¼ 10�2 m ðradius; of pinÞ;
T1 ¼ 20 �C:
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Boundary conditions: Tð0Þ ¼ 80�C; � q ¼ hðT � T1Þ on x ¼ l:
Find the temperature and flux with uniform finite element meshes consisting of two, four and eight

elements.

Problem 5.10
In the FEM formulated in this chapter, theweight functions and trial solutions were approximated using the

same set of shape functions. This is known as the Galerkin FEM. In the alternative approximation method,

known as the subdomain collocation method, the weight functions are chosen to be unity over a portion of

the domain (for instance element domain) and zero elsewhere:

weðxÞ ¼ 1 on x 2 �e;
0 on x =2�e:

�
a. Derive the weak form for the subdomain collocation method.

b. Derive the discrete equations.

c. Solve the Problem 5.1 and compare the results to the Galerkin FEM and the exact solution. Is the

stiffness matrix symmetric?

d. How accurate is the subdomain collocation method compared to the Galerkin FEM? Why?

Problem 5.11
Repeat Problem 5.10, but instead of the subdomain collocation method, consider the point collocation

method. In the point collocation method, the weight function is chosen to be the Dirac delta function

wðxÞ ¼ �ðx� xiÞ. xi are referred to as collocation points selected by the analyst. When considering

Problem 5.1, place the collocation points at the finite element nodes.

Problem 5.12
Given an elastic bar of length l ¼ 4 m with constant cross-sectional area A ¼ 0:1 m2 and a piecewise

constant Young’s modulus as shown in Figure 5.22. The bar is constrainted at x ¼ 4 m, and a prescribed

traction �t ¼ 500 N m�2 acts at x ¼ 0 m in the positive x-direction. Consider a finite element mesh

consisting of a single two-node element ðnel ¼ 1, nen ¼ 2Þ.

a. Construct the stiffness matrix using an exact integration.

b. Construct the force matrix.

c. Find the displacements and strains using the FEM.

d. Model the problem with two spring elements; solve for the unknown displacements using the

techniques you learned in Chapter 2.

e. Compare the results of c and d. Which one is better?

f. If you model the bar with two linear elements ðnel ¼ 2, nen ¼ 2Þor with one quadratic element ðnel ¼ 1,

nen ¼ 3Þ, which one will give a more accurate solution of strains.

g. What is an optimal finite element mesh for this problem? An optimal mesh is defined as the one that

gives the best one-dimensional solution (for displacements and stresses) with minimum finite element

nodes.

0                / 2                        x x l x l= = =

5 2
1 2

8 2
10 N / m         10 N / m     E E= =

x

Figure 5.22 A bar with a piecewise constant Young’s modulus.
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h. In term of design of finite element meshes, what kind of a recommendation can you make based on the

results of this problem?

Problem 5.13
Consider a three-node quadratic element in one dimension with unequally spaced nodes (Figure 5.23).

a. Obtain the Be matrix.

b. Consider an element with x1 ¼ 0, x2 ¼ 1=4 and x3 ¼ 1. Evaluate strain e in terms of u2 and u3ðu1 ¼ 0Þ,
and check what happens when � approaches 0.

c. If you evaluate Ke by one-point quadrature using BeTEeAeDBe for same coordinates as in (b) and

constrain node 1 (i.e. u1 ¼ 0), is Ke invertible?

d. If uðxÞ in part (b) is given by ð1=2Þx2 at the nodes, does e ¼ x?

Problem 5.14
Consider a tapered rod (Figure 5.24) with the cross-sectional area given by

Að�Þ ¼ A1ð1� �Þ þ A2�; where � ¼ x

L
:

a. Obtain the element stiffness for a linear displacement element, with Young’s modulus ¼ E, by using

Ke ¼
R
�e

BeTDB d�.

b. Obtain the stiffness matrix Ke using the displacement field

u ¼ ð�Þ ¼ u1 þ ðu2 � u1Þ�2:

Specialize the result for A1 ¼ A2; does this answer make sense? What is the stress whenyou apply a force F

at one end?

1 2 3 x

Figure 5.23 Data for Problem 5.13.

2

L

1
x

Figure 5.24 Tapered bar for Problem 5.14.
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Problem 5.15
Consider a bar with constant cross-sectional area A and Young’s modulus E discretized with two finite

elements as shown in Figure 5.25. The bar is subjected to linear body force bðxÞ ¼ cx.

a. Compute the element stiffness and force matrices;

b. Show that
P

e

LT
e KeLe and

P
e

LeTfe give the same stiffness matrix and external force matrix as direct

assembly;

c. Obtain the finite element solution and plot uðxÞ and eðxÞ;
d. Compare to the closed form solution.

Problem 5.16
Consider an element shown in Figure 5.26 with a quadratic displacement field uðxÞ ¼ a1 þ a2xþ a3x2.

a. Express the displacement field in terms of the nodal displacements u1; u2; u3. (Hint: Use the Lagrangian

interpolants and the local coordinate �.)
b. For a linear body force field bð�Þ ¼ b1ð1=2Þð1� �Þ þ b3ð1=2Þð1þ �Þ show that the external force

matrix is given by fe ¼ ðAL=6Þ½�b1 2ðb1 þ b3Þ b3�T.

c. Develop the Be matrix such that e ¼ du

dx
¼ Bede, deT ¼ ðu1; u2; u3Þ.

d. Show that the element stiffness matrix Ke ¼
R
�e

BeTEeAeBe d�, is given by

Ke ¼
AE

3L

7 �8 1

�8 16 �8

1 �8 7

24 35.

e. Use one three-node quadratic displacement element to solve by finite elements E
d2u

dx2
¼ �bðxÞ ¼ �cx,

uð�L=2Þ ¼ uðL=2Þ ¼ 0.

f. Compare the FEM results to the exact solution for uðxÞ, �ðxÞ.

321

x

0x =

(1) (2)

L L

Figure 5.25 Two-element bar structure for Problem 5.15.

321

x , ξ

A

L/2

2 /x Lξ =

L/2

0x =

Figure 5.26 A single quadratic element for Problem 5.15.
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Problem 5.17
Consider the mesh shown in Figure 5.27. The model consists of two linear displacement constant strain

elements. The cross-sectional area is A¼1, Young’s modulus is E; both are constant. A body force

bðxÞ ¼ cx is applied.

a. Solve and plot uðxÞ and eðxÞ for the FEM solution.

b. Compare (by plotting) the finite element solution against the exact solution for the equation

E
d2u

dx2
¼ �bðxÞ ¼ �cx:

c. Solve the above problem using a single quadratic displacement element.

d. Compare the accuracy of stress and displacement at the right end with that of two linear displacement

elements.

e. Check whether the equilibrium equation and traction boundary condition are satisfied for the two

meshes.

321

x

L L

Figure 5.27 Two two-node element mesh of Problem 5.17.
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6
Strong and Weak Forms for
Multidimensional Scalar Field
Problems

In the next three chapters, we will retrace the same path that we have just traversed for one-dimensional

problems for multidimensional problems. Wewill again follow the roadmap in Figure 3.1, starting with the

development of the strong form and weak form in this chapter. However, we will now consider a more

narrow class of problems; we have called these scalar problems because the unknowns are scalars like

temperature or a potential. The methods that will be developed in these chapters apply to problems such as

steady-state heat conduction, ideal fluid flow, electric fields and diffusion–advection. In order to provide a

physical setting for these developments, we will focus on heat conduction in two dimensions, but details

will be given for some of the other applications.

As can be seen from the roadmap in Figure 3.1, the first step in developing a finite element method is to

derive the governing equations and boundary conditions, which are the strong form. We will see that in two

dimensions, just as before, wewill have essential and natural boundary conditions. Using a formula similar

to integration by parts, we will then develop a weak form. Finally, we will show that the weak form implies

the strong form, so that we can use finite element approximations for trial solutions to obtain approximate

solutions to the strong form by solving the weak form.

One aspect that we will stress in the extension to two dimensions is its similarity to the one-dimensional

formulation. The major equations in two dimensions are almost identical in structure to those in one

dimension, so most of the learning effort can be devoted to learning what these expressions mean in two

dimensions. The expressions for the strong and weak forms in two dimensions, by the way, are identical to

thoseforthreedimensions,andattheendofthechapterwewillgiveashortdescriptionofhowtheyareapplied

to three dimensions. In engineering practice today, most analyses are done in three dimensions, so it is

worthwhile to acquaint yourself with the theory in three dimensions. The extension from two to three

dimensionsisalmost trivial(wehaveusuallyavoidedtheword‘trivial’ inthisbookbecauseit isoftenmisused

in texts, for what often seems trivial to an author can be quite baffling, but the extension from 2D to 3D is

indeed trivial).

One complication in extending the methods to two dimensions lies in notation. In two dimensions,

variables such as heat flux and displacement are vectors. You have undoubtedly encountered vectors in

elementary physics. Vectors are physical quantities that have magnitude and direction, and they can be

expressed in termsof componentsand basevectors. Wewill denotevectorsby superposedarrows, suchas~q,

which is the flux matrix. Let the unit vectors in the x and y directions be~i and~j; these are often called the base
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vectors of the coordinate system. Then a vector~q can be expressed in terms of its components by

~q ¼ qx
~iþ qy

~j; ð6:1Þ

where qx and qy are the x and y components of the vector, respectively.

When we get to the derivation of finite element equations, it becomes convenient to use matrix notation.

A column matrix can be used to describe a vector~q by listing the components of the vector in the order as

shown below:

q ¼ qx

qy

� �
: ð6:2Þ

Though it is not crucial to deeply understand the difference between vectors and matrices at this point, a

vector differs from a matrix: a vector embodies the direction for a physical quantity, whereas a matrix is

just an array of numbers. We will give most of the formulas of the strong and weak forms in both vector

and matrix notations. In the finite element equations, we will use only matrix notation. You will see that

the derivation of weak and strong forms in matrix notation is a little awkward and differs from the forms

commonly seen in advanced calculus and physics. So if you know vector notation as taught in those

courses, you may find it preferable to use vector notation for the material in this chapter. The transition

to matrix notation is quite easy. On the contrary, some people prefer to learn both parts in matrix notation

for the sake of consistency.

An important operation in vector methods is the scalar product. The scalar product of two vectors in

cartesian coordinates is the sum of the products of the components of the vectors; the scalar product of~q
with a vector~r is given by

~q �~r ¼ qxrx þ qyry:

The scalar product is commutative, so the order of the two vectors does not matter. If we consider two

matrices q and r that contain the components of~q and~r, respectively, then the scalar product is written as

qTr ¼ ½qx qy�
rx

ry

� �
¼ qxrx þ qyry:

So writing the scalar product in terms of the matrices requires taking the transpose of the first matrix. It can

easily be shown that qTr ¼ rTq. When manipulating vector expressions in matrix form, it is important to

carefully handle the transpose operation.

Another important operation in vector methods is the gradient. The gradient provides a measure of the

slope of a field, so it is the two-dimensional counterpart of a derivative. The gradient vector operator is

defined by

~r ¼ ~i
@

@x
þ~j @

@y

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

~r

:

The gradient of the function �ðx; yÞ is obtained by applying the gradient operator to the function, which

gives

~r� ¼~i @�
@x
þ~j @�

@y
:

Notice that we have simply replaced the bold dot in ( ) by �ðx; yÞ. The gradient of a function gives the

direction of steepest descent. In other words, if you think of the function as describing a ski slope, the
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gradient gives you the direction along which you would go the fastest. This is further illustrated in

Example 6.1.

The scalar product of thegradient operator with avector fieldgives the divergence of thevectorfield. The

term divergence probably originated in fluid mechanics, where it refers to the flow leaving a point. We will

see later that the divergence of the heat flux is equal to the heat flowing from a point (the negative of the

source in a steady-state situation). The divergence of a vector~q is obtained by taking a scalar product of the

gradient operator ~r and~q, which gives

~r �~q ¼ ~i
@

@x
þ~j @

@y

� �
�
�
qx
~iþ qy

~j
�
¼ @qx

@x
þ @qy

@y
� div~q:

Notice that the divergence of a vector field is a scalar. As indicated in the last expression, the divergence

operator is often written by simply preceding the vector by the abbreviation ‘div’.

The above expressions can be written in the matrix form as follows. The gradient operator is defined as a

column matrix. So

= ¼

@

@x

@

@y

2664
3775 and =� ¼

@�

@x

@�

@y

2664
3775:

The matrix form of the divergence is written by replacing the dot in the scalar product by a transpose

operation, so

div~q ¼ ~��~q ¼ =Tq:

It is important to notice that when wewrite thegradient operator invectornotation, an arrow is placed on the

inverted del; in matrix notation, the arrow is omitted.

In the following, the students should use whichever notation is more natural. For those not very familiar

with either notation, they should first scan the material and seewhich one they can understand more readily.

For advanced students, a familiarity with both notations is recommended.

6.1 DIVERGENCE THEOREM AND GREEN’S FORMULA

The two-dimensional equations will be developed for a body of arbitrary shape. We will often refer to the

points inside the body as the domain of the problem we are treating. We will follow common practice and

draw this generic arbitrary body as shown in Figure 6.1(b); the idea of this figure is intended to convey that

we are not placing any restrictions on the shape of the body: The derivations that follow hold for arbitrary

shapes. This body is often called a potato, though heat conduction in potatoes is seldom of interest. It is

worth pointing out that the shape can actually be much more complicated: The body can have holes, it can

Ω

x

y

Γ

Γ

n
ny

nx

0 l

Ω = [0,l]n = −1 n = 1 x

(b)(a)

Figure 6.1 (a) One-dimensional domain and (b) two-dimensional domain.
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have corners and it can consist of different materials with interfaces between them. The boundary of the

domain is denoted by �. Notice that our nomenclature is identical to that in the previous chapters, but now

the symbols refer to more complicated objects. The correspondence between the definitions in one and two

dimensions is readily apparent by comparing Figure 6.1(a) and Figure 6.1(b).

The unit normal vector to the domain, denoted by~n, is shown at a typical point in Figure 6.1(b) and is

given by

~n ¼ nx
~iþ ny

~j; ð6:3Þ

and nx and ny are the x and y components of the unit normal vector, respectively; this vector is also called the

normal vector or just the normal. As~n is a unit vector, it follows that n2
x þ n2

y ¼ 1.

The objective of this section is to develop the formula corresponding to the integration by parts formula

(3.16) for a scalar field �ðx; yÞ, where �ðx; yÞ is defined on the domain �. Examples of the scalar fields are

temperature fields Tðx; yÞ and potential fields �ðx; yÞ.
Prior to discussing the divergence theorem, it is instructive to recall the fundamental theorem of calculus

that we developed in Chapter 3: for any C0 integrable function in a one-dimensional domain, �, with

boundaries �, we have Z
�

d�ðxÞ
dx

dx ¼ ð�nÞj�: ð6:4Þ

Recall that the boundary consists of the two end points of the domain and the unit normals point in the

negative x-direction at x ¼ 0 and positive x-direction at x ¼ l.

The generalization of this statement to multidimensions is given by Green’s theorem, which states:

If �ðx; yÞ 2 C0 and integrable; thenZ
�

~r� d� ¼
I
�

�~n d� or

Z
�

=� d� ¼
I
�

�n d�: ð6:5Þ

Note the similarity of (6.4) and (6.5); the operator d=dx is simply replaced by the gradient~r. In fact, d/dx

can be considered the one-dimensional counterpart of the gradient. So the one-dimensional form (6.4) is

just a special case of (6.5). Equation (6.5) also applies in three dimensions. The proof of Green’s theorem is

given in Appendix A4.

Using the above,wewill now developa theorem that relates the area integralof the divergenceof avector

field to the contour integral of a vector field, which is called the divergence theorem. It states that if~q is C0

and integrable, then

Z
�

~r �~q d� ¼
I
�

~q �~n d� or

Z
�

=Tq d� ¼
I
�

qTn d�: ð6:6Þ

Note that (6.5) in two dimensions represents two scalar equations

ðaÞ
Z
�

@�

@x
d� ¼

Z
�

�nx d�; ðbÞ
Z
�

@�

@y
d� ¼

Z
�

�ny d�: ð6:7Þ
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Letting � ¼ qx in (6.7a) and � ¼ qy in (6.7b), and adding them together yields

Z
�

@qx

@x
þ @qy

@y

� �
d� ¼

I
�

ðqxnx þ qynyÞ d� or

Z
�

~r �~q d� ¼
I
�

~q �~n d�; ð6:8Þ

which is the divergence theorem given in (6.6).

Green’s formula, which is derived next, is the counterpart of integration by parts in one dimension. It

states that

Z
�

w~r �~q d� ¼
I
�

w~q �~n d��
Z
�

~rw �~q d� or

Z
�

w=Tq d� ¼
I
�

w qTn d��
Z
�

ð=wÞTq d�:

To develop Green’s formula, we first evaluate~r � ðw~qÞ by the derivative of a product rule:

~r � ðw~qÞ ¼ @

@x
ðwqxÞ þ

@

@y
ðwqyÞ ¼

@w

@x
qx þ w

@qx

@x
þ @w

@y
qy þ w

@qy

@y

¼ w
@qx

@x
þ @qy

@y

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

~r �~q

þ @w

@x
qx þ

@w

@y
qy

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~rw �~q

¼ w~r �~qþ~rw �~q: ð6:9Þ

Notice that we can immediately write the last step of the above if we think of the gradient as a generalized

derivative and place dots between any two vectors.

Integrating (6.9) over the domain yields

Z
�

~r � ðw~qÞ d� ¼
Z
�

w~r �~q d�þ
Z
�

~rw �~q d�: ð6:10Þ

Applying the divergence theorem to the LHS of (6.10) and then rearranging terms yields Green’s

formula:

Z
�

w~r �~q d� ¼
I
�

w~q �~n d��
Z
�

~rw �~q d�: ð6:11Þ

It is interesting to observe that for a rectangular domain l� 1 with one-dimensional heat flow, where

~q ¼ qx
~i and~n ¼ n~i, nð0Þ ¼ �~i, nðlÞ ¼~i, we have

Z
�

w
@qx

@x
d� ¼

I
�

qxwn d��
Z
�

@w

@x
qx d�: ð6:12Þ
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Choosing w to be only a function of x, i.e. wðxÞ, and integrating (6.12) in y the above reduces to the formula

for integration by parts in one dimension (3.16), which is repeated below:

Z l

0

w
@qx

@x
dx ¼ qxwð Þx¼ l � ðqxwÞx¼0 �

Z l

0

qx

@w

@x
dx: ð6:13Þ

Note the similarity of (6.11) and (6.13). For additional reading on Green’s theorem, Green’s formula and

the divergence theorem, we recommend Fung (1994) for an introductory approach and Malvern (1969) for

a more advanced treatment.

Example 6.1

Given a rectangular domain as shown in Figure 6.2. Consider a scalar function � ¼ x2 þ 2y2. Let~q be the

gradient of � defined as~q ¼ ~r�. Contour lines are lines along which a function is constant.

(a) Find the normal to the contour line of � passing through the point x ¼ y ¼ 0:5.

(b) Verify the divergence theorem for~q.

The gradient vector~q is given as

~q ¼ @�

@x
~iþ @�

@y
~j ¼ 2x~iþ 4y~j:

Figure 6.3 depicts the contour lines of � and the gradient vector~q. It can be seen that~q is normal to the

contour lines and its magnitude represents the slope of � at any point.

The gradient of � at x ¼ y ¼ 0:5 is

~qð0:5; 0:5Þ ¼~iþ 2~j:

At the point x ¼ y ¼ 0:5, thevalue of the scalar field� is�ð0:5; 0:5Þ ¼ 0:75. The unit normal vector to the

contour line x2 þ 2y2 � 0:75 ¼ 0 at the point x ¼ y ¼ 0:5 is obtained by dividing the vector~q by its

magnitude, which gives

~nð0:5; 0:5Þ ¼ 1ffiffiffi
5
p ð~iþ 2~jÞ:

x

y

CD

A B

1

1

−1

−1

n(3) = j

n(1) = − j

n(4) = − i
n(2) = i

Figure 6.2 Domain used for illustration of divergence theorem.
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We now verify the divergence theorem. The unit normal vectors at the four boundaries of the domain

ABCD are shown in Figure 6.2. To verify the divergence theorem (6.6), we first evaluate the integrand on

the LHS of (6.6):

~r �~q ¼ @qx

@x
þ @qy

@y
¼ 2þ 4 ¼ 6:

Integrating the above over the problem domain gives

Z
�

~r �~q d� ¼
Z1

�1

Z1

�1

6 dy

0@ 1A dx ¼ 24:

Evaluating the boundary integral counterclockwise givesI
�

~q �~n d� ¼
Z

AB

ð�4yÞ d�|{z}
dx

þ
Z

BC

2x d�|{z}
dy

þ
Z

CD

4y d�|{z}
�dx

þ
Z

DA

ð�2xÞ d�|{z}
�dy

¼
Z1

�1

4 dxþ
Z1

�1

2 dyþ
Z1

�1

4 dxþ
Z1

�1

2 dx ¼ 24:

Thus, we have verified the divergence theorem for this example.

Figure 6.3 Contour lines of a function � ¼ x2 þ 2y2 and its gradient.
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Example 6.2

Given a vector field qx ¼ 3x2yþ y3, qy ¼ 3xþ y3 on the domain shown in Figure 6.4, verify the

divergence theorem.

The integrand on the LHS of (6.6) is given as

~r �~q ¼ @qx

@x
þ @qy

@y
¼ 6xyþ 3y2:

Integrating the above yieldsZ
�

~r �~q d� ¼
Z 2

0

Z 1�0:5x

0

ð6xyþ 3y2Þdy

� �
dx ¼

Z 2

0

h
3xð1� 0:5xÞ2 þ ð1� 0:5xÞ3

i
dx ¼ 1:5:

The counterclockwise computed boundary integral on AB is

Z
AB

~q �~nð1Þ d� ¼
Z

AB

qxð�1Þ d� ¼
Z2

0

�3x dx ¼ �6;

where~nð1Þ ¼ �~j, d� ¼ dx and y ¼ 0 on AB.

For the counterclockwise computed boundary integralon BC, note that equationof the lineBC isgiven

by y ¼ 1� 0:5x and~nð2Þ ¼
ffiffiffi
5
p

=5ð~iþ 2~jÞ, d� ¼ �
ffiffiffi
5
p

=2dx on BC. The boundary integral on BC is then

given by

Z
BC

~q �~nð2Þ d� ¼
Z
AB

ðqx
~iþ qy

~j Þ
ffiffiffi
5
p

5
ð~iþ 2~j Þ d� ¼

Z0

2

� 1

2

h
ð3x2 þ y3Þ þ 2ð3xþ y3Þ

i
dx ¼ 7:75:

Finally, the counterclockwise boundary integral on CA is

Z
BC

~q �~nð3Þ d� ¼
Z
AB

ðqx
~iþ qy

~jÞð�~iÞ d� ¼
Z0

1

y3 dy ¼ �0:25;

where~nð3Þ ¼ �~i, d� ¼ �dy and x ¼ 0 on CA.

x
B

A

C

y

n(2)

n(1)

n(3)

(2,0)

(0,1)

Figure 6.4 Triangular problem domain used for illustration of divergence theorem.
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Adding the contributions of the three segments gives

I
�

~q �~n d� ¼
Z

AB

~q �~n d�þ
Z

BC

~q �~n d�þ
Z

CA

~q �~n d� ¼ �6þ 7:75� 0:25 ¼ 1:5;

which completes the demonstration that the divergence theorem holds for this case.

6.2 STRONG FORM1

To derive the strong form we will apply energy balance to a control volume. The strong form will be

completed by adding the Fourier law, which relates heat flux to the temperature gradient and the boundary

conditions. Finally, the weak form will be formulated by integrating the product of the governing equation

and the natural boundary condition with the weight function over the domains where they hold. A

symmetric form is obtained by applying Green’s formula (equivalent to the integration by parts in one

dimension). We consider only steady-state problems where the temperature is not a function of time.

Consider a plate of unit thickness shown in Figure 6.5(a); the plate contains a heat source sðx; yÞ (energy

per unit area and time). The control volume is shown in Figure 6.5(b). The balance of heat energy in the

control volume requires that the heat flux~q flowing out through the boundaries of the control volume equals

the heat generated s. This is the same energy balance we used in Chapter 3: as the body is in steady state, the

heat energy in any control volume must stay constant, which means that the flow out has to equal the heat

energy generated by the source.

The flux vector ~q can be expressed in terms of two components: the component tangential to the

boundary qt and the component normal to the boundary qn.The tangential component qt does notcontribute

to the heat entering or exiting the control volume. Recall that

~q ¼ qx
~iþ qy

~j; ~n ¼ nx
~iþ ny

~j; n2
x þ n2

y ¼ 1:

The normal component qn is given by the scalar product of the heat flux with the normal to the body:

qn ¼~q �~n ¼ qTn ¼ qxnx þ qyny: ð6:14Þ

On AD, where~n ¼ �~i, the heat inflow is �qn ¼ �~q � ð�~iÞ ¼ qx whereas on BC, where~n ¼~i, the heat

inflow is�qn ¼ �~q �~i ¼ �qx.
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q x y − ∆
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∆
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(b)

Figure 6.5 Problem definition: (a) domain of a plate with a control volume shaded and (b) heat fluxes in and out of the

control volume.
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InFigure6.5(b),only the normalcomponentsof thefluxare shown,as theseare the onlyones that contribute

to the energy flow into the control volume. The energy balance in the control volume is given by

qx x��x

2
; y

� �
�y� qx xþ�x

2
; y

� �
�y

þ qy x; y��y

2

� �
�x� qy x; yþ�y

2

� �
�xþ sðx; yÞ�x�y ¼ 0:

where the first four terms are the net heat inflow. Divide the above by �x�y and recall the definition of a

partial derivative:

lim
�x!0

qx xþ�x

2
; y

� �
� qx x��x

2
; y

� �
�x

¼ @qx

@x
;

lim
�y!0

qy x; yþ�y

2

� �
� qy x; y��y

2

� �
�y

¼ @qy

@y
:

The above energy balance equation (after a change of sign) can then be written as

@qx

@x
þ @qy

@y
� s ¼ 0;

or in the vector and matrix forms:

ðaÞ ~r �~q� s ¼ 0 or div~q� s ¼ 0 or ðbÞ =Tq� s ¼ 0: ð6:15Þ

If we recall the definition of the divergence operator, we can see that this equation can be obtained just by

reasoning: the first term is the divergence of the flux, i.e. the heat flowing out from the point. The heat

flowing out from the point ~r �~q must equal the heat generated s to maintain a constant amount of heat

energy, i.e. temperature, at a point, which gives equation (6.15).

Recall Fourier’s law in one dimension:

q ¼ �k
dT

dx
¼ �krT:

In two dimensions, we have two flux components and two temperature gradient components. For isotropic

materials in two dimensions, Fourier’s law is given by

~q ¼ �k~rT or q ¼ �k=T; ð6:16Þ

where k > 0. As in one dimension, the minus sign in (6.16) reflects the fact that heat flows in the

direction opposite to the gradient, i.e. from high temperature to low temperature. If the conductivity k is

constant, the energy balance equation expressed in terms of temperature is obtained by substituting (6.16)

into (6.15):

kr2T þ s ¼ 0; ð6:17Þ

where

r2 ¼ ~r �~r ¼ =T= ¼ @2

@x2
þ @2

@y2
: ð6:18Þ
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Equation (6.17) is called the Poisson equation andr2 is called the Laplacian operator.

The flux and the temperature gradient vectors are related by a generalized Fourier’s law:

qx

qy

� �
¼ � kxx kxy

kyx kyy

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

D

@T

@x

@T

@y

2664
3775;

or in the matrix form:

q ¼ �D=T ; ð6:19Þ

where D is the conductivity matrix. We write this equation only in the matrix form because the vector form

cannot be written without second-order tensors, which are not covered here.

Substituting the generalized Fourier law (6.19) into the energy balance equation (6.15) yields

=TðD=TÞ þ s ¼ 0: ð6:20Þ

The matrix D must be positive definite as heat must flow in the direction of decreasing temperature.

For isotropic materials,

D ¼ k 0

0 k

� �
¼ kI: ð6:21Þ

In two dimensions, the symmetry of the material is an important factor in the form of the Fourier law. A

material is said to have isotropic symmetry if the properties are the same in any coordinate system. For

example, most metals, concrete and a silicon crystal are isotropic. The form of the relation between heat

flux and temperature gradient in an isotropic material is independent of how the coordinate system is

placed. In anisotropic materials, D depends on the coordinate system. Examples of anisotropic materials

are radial tires, fiber composites and rolled aluminum alloys. For example, in a radial tire, heat flows much

more rapidly along the direction of the steel wires than in the other directions.

To solve the partial differential equation (6.20), boundary conditions must be prescribed. In multi-

dimensions, the same complementarity conditions that we learned in one dimension hold. At any point of

the boundary (see Figure 6.6), either the temperature or the normal flux must be prescribed, but they both

cannot be prescribed. Therefore, if we denote the boundary where the temperature is prescribed by �T and

the boundary where the flux is prescribed by �q, then we have

�q [ �T ¼ �; �q \ �T ¼ 0: ð6:22Þ

T qΓ = Γ  Γ  

T = T on ΓT

x

Ω

y

⊂

Figure 6.6 Problem domain and boundary conditions.
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We write the prescribed temperature boundary condition as

Tðx; yÞ ¼ Tðx; yÞ on �T ; ð6:23Þ

where Tðx; yÞ is the prescribed temperature; these are the essential boundary conditions; these are also

called Dirichlet conditions. As indicated, the prescribed temperature along the boundary can be a function

of the spatial coordinates.

On a prescribed flux boundary, only the normal flux be prescribed. We can write the prescribed flux

condition as

qn ¼~q �~n ¼ �q on �q: ð6:24Þ

These are also called Neumann conditions. For an isotropic material, the normal flux is proportional to the

gradient of the temperature in the normal direction, i.e. it follows from (6.19) and (6.21) that

qn ¼ �knTrT . It can be seen that the flux depends on the derivatives of the temperature, so this is the

natural boundary condition.

The resulting strong form for the heat conduction problem in two dimensions is given in the vector form

for isotropic materials in Box 6.1 and in the matrix form for general anisotropic materials in Box 6.2. These

forms differ from what we used in one dimension in that the energy balance and Fourier’s law are not

combined. This simplifies the development of theweak form and extends the applicability of theweak form

to nonlinear heat conduction.

Box 6.1. Strong form (vector notation) for heat conduction

ðaÞ energy balance : ~r �~q� s ¼ 0 on �;

ðbÞ Fourier0s law : ~q ¼ �k~rT on �;

ðcÞ natural BC : qn ¼~q �~n ¼ �q on �q;

ðdÞ essential BC : T ¼ T on �T :

ð6:25Þ

Box 6.2. Strong form (matrix notation) for heat conduction

ðaÞ energy balance : =Tq� s ¼ 0 on �;

ðbÞ Fourier0s law : q ¼ �D=T on �;

ðcÞ natural BC : qn ¼ qTn ¼ �q on �q;

ðdÞ essential BC : T ¼ T on �T ;

ð6:26Þ

The variables s, D, T and �q are the data for the problem. These, along with the geometry of the domain �,

must be given.

6.3 WEAK FORM

To obtain the weak form we will follow the same basic procedure as for the one-dimensional problem in

Chapter 3. However, as we have already mentioned, we will develop the weak form of the balance equation

(6.15a). Then we will express the heat flux in terms of the temperature gradient by the Fourier law.

We start with the energy balance equation (6.15a) and the natural boundary condition (6.25c). We

premultiply the two equations by a weight function w and integrate over the problem domain � and the
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natural boundary �q, respectively:

ðaÞ
Z
�

wð~r �~q� sÞ d� ¼ 0 8w; ðbÞ
Z
�q

wð�q�~q �~nÞ d� ¼ 0 8w: ð6:27Þ

For the equivalence of the strong and weak forms, it is crucial that theweak form hold for all functions w. As

in one dimension, we will find that some restrictions must be imposed on the weight function, but we will

develop these as we need them. Applying Green’s formula to the first term in (6.27a) yieldsZ
�

w~r �~q d� ¼
I
�

w~q �~n d��
Z
�

~rw �~q d� 8w: ð6:28Þ

Inserting (6.28) into (6.27a) yieldsZ
�

~rw �~q d� ¼
I
�

w~q �~n d��
Z
�

ws d� ¼
Z
�q

w~q �~n d�þ
Z
�T

w~q �~n d��
Z
�

ws d�: ð6:29Þ

where we have subdivided the first integral on the RHS of (6.29) into the prescribed temperature and

prescribed flux boundaries, which is permissible because of (6.22). Substituting (6.27b) into the integral on

�q (6.29) yields Z
�

~rw �~q d� ¼
Z
�q

w�q d�þ
Z
�T

w~q �~n d��
Z
�

ws d�:

We now follow the same reasoning as in Chapter 3. It is easy to construct weight functions that vanish on a

portion of the boundary, so we set w ¼ 0 on the prescribed temperature boundary, i.e. the essential

boundary. Therefore the integral on �T vanishes and the weak form is given byZ
�

~rw �~q d� ¼
Z
�q

w�q d��
Z
�

ws d� 8w 2 U0; ð6:30Þ

where U0 is the set of sufficiently smooth functions that vanish on the essential boundary, it is the space of

functions defined in (3.48). The space of admissible trial solutions U satisfies the essential boundary

conditions and is sufficiently smooth as defined in (3.47). Recall that according to the definition of these

spaces, the trial solutions and weight functions have to be C0 continuous.

Expressing (6.30) in matrix form givesZ
�

ð=wÞTq d� ¼
Z
�q

w�q d��
Z
�

ws d� 8w 2 U0:

The above is the weak form for any material, linear or nonlinear. To obtain the weak form for linear

materials, we substitute Fourier’s law into the first term of the above, which yields

Box 6.3. Weak form (matrix notation) for heat conduction

find T 2 U such that:Z
�

ð=wÞTD=T d� ¼ �
Z
�q

w�q d�þ
Z
�

ws d� 8w 2 U0: ð6:31Þ
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6.4 THE EQUIVALENCE BETWEEN WEAK AND STRONG FORMS2

To demonstrate the equivalence of the strong form and the weak form, it must be shown that the weak form

implies the strong form. This demonstration is similar to the one used in Chapter 3 for showing the

equivalence for one-dimensional problems: we reverse the steps that we have followed in going from the

strong form to the weak form and then invoke the arbitrariness of the weight functions to extract the strong

form from the integral equations. We will do this for the weak form for arbitrary materials.

We start with (6.30), rewritten below:Z
�

~rw �~q d� ¼
Z
�q

w�q d��
Z
�

ws d�:

Now we apply Green’s formula (6.11) to the first term, which givesZ
�

wð~r �~q� sÞ d�þ
Z
�q

wð�q�~q �~nÞ d��
Z
�T

w~q �~n d� ¼ 0 8w 2 U0: ð6:32Þ

We follow the same strategyas in Chapter 3. Since theweight function wðxÞ is arbitrary, it can be assumed to

be any function that vanishes on �T .

We takeadvantageof thearbitrarinessof theweight functionandmake it equal to the integrand that is,we

let

w ¼  ðxÞð~r �~q� sÞ; where  ðxÞ ¼ 0 on �
> 0 on �

� �
: ð6:33Þ

Inserting (6.33) into (6.32) yields Z
�

 ð~r �~q� sÞ2 d� ¼ 0: ð6:34Þ

The boundary terms have vanished because our choice of wðxÞ, (6.33), vanishes on the boundaries. Since

 ðxÞ > 0 in �, the integrand in (6.34) is positive at every point in the domain. For the integral in (6.34) to

vanish, the integrand has to vanish as well. Hence, since  ðxÞ > 0,

~r �~q� s ¼ 0 in �; ð6:35Þ
which is the energy balance equation (6.15). After substituting (6.35) into (6.32) we select a weight

function that is nonzero on the natural boundary, but vanishes on the essential boundary (it does not

matter what its value is inside the domain, as by (6.35) we know that the first term in (6.32) will vanish).

So we let

w ¼ ’ð�q�~q �~nÞ; where ’ ¼ 0 on �T

> 0 on �q

� �
: ð6:36Þ

Substituting (6.36) into (6.32) yields Z
�q

’ð�q�~q �~nÞ2 d� ¼ 0: ð6:37Þ

2Recommended for Advanced Track.
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As the integrand in (6.37) is positive on �q, the quantity inside the parentheses must vanish on everypoint of

the natural boundary, so the natural boundary condition (6.25c) follows.

6.5 GENERALIZATION TO THREE-DIMENSIONAL PROBLEMS3

The extension from two to three dimensions is almost trivial. The difference is not in the structure of the

strong and weak form equations, which are identical, but in the definitions of the vectors, gradient,

divergence and Laplacian operators.

In three dimensions, the base (unit) vectors are~i,~j and~k as shown in Figure 6.7. Avector~q expressed in

terms of its components is

~q ¼ qx
~iþ qy

~jþ qz
~k; q ¼

qx

qy

qz

24 35; ð6:38Þ

where the matrix form is shown on the right-hand side. In three dimensions, the problem domain � is a

volume (which looks like the potato in Figure 6.7) and its boundary � is a surface. The progression of

dimensionality of the problem domain and its boundary from one-dimensional to three-dimensional

problems is summarized in Table 6.1.

The boundary �, which is the surface encompassing the three-dimensional domain �, consists of the

complementary essential and natural boundaries, as shown in Figure 6.7.

  on   q q n q ⋅ = Γ  on   T T T = Γ 

q 

n 

x 

y 

z 

i 
j 

r 
k 

Figure 6.7 Problem domain and boundary conditions in three dimensions.

Table 6.1 Dimensionality of the problem domain and its boundary.

Entity Domain � Boundary �

One dimension (1D) Line segment Two end points

Two dimensions (2D) Two-dimensional area Curve

Three dimensions (3D) Volume Surface

3Recommended for Advanced Track.
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The gradient operator in three dimensions in vector and matrix notations is defined as

~r ¼~i @
@x
þ~j @

@y
þ~k @

@z
; ~r� ¼~i @�

@x
þ~j @�

@y
þ ~k @�

@z
;

= ¼

@

@x
@

@y

@

@z

26666664

37777775; =� ¼

@�

@x
@�

@y

@�

@z

26666664

37777775:

With the above definitions of vectors and the gradient vector operator, the divergence of the vector field and

the Laplacian are

div ~q ¼ @qx

@x
þ @qy

@y
þ @qz

@z
;

r2 ¼ ~r �~r ¼ =T = ¼ @2

@x2
þ @2

@y2
þ @2

@z2:

The strong form invector and matrix notations is identical to that given in Equations (6.25) and (6.26). Note

that the Fourier law relating the three components of temperature gradient to the three flux components is

defined in terms of a 3� 3 symmetric positive definite matrix D:

D ¼
kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

24 35:
The weak form is also identical to that for two-dimensional problems as given in (6.31).

6.6 STRONG AND WEAK FORMS OF SCALAR STEADY-STATE
ADVECTION–DIFFUSION IN TWO DIMENSIONS 4

The advection-diffusion equations are obtained from a conservation principle (often called a balance

principle), just like heat conduction. The conservation principle states that the species (be it a material,

an energy or a state) are conserved in each control volume of area �x��y and unit thickness shown in

Figure 6.8. The amount of species entering minus the amount of species leaving equals the amount

produced (a negative volume when the species decays). There are two mechanisms for inflow and outflow,

advection (or convection), which is given by~v�, and diffusion, which is given by~q.

v x y

( , )
2x
xq x y− ( , )

2x
xq x y+

( , )
2y
y

q x y −

( , )
2y
y

q x y +

yD

D

D

D

D D

D

D

D

xD

( , )O x y( , )
2x
xv x y−

( , )
2
y

v x y −

( , )
2
x

v x y+

( , )
2y
yq

yq

q xq

+

Figure 6.8 Control volume for advection–diffusion problem.

4Recommended for Advanced Track.
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Inaddition, advection on each surface results inan inflowof�~v �~n�.The conservation principlecan then

be developed as in section 6.2:

vx� x��x

2
; y

� �
�yþ qx x��x

2
; y

� �
�yþ vy� x; y��y

2

� �
�xþ qy x; y��y

2

� �
�x

� vx� xþ�x

2
; y

� �
�y� qx xþ�x

2
; y

� �
�y� vy� x; yþ�y

2

� �
�x� qy x; yþ�y

2

� �
�x

þ�x�ys x; yÞ ¼ 0:ð

Dividing the above by �x�y and taking the limit �x! 0, �y! 0, we obtain

@ðvx�Þ
@x

þ @ðvy�Þ
@y

þ @ðqxÞ
@x
þ @ðqyÞ

@y
� s ¼ 0:

The above can be written in the vector form as

~r � ð�~vÞ þ~r �~q� s ¼ 0: ð6:39Þ

This is the general form of the advection–diffusion equation. The first term accounts for the advection or

transport of the material and the second term accounts for the diffusion.

In many cases, the material carrying the species is incompressible. For steady-state problems and

incompressible materials, the rate of material volume entering control volume is equal to the rate of

material volume exiting control volume. Mathematically, this is given by

vx x��x

2
; y

� �
�yþ vy x; y��y

2

� �
�x� vx xþ�x

2
; y

� �
�y� vy x; yþ�y

2

� �
�x ¼ 0:

Dividing the above by �x�y and taking the limit �x! 0, �y! 0 gives

@ðvxÞ
@x
þ @ðvyÞ

@y
¼ 0:

The above in matrix and vector notations is

~r �~v ¼ 0 or =Tv ¼ 0: ð6:40Þ

Equation (6.40) is known as the continuity equation for steady-state problems of incompressible

materials.

Substituting the continuity equation (6.40) into (6.39) yields the conservation equation for a species in a

moving incompressible fluid, which can be written as

~v �~r�þ~r �~q� s ¼ 0 or vT=�þ =Tq� s ¼ 0: ð6:41Þ

Assuming that thegeneralized Fourier’s law(6.19) holds, the conservation of species equation in the matrix

form becomes

vT=�� =TðD=�Þ � s ¼ 0: ð6:42Þ
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For isotropic materials D ¼ kI and the conservation equation reduces to

~v �~r�� kr2�� s ¼ 0 or vT=�� kr2�� s ¼ 0; ð6:43Þ

where r2 is the Laplacian defined in (6.18). We consider the usual essential and natural boundary

conditions

� ¼ �� on ��;

~q �~n ¼ �q on �q;
ð6:44Þ

where �� and �q are complementary.

To obtain the weak form of (6.43) we multiply the conservation equation (6.41) and the natural

boundary condition by an arbitrary weight function w and integrate over the corresponding domains:

ðaÞ
Z
�

wð~v �~r�þ~r �~q� sÞ d� ¼ 0; ðbÞ
Z
�q

wð�q�~q �~nÞ d� ¼ 0 on 8w: ð6:45Þ

Integration by parts of the second term (the diffusion term) in (6.45a) givesZ
�

w~v �~r� d��
Z
�

~rw �~q d�þ
Z
�q

w�q d��
Z
�

ws d�ðaÞ 8w 2 U0; ð6:46Þ

where we have exploited (6.45b) and that w ¼ 0 on ��.
Finally, the weak form is completed by substituting the generalized Fourier law into (6.46), which gives

find the trial solution �ðx; yÞ 2 U such thatZ
�

w vT=� d�þ
Z
�

ð=wÞTD=� d�þ
Z
�q

w�q d��
Z
�

ws d� 8w 2 U0: ð6:47Þ

The above is the weak form for the advection–diffusion equation. Note that the first term is unsymmetric in

the weight function w and the solution �. This will result in unsymmetric discrete system equations and has

important ramifications on the nature of the solutions, because as in 1D, the solutions can be unstable if the

velocity is large enough.

REFERENCES
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Problems

Problem 6.1
Given a vector field qx ¼ �y2, qy ¼ �2xy on the domain shown in Figure 6.2. Verify the divergence

theorem.

Problem 6.2
Given avectorfieldqx ¼ 3x2yþ y3,qy ¼ 3xþ y3 on the domain showninFigure6.9.Verify the divergence

theorem. The curved boundary of the domain is a parabola.
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Problem 6.3
Using the divergence theorem prove I

�

n d� ¼ 0:

Problem 6.4
Starting with the strong form

dq

dx
� s ¼ 0; qð0Þ ¼ �q; TðlÞ ¼ T ;

develop aweak form. Note that the flux q is related to the temperature through Fourier’s law, but develop the

weak form first in terms of the flux.

Problem 6.5
Consider the governing equation for the heat conduction problem in two dimensions with surface

convection:

=TðD=TÞ þ s ¼ 2hðT � T1Þ on �;

qn ¼ qTn ¼ �q on �q;

T ¼ T on �T :

Derive the weak form.

Problem 6.6
Derive the strong form for a plate with a variable thickness tðx; yÞ. Hint: Consider control volume in Figure

6.5(b), and account for the variable thickness. For example the heat inflow at ðx��x=2; yÞ is

qx x��x

2
; y

� �
�y t x��x

2
; y

� �
:

Derive the weak form for the plate with variable thickness.

x

y

n2

n1

(2,0)(−2,0)

(0,4)

Figure 6.9 Parabolic domain of Problem 6.2 used for illustration of divergence theorem.

REFERENCES 149



Problem 6.7
Consider a heat conduction problem in 2D with boundary convection (Figure 6.10).

Construct the weak form for heat conduction in 2D with boundary convection.

Problem 6.8
Consider a time-dependent heat transfer. The energy balance in a control volume (see Figure 6.5) is given

by

qx x��x

2
; y

� �
�y� qx xþ�x

2
; y

� �
�yþ qy x; y��y

2

� �
�x

� qy x; yþ�y

2

� �
�xþ sðx; yÞ�x�y ¼ cr

@T

@t;
�x�y

where Tðx; y; tÞ, c andr denote the temperature, material specific heat and density, respectively, and t is the

time. The above equation states that the change in internal energy is not zero, but is rather governed by

density, specific heat and rate of change of temperature.

Derive the weak and strong forms for the time-dependent heat transfer problem.

T T= on TΓ

Γ = Γ

x

nq q= on q

T

Γ

qΓ hΓUU

Ω

y

nq h T T= –  on hΓ∞)(

Figure 6.10 Problem domain and boundary conditions for heat conduction with boundary convection.
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7
Approximations of Trial
Solutions, Weight Functions
and Gauss Quadrature for
Multidimensional Problems

In this chapter, we describe the construction of theweight functions and trial solutions for two-dimensional

applications; we will sometimes collectively call these approximations or just functions. In finite element

methods, these approximations are constructed from shape functions. As in Chapter 4, where weight

functions and trial solutions were constructed for one-dimensional problems, the basic idea is to construct

C0 interpolants that are complete. Following the nomenclature introduced in Chapter 4, we will denote the

approximation by �ðx; yÞ. It represents any scalar function such as temperature or material concentration.

We have already noted that the situation in multidimensions is altogether different from that in one-

dimensional problems, as the exact solution of the partial differential equations in multidimensions is

feasible for problems only on simple domains with simple boundary conditions. Thus, numerical solution

of the partial differential equations is generally the only possibility for practical problems. The approach of

finite element methods remains the same: approximate the weight functions and trial solutions by finite

element shape functions so that as the number of elements is increased, the quality of the solution is

improved. In the limit as h! 0 (h being the element size) or as the polynomial order is increased, the finite

element solution should converge to the exact solution if the approximations are sufficiently smooth and

complete.

It is in two-dimensional problems that the power of the finite element method becomes clearly apparent.

We will see that the finite element method provides a method for easily constructing approximations to

solutions for bodies of arbitrary shape. Furthermore, as will become apparent when we examine the

MATLAB programs, finite element methods possess a modularity that enables simple programs to treat a

large class of problems. Thus, the finite element program developed in Chapter 12 can treat any two-

dimensional heat conduction problem, regardless of the shape or the variation of the conductivity.

Furthermore, the two-dimensional programs are almost identical in architecture to the one-dimensional

program, yet the generality of the finite element method enables even these simple MATLAB programs to

handle almost any geometry.

We saw in Chapter 4 that the trial solutions have to be constructed so that the polynomial expansion for

each element is complete and the global approximation is C0 continuous or, in other words, compatible. In

multiple dimensions, the requirements remain the same, but the construction of trial solutions and weight

A First Course in Finite Elements J. Fish and T. Belytschko

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)



functions presents several challenges as the construction of continuous fields for arbitrary meshes of

quadrilaterals and triangles becomes more complicated; in particular, the construction of shape functions

for quadrilaterals requires a new concept to be introduced: the isoparametric element. We will see that in

addition to their usefulness in quadrilaterals, isoparametric elements enable curved boundaries to be

treated with remarkable precision, so that engineering problems can be solved effectively.

7.1 COMPLETENESS AND CONTINUITY

We first consider the issue of completeness. To explain this concept, consider the simple problem domain

shown in Figure 7.1. The domain is subdivided (meshed) into triangular elements, which is one of the finite

elements to be considered in this chapter, as shown in Figure 7.2. The trial solution is then constructed on

each element.

Consider the following possible polynomial expansions:

ðaÞ �eðx; yÞ ¼ ae
1 þ ae

2xþ ae
3y;

ðbÞ �eðx; yÞ ¼ ae
1 þ ae

2xþ ae
3y2;

ðcÞ �eðx; yÞ ¼ ae
1 þ ae

2xþ ae
3yþ ae

4xyþ ae
5x2 þ ae

6x3y;

ðdÞ �eðx; yÞ ¼ ae
1 þ ae

2xþ ae
3yþ ae

4x2y2 þ ae
5xyþ ae

6y3:

ð7:1Þ

Which of the four is a useful polynomial expansion for trial solutions? The answer can be determined by

examining Pascal’s triangle, which is shown in Figure 7.3. Each row of the triangle gives the monomials

that must be included in a finite element approximation to provide an element with the order of complete-

ness indicated to the right. If any of the terms in a row are missing, then the element will not be complete to

that degree and will not have the convergence rate associated with that row of the expansion. For example,

(7.1a) is linear complete, and its convergence rate will be of second order, i.e. quadratic. On the other hand,

(7.1b) will not converge, as it is missing the linear term in y (recall that a complete linear expansion is the

minimumrequirement discussed inChapter4).Similarly, (7.1d) isnotquadraticallycompleteandwillonly

A

BC

Figure 7.1 Triangular domain.

h h h 

Figure 7.2 Finite element meshes of different refinements for the triangular domain shown in Figure 7.1.
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have the convergence rate associated with a linear polynomial (quadratic in the displacements), even

though it has monomials that are of higher order than linear.

Complete polynomial expansions can be obtained from the Pascal triangle by appending unknown

coefficients to all monomials up to a given row. Complete polynomial expansions of linear, quadratic and

cubic orders are given below:

linear : �eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2y;

quadratic : �eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2yþ ae

3x2 þ ae
4xyþ ae

5y2;

cubic : �eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2yþ ae

3x2 þ ae
4xyþ ae

5y2 þ ae
6x3 þ ae

7x2yþ ae
8y2xþ ae

9y3:

We will use these polynomials to construct finite elements of various orders.

We next consider the issue of C0 continuity. To explain what is required in two-dimensional problems,

consider the two adjacent elements shown inFigure7.4, each with acomplete linear polynomial expansion:

�ð1Þ ¼ að1Þ0 þ að1Þ1 xþ að1Þ2 y; �ð2Þ ¼ að2Þ0 þ að2Þ1 xþ að2Þ2 y;

where the superscripts indicate the element number. Each polynomial is obviously C0 continuous within

the element. However, for the function to be globally C0, it must also be C0 continuous at every point on the

interfaces between the elements (not just at the nodes). In other words, for the specific example that we are

considering, it is necessary that

�ð1ÞðsÞ ¼ �ð2ÞðsÞ:

Therefore, að1Þ0 , að1Þ1 , að1Þ2 , að2Þ0 , að2Þ1 and að2Þ2 have to be carefully chosen to satisfy C0 continuity between the

two elements. In the next two sections, we describe how to construct continous and complete shape

functions for triangular and quadrilateral elements. We will start with the three-node triangular element.

1

2 2

2 23 3

constant

linear

quadratic

cubic

x y

x xy y

x x y xy y

Figure 7.3 Pascal triangle in 2D.

1

2

x

y s

(1)

(2)

Figure 7.4 Continuity between two linear triangular elements.
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7.2 THREE-NODE TRIANGULAR ELEMENT

The three-node triangular element is one of the most versatile and simplest of finite elements in two

dimensions. One can easily represent almost any geometry with triangular elements and, without too much

trouble, construct meshes that have more elements in areas of high gradients (large derivatives), so that

greater accuracy can be obtained with the same number of elements. Furthermore, mesh generators for

triangular meshes are the most robust, i.e. they tend not to make errors. This is a tremendous advantage, as a

robust automatic mesh generator is essential in the solution of complex problems by finite elements.

A disadvantage of the three-node triangle is that it is a relatively inaccurate element, and in fact the

element is not recommended for production analysis with finite element software. However, the simplicity

of the element makes it an ideal vehicle for teaching the multidimensional finiteelement method, sowewill

start with it.

Two finite element meshes consisting of three-node triangular elements are shown in Figure 7.5(a). It

can be seen that nodes are placed at the corners of all elements. An arbitrary number of elements can be

joined to a node. There are no restrictions on the topology of a finite element mesh, though for reasonable

accuracy, none of the angles of any element should be very acute.

As the sides of a triangular element are rectilinear, curved edges of the body must be approximated.

Thus, in the mesh in Figure 7.5(a), the curved sides of the hole are approximated by straight segments,

which introduces anerror in thegeometryof the finite elementmodel.Thefiniteelement solutionwillbe the

solution to the geometry with the straight edges, so some error arises due to this approximation of the shape.

However, in most cases, if a sufficient number of elements are used, this error is quite small. In most cases,

simply placing the nodes on the boundary yields satisfactory results.

A typical element from the mesh shown in Figure 7.5(a) is shown in Figure 7.5(b). The nodal coordinates

of element e are denoted by ðxe
I , ye

I Þ, I ¼ 1 to 3; we use local node numbers for the nodes of the element. It is

important that the nodes be numbered counterclockwise. The formulations that follow can also be

developed for clockwise numbering, but most finite element programs, including the ones in this book,

usecounterclockwise numbering, and it is important to adhere to this convention, as otherwise some crucial

signs will be wrong. When mesh generators are used, this is no longer of importance, as a mesh generator

numbers the element nodes in the correct order automatically.

The trial solution in each triangular element is approximated by a linear function of the spatial

coordinates x and y:

�eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2y; ð7:2Þ

1

(a) (b)

2

3

Figure 7.5 (a) Curved boundaryapproximationusing three-node triangular finite elements and (b) a single three-node

triangular finite element.
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where ae
i are arbitrary parameters. The above can be written in the matrix form as shown below:

�eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2y ¼ ½1 x y�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

pðx; yÞ

ae
0

ae
1

ae
2

264
375

|fflffl{zfflffl}
ae

¼ pðx; yÞae: ð7:3Þ

Notice the fortuitous circumstance that the number of parameters that describe the field complete linear

�eðx; yÞ in a triangular element is equal to the number of nodes, sowe should be able to uniquely express the

parameterae
i in terms of the nodal values �e

I . If therewere fewer nodes than constants or vice versa, a unique

expression in terms of the nodal values would not be possible.

Starting from (7.3), wewill now construct shape functions for the element following the same procedure

that we used in one dimension in Chapter 4. For this purpose, we first express the nodal values

�eðxe
1; y

e
1Þ ¼ �e

1, �eðxe
2; y

e
2Þ ¼ �e

2 and �eðxe
3; y

e
3Þ ¼ �e

3 in terms of the parameters ðae
0; a

e
1; a

e
2Þ and write this

in the matrix form:

�e
1 ¼ ae

0 þ ae
1xe

1 þ ae
2ye

1

�e
2 ¼ ae

0 þ ae
1xe

2 þ ae
2ye

2

�e
3 ¼ ae

0 þ ae
1xe

3 þ ae
2ye

3

)
�e

1

�e
2

�e
3

264
375

|fflffl{zfflffl}
de

¼
1 xe

1 ye
1

1 xe
2 ye

2

1 xe
3 ye

3

264
375

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Me

ae
0

ae
1

ae
2

264
375

|fflffl{zfflffl}
ae

: ð7:4Þ

The above can be written as

de ¼Meae: ð7:5Þ

Taking the inverse of the above equation, we obtain an expression for the parameters in terms of the nodal

values:

ae ¼ ðMeÞ�1de: ð7:6Þ

Substituting (7.6) into (7.5) gives

�eðx; yÞ ¼ pðx; yÞðMeÞ�1de: ð7:7Þ

As in the one-dimensional case, the matrix product preceding de gives the shape functions; to make this

clear, compare the above with the general form of a function expressed in terms of shape functions (recall

Equation (4.5)):

�eðx; yÞ ¼ Neðx; yÞde: ð7:8Þ

From Equations (7.7) and (7.8), it is clear that the shape functions are given by

Neðx; yÞ ¼ pðx; yÞðMeÞ�1 � ½Ne
1ðx; yÞ Ne

2ðx; yÞ Ne
3ðx; yÞ�:

To develop a closed form expression for the shape functions, it is necessary to invert the matrix Me. This can

be done analytically or using MATLAB’s Symbolic Toolbox, which gives

ðMeÞ�1 ¼ 1

2Ae

ye
2 � ye

3 ye
3 � ye

1 ye
1 � ye

2

xe
3 � xe

2 xe
1 � xe

3 xe
2 � xe

1

xe
2ye

3 � xe
3ye

2 xe
3ye

1 � xe
1ye

3 xe
1ye

2 � xe
2ye

1

264
375;
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where Ae is the area of the element e; the determinant of the matrix Me has been replaced by 2Ae and is given

by

2Ae ¼ detðMeÞ ¼ ðxe
2ye

3 � xe
3ye

2Þ � ðxe
1ye

3 � xe
3ye

1Þ þ ðxe
1ye

2 � xe
2ye

1Þ: ð7:9Þ

Evaluating the above expression, we obtain

Ne
1 ¼

1

2Ae
ðxe

2ye
3 � xe

3ye
2 þ ðye

2 � ye
3Þxþ ðxe

3 � xe
2ÞyÞ;

Ne
2 ¼

1

2Ae
ðxe

3ye
1 � xe

1ye
3 þ ðye

3 � ye
1Þxþ ðxe

1 � xe
3ÞyÞ;

Ne
3 ¼

1

2Ae
ðxe

1ye
2 � xe

2ye
1 þ ðye

1 � ye
2Þxþ ðxe

2 � xe
1ÞyÞ:

ð7:10Þ

Note that the shape functions are linear in x and y and the coefficients of all of the monomials depend on the

nodal coordinates.

The relationship between the area and the determinant of Me can be demonstrated as follows. Consider

the triangular element shown in Figure 7.6. The area is given by the product of the base and the height, so

Ae ¼ 1

2
bh ¼ 1

2
ab sinj: ð7:11Þ

Recall that the magnitude of the triple scalar product of two vectors is given by (this formula can be found in

any introduction to vectors, such as Hoffman and Kunze (1961) and Noble (1969))

~k � ð~a�~bÞ ¼ ab sinj: ð7:12Þ

From Equations (7.11) and (7.12), it can be seen that

Ae ¼ 1

2
~k � ð~a�~bÞ ¼ 1

2
~k � det

~i ~j ~k
xe

2 � xe
1 ye

2 � ye
1 0

xe
3 � xe

1 ye
3 � ye

1 0

������
������;

where the last equality follows from the standard formula for a scalar triple product and~a ¼ ðxe
2 � xe

1Þ~iþ
ðye

2 � ye
1Þ; ~b ¼ ðxe

3 � xe
1Þ~iþ ðye

3 � ye
1Þ~j. With a little algebra, (7.9) can be obtained from the above.

Notice that the above is based on the right-hand rule for defining the angle j. It is for this reason that the

nodes must be numbered counterclockwise. You can easily check that if the nodes are numbered clockwise,

(7.9) gives a negative area (as two rows of the determinant have been interchanged, which changes

the sign).

a

b

90o

b

h
ϕ

a

1

3

2

Figure 7.6 A diagram for computation of the area of a triangle.

156 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS



The shape functions are drawn for a typical triangular element in Figure 7.7. It can be seen that each

shape function vanishes at all nodes except one and that node is the number on the shape function. In other

words, these shape functions have the Kronecker delta property:

Ne
I ðxe

J ; y
e
JÞ ¼ �IJ : ð7:13Þ

Recall that the one-dimensional shape functions also have this attribute (see Equation (4.7)) and are

therefore interpolants. Two-dimensional shape functions are also interpolants.

Furthermore, ascanbe seen fromFigure7.7, the shape functionsare planarwhen theirvalues correspond

to the vertical axis in a 3 D plot. This is an obvious consequence of the linearity of the shape functions in x

and y. It also implies that the projections of the shape functions on straight lines, such as their edges, are

linear. This can be seen from Figure 7.7; the dashed lines correspond to the values of the shape functions on

the edges.

7.2.1 Global Approximation and Continuity

In Chapter 4, we showed that the global shape functions N are given in terms of the element shape functions

Ne by

NT ¼
Xnel

e¼1

LeTNeT; ð7:14Þ

where LeT is the gather operator. The trial solutions are approximated by a linear combination of C0 global

shape functions (7.14):

�h ¼ Nd ¼
Xnnp

I¼1

NIdI ; ð7:15Þ

so the same C0 continuity of �h is guaranteed.

For illustration, consider a two-element mesh shown in Figure 7.8. The number of global shape

functions is equal to the number of nodes in the mesh. The global shape functions corresponding to the

mesh in Figure 7.8 are shown in Figure 7.9.

The C0 continuity of the global shape functions along interfaces between any two adjacent elements can

be demonstrated as follows. For convenience, we define a common edge between elements 1 and 2 by a

parametric equation in terms of a parameter s so that s ¼ 0 at node 2 and s ¼ 1 at node 3:

x ¼ x2 þ ðx3 � x2Þs; y ¼ y2 þ ðy3 � y2Þs: ð7:16Þ

1 1 1

2223 3 3

x x x

y y y1
eN

2
eN 3

eN

Figure 7.7 Three-node triangular element shape functions.
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As the shape functions are linear along any edge, the functions of the two generic elements 1 and 2 along the

interface can then be written as

�ð1ÞðsÞ ¼ bð1Þ0 þ bð1Þ1 s; �ð2ÞðsÞ ¼ bð2Þ0 þ bð2Þ1 s; ð7:17Þ

where be
i are functions of ae

i defined in (7.2) and the nodal coordinates

As �ð1ÞðsÞmust equal �2 and �3 at s ¼ 0 and s ¼ 1, respectively, it follows that

�2 ¼ bð1Þ0 ; �3 ¼ bð1Þ0 þ bð1Þ1 :

Similarly, for element 2:

�2 ¼ bð2Þ0 ; �3 ¼ bð2Þ0 þ bð2Þ1 :

It follows immediately from the above thatbð1Þ0 ¼ bð2Þ0 ¼ �2 andbð1Þ1 ¼ bð2Þ1 ¼ �3 � �2. Therefore, the two

element functions are equal along the interface and hence continuous accross the interface. This argument

(2)

(1)

1
2

3

4

1

2

3

1

2

3

x

y

(1) (2)

Figure 7.8 Two-element mesh: local and global node numberings.
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Figure 7.9 C0 global shape functions for a two-element mesh. Only global node numbering is shown. The local node

numbering is given in Figure 7.8.
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holds for all other interfaces in the mesh, so the approximation is globally C0. Notice from Figure 7.9 that

the function has kinks along the interface, so the function is not C1.

Continuity of linear functions between elements with two shared nodes can be argued verbally as

follows. Alonganystraight side, the element functionsare linear functions of the interface parameter s.Asa

linear function along a line is determined by two constants, if the two functions are identical at two nodes,

they must be equal along the entire interface. In a mesh of 3-node triangular elements, adjacent elements

share two nodes on each interface, so global continuity is assured.

7.2.2 Higher Order Triangular Elements

The concepts underlying the construction of continuous finite element approximations based on poly-

nomials can be elucidated further if we consider a quadratic element. From the Pascal triangle, it follows

that a quadratic field in an element is given in terms of six parameters ae
i by

�eðx; yÞ ¼ ae
1 þ ae

2xþ ae
3yþ ae

4x2 þ ae
5xyþ ae

6y2: ð7:18Þ

The projection of this function on any straight edge of an element in terms of a parameter s (with s ranging

from 0 to 1 as in Equation (7.16)) is

�eðsÞ ¼ be
0 þ be

1sþ be
2s2: ð7:19Þ

This can be shown by substituting (7.16) into (7.18). The element functions are thus quadratic functions of

the edge parameter s and are determined by three constants, be
i , i ¼ 1 to 3, in each element. Therefore, for

continuity, the functions of two adjacent elements must have equal values at three points, and three nodes

are needed along each edge.

A nodal configuration that meets this requirement is shown in Figure 7.10(a). It can be seen that the

element has nodes in each corner and a node along the midside of each edge. Again, we have the fortuitous

circumstance that the number of nodes required for continuity corresponds to the number of constants in the

polynomial field (7.18). Therefore, the constants can be uniquely expressed in terms of the element nodal

values �e
I of the function �eðx; yÞ, and following the same procedure as for the triangular three-node

element, the function can be expressed in terms of the element nodal values. Once this is completed, shape

functions can be extracted.

Wewill not go through these steps, as the algebra is horrendous. Furthermore, the shape functions can be

constructed directly as shown in Section 7.6.2; otherwise, ae
i would be evaluated numerically by the

software.

2

1

3

4
5
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Figure 7.10 (a) Six-node triangular finite element and (b) 10-node triangular element.
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It is of interest to observe that the nodal structure for the linear and quadratic elements can be gleaned

from Pascal’s triangle. If we consider the outside boundaries of Pascal’s triangle shown in Figure 7.3 as the

edges of an element, then it can be seen that for a three-node element, only two nodes are needed along each

edge, whereas three nodes are needed for each edge of a quadratic element.

The approximation function for a cubic element for Pascal’s triangle (Figure 7.3) is

�eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2yþ ae

3x2 þ ae
4xyþ ae

5y2 þ ae
6x3 þ ae

7x2yþ ae
8y2xþ ae

9y3:

Looking back at the Pascal triangle, it can be seen that for a cubic function, four nodes will be needed along

each edge. This can also be established by the arguments we have used before: along a line, the projection of

a cubic function of x and y on a straight edge is a cubic function of s and defined by four constants.

Therefore, four nodes are needed along each edge to insure continuity of the global approximation. The

nodal arrangement for the cubic element is shown in Figure 7.10(b).

One difference between the quadratic and cubic elements is that the number of nodes on the edges is not

equal to the number of constants: the number of nodes required for continuity is less than the number of

constants. This imbalance is easily rectified by adding another node. It can be placed anywhere, but as

shown in Figure 7.10(b), it is usually placed at the centroid. Notice that Pascal’s triangle also indicates the

need for a center node.

Elementsofquarticorderandhighercanalsobedeveloped.However,elementsofsuchhighorderareseldom

developed from simple polynomial expansions. The drawback of these higher order elements is that the

resulting discrete system of equations are not well conditioned. Therefore, although such elements have

potentially higher rates of convergence, and hence better accuracy, they are not used. Instead, very high order

elements are based on different concepts. For example, high-order elements called spectral elements can be

developed from Legendre polynomials; they do not degrade the conditioning of the system equations as much.

7.2.3 Derivatives of Shape Functions for the Three-Node Triangular Element

The gradient of the shape functions matrix will be expressed in each element by a Be matrix as before.

The Be matrix is computed by differentiation of the expression for the approximation in terms of the

shape functions. For a triangular three-node element, we obtain the Be matrix by taking the gradient of

the approximation as given in Equation (7.10):

r�e ¼

@�e

@x

@�e

@y

2664
3775 ¼

@Ne
1

@x
�e

1 þ
@Ne

2

@x
�e

2 þ
@Ne

3

@x
�e

3

@Ne
1

@y
�e

1 þ
@Ne

2

@y
�e

2 þ
@Ne

3

@y
�e

3

2664
3775

¼

@Ne
1

@x

@Ne
2

@x

@Ne
3

@x

@Ne
1

@y

@Ne
2

@y

@Ne
3

@y

2664
3775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Be

�e
1

�e
2

�e
3

264
375

|fflffl{zfflffl}
de

¼ Bede:

Referring to the shape functions as given in (7.10) and the above, we can see that the Be matrix is given by

Be ¼ 1

2Ae

ðye
2 � ye

3Þ ðye
3 � ye

1Þ ðye
1 � ye

2Þ
ðxe

3 � xe
2Þ ðxe

1 � xe
3Þ ðxe

2 � xe
1Þ

� �
: ð7:20Þ

Note that the Be matrix is constant in each element, i.e. it is independent of x and y, and only depends on the

coordinates of the nodes of the element. Thus, the gradient of any trial solution will be constant within any
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three-node triangular element; this can also be directly concluded from the linearity of the shape functions.

The three-node triangular element is therefore very similar in character and properties to the two-node

element in one dimension, with a linear approximation field and a constant gradient field.

7.3 FOUR-NODE RECTANGULAR ELEMENTS

As a prelude to the formulation of a four-node quadrilateral element, we first consider a four-node

rectangular element as depicted in Figure 7.11. As for the triangle, the nodes are numbered counter-

clockwise; this convention will also apply to all subsequent elements, except when there are nodes along

the edges, which are numbered after the corner nodes in this book.

As the element has four nodes, it is necessary to start with a polynomial expansion that has four

parameters. Obviously, if we are to restrict ourselves to polynomial expansions, the additional term should

come from the third row of the Pascal triangle. A question then arises: which of the three terms in the third

row should beselected? Only one additional monomial isneeded, as wealready have three parameters from

the linear field, but we can select any of the three monomials in the third row of the Pascal triangle.

This question is settled by the need for linearity of the approximation along each edge. The monomial x2

will vary quadratically along the edges between nodes 1 and 2 and nodes 3 and 4, whereas the monomial y2

will vary quadratically along the edges between nodes 2 and 3 and nodes 4 and 1. The monomial xy is linear

along each edge, as either x or y is constant along each edge. Therefore, the monomial xy is consistent with

the nodal configuration shown in Figure 7.11, in which there are only two nodes per edge. The monomial xy

is called bilinear. With the addition of the bilinear terms, the element approximation is

�eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2yþ ae

3xy: ð7:21Þ

It is possible to express ðae
1; a

e
2; a

e
3; a

e
4Þ in terms of nodal values ð�e

1; �
e
2; �

e
3; �

e
4Þ as in Section 7.2. However, a

closed form symbolic inversion is very cumbersome. Of course, we can always invert Me numerically for

each element in a mesh, but it is useful to develop closed form expressions (in practice, this is not very

important, as 4� 4 matrices can be inverted very quickly on today’s computers).

The shape functions Ne will be constructed by the tensor product method. This approach is based on

taking products of lower dimensional shape functions and exploiting the Kronecker delta property of shape

functions (7.13).

The two-dimensional shape functions for a rectangular element are obtained as a product of the one-

dimensional shape functions as illustrated in Figure 7.12. For example, the shape function Ne
2ðx; yÞ is

obtained by taking the product of the one-dimensional shape functions Ne
2ðxÞ and Ne

1ðyÞ. It can be seen from

1 2

3
e
4

e
4

4

2a

2b

(x  ,y  ) e
3

e
3(x  ,y  )

e
1

e
1(x  ,y  ) e

2
e
2(x  ,y  )

x

y

Figure 7.11 Four-node rectangular element.
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Figure 7.12 that the product of these two shape functions will vanish at nodes 1 and 4 because Ne
2ðxÞ

vanishes there and at node 3 because Ne
1ðyÞvanishes there. At node 2, both shape functions have unit value,

so the product is also equal to 1. Thus, Ne
2ðx; yÞ has the Kronecker delta property for the four-node element,

which can also be seen from Figure 7.12.

The tensor product method and the role of the Kronecker delta property can be made clearer if we

number the nodes with dyads as shown in Figure 7.12. The two-dimensional shape function can then be

written as a product of the one-dimensional shape functions by

Ne
½I;J�ðx; yÞ ¼ Ne

I ðxÞNe
J ðyÞ for I ¼ 1; 2 and J ¼ 1; 2: ð7:22Þ

It is straightforward to also show that the above two-dimensional shape function has the Kronecker delta

property:

Ne
½I;J�ðxe

M; y
e
LÞ ¼ Ne

I ðxMÞNe
J ðyLÞ ¼ �IM�JL:

From the above, it can be seen that the tensor product of the two one-dimensional shape functions is unity

only when the dyadic node numbers are the same as the dyad of the shape function. The relation between

the dyadic node numbers (I and J) and the actual node numbers (K) is given in the first three columns of

Table 7.1 Also, the two-dimensional shape functions obtained by the tensor product rule are summarized in

Table 7.1.

21

34

2a

2b

x

y

y3 = y4

y1 = y2

x1 = x4 x2 = x3

1( )eN x

e
iN

2 ( )eN x 1( )eN y

2( )eN y
[1,1] [2,1] 

[1,2] [2,2] 

Figure 7.12 Construction of two-dimensional shape functions.

Table 7.1 Shape functions of the four-node rectangle (last column) as constructed from one-dimensional shape

functions (nodal values given in second to fifth columns).

K I J Ne
1ðxe

I Þ Ne
2ðxe

I Þ Ne
1ðye

I Þ Ne
2ðye

I Þ 2D: Ne
Kðx; yÞ ¼ Ne

½I;J�ðx; yÞ

1 1 1 1 0 1 0 Ne
1ðxÞNe

1ðyÞ

2 2 1 0 1 1 0 Ne
2ðxÞNe

1ðyÞ

3 2 2 0 1 0 1 Ne
2ðxÞNe

2ðyÞ

4 1 2 1 0 0 1 Ne
1ðxÞNe

2ðyÞ
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From Table 7.1 and Equation (7.22), it can be seen that the two-dimensional shape functions are

Ne
1ðx; yÞ ¼

x� xe
2

xe
1 � xe

2

y� ye
4

ye
1 � ye

4

¼ 1

Ae
ðx� xe

2Þðy� ye
4Þ;

Ne
2ðx; yÞ ¼

x� xe
1

xe
2 � xe

1

y� ye
4

ye
1 � ye

4

¼ � 1

Ae
ðx� xe

1Þðy� ye
4Þ;

Ne
3ðx; yÞ ¼

x� xe
1

xe
2 � xe

1

y� ye
1

ye
4 � ye

1

¼ 1

Ae
ðx� xe

1Þðy� ye
1Þ;

Ne
4ðx; yÞ ¼

x� xe
2

xe
1 � xe

2

y� ye
1

ye
4 � ye

1

¼ � 1

Ae
ðx� xe

2Þðy� ye
1Þ;

ð7:23Þ

where Ae is the area of the element. One can also verify that these shape functions satisfy the Kronecker

delta property directly. The element shape functions are shown in Figure 7.13. As can be seen from the

figure, the shape functions are linear along each edge.

Although this element works for rectangles, it is not suitable for arbitrary quadrilaterals. This can be seen

by considering the quadrilateral shown in Figures 7.14a. Consider the edge connecting nodes 1 and 4 along

whichy ¼ x. Ifwesubstitute into theequationfor theapproximation(7.21),wesee that theapproximation isa

quadratic function along thisedgey ¼ x.The shape functionsare alsoquadratic along thisedge,which can be

verified by letting y ¼ x in any of the shape functions in (7.23). Therefore, two nodes no longer suffice to

insure the compatibility, i.e. continuity, of this element with other elements. Thus, the shape functions

developed in this section are only suitable for rectangular elements; to treat a greater variety of four-node

quadrilateral shapes, a more powerful method must be developed for constructing the shape functions.
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3 3
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Figure 7.13 Graphical illustration of rectangular element shape functions.
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Figure 7.14 Four-node quadrilateral elements.
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7.4 FOUR-NODE QUADRILATERAL ELEMENT 1

As we have seen, although the bilinear shape functions in terms of x and y work for rectangles, these shape

functions are not linear along the edges of an arbitrary quadrilateral element, so two common nodes do not

suffice to insure C0 continuity between elements. Resolving this quandary has led to one of the most

important developments in finite elements, the isoparametric element. The isoparametric concept enables

one to construct elements with curved sides, which are very powerful in modeling many complex

engineering structures. We will first show how this concept can be used to construct continuous approx-

imations for four-node quadrilaterals. Then we will consider higher order elements, which can model

curved boundaries.

We will begin by recalling how we constructed Gauss quadrature formulas in Chapter 4. Recall that we

defined a standard domain [�1, 1] and then mapped that standard domain into the physical domain of the

finite element by

x ¼ xe
1Ne

1ð�Þ þ xe
2Ne

2ð�Þ ¼ xe
1

1� �
2
þ xe

2

1þ �
2

; � 2 ½�1; 1�: ð7:24Þ

We will call the domain [�1, 1] the parent element domain and � the parent coordinate; it is also called a

natural coordinate.

Now, rather thanwriting the approximation for� in termsofx, let uswrite it in termsof the parent element

coordinate �. Starting with the shape function expression for the field and substituting in (7.24), we obtain

� ¼ �e
1

x� xe
2

xe
1 � xe

2

þ �e
2

x� xe
1

xe
2 � xe

1

¼ �e
1

xe
1ð1� �Þ þ xe

2ð1þ �Þ � 2xe
2

2ðxe
1 � xe

2Þ
þ �e

2

xe
1ð1� �Þ þ xe

2ð1þ �Þ � 2xe
1

2ðxe
2 � xe

1Þ

¼ �e
1

1� �
2
þ �e

2

1þ �
2

:

ð7:25Þ

Thus, remarkably, the form of the linear approximation �ð�Þ is identical to the map from the parent element

to the physical element; in other words, the shape functions for the mapping given in (7.24) are identical to

the shape functions for the approximation in the last line of (7.25). This is the essential feature of an

isoparametric element: the physical coordinates are mapped by the same shape functions as those used for

the approximation.

In fact, it is not necessary to go through the algebra in (7.24) and (7.25) to develop the expression in terms

of parent element coordinates. As the relationship between the physical and parent coordinates is linear,

any relation that is linear in the parent coordinates is also linear in the physical coordinates.

To develop a quadrilateral element, we let the parent element be a biunit square as shown in Figure 7.15.

Now we map the physical element from the parent element by the four-node shape functions

xð�; �Þ ¼ N4Qð�; �Þxe; yð�; �Þ ¼ N4Qð�; �Þye; ð7:26Þ

where N4Qð�; �Þ are the four-node element shape functions in the parent coordinate system; xe and ye are

column matrices denoting x and y coordinates of element nodes:

xe ¼ ½xe
1 xe

2 xe
3 xe

4�
T; ye ¼ ½ye

1 ye
2 ye

3 ye
4�

T:

1Recommended for Advanced Track.

164 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS



In (7.26), we have changed the notation from Ne to N4Q to emphasize that, as we will see, the shape

functions are no longer functions of element coordinates, i.e. they are identical for every quadrilateral

element. As the parent element is a biunit square, its shape functions are identical to those of the rectangular

element, except they are expressed in terms of natural coordinates. The shape functions can be obtained by

replacing ðx; yÞ by ð�; �Þ and the nodal coordinates in the physical domain ðxI ; yJÞ by nodal coordinates in

the parent element ð�I ; �JÞ in (7.23). The resulting shape functions are summarized below:

N4Q
I ð�; �Þ ¼

1

4
ð1þ �I�Þð1þ �I�Þ; ð7:27Þ

where ð�I ; �IÞ are nodal coordinates in the parent element summarized in Table 7.2 (also see Figure 7.15,

left). The above can be obtained directly by the tensor product method.

The trial solution is approximated by the same shape functions:

�eð�; �Þ ¼ N4Qð�; �Þd e: ð7:28Þ

Therefore, the element is isoparametric.

The shape functions (7.27) contain a constant term, terms linear in � and � and the monomial ��, the

bilinear monomial; these shape functions are called bilinear shape functions. If we write the monomials in

terms of arbitrary parameters, we obtain the following:

�eð�; �Þ ¼ ae
0 þ ae

1� þ ae
2� þ ae

3��: ð7:29Þ

The map (7.26) is also bilinear because of the bilinearity of the shape functions, (7.27). Thus, there are four

independent functions in the approximation, which is equal to the number of nodes in the element, and we

could obtain the shape functions by using the procedure of Section 7.2. However, the above procedure with

the tensor product rule is more direct.

Table 7.2 Nodal coordinates in the parametric

element domain.

Node I �I �I

1 �1 �1

2 1 �1

3 1 1

4 �1 1

ξ

+1

–1

–1 +1

1 2

3

4

x

y

1 2

34

[1,1] [2,1]

[1,2] [2,2]

h

Figure 7.15 Mapping from the parent to the physical Cartesian coordinate system; brackets enclose the dyadic node

numbers for the tensor product approach to the construction of two-dimensional shape functions from one-dimensional

shape functions.
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7.4.1 Continuity of Isoparametric Elements

One important question to be considered is: does relation (7.26) map the edges of the parent element

into straight lines in the physical plane? If it does not, then the element will not be compatible with

three-node triangles and may even have difficulties in treating meshes constituted entirely of

quadrilaterals. The answer turns out to be affirmative. As the map (7.26) is bilinear along each of

the edges, either � or � is constant along each edge. Therefore, along any of the edges, the bilinear

term becomes linear. For example, along the edge between nodes 2 and 3, � ¼ 1, i.e. it is constant,

and the bilinear term is linear in �. Therefore, the map is linear along the edge between nodes 2 and 3,

and the corresponding edge in the physical plane must be straight. Identical arguments can be

made for the other three edges.

Note that not every straight line in the parent plane maps into a straight line in the physical plane. If we

take the diagonal of the element in the parent plane, where � ¼ �, the bilinear term then becomes quadratic

in �. So when the physical element is not a rectangle, the parent element diagonal is a curved line in the

physical element. So in general, not all straight lines in the parent plane map into straight lines in the

physical plane, but the edges always do.

By the same arguments, it can be shown that the global shape functions are C0 continuous. For example,

along the edge connecting nodes 2 and 3 (� ¼ 1), it follows from (7.27) that

N4Q
2 ð� ¼ 1; �Þ ¼ 1

2
ð1� �Þ:

Thus, the shape function N4Q
2 along the edge is linear in� and is equal to 1 at node 2 and zero at node 3. All of

the other shape functions can also be shown to be linear along this edge and all other edges; the linearity of

the approximation along the edges can also be inferred from the bilinear character of the expression for the

approximation (7.29).

As the approximation is linear alongeach edge, it canbeexpressed in termsof two parameters alongeach

edge. As each edge has two nodes, the approximation is then uniquely determined along the edge.

Furthermore, if two adjacent elements share an edge, then the global shape function must be continuous

across that edge, and thus the approximation constructed by quadrilateral elements is C0 continuous. The

isoparametric four-node quadrilateral elements are also compatible with three-node triangular elements,

so these elements can be mixed in a single mesh.

7.4.2 Derivatives of Isoparametric Shape Functions

Wenextdevelopexpressions for thegradient of the shape functionsof the four-node isoparametric element.

The procedure is more involved than that for the three-node triangle because the shape functions are

expressed in terms of the parent element coordinates. In terms of the physical coordinates, the gradient of a

trial solution for the four-node quadrilateral element is

=�e ¼ Bede; ð7:30Þ

where

Be ¼

@N4Q
1

@x

@N4Q
2

@x

@N4Q
3

@x

@N4Q
4

@x

@N4Q
1

@y

@N4Q
2

@y

@N4Q
3

@y

@N4Q
4

@y

26664
37775: ð7:31Þ
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To obtain the derivatives of shape functions expressed in the parent element coordinates with respect to the

physical coordinates ðx; yÞ, we will use the chain rule

@N4Q
I

@�
¼ @N4Q

I

@x

@x

@�
þ @N4Q

I

@y

@y

@�

@N4Q
I

@�
¼ @N4Q

I

@x

@x

@�
þ @N4Q

I

@y

@y

@�

or

@N4Q
I

@�

@N4Q
I

@�

26664
37775 ¼

@x

@�

@y

@�

@x

@�

@y

@�

2664
3775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Je

@N4Q
I

@x

@N4Q
I

@y

26664
37775:

As indicated, the matrix relating the derivatives of the physical coordinates with respect to the element

coordinates is the Jacobian matrix, denoted by Je. The required derivatives can be obtained by inverting the

above right-hand side expression:

@N4Q
I

@x

@N4Q
I

@y

2664
3775 ¼ ðJeÞ�1

@N4Q
I

@�

@N4Q
I

@�

26664
37775; Je ¼

@x

@�

@y

@�
@x

@�

@y

@�

2664
3775: ð7:32Þ

In concise matrix form, we write this as

=N4Q
I ¼ ðJeÞ�1GN4Q

I ; ð7:33Þ

where G is the gradient operator in the parent coordinate system defined as

G ¼

@

@�

@

@�

2664
3775: ð7:34Þ

By substituting the map (7.26) into the expression for the Jacobian (7.32), a more detailed expression can be

developed for the Jacobian:

Je ¼

P4
I¼1

@N4Q
I

@�
xe

I

P4
I¼1

@N4Q
I

@�
ye

I

P4
I¼1

@N4Q
I

@�
xe

I

P4
I¼1

@N4Q
I

@�
ye

I

26664
37775 ¼

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

26664
37775

xe
1 ye

1

xe
2 ye

2

xe
3 ye

3

xe
4 ye

4

26664
37775: ð7:35Þ

Equation (7.35) can be written in the matrix form as

Je ¼ GN4Q½xe ye�: ð7:36Þ

Using (7.31), (7.35) and (7.36), the Be matrix can be written in the matrix form as

Be ¼ ðJeÞ�1GN4Q: ð7:37Þ

For the mapping (7.26) to be unique at each point, it is necessary that the determinant of the Jacobian be

nonzero. Furthermore, the determinant of the Jacobian must be positive, so we require that

jJej � detðJeÞ > 0 8e and ðx; yÞ: ð7:38Þ

It can be shown that this requirement is fulfilled if all angles in all quadrilaterals are less than 180� (see

Problem 7.3).
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Note that although the shapefunctionsN4Q do notdependonelementcoordinates, theJacobian matrixJe

and the derivatives of shape functions Be depend on the element coordinates as can be seen from Equations

(7.37) and (7.36). Therefore, the superscripts appearing in the isoparametric shape functions denote the

element type, whereas in Je and Be they denote the element number.

7.5 HIGHER ORDER QUADRILATERAL ELEMENTS 2

The higher order isoparametric elements provide one of the most attractive features of finite elements, the

ability to model curved boundaries. As an example of a curved-sided isoparametric element, we describe

the nine-node quadratic element.

The nine-node isoparametric element is constructed by a tensor product of the one-dimensional

quadratic shape functions developed in Chapter 4. The parent and physical element domains are shown

in Figure 7.16. The node numbering convention is as follows. The corner nodes are numbered first,

followed by the midside nodes, both in the counterclockwise direction; the first midside node is defined

between nodes 1 and 2, and the internal node is numbered last.

To generate the shape functions for thenine-node quadrilateral by the tensor product method,we take the

product of the three-node shape functions in terms of � with the three-node shape functions in terms of �,

yielding

N9Q
K ð�; �Þ ¼ N9Q

½I;J�ð�; �Þ ¼ N3L
I ð�ÞN3L

J ð�Þ; ð7:39Þ

where N3L
I are the one-dimensional quadratic shape functions of the three-node element and the standard

node number K can be expressed in terms of the elements of the dyad ½I; J� given in Table 7.3.

We will not tabulate all of the shape functions, but as an example

N9Q
7 ¼ N9Q

½2;3� ¼ N3L
2 ð�ÞN3L

3 ð�Þ ¼
1

2
ð1� �2Þ�ð� þ 1Þ: ð7:40Þ

These shape functions have the Kronecker delta property.

As N3L
J ð�Þ are quadratic in � and N3L

K ð�Þ are quadratic in �, the shape functions are biquadratic in � and�,

i.e. the highest order monomial is �2�2. In fact, if you go through the terms of all shape functions carefully,

youwill see that there areninedistinctmonomials in termsof� and� amongallof the shape functions, so the

field for this element can be written as

�e ¼ ae
0 þ ae

1� þ ae
2� þ ae

3�
2 þ ae

4�� þ ae
5�

2 þ ae
6�

2� þ ae
7��

2 þ ae
8�

2�2: ð7:41Þ
2Recommended for Advanced Track.
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Figure 7.16 Nine-node isoparametric quadrilateral in parent and physical domains; brackets enclose the dyadic node

numbers for the tensor product approach to the construction of two-dimensional shape functions from one-dimensional

shape functions.

168 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS



Thus, the number of independent monomials is equal to the number of nodes, and we could have used the

same approach as in Section 7.2 to solve ae
i in terms of �e

J . However, the construction by the tensor product

method is much easier.

In an isoparametric element, the approximation and the map from the parent to the physical planes are

generated by the same shape functions. Thus, for this nine-node quadrilateral,

xð�; �Þ ¼ N9Qð�; �Þxe; yð�; �Þ ¼ N9Qð�; �Þye; ð7:42Þ
�eð�; �Þ ¼ N9Qð�; �Þde ð7:43Þ

The important feature of this element is that the edges are curved. Consider for example the edge joining

nodes 1 and 4. The mapping from the parent plane to the physical plane (7.42) has the same monomials as

the function approximation in (7.41). Along this edge � is constant, as can be seen from Figure 7.16, so the

map will contain the monomials 1, �, �2. Consequently, the coordinates ðx; yÞ are quadratic functions of �
along the edge and hence curved as shown in the figure.

The advantage of curved edges in finite element modeling is truly impressive in engineering applica-

tions. Far fewer elements can be used around holes and on other curved surfaces than with straight-sided

elements. Similarly, in the modeling of complex shapes such as lakes and bones, the geometry can be

replicated quite accurately with fewer elements when higher order isoparametric elements are used. The

discovery of the isoparametric concept was in fact one of the major advances in finite element methods:

compared to other methods, such as the finite difference method, it provided a way of modeling real objects

with much greater fidelity.

The Be matrix for the nine-node element, and for that matter for any isoparametric element,

is obtained by the same procedure as given in Section 7.4.2. For the nine-node element the matrix is

2� 9, so computational methods are essential for its evaluation and there is little to be gained by

writing it.

Other isoparametric elements can be constructed in the same manner. For example, Figure 7.17

illustrates the 12-node isoparametric quadrilateral in the parent and physical planes. The shape functions

for the12-node quadrilateral areobtainedby the tensor productof the four-nodeshape (cubic) functions in�
and the three-node shape functions (quadratic) in terms of �, yielding

N12Q
K ð�; �Þ ¼ N12Q

½I;J� ð�; �Þ ¼ N4L
I ð�ÞN3L

J ð�Þ; ð7:44Þ

where N4L
K are the one-dimensional cubic shape functions of the four-node element. The relationships

between one-dimensional and two-dimensional shape functions are tabulated in Table 7.4. Figure 7.18

gives the graphical illustration of the shape function construction.

Table 7.3 Relationship between one-dimensional and two-

dimensional shape functions for the nine-node quadrilateral element.

K I J

1 1 1

2 3 1

3 3 3

4 1 3

5 2 1

6 3 2

7 2 3

8 1 2

9 2 2
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Figure 7.17 Mapping of the physical domain into parent coordinates for the 12-node quadrilateral element.
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Figure 7.18 Construction of shape functions for the 12-node quadrilateral element.

Table 7.4 Construction table for the 12-node quadrilateral element.

K I J N4L
1 ð�IÞ N4L

2 ð�IÞ N4L
3 ð�IÞ N4L

4 ð�IÞ N3L
1 ð�IÞ N3L

2 ð�IÞ N3L
3 ð�IÞ N12Q

I ð�; �Þ

1 1 1 1 0 0 0 1 0 0 N4L
1 ð�ÞN3L

1 ð�Þ
2 4 1 0 0 0 1 1 0 0 N4L

4 ð�ÞN3L
1 ð�Þ

3 4 3 0 0 0 1 0 0 1 N4L
4 ð�ÞN3L

3 ð�Þ
4 1 3 1 0 0 0 0 0 1 N4L

1 ð�ÞN3L
3 ð�Þ

5 2 1 0 1 0 0 1 0 0 N4L
2 ð�ÞN3L

1 ð�Þ
6 3 1 0 0 1 0 1 0 0 N4L

3 ð�ÞN3L
1 ð�Þ

7 4 2 0 0 0 1 0 1 0 N4L
4 ð�ÞN3L

2 ð�Þ
8 3 3 0 0 1 0 0 0 1 N4L

3 ð�ÞN3L
3 ð�Þ

9 2 3 0 1 0 0 0 0 1 N4L
2 ð�ÞN3L

3 ð�Þ
10 1 2 1 0 0 0 0 1 0 N4L

1 ð�ÞN3L
2 ð�Þ

11 3 2 0 0 1 0 0 1 0 N4L
3 ð�ÞN3L

2 ð�Þ
12 2 2 0 1 0 0 0 1 0 N4L

2 ð�ÞN3L
2 ð�Þ
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Isoparametric finite elements in two (or three) dimensions constructed by a tensor product of one-

dimensional element shape functions are called Lagrange elements. Some Lagrange elements possess

internal nodes that do not contribute to the interelement compatibility. These nodes can be condensed out

(see Appendix A6) at the element level to reduce the size of the global matrices.

Commercial software usually employs the formulation of higher order element without internal nodes

as shown in Figure 7.19; these are called serendipity elements. The shape functions for the serendipity

family of elements cannot be constructed by a tensor product of one-dimensional shape functions as in the

Lagrange family. The serendipity element shape functions are obtained by a tensor product of carefully

selected functions to satisfy the Kronecker delta property of the shape functions. For instance, the shape

function N8Q
1 for the eight-node serendipity element should be zero at nodes 2 to 8 and should be 1 at node 1.

The product of ð1� �Þ, ð1� �Þ and ð� þ � þ 1Þwill vanish at all of these nodes except for node 1. At node

1, the above triple product is equal to�4, and therefore N8Q
1 is given by

N8Q
1 ¼ �

1

4
ð1� �Þð1� �Þð1þ � þ �Þ:

Similarly, the shape function N12Q
1 for the 12-node (cubic) serendipity element is obtained by a product of

ð1� �Þ, ð1� �Þ, ð� þ � þ 4=3Þ and ð� þ � þ 2=3Þ, followed by normalization gives

N12Q
1 ¼ 9

32
ð1� �Þð1� �Þð� þ � þ 4=3Þð� þ � þ 2=3Þ:

The remaining shape functions of the quadratic and cubic serendipity quadrilaterals can be constructed in a

similar fashion. The developers of the serendipity element, Ergatoudis, Irons and Zienkiewicz (1968),
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Figure 7.19 (a) Eight-node and (b) 12-node serendipity elements. Node numbering and shape function construction.
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derived the above shape functions by inspection, and therefore named them ‘serendipity’ after the princes

of Serendip who were noted for their chance discoveries.

7.6 TRIANGULAR COORDINATES 3

For higher order curved-sided triangular elements, the development of the shape functions by the direct

approach discussed in Section 7.2 is algebraically complex. Furthermore, the integration required to

integrate theweak formcan beverycumbersome. Considerable simplification of the shape functions canbe

obtained via natural (or parent) coordinates. Natural coordinates (or parent element coordinates) that are

specific to triangular elements have severalother names: (i) triangular coordinates, (ii) areacoordinates and

(iii) barycentric coordinates. We will use the name triangular coordinates. We first develop the linear

triangular element in Section 7.6.1, followed by the quadratic triangular element in Section 7.6.2 and the

cubic triangular element in Section 7.6.3.

7.6.1 Linear Triangular Element

Triangular coordinates are defined as shown in Figure 7.20. For any point P, the triangular coordinates of a

point are given by

�I ¼
AI

A
; ð7:45Þ

where AI is the area of the triangle generated by connecting the two nodes other than node I with point P, see

Figure 7.20(a). For example, A3 is the area of the triangle connecting P and nodes 1 and 2.

It caneasilybeseen that as thepoint Pmoves tooneof the nodes, thecorresponding triangular coordinate

becomes unity and the other triangular coordinates become zero; for example (see Figure 7.20(b)), when P

coincides with node 2, �2 ¼ 1 and �1 ¼ �3 ¼ 0. Thus, in general,

�Iðxe
J ; y

e
JÞ ¼ �IJ ; ð7:46Þ

so the triangular coordinates have the Kronecker delta property. This suggests that these particular

coordinates are interpolants.

From the definition of the triangular coordinates in (7.45), it follows that the relationship between ðx; yÞ
and the triangular coordinates is linear. This, combined with (7.46), enables us to write the relationship

between the triangular coordinates and the physical coordinates as

x ¼
X3

I¼1

xe
I �I ; y ¼

X3

I¼1

ye
I �I : ð7:47Þ

As we will see shortly, the triangular coordinates are linear in x and y and satisfy the Kronecker delta

property (7.46), so they must be identical to the linear shape functions for a triangle (there is only a single

uniqueset of linear functions that satisfies these properties). Therefore, wecan write a linear approximation

as

�e ¼
X3

I¼1

�e
I �I ¼�e

1�1 þ �e
2�2 þ �e

3�3: ð7:48Þ

3Recommended for Advanced Track.
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In other words, the linear shape functions given in (7.10) are identical to the triangular coordinates.

Equation (7.48) provides a much more convenient framework for studying triangular elements than the

framework described in Section 7.2.

Equation (7.47) can be viewed as a map between a parent element and the element in the physical plane,

just as in isoparametric elements. If we view the element in the �1, �2 plane and note that by (7.46)

�1ðx1; y1Þ ¼ 1, �2ðx1; y1Þ ¼ 0 and �2ðx2; y2Þ ¼ 1, �1ðx2; y2Þ ¼ 0 and �1ðx3; y3Þ ¼ �2ðx3; y3Þ ¼ 0, then

connecting the nodes by straight lines (which is appropriate because of the linearity of the relationship

between ðx; yÞ and ð�1; �2Þ), it can be seen that the element in the parent plane is a triangle as shown in

Figure 7.21. Equation (7.47) is then the map from this parent element to the physical element.

In order to complete the development of triangular coordinates, it is necessary to express the triangular

coordinates in terms of (x, y). Equation (7.47) provides only two equations for �I, which is insufficient.

To obtain a solvable system of linear algebraic equations, we note from the definition of �I by (7.46) and

Figure 7.21 that

�1 þ �2 þ �3 ¼ 1: ð7:49Þ

Combining (7.47) and (7.49) in the matrix form gives

1

x

y

24 35 ¼ 1 1 1

xe
1 xe

2 xe
3

ye
1 ye

2 ye
3

24 35 �1

�2

�3

24 35: ð7:50Þ

The square matrix in (7.50) corresponds to ðMeÞT in (7.4), so the inverse is given by ðMeÞ�T
and we have

�1

�2

�3

24 35 ¼ 1

2Ae

xe
1ye

3 � xe
3ye

2 ye
23 xe

32

xe
3ye

1 � xe
1ye

3 ye
31 xe

13

xe
1ye

2 � xe
2ye

1 ye
12 xe

21

264
375 1

x

y

24 35; ð7:51Þ

(a) (b)

P A3

A1A2

1

2

3

1
2

3

2 0= 2 1/2=
2 1=

ξ ξ 
ξ 

Figure 7.20 Definition of triangular coordinates of a point in the element in terms of the areas generated by that point.

x1

x1 + x2 = 1

2 (x2 = 1)

3 (x3 = 1) 1 (x1 = 1)

x2

Figure 7.21 Parent element domain in triangular coordinates.
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where we have used the notation xe
IJ ¼ xe

I � xe
J , ye

IJ ¼ ye
I � ye

J . From (7.51) it can be seen that the triangular

coordinates are linear in (x,y). It is easy to obtain from (7.51) that

@�1

@x
¼ ye

23

2Ae

@�2

@x
¼ ye

31

2Ae

@�3

@x
¼ ye

12

2Ae
;

@�1

@y
¼ xe

32

2Ae

@�2

@y
¼ xe

13

2Ae

@�3

@y
¼ x2

21

2Ae
:

ð7:52Þ

7.6.2 Isoparametric Triangular Elements

In the same way as curved-sided elements were developed for quadrilaterals, we can develop curved-sided

triangular elements by the isoparametric concept. Before we do that, we will show how the shape functions

for the quadratic and cubic triangular elements can be constructed without the solution of any equations.

We first consider the six-node triangle shown in Figure 7.22. Recall from Section 7.2.2 that six nodes are

needed for quadratic elements, with nodes along the midpoints of each side. We number the corner nodes

first in counterclockwise order, and then number the midside nodes as shown in Figure 7.22. The triangular

coordinates of the nodes and the shape functions are given in Table 7.5. Note that the triangular coordinates

of a midside node are always a permutation of (0.5, 0.5, 0.0), as along a side, one of the triangular

coordinates always vanishes and the midpoint node splits the element into two; therefore, the other two

triangular coordinates are each 1=2 as shown in Figure 7.20.

Construction of the shape functions for the six-node triangle is similar to the construction of Lagrange

interpolants: when constructing the shape function N6T
I , we seek a function that vanishes at all other nodes

and equals unity at node I. We first consider the construction of N6T
2 . The construction of N6T

2 begins with

choosing a function that does not vanish at node 2, but vanishes at the other corner nodes; that function is �2.

Next we find another function so that its product with �2 vanishes at the remaining nodes. That function is

(2�2 � 1), as it vanishes at nodes 4 and 6, and the product, �2ð2�2 � 1Þ, vanishes at all nodes but node 2. It

remains to normalize the shape function, i.e. to insure that N6T
2 ðx2; y2Þ ¼ 1; it turns out that this condition is

already met so nothing further needs to be done, and we have the result in Table 7.3. The corner node shape

functions at the other nodes are constructed similarly.

The midpoint node shape functions are constructed by noting which triangular coordinates vanish at the

various nodes. The function �1�2 vanishes at all nodes but node 4, so after normalizing we see that

N6T
4 ¼ 4�1�2. The other midpoint node shape functions are constructed similarly. Note that the shape

functions are quadratic in �I , which in turn are linear in ðx; yÞ, so the shape functions are quadratic in ðx; yÞ.

1

2

3

4

5

6

1

2

3

4

5

6

x3 = 1

x3 = 1/2

x3 = 0

x1 = 0

x1 = 1 x2 = 0

x2 = 0 x2 = 1/2

x1 = 1/2

Figure 7.22 Six-node triangular element: (a) node numberingconvention and (b) lines of constant values of triangular

coordinates.
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By construction, the shape functions satisfy the Kronecker delta property:

N6T
I ðxJ ; yJÞ ¼ �IJ :

The approximation is then given by

�eðx; yÞ ¼ N6Tð�IÞde:

When Equation (7.47) is used to map from the parent plane to the physical plane, the element depicted in

Figure 7.20 is a straight-sided six-node element. However, if we use the map

x ¼ N6Tð�IÞxe; y ¼ N6Tð�IÞye;

then the sides of the physical element are curved. This is an example of a triangular isoparametric element.

The elements are compatible with the nine-node isoparametric quadrilateral; this is investigated in

Problem 7.1.

When the map of the geometry uses shape functions of lower order than the shape functions in the

approximation of the function, then the element is called a subparametric element. For example, if the

quadratic six-node shape functions are combined with the linear map (7.47), then the sides are straight, and

it is a subparametric element. This subparametric element can exactly reproduce fields that are quadratic in

x and y, whereas the isoparametric element can reproduce only linear fields exactly. This tends to decrease

the accuracy of the element. In fact, the more distorted the element, the less its accuracy. Therefore, curved

edges should only be used where necessary, such as on the boundaries of the problem domain.

7.6.3 Cubic Element

The same procedure can be used to compute the shape functions for a cubic element. The nodal

arrangement for the cubic element was already discussed in Section 7.2.2 and can be seen from Pascal’s

triangle. As in the six-node triangle, the corner nodes are numbered first and the other nodes after that. The

triangular coordinates of the nodes and the shape functions are given in Table 7.6. The element is shown in

Figure 7.23. As can be seen, as dictated by the Pascal triangle, each edge has four nodes, and a center node is

included. The nodes on the edges are now placed by subdividing the edge into three equal segments. The

triangular coordinates can easily be determined by noting which one vanishes and examining the areas of

the subelements that are generated by connecting the edge node to the opposite node; this is illustrated in

Figure 7.23.

Table 7.5 Table of shape functions for the six-node triangular element.

I �1ðxe
I ; y

e
I Þ �2ðxe

I ; y
e
I Þ �3ðxe

I ; y
e
I Þ N6T

I ð�1; �2; �3Þ

1 1 0 0 �1ð2�1 � 1Þ
2 0 1 0 �2ð2�2 � 1Þ
3 0 0 1 �3ð2�3 � 1Þ
4 1=2 1=2 0 4�1�2

5 0 1=2 1=2 4�2�3

6 1=2 0 1=2 4�1�3
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The shape functions are constructed by the same arguments as for the six-node triangle. The same

arguments on the reproducing capability that were made for the six-node triangle apply to the 10-node

triangle.

The center node of the cubic element is usually not retained in the nodal structure of the mesh. Instead, it

is eliminated by a procedure called static condensation. This is described in Appendix A6.

7.6.4 Triangular Elements by Collapsing Quadrilateral Elements

An alternative approach of generating triangular elements is by assigning the same coordinates to two

neighboring nodes in a quadrilateral as shown in Figure 7.24; this is equivalent to assigning the same node

number for two of the nodes. This technique is used by some commercial software, such as ANSYS.

It can be shown (see Problem 7.11) that superimposing two nodes of a quadrilateral, which corresponds

to collapsing one of the edges, will result in a constant strain triangle. It is interesting to note that the

Jacobian matrix of the collapsed quadrilateral is singular at the point where the nodes have been collapsed.

The Be matrix of the degenerated quadrilateral is identical to that of the three-node triangle, except at the

pointwhere the twonodes coincide,whereBe isnotdefined(zero dividedbyzero).Apractical consequence

is that solution gradients should not be computed at element nodes.

Table 7.6 Table of shape functions for the ten-node triangular element.

I �1ðxe
I ; y

e
I Þ �2ðxe

I ; y
e
I Þ �3ðxe

I ; y
e
I Þ N10T

I ð�1; �2; �3Þ

1 1 0 0 ð9=2Þ�1ð�1 � 1=3Þð�1 � 2=3Þ
2 0 1 0 ð9=2Þ�2ð�2 � 1=3Þð�2 � 2=3Þ
3 0 0 1 ð9=2Þ�3ð�3 � 1=3Þð�3 � 2=3Þ
4 2=3 1=3 0 ð27=2Þ�1�2ð�1 � 1=3Þ
5 1=3 2=3 0 ð27=2Þ�1�2ð�2 � 1=3Þ
6 0 2=3 1=3 ð27=2Þ�2�3ð�2 � 1=3Þ
7 0 1=3 2=3 ð27=2Þ�2�3ð�3 � 1=3Þ
8 1=3 0 2=3 ð27=2Þ�1�3ð�3 � 1=3Þ
9 2=3 0 1=3 ð27=2Þ�1�3ð�1 � 1=3Þ
10 1=3 1=3 1=3 27�1�2�3

1

1

2

3

4

(a) (b)
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1
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4
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9
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x3 = 1

x3 = 2/3

x3 = 1/3

x3 = 0

x1 = 0

x1 = 1

x1 = 1/3
x1 = 2/3

Figure 7.23 Ten-node triangular element: (a) node numbering convention and (b) lines of constant value of triangular

coordinates.
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7.7 COMPLETENESS OF ISOPARAMETRIC ELEMENTS 4

Isoparametric elements are linear complete, which means that they can represent a linear field exactly,

regardless of whether the sides are curved or straight. Generally, when the sides are curved, higher

order monomials cannot be represented exactly. However, mathematical proofs are available in the

literature (see, for instance, Ciarlet and Raviart (1973)) that show that if the nodes are not far from

the midpoints of the straight sides, the convergence of isoparametric elements corresponds to the order of

the complete polynomial in the natural coordinates. Here we just show that the isoparametric elements can

represent a linear field exactly, because this is crucial to an important test in finite elements, the patch test

described in Chapter 8.

Inorder todemonstrate linearcompleteness in thesimplestpossible setting thatstill contains theessenceof

how one goes about showing completeness, we first consider the three-node, one-dimensional quadratic

element. When the second node is not at the midpoint of the element, the isoparametric element is defined by

ðaÞ xð�Þ ¼
X3

I¼1

xe
I N3L

I ð�Þ ¼ xe
1

1

2
�ð� � 1Þ þ xe

2ð1� �2Þ þ xe
3

1

2
�ð� þ 1Þ;

ðbÞ �eð�Þ ¼
X3

I¼1

�e
I N3L

I ð�Þ ¼ �e
1

1

2
�ð� � 1Þ þ �e

2ð1� �2Þ þ �e
3

1

2
�ð� þ 1Þ:

ð7:53Þ

Showing that (7.53b) contains the linear terms directly would be difficult, because we would need to solve

the quadratic equation (7.53a) to obtain an expression for � in terms of x.

The standard approach to showing linear completeness avoids this difficulty. Bear in mind that we want

to show that if the nodal values �e
I arise from a linear field, then �eðxÞ is exactly that linear field. In other

words, we want to show that if the nodal values are set by

�e
I ¼ a0 þ a1xe

I ; ð7:54Þ

then

�eðxÞ ¼ a0 þ a1x:

We then proceed as follows. Substituting (7.54) for �e
I in (7.53b) gives

�eðxÞ ¼
X3

I¼1

ða0 þ a1xe
I ÞN3L

I ð�Þ ¼ a0

X3

I¼1

N3L
I ð�Þ þ a1

X3

I¼1

xe
I N3L

I ð�Þ: ð7:55Þ

2

3

1 4

3

41, 2

Figure 7.24 Degenerate form of four-node quadrilateral element obtained by collapsing nodes 1 and 2.

4Recommended for Advanced Track.
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It is easy to verify that for these shape functions,
P3

I¼1 N3L
I ð�Þ ¼ 1. This can also be verified for any other

shape functions and is known as the partition of unity property.

Using this fact and substituting (7.53a) in the second term in (7.55) gives

�ðxÞ ¼ a0 þ a1x:

Thus, the function �ðxÞ is exactly the linear field from which the nodal values �e
I were obtained, (7.54).

The development for two-dimensional elements is similar. We now prove it for the general case of two-

dimensional isoparametric elements. Recall that the map between the parent element plane and the

physical plane is given by

x ¼
Xnen

I¼1

xe
I Ne

I ; y ¼
Xnen

I¼1

ye
I Ne

I : ð7:56Þ

The function is given by

�e ¼
Xnen

I¼1

�e
I Ne

I : ð7:57Þ

Consider a linear function when the nodal values are set by a linear field:

�e ¼ a0 þ a1xþ a2y: ð7:58Þ

The nodal values are

�e
I ¼ a0 þ a1xe

I þ a2ye
I : ð7:59Þ

We ask the question: if we set the nodal values by (7.59), is the finite element field exactly (7.58)?

Substituting (7.59) into (7.57) yields

�eðxÞ ¼
Xnen

I¼1

ða0 þ a1xe
I þ a2ye

I ÞNe
I

¼ a0

Xnen

I¼1

Ne
I þ a1

Xnen

I¼1

xe
I Ne

I þ a2

Xnen

I¼1

ye
I Ne

I ;

ð7:60Þ

where the second equation is obtained by taking ai outside the sums (as it is the same for all terms in the

sum). Then using the partition of unity property and (7.56) gives

�e ¼ a0 þ a1xþ a2y:

So the isoparametric element exactly represents the linear field. If this fact does not strike you as

extraordinary, try to show that any of the quadratic terms in the nine-node element (or three-node element)

are represented exactly. It cannot be done, as it is not true.

7.8 GAUSS QUADRATURE IN TWO DIMENSIONS 5

As seen in Chapter 5 and encountered again in later chapters, integration of various forms of the shape

functions over the domain of an element is required in formulating element matrices and vectors. We now

5Recommended for Advanced Track.
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show how the one-dimensional Gauss quadrature formulas developed in Section 4.6 are extended to two

dimensions.

7.8.1 Integration Over Quadrilateral Elements

Consider a typical integral defined over the domain of a quadrilateral element:

I ¼
Z
�e

f ð�; �Þ d�: ð7:61Þ

To evaluate the integral, we must express the infinitesimal area d� in terms of d� and d�. Figure 7.25 shows

the infinitesimal area d� d� in the parent domain and its image in the physical domain.

The vector~r represents an arbitrary point P in the physical domain as shown in Figure 7.25(b). Point P

corresponds to the point P0 in the parent coordinate system. Its coordinates are

~r ¼ x~iþ y~j:

Points Q0 and T 0 are selected to be at the distance of d� and d� from P0 in the natural coordinate system,

respectively. The corresponding points in the physical domain are Q and T . The vectors~a and~b pointing

from P to T and P to Q, respectively (Figure 7.25), can be expressed by the chain rule as

~a ¼ @~r
@�

d� ¼ @x

@�
~iþ @y

@�
~j

� �
d�;

~b ¼ @~r

@�
d� ¼ @x

@�
~iþ @y

@�
~j

� �
d�:

The infinitesimalarea of the physical domain d� enclosed by the two vectors,~b and~a, can be determined by

the scalar triple product:

d� ¼~k � ð~a�~bÞ ¼~k �

~i ~j ~k

@x

@�
d�

@y

@�
d� 0

@x

@�
d�

@y

@�
d� 0

2666664

3777775 ¼ det

@x

@�

@y

@�

@x

@�

@y

@�

2664
3775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
jJej

d� d� ¼ jJej d� d�; ð7:62Þ

where jJej is the determinant of the Jacobian matrix Je.

dh

dh

r

x

y

∂r

∂h

∂x
∂r

P

(a) (b)

P' T '

Q

Q'
T

h
η

dx dx 
x 

x

Figure 7.25 Mapping of the infinitesimal areas from (a) the parent domain to (b) the physical domain.
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Thus, the integral in Equation (7.61) can be expressed as

I ¼
Z1

�¼�1

Z1

�¼�1

jJeð�; �Þj f ð�; �Þ d� d�:

To evaluate this integral, we first carry out Gauss integration over �, which yields

I ¼
Z1

�¼�1

Z1

�¼�1

Jeð�; �Þj jf �; �ð Þd�

0B@
1CAd� ¼

Z1

r¼�1

Xngp

i¼1

Wi Jeð�i; �Þj jf �i; �ð Þd�

Next, integrating over � yields

I ¼
Z1

�¼�1

Xngp

i¼1

Wif �i; �ð Þ Jeð�i; �Þj j d� ¼
Xngp

i¼1

Xngp

j¼1

WiWj Jeð�i; �jÞ
�� ��f �i; �j

� �

Thus, the integral is evaluated numerically by a double summation, using the same weights and quadrature

points as in one-dimensional quadrature. This involves two nested do loops.

7.8.2 Integration Over Triangular Elements6

Forgeneral curved-sided triangular elements, the numerical integrationprocedures are somewhat different

than those for quadrilaterals. The integration formula is given by

I ¼
Z
�e

f d� ¼
Xngp

i¼1

WijJeð�iÞj f ð�iÞ; ð7:63Þ

where the Jacobian is

Je ¼

@x

@�1

@y

@�1

@x

@�2

@y

@�2

2664
3775 ¼

Pnen

I

@NT
I

@�1

xe
I

Pnen

I

@NT
I

@�1

ye
I

Pnen

I

@NT
I

@�2

xe
I

Pnen

I

@NT
I

@�2

ye
I

26664
37775: ð7:64Þ

Recall that the shape functions are expressed in terms of ð�1; �2; �3Þ, where �3 ¼ 1� �1 � �2. The weights

and quadrature points for triangular elements are summarized in Table 7.7.

For straight-sided three-node triangles, the Jacobian matrix is constant and is given by

Je ¼ xe
1 � xe

3 ye
1 � ye

3

xe
2 � xe

3 ye
2 � ye

3

� �
:

Theresulting constant Jacobian is equal to the twice the area of the trianglegiven inEquation (7.9) and is the

ratio between the areas of a triangle in the physical and parent domains.

6Recommended for Advanced Track.
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Monomials of any order can be integrated on straight-sided triangles in the closed form. The following

formula has been developed for these purposes (Cowper, 1973):Z
�e

�i
1�

j
2�

k
3 d� ¼ i!j!k!

ðiþ jþ k þ 2Þ! 2Ae: ð7:65Þ

This formula can be used to avoid numerical integration.

7.9 THREE-DIMENSIONAL ELEMENTS 7

The two basic categories of three-dimensional elements are hexahedral and tetrahedral elements. The

former are generalizations of quadrilateral elements, whereas the latter are generalizations of triangular

elements. Wedge-shaped elements can be constructed by collapsing the nodes of a hexahedral element, just

as a triangle can be constructed from a quadrilateral. In each category, we have the basic lower order

element, such as the eight-node (or trilinear) hexahedral and the four-node tetrahedral element, as well as

various higher order curved-face or flat-face elements. We will give a brief summary of the hexahedral

element followed by tetrahedral elements.

7.9.1 Hexahedral Elements

The parent element domain of the eight-node hexahedral (or brick) element is a biunit cube with element

coordinates �, � and �. The map to the physical domain is

xð�; �; �Þ ¼ N8Hð�; �; �Þxe;

yð�; �; �Þ ¼ N8Hð�; �; �Þye;

zð�; �; �Þ ¼ N8Hð�; �; �Þze;

ð7:66Þ

where N8Hð�; �; �Þ are the eight-node hexahedral shape functions defined in the parent coordinate system

shown in Figure 7.26.

Table 7.7 Gauss quadrature weights and points for triangular domains.

Integration Degree of

order precision �1 �2 Weights

Three-point 2 0.1 666 666 666 0.1 666 666 666 0.1 666 666 666

0.6 666 666 666 0.1 666 666 666 0.1 666 666 666

0.1 666 666 666 0.6 666 666 666 0.1 666 666 666

0.1 012 865 073 0.1 012 865 073 0.0 629 695 903

0.7 974 269 853 0.1 012 865 073 0.0 629 695 903

0.1 012 865 073 0.7 974 269 853 0.0 629 695 903

Seven-point 5 0.4 701 420 641 0.0 597 158 717 0.0 661 970 764

0.4 701 420 641 0.4 701 420 641 0.0 661 970 764

0.0 597 158 717 0.4 701 420 641 0.0 661 970 764

0.3 333 333 333 0.3 333 333 333 0.1125

7Recommended for Advanced Track.
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The eight-node hexahedral shape functions can be constructed by a tensor product of one-dimensional

linear shape functions developed in Chapter 4:

N8H
L ð�; �; �Þ ¼ N2L

I ð�ÞN2L
J ð�ÞN2L

K ð�Þ: ð7:67Þ

The relationship between the node numbers of one-dimensional and hexahedral elements is given in

Table 7.8.

The approximation �e is constructed by invoking the isoparametric concept, i.e. using the same shape

functions as (7.66):

�eð�; �Þ ¼ N8Hð�; �; �Þde: ð7:68Þ

The continuity of the interpolation functions can be seen by observing the behavior along one of the faces of

the element, say � ¼ 1, where N2L
2 ð�Þj�¼1 ¼ 1. From (7.67), it follows that �eð�; �; 1Þ is a bilinear function,

which can be uniquely defined by four nodal values on the face, so the C0 continuity is assured.

Higher order hexahedral elements can be derived by a tensor product of higher order one-dimensional

linear shape functions. Figure 7.27 depicts a 27-node triquadratic hexahedral element. One can also

derive a serendipity higher order hexahedral element with all the nodes positioned on the six bounding

surfaces.

1
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6 8

7
1

2
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5

6 7

8

x h

ζ

Figure 7.26 Mappingof theeight-nodehexahedral fromtheparent to thephysicalCartesiancoordinatesystem.Nodes

at � ¼ �1 are first numbered counterclockwise, followed by nodes at � ¼ 1.

Table 7.8 Relationship between one-dimensional and

three-dimensional shape function numbers for the eight-

node hexahedron.

L I J K

1 1 1 1

2 2 1 1

3 2 2 1

4 1 2 1

5 1 1 2

6 2 1 2

7 2 2 2

8 1 2 2
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The Jacobian matrix Je in three dimensions is

Je ¼

@x

@�

@y

@�

@z

@�
@x

@�

@y

@�

@z

@�

@x

@�

@y

@�

@z

@�

26666664

37777775: ð7:69Þ

The integral over a hexahedral element domain can be expressed as

I ¼
Z
�e

f ð�; �; �Þ d� ¼
Z1

�¼�1

Z1

�¼�1

Z1

�¼�1

jJeð�; �; �Þj f ð�; �; �Þ d� d� d�

¼
Xngp

i¼1

Xngp

j¼1

Xngp

k¼1

WiWjWkjJeð�i; �j; �kÞj f ð�i; �j; �kÞ:

7.9.2 Tetrahedral Elements

The tetrahedral parent and physical domains are illustrated in Figure 7.28. The tetrahedral coordinates of a

point P are denoted by �1, �2, �3 and �4. The tetrahedral coordinates define the volume coordinates of the

tetrahedral as follows. Any point P in the physical element domain shown in Figure 7.28(b) subdivides the

original tetrahedral element volume �e into four tetrahedra. The volume coordinates are then defined as

follows:

�1 ¼
volume of P234

�e
; �2 ¼

volume of P134

�e
;

�3 ¼
volume of P124

�e
; �4 ¼

volume of P123

�e
:

ð7:70Þ

Note that with the above definition, �1 þ �2 þ �3 þ �4 ¼ 1.

x =  h = z = 0

(a) (b)

Figure 7.27 (a) 27-node curved-face hexahedral element (surface nodes are shown on translated surfaces for clarity

for 3 surfaces) and (b) 20-node serendipity hexahedral element.
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Each coordinate is zero on one surface and is equal to 1 at the node opposite to that surface.

The shape functions of the four-node tetrahedral element are given by

N4Tet
1 ¼ �1;

N4Tet
2 ¼ �2;

N4Tet
3 ¼ �3;

N4Tet
4 ¼ �4 ¼ 1� �1 � �2 � �3:

ð7:71Þ

The 10-node tetrahedral element is shown in Figure 7.29. The shape functions are obtained in a similar

fashion to that of the six-node triangular elements described in Section 7.6.2. For instance, when

x3

x3 = 1

x2 = 1

x4 = 1 x1 = 1
x1

x2

1

2
3

4

(a)

P

4
1

2

3

(b)

Figure 7.28 Mapping of the four-node tetrahedron from (a) the parent to (b) the physical Cartesian coordinate system.

Also shown is the interior point P (not a node) in the physical domain (b).

4
1

2

3

5

6
10 7

9
8

Figure 7.29 A 10-node curved-face tetrahedral element.

Table 7.9 Table of shape functions construction for the ten-node tetrahedral element.

I �1ðxe
I ; y

e
I Þ �2ðxe

I ; y
e
I Þ �3ðxe

I ; y
e
I Þ �4ðxe

I ; y
e
I Þ N10Tet

I ð�1; �2; �3; �3Þ

1 1 0 0 0 2�1ð�1 � 1=2Þ
2 0 1 0 0 2�2ð�2 � 1=2Þ
3 0 0 1 0 2�3ð�3 � 1=2Þ
4 0 0 0 1 2�4ð�4 � 1=2Þ
5 1=2 1=2 0 0 4�1�2

6 0 1=2 1=2 0 4�2�3

7 1=2 0 1=2 0 4�1�3

8 1=2 0 0 1=2 4�1�4

9 0 1=2 0 1=2 4�2�4

10 0 0 1=2 1=2 4�3�4
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constructing the shape function N10Tet
I , we seek a function that equals unity at node I, vanishes at all other

nodes and is at most quadratic. These conditions are met by 2�1ð�1 � 1=2Þ for I ¼ 1. The 10-node

tetrahedral element shape functions are given in Table 7.9.

The integration formulas for tetrahedra are similar to those given in Equation (7.63) for triangles. The

Jacobian is given by Equation (7.69), where the derivatives with respect to �, � and � are replaced by the

derivatives with respect to the volume coordinates �1, �2 and �3. The quadrature point and weights are

summarized in Table 7.10.

Example 7.1

Integrate exactly and numerically the following monomial over a triangular element:

I ¼
Z
�

�1�
3
2 d�:

Applying (7.65), we have

I ¼ 2A
ð1!Þð3!Þð0!Þ

ð1þ 3þ 0þ 2Þ! ¼
12A

720
¼ 0:008 33ð2AÞ:

Using three-point Gauss quadrature,

I ¼ 1

6|{z}
W

ð2AÞ|ffl{zffl}
J

1

6

1

6

� �3

þ 2

3

1

6

� �3

þ 1

6

2

3

� �3
 !

¼ 0:008 87ð2AÞ:
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Table 7.10 Gauss quadrature weights and points for tetrahedral domains.

Integration Degree of

order precision �1 �2 �3 Weights

One-point 2 0.25 0.25 0.25 1

0.58 541 020 0.13 819 660 0.13 819 660 0.25

0.13 819 660 0.58 541 020 0.13 819 660 0.25

Four-point 3 0.13 819 660 0.13 819 660 0.58 541 020 0.25

0.13 819 660 0.13 819 660 0.13 819 660 0.25

0.25 0.25 0.25 �0.8

1=3 1=6 1/6 0.45

Five-point 4 1=6 1=3 1/6 0.45

1=6 1=6 1/3 0.45

1=6 1/6 1/6 0.45
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Problems

Problem 7.1
Given a nine-node rectangular element as shown in Figure 7.30.

(i) Construct the element shape functions by the tensor product method.

(ii) If the temperature field at nodes A and B is 1 �C and zero at all other nodes, what is the temperature at

x ¼ y ¼ 1?

(iii) Consider the three-node triangular element ABC located to the right of the nine-node rectangular

element. Will the function be continuous across the edge AB? Explain.

Problem 7.2
Consider two triangular elements as shown in Figure 7.31. If the exact temperature field is x2, can the two

elements represent the exact solution? Explain.

Problem 7.3
Show that if one of the angles in a quadrilateral is greater than 180�, then detðJeÞmay not be positive.

B
x

y

2=y

1=y

A

C

2=x 4=x 6=x

Figure 7.30 Nine-node rectangular element and adjacent three-node triangular element of Problem 7.1.

1 4

3 (2,1)2

x

y

Figure 7.31 Two triangular elements of Problem 7.2.
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Problem 7.4
Construct the shape functions for the five-node triangular element shown in Figure 7.32, which has

quadratic shape functions along two sides and linear shape functions along the third. Be sure your shape

functions for all nodes are linear between nodes 1 and 2. Use triangular coordinates and express your

answer in terms of triangular coordinates.

Problem 7.5
Derive the derivatives of the shape functions and the B-matrix of the eight-node brick element.

Problem 7.6
Using the tensor product of one-dimensional shape functions, construct the shape functions of the 27-node

hexahedral element.

Problem 7.7
Derive the derivatives of the shape functions and the corresponding B-matrix of the 27-node hexahedral

element.

Problem 7.8
Consider two neighboring triangular elements as shown in Figure 7.8. Express the values of parameters be

i

describing an equation of an element edge defined by Equation (7.17) in terms of parameters ae
i describing

an approximation over element domain �eðx; yÞ ¼ ae
0 þ ae

1xþ ae
2y.

1

2

3

4

5

Linear edge

Figure 7.32 Five-node triangular element of Problem 7.4.

12

43

4

2

x

y

Figure 7.33 Four-node quadrilateral of Problem 7.9.
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Problem 7.9
Show that by collapsing side 1–2 of the four-node quadrilateral element shown in Figure 7.33, a constant

strain triangle is obtained.

Problem 7.10
Consider the four-node isoparametric element. Show that

@N1

@x
at the origin, � ¼ � ¼ 0 is given by

@N1

@x
¼ y24

2A
and that J ¼ detðJeð0; 0ÞÞ ¼ A=4.
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8
Finite Element Formulation
for Multidimensional Scalar
Field Problems

In this chapter, we describe how algebraic systems of equations are developed from the weak form and the

finite element approximations of the trial solutions and weight functions given in Chapter 7. We start by

considering two-dimensional heat conduction. With minor changes, the procedures are applicable to any

other diffusion equation, to three dimensions and to the advection–diffusion equation.

The procedure mirrors what we have done in one dimension. The major changes are that the matrices are

of different dimensions, and the element conductance matrices arise from integrals over an area and the flux

matrices from integrals over a line.

8.1 FINITE ELEMENT FORMULATION FOR TWO-DIMENSIONAL HEAT
CONDUCTION PROBLEMS1

We start with the weak form of the heat conduction equations. The weak form for the heat conduction

problem was developed in Section 6.3. In the matrix form, it is written as

find Tðx; yÞ 2 U such that :Z
�

ð=wÞTD=T d� ¼ �
Z
�q

wT�q d�þ
Z
�

wTs d� 8w 2 U0; ð8:1Þ

where

=T ¼

@T

@x
@T

@y

2664
3775; D ¼

kxx kxy

kxy kyy

� �

As a first step, the problem domain is subdivided into triangular, quadrilateral or combinations of these

elements as shown in Figure8.1; the total number of elements isdenoted by nel. The domain of each element

is denoted by �e.

A First Course in Finite Elements J. Fish and T. Belytschko

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)

1Recommended for Science and Engineering Track.



Next, the integrals in (8.1) are replaced by the sum of integrals over nel elements:

Xnel

e¼1

Z
�e

ð=weÞTDeð=TeÞ d�þ
Z
�e

q

weT�q d��
Z
�e

weTs d�

0B@
1CA ¼ 0; ð8:2Þ

The finite element approximation for the trial solution and the weight function in each element is

given by:

Tðx; yÞ�� Teðx; yÞ ¼ Neðx; yÞde ¼
Xnen

I¼1

Ne
I ðx; yÞTe

I ðx; yÞ 2 �e ð8:3Þ

wTðx; yÞ��weTðx; yÞ ¼ Neðx; yÞwe ¼
Xnen

I¼1

Ne
I ðx; yÞwe

I ðx; yÞ 2 �e ð8:4Þ

where nen is the number of element nodes. In (8.3) and (8.4) Ne ðx; yÞis the element shape function matrix,

de ¼ ½Te
1 Te

2 � � � Te
nen
�T the element temperature matrix and we ¼ ½we

1 we
2 � � � we

nen
�T the matrix

of element nodal values of weight function. Note that for an isoparametric element formulation

(see Chapter 7), the shape functions are expressed in terms of element (natural) coordinates � and � .

The element nodal temperatures are related to the global temperature matrix by the scatter matrix Le

(this matrix is constructed exactly as described for the one-dimensional case in Chapter 2) through:

de ¼ Led: ð8:5Þ

Combining (8.3), (8.4) and (8.5) we obtain a relation for trial solution and weight function in each element:

ðaÞ Teðx; yÞ ¼ Neðx; yÞLed ð8:6Þ
ðbÞ weTðx; yÞ ¼ ðNeðx; yÞweÞT ¼ wTLeTNeTðx; yÞ

The gradient field is obtained by taking the gradient of (8.3):

=Te ¼

@Te

@x

@Te

@y

26664
37775 ¼

@Ne
1

@x
Te

1 þ
@Ne

2

@x
Te

2 þ � � � þ
@Ne

nen

@x
Te

nen

@Ne
1

@y
Te

1 þ
@Ne

2

@y
Te

2 þ � � � þ
@Ne

nen

@y
Te

nen

26664
37775 ¼

@Ne
1

@x

@Ne
2

@x
� � �

@Ne
nen

@x

@Ne
1

@y

@Ne
2

@y
� � �

@Ne
nen

@y

26664
37775de

Ω

x

y

T = T on ΓT

q = q on Γq

Figure 8.1 Finite element model in two dimensions.
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In more compact notation the gradient is given by

=Teðx; yÞ ¼ ð=Neðx; yÞÞde ¼ Beðx; yÞde ¼ Beðx; yÞLed; ð8:7Þ

where

Beðx; yÞ ¼ =Neðx; yÞ:

Applying the gradient operator to (8.6b), it follows that the gradient of the weight function is

ð=weÞT ¼ ðBeweÞT ¼ weTBeT ¼ ðLewÞTBeT ¼ wTLeTBeT; ð8:8Þ

We will partition the global matrices as

d ¼ dE

dF

� �
; w ¼ wE

wF

� �
¼ 0

wF

� �
:

The part of the matrix denoted by the subscript ‘E’ contains the nodes on the essential boundaries. As

indicated by the overbar on �dE, these values are known. The submatrices denoted by the subscript ‘F’

contain all the remaining nodal values: these entries are arbitrary, or free, for the weight function and

unknown for the trial solution.

From the structure of d and w and the C0 continuity of the shape functions, it follows that the finite

element approximations of the weight functions and the trial solutions are admissible, i.e. ThðxÞ2U and

whðxÞ2U0 . Substituting the trial solution and weight function approximations, as given in (8.6) , (8.7) and

(8.8), into (8.2) yields

wT
Xnel

e¼1

LeT

Z
�e

BeTDeBe d� Ledþ
Z
�e

q

NeTq d��
Z
�e

NeTs d�

264
375

8><>:
9>=>; ¼ 0 8wF: ð8:9Þ

In the above, we have replaced the arbitrary weight functions wðx; yÞ by arbitrary parameters wF. wF is a

portion of w corresponding to nodes not on an essential boundary.

As in the derivation outlined in Chapter 5, we define the following element matrices:

Element conductance matrix:

Ke ¼
Z
�e

BeTDeBe d�: ð8:10Þ

Element flux matrix:

fe ¼ �
Z
�e

q

NeTq d�

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
fe

�

þ
Z
�e

NeTs d�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
fe

�

; ð8:11Þ
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where fe
� and fe

� are the element boundary and source heat flux matrices, respectively. The weak form can

then be written as

wT
Xnel

e¼1

LeTKeLe

 !
d�

Xnel

e¼1

LeTfe

 !" #
¼ 0 8wF: ð8:12Þ

The system (8.12) can be rewritten as

wTr ¼ 0 8wF; ð8:13Þ

where

r ¼ Kd� f; ð8:14Þ

and the global matrices are assembled as before:

K ¼
Xnel

e¼1

LeTKeLe; f ¼
Xnel

e¼1

LeTfe: ð8:15Þ

Recall that in practice we do not multiply by scatter and gather operators, but rather carry out direct

assembly. This will be illustrated in the two examples that follow.

Following the derivation in Chapter 5, we partition w and r in Equation (8.13) into E- and F-nodes:

wT
FrF þ wT

ErE ¼ 0 8wF ð8:16Þ

and as wE ¼ 0 and wF is arbitrary, from Equation. (8.16) by using the scalar product theorem, we obtain the

partitioned form as

r ¼ rE

0

� �
¼ KE KEF

KT
EF KF

� �
dE

dF

� �
� fE

fF

� �
;

where KE , KF and KEF are partitioned to be congruent with the partitions of d and f.

The above equation can be rewritten as

KE KEF

KT
EF KF

� �
�dE

dF

� �
¼ fE þ rE

fF

� �
ð8:17Þ

and solved using a two-step partitioned approach or by the penalty method. We illustrate the application of

the finite element method for the heat conduction problem on the domain depicted in Figure 8.2 using

Figure 8.2 Problem definition for Example 8.1.
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two triangular elements (Example 8.1) and a single quadrilateral element by utilizing Gauss quadrature

(Example 8.2).

Figure 8.3 Finite element mesh of Example 8.1.

Example 8.1

Consider the heat conduction problem depicted in Figure 8.2. The coordinates are given in meters. The

conductivity is isotropic, with D ¼ k
1 0

0 1

� �
, and k ¼ 5 W �C�1. The temperature T ¼ 0 is prescribed

along edges AB and AD. The heat fluxes q ¼ 0 and q ¼ 20 W m�1 are prescribed on edges BC and CD,

respectively. A constant heat source s ¼ 6 Wm�2 is applied over the plate.

The finite element mesh consisting of two triangular elements is shown in Figure 8.3. It is important to

note that essential boundary conditions must be met, so nodes at the intersection of essential and natural

boundaries are essential boundary nodes. Therefore, when the partitioning method is used, these nodes

must be among those numbered first, as shown in Figure 8.3.

The Be matrix for the three-node triangle is given by (see Equation (7.20))

Be ¼ 1

2Ae

ðye
2 � ye

3Þ ðye
3 � ye

1Þ ðye
1 � ye

2Þ
ðxe

3 � xe
2Þ ðxe

1 � xe
3Þ ðxe

2 � xe
1Þ

� �
;

where

2Ae ¼ ðxe
2ye

3 � xe
3ye

2Þ � ðxe
1ye

3 � xe
3ye

1Þ þ ðxe
1ye

2 � xe
2ye

1Þ:

As Be and k are constant and De ¼ kI, the expression of the conductance matrix can be simplified as

Ke ¼
Z
�e

BeTDeBe d� ¼
Z
�e

BeTBek d� ¼ BeTBek

Z
�e

d�

3

1

2

(e)

Figure 8.4 A counterclockwise numbering of element nodes.
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or

Ke ¼ kAeBeTBe:

A counterclockwise numbering is used for local element nodes as shown in Figure 8.4.

For element 1, the local node numbering and element coordinates are given in Figure 8.5. The area of

element 1 is Að1Þ ¼ 1 and the resulting Bð1Þ matrix is

Bð1Þ ¼ 1

2

�0:5 1 �0:5
�2 0 2

� �
:

The conductance matrix and the corresponding global node numbering of rows for element 1 is

Kð1Þ ¼ kAð1ÞBð1ÞTBð1Þ ¼
5:3125 �0:625 �4:6875

�0:625 1:25 �0:625

�4:6875 �0:625 5:3125

24 35 ½1�½2�
½3�

:

½1� ½2� ½3�

Similarly, for element 2, the local node numbering and element coordinates are given in Figure 8.6.

The area of element 2 is Að2Þ ¼ 0:5 and the Bð2Þ matrix is

Bð2Þ ¼ 0 0:5 �0:5
�2 2 0

� �
:

Figure 8.5 Local node numbering and coordinates of element 1.

Figure 8.6 Local node numbers for element 2.
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The conductance matrix of element 2 is

Kð2Þ ¼ kAð2ÞBð2ÞTBð2Þ ¼
10 �10 0

�10 10:625 �0:625

0 �0:625 0:625

24 35 ½2�½4�
½3�
:

½2� ½3� ½4�
The global conductance matrix is obtained by direct assembly of the two element conductance matrices:

K ¼

5:3125 �0:625 �4:6875 0

�0:625 11:25 �0:625 �10

�4:6875 �0:625 5:9375 �0:625

0 �10 �0:625 10:625

2664
3775
½1�
½2�
½3�
½4�

:

½1� ½2� ½3� ½4�
Let us now consider the element source matrix

fe
� ¼

Z
�e

NeTs d�;

where triangular element shape functions are

Ne
1 ¼

1

2Ae
ðxe

2ye
3 � xe

3ye
2 þ ðye

2 � ye
3Þxþ ðxe

3 � xe
2ÞyÞ;

Ne
2 ¼

1

2Ae
ðxe

3ye
1 � xe

1ye
3 þ ðye

3 � ye
1Þxþ ðxe

1 � xe
3ÞyÞ;

Ne
3 ¼

1

2Ae
ðxe

1ye
2 � xe

2ye
1 þ ðye

1 � ye
2Þxþ ðxe

2 � xe
1ÞyÞ:

In the special case when s is constant, using
R
�e

Ne
I d� ¼ Ae=3 , (see Figure 8.7) gives a

closed form expression for the element source matrix,

fe
� ¼ s

Z
�e

NeT d� ¼ sAe

3

1

1

1

24 35:
The element source matrices for elements 1 and 2 are given by

f
ð1Þ
� ¼

sAð1Þ

3

1

1

1

264
375 ¼ 6� 1

3

1

1

1

264
375 ¼ 2

2

2

264
375 ½1�½2�
½3�

;

f
ð2Þ
� ¼

sAð2Þ

3

1

1

1

264
375 ¼ 6� 0:5

3

1

1

1

264
375 ¼ 1

1

1

264
375 ½2�½4�
½3�

:

1N(1)

1

1

3

2

A(1)

Figure 8.7 Volume under the shape function N
ð1Þ
1 :
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The direct assembly of the element source matrices yields the global source matrix

f� ¼

2

2þ 1

2þ 1

1

2664
3775¼

2

3

3

1

2664
3775
½1�
½2�
½3�
½4�

:

We now proceed with the calculation of the element boundary flux matrix

fe
� ¼ �

Z
�e

q

NeTq d�:

Note that element 1 has two edges on the essential boundary (where the temperature is prescribed) and

one interior edge. None of the edges are on the natural boundary, i.e. �ð1Þq ¼ 0. Therefore, element 1 does

not contribute to the boundary flux matrix. For element 2, q ¼ 20 on CD, and it is the only element edge

that contributes to the boundary flux matrix. We start by evaluating the shape function Nð2Þ along the edge

CD:

Nð2Þ
��
y¼1
¼

1

2Að2Þ
x
ð2Þ
2 y
ð2Þ
3 � x

ð2Þ
3 y
ð2Þ
2 þ y

ð2Þ
2 � y

ð2Þ
3

� �
xþ x

ð2Þ
3 � x

ð2Þ
2

� �
y

h i
1

2Að2Þ
x
ð2Þ
3 y
ð2Þ
1 � x

ð2Þ
1 y
ð2Þ
3 þ y

ð2Þ
3 � y

ð2Þ
1

� �
xþ x

ð2Þ
1 � x

ð2Þ
3

� �
y

h i
1

2Að2Þ
x
ð2Þ
1 y
ð2Þ
2 � x

ð2Þ
2 y
ð2Þ
1 þ y

ð2Þ
1 � y

ð2Þ
2

� �
xþ x

ð2Þ
2 � x

ð2Þ
1

� �
y

h i

26666664

37777775
y¼1

¼
0

0:5x

�0:5xþ 1:0

264
375:

It can be seen that the two nonzero shape functions coincide with the two-node element linear shape

functions. The resulting boundary flux matrix for element 2 is given as

f
ð2Þ
� ¼ �20

Zx¼2

x¼0

0

0:5x

�0:5xþ 1

24 35 dx ¼
0

�20

�20

24 35 ½2�½4�
½3�

:

This result is expected as the total heat energy ð�20� 2Þ is equally distributed between nodes 3 and 4.

The direct assembly of element 2 boundary flux matrix gives

f� ¼

0

0

�20

�20

2664
3775:

Finally, the right hand side matrix of (8.17), which includes the global flux and the residual matrices, is

given as

f� þ f� þ r ¼

2

3

�17

�19

2664
3775þ

r1

r2

r3

0

2664
3775:
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The resulting global system of equations is given by

5:3125 �0:625 �4:6875 0

�0:625 11:25 �0:625 �10

�4:6875 �0:625 5:9375 �0:625

0 �10 �0:625 10:625

2664
3775

0

0

0

T4

2664
3775 ¼

r1 þ 2

r2 þ 3

r3 � 17

�19

2664
3775:

Partitioning after the first three rows and columns gives

T4 ¼ �19=10:625 ¼ �1:788:

The resulting global and element temperature matrices are

d ¼

0

0

0

�1:788

2664
3775; dð1Þ ¼

0

0

0

24 35 ½1�½2�
½3�
; dð2Þ ¼

0

�1:788

0

24 35 ½2�½4�
½3�

:

The flux matrices are

qð1Þ ¼ �kIBð1Þdð1Þ ¼ �kBð1Þdð1Þ ¼ �5
1

2

�0:5 1 �0:5

�2 0 2

� � 0

0

0

264
375 ¼ 0

0

� �
:

qð2Þ ¼ �kBð2Þdð2Þ ¼ �5
0 0:5 �0:5

�2 2 0

� � 0

�1:788

0

264
375 ¼ 4:47

17:88

� �
:

Example 8.2

Consider the heat conduction problem depicted in Figure 8.2. The domain is discretized (meshed) with a

single quadrilateral element shown in Figure 8.8. The 2� 2 Gauss quadrature developed in Chapter 7 is

used for integration of element matrices.

Figure 8.8 Element numbering for Example 8.2.
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The element coordinate matrix is

xe ye½ � ¼

xe
1 ye

1

xe
2 ye

2

xe
3 ye

3

xe
4 ye

4

26664
37775 ¼

0 1

0 0

2 0:5

2 1

26664
37775:

The four-node quadrilateral element shape functions in the parent domain are

N4Q
1 ð�; �Þ ¼

� � �2

�1 � �2

� � �4

�1 � �4

¼ 1

4
ð1� �Þð1� �Þ;

N4Q
2 ð�; �Þ ¼

� � �1

�2 � �1

� � �4

�1 � �4

¼ 1

4
ð1þ �Þð1� �Þ;

N4Q
3 ð�; �Þ ¼

� � �1

�2 � �1

� � �1

�4 � �1

¼ 1

4
ð1þ �Þð1þ �Þ;

N4Q
4 ð�; �Þ ¼

� � �2

�1 � �2

� � �1

�4 � �1

¼ 1

4
ð1� �Þð1þ �Þ:

The gradient in the parent domain is

GN4Q ¼

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

@Ne
1

@�

@Ne
2

@�

@Ne
3

@�

@Ne
4

@�

26664
37775 ¼ 1

4

� � 1 1� � 1þ � �� � 1

� � 1 �� � 1 1þ � 1� �

� �
:

The Jacobian matrix, the determinant of the Jacobian matrix and the inverse of the Jacobian matrix are

given below:

Jð1Þ ¼ ðGN4QÞ½xð1Þ yð1Þ� ¼ 1

4

� � 1 1� � 1þ � �� � 1

� � 1 �� � 1 1þ � 1� �

� � 0 1

0 0

2 0:5

2 1

26664
37775¼ 0 0:125� � 0:375

1 0:125� þ 0:125

� �
;

det Jð1Þ � Jð1Þ
�� �� ¼ �0:125� þ 0:375;

ðJð1ÞÞ�1 ¼

1þ �
3� � 1

8

� � 3
0

2664
3775:

The derivatives of the shape functions with respect to the global Cartesian coordinates are

Bð1Þ ¼ ðJð1ÞÞ�1ðGN4QÞ ¼ ðJð1ÞÞ�1 1

4

� � 1 1� � 1þ � �� � 1

� � 1 �� � 1 1þ � 1� �

� �
:

The conductance matrix and the flux matrix are computed using 2� 2 Gauss quadrature with the

following sampling points and weights:

�1 ¼ �
1ffiffiffi
3
p ; �2 ¼

1ffiffiffi
3
p ; �1 ¼ �

1ffiffiffi
3
p ; �2 ¼

1ffiffiffi
3
p ; W1 ¼ W2 ¼ 1:
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The conductance matrix is given by

K ¼ Kð1Þ ¼
Z
�

BeTDeBe d� ¼ k

Z 1

�1

Z 1

�1

Bð1ÞTBð1Þ Jð1Þ
�� �� d� d�

¼ k
X2

i¼1

X2

j¼1

WiWj Jð1Þð�i; �jÞ
�� ��Bð1ÞTð�i; �jÞBð1Þð�i; �jÞ:

Summing the contribution from the four Gauss points yields

K ¼

4:76 �3:51 �2:98 1:73

�3:51 4:13 1:73 �2:36

�2:98 1:73 6:54 �5:29

1:73 �2:36 �5:29 5:91

2664
3775:

The source matrix is given as

f� ¼
Z
�e

sðN4QÞT d� ¼
Z 1

�1

Z 1

�1

sðN4QÞT Jð1Þ
�� �� d� d�

¼
Z 1

�1

Z 1

�1

6

N4Q
1 ð�; �Þ

N4Q
2 ð�; �Þ

N4Q
3 ð�; �Þ

N4Q
4 ð�; �Þ

26666664

37777775ð�0:125� þ 0:375Þ d� d� ¼

2:5

2:5

2

2

26664
37775:

The only contribution to the boundary flux matrix comes from the edge CD. Note that the positive �
direction in the parent element domain is defined from node 1 to node 2; the positive � direction points

from node 1 to node 4. Therefore, the edge CD in the physical domain corresponds to � ¼ �1 in the

element parent domain.

The boundary flux matrix can be integrated analytically or by using one-point Gauss

quadrature:

f� ¼ �
Z

�CD

�qðN4QÞT d� ¼ �
Zx¼2

x¼0

�qN4Qð� ¼ �1; �ÞT dx

¼ � b� a

2|fflffl{zfflffl}
1

�q

Z 1

�1

N4Qð� ¼ �1; �ÞT d� ¼ �20

Z 1

�1

1

2
ð1� �Þ

0

0
1

2
ð1þ �Þ

26666664

37777775 d� ¼

�20

0

0

�20

26664
37775:

The resulting RHS matrix is given by

f� þ f� þ r ¼

r1 � 17:5
r2 þ 2:5
r3 þ 2

�18

2664
3775:
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The global system of equations is

4:76 �3:51 �2:98 1:73

�3:51 4:13 1:73 �2:36

�2:98 1:73 6:54 �5:29

1:73 �2:36 �5:29 5:91

26664
37775

0

0

0

T4

26664
37775 ¼

r1 � 17:5

r2 þ 2:5

r3 þ 2

�18

26664
37775;

which yields T4 ¼ �3:04. The global temperature matrix is

d ¼ dð1Þ ¼

0

0

0

T4

2664
3775 ¼

0

0

0

�3:04

2664
3775:

The resulting flux matrix is computed at the Gauss points and is given as

qð1Þ ¼ �kr� ¼ �kBð1Þdð1Þ;

qð1Þð�1; �1Þ ¼ �kBð1Þð�1; �1Þdð1Þ ¼
0:90

3:60

� �
;

qð1Þð�2; �2Þ ¼ �kBð1Þð�2; �2Þdð1Þ ¼
�2:3

19:8

� �
;

qð1Þð�3; �3Þ ¼ �kBð1Þð�3; �3Þdð1Þ ¼
4:95

19:8

� �
;

qð1Þð�4; �4Þ ¼ �kBð1Þð�4; �4Þdð1Þ ¼
5:81

3:60

� �
:

Example 8.3

Consider the heat conduction problem given in Example 8.1 modeled with 16 quadrilateral finite

elements as shown in Figure 8.9. Solving this problem manually using the finite element method is of

course not feasible. We will solve this problem using the finite element code given in Section 12.5.

0 0.5 1 1.5 2

-0.2

0

0.4

0.6

0.8

1

1.2

x

2D Heat conduction with 16 elements

1

2

7
6 3

8
7 4

9
8

5

10
9

7

12
11

8

13
12 9

14
13 10

15
14

12

1716

13

1817
14

1918
15

2019
17

2221 23

19

24

20

25

natural B.C. (flux)

y

Figure 8.9 Sixteen-element mesh and natural boundary.
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The finite element code and the input files are detailed in Section 12.5 and we recommend that you spend

some time to understand the finite element program syntax.

The postprocessing results for temperature and flux are shown in Figures 8.10 and 8.12. You should be

able to obtain identical plots by running the code.

Fluxesarecalculated by loopingover the numberofelements. For the four-nodequadrilateral element,

there are four Gauss points as shown in Figure 8.11. The heat flux matrix is plotted at each Gauss point in

the physical domain as shown in Figure 8.12.

8.2 VERIFICATION AND VALIDATION2

A critical aspect offinite element applications is verification and validation. The quickest way to remember

their meanings is to use the definitions of Roache:

Verification: Are the equations being solved correctly?

Validation: Are the right equations being solved?

Figure 8.10 Temperature distribution in the 16-element mesh.

Figure 8.11 Gauss point locations for the local node numbering shown.

2Recommended for Science and Engineering Track.
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Thefirstquestion is aquestionof logicandcorrectprogramming:partof the answer lies in the correctnessof

the elements and the weak form used in the program, the correctness of the solver and the postprocessing.

Part of the answer lies in the programming: are the procedures programmed correctly? For commercial

software, an extensive verification plan is usually in place and most users rely on the adequacy of this plan,

though it is sometimes worthwhile to run one or two problems to assure yourself that the features you are

using work perfectly; there are so many features in commercial programs that it is probably impossible to

verify all combinations, so particularly if you use something unusual or new, verification may be

worthwhile. For programs you develop, verification is essential.

In the verification process, it is necessary to establish that the finite element program solves the strong

form correctly. This is not easy, as the equations are solved approximately, and as we have seen, the finite

element solution does not satisfy the governing equation or the natural boundary conditions exactly. The

customary approach to the verification of finite element programs is through a study of convergence: do the

finite element solutions generated by the program converge to the correct solution? However, it is very

helpful to run the patch test, which is described next, before the convergence studies are performed.

The patch test has become ubiquitous as a means of verifying finite element programs. It is extremely

simple, and it is recommended even for commercial softwarewhen first using it. For a homemade code, it is

essential before trying any more complicated problems. The patch test is based on the properties of linear

completeness and the fact that if a finite element approximation contains the exact solution, then the finite

element program must obtain that exact solution.

Wewill firstdescribe the patch test, and thenexplainwhy itworks. In the patch test, a mesh such as shown

inFigure8.13 ismade; the mesh canbequitearbitrary,but it is important tohave irregularelements, as some

elements are sometimes satisfactory when of regular shapes, such as rectangles, but perform quite poorly

when skewed. From four to eight elements are sufficient; when checking your own program with the patch

test, a very few elements are preferable, because if you fail the patch test, you will need to output a lot of

element data.

The mesh is now used to solve the heat conduction equation with prescribed temperatures (essential

boundary conditions) at all nodes with the nodal values obtained from the linear field:

Tðx; yÞ ¼ a0 þ a1xþ a2y; ð8:18Þ

Figure 8.12 The heat flux computed at the element Gauss points.
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where a0 , a1 and a2 are arbitrary constants; you can set them to whatever you like, but they should all be

nonzero. If you are checking your own program, it is best to give them distinctive values so that you can

recognize them in the output.

When you run the finite element program, the solution for the nodal temperature should be given exactly

by (8.18) with the numbers you picked forai , and the heat flux should be constant throughout the mesh. The

values should agree to the exact values within machine precision, which canvary from 10�8 to 10�10. Even

differences like 10�3 sometimes indicate that something is wrong in the program or formulation.

Why does this work? If you consider the heat conduction equation (6.15), you can see that a linear field is

a solution when there are no sources. Prescribing the temperatures along the boundary by this field means

that the field (8.18) satisfies the governing equation and boundary conditions. As the solution to a linear

problem is unique, this must be the exact solution. Furthermore, because the exact solution is included in

the set of finite element approximations (as the elements must be linear complete), the finite element

solution must be the exact solution. Although there has been some controversy on this topic, there is

considerable research that shows that any element that satisfies the patch test is a convergent element.

The other approach to verification is to check convergence to other exact solutions. For heat conduction,

many such solutions are available in the literature. Verification then consists of solving the problem with

increasingly fine meshes as in Example 8.4 and checking that the solution converges. The rate of

convergence should be greater than 1 in the L2 norm and should optimally conform to the rule given in

Section 5.7.

There are many situations in which exact solutions are not available. For example, there are no exact

solutions forproblems with variable anisotropic conductivity. Although it can be argued that a program that

is verified for isotropic conductivity should also work for anisotropic conductivity, it is best to verify the

program for such applications if many runs are to be made. When there are no closed form exact solutions

for an equation, it is possible to construct such solutions: such constructed solutions are called manufac-

tured solutions.

The approach is quite straightforward. One first makes up the solution, and it is desirable to make the

form reasonably challenging. For example, a form frequently used to see how accurately the program

captures high gradients is

T ¼ cos 2� tanhðcðr � 3ÞÞ; ð8:19Þ

where ðr; �Þ are polar coordinates and c is an arbitrary parameter. This field is next substituted into the

governing equation and used to obtain a source s:

s ¼ 2c2 tanh½cðr � 3Þ� � c

r

� �
sech2½cðr � 3Þ� þ 4

r2
tanh½cðr � 3Þ�

� �
cos 2� ð8:20Þ

x

y

Figure 8.13 A typical finite element mesh for the patch test.
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that satisfies Equation (6.15). The boundary conditions are also constructed from this field: One can choose

any combination of essential and natural boundary conditions, though enough of the boundary must be an

essential boundary so that the system equations are not singular. For example, the essential boundary

conditions can be constructed by substituting the equation(s) describing the domain boundary into

Equation (8.19). The resulting ‘manufactured’ solution (8.19) will satisfy the boundary conditions and

the governing equations with the source given in (8.20). Because of the uniqueness of solutions to linear

systems, it must therefore be the only solution. The program can therefore beverified by seeing whether the

solution converges to this manufactured solution. The same procedures used to check convergence in

Example 8.4 are used.

Validation centers on the application area and the modeling. Does the model you have developed,

particularly the boundary conditions, sources, the material properties, etc., represents the actual physical

situation appropriately? For example, in the example of heat flow through a wall, we prescribed the inner

surface temperature to be at room temperature and assumed that heat flow through the wall is entirely by

conduction. However, when it gets very cold outside, the insidewall temperaturewill be significantly lower

than room temperature because convection within the room cannot keep the air at a constant temperature

throughout the room. In addition to conduction, heat moves through the wall by airflow in crevices in the

wall. Furthermore, the conductivity of the various parts of the wall will vary with their moisture content,

installation and so on, and in any case will not match the input values.

One may be tempted to bypass the assumption of constant room temperature by modeling the flow of the

air in the room, and such more complete models are increasingly being used. However, with the more

complete models, modeling assumptions must be made, such as placement of furniture in the room,

occupancy, etc. So modelers must at some point consider the question of what level of detail is sufficient for

their purposes and how can that model be validated.

The most straightforward way to validate a model is to perform a test or experiment that closely

replicates the situation of interest. In the case of heat conduction in a wall, a wall would be constructed,

extensively instrumented, and the model wouldbevalidated by comparing temperatures at several points in

the wall with the predictions. It could usually be assumed that the conductivity at least for part of the wall is

known accurately enough so that differences in temperature at two points in the wall are sufficient to

provide a good estimate of the heat flow.

However, validation by these means is very expensive and time consuming. In most cases, for simple

problems such as this, more creative ways must be found to validate the model. One approach is to use the

data available in the literature. Although thesedata may notbe precisely for the same typeofwall, if theyare

obtained from measurements, they can account for assumptions such as differences between ambient air

temperature and inside wall temperature and other heat loss factors. One can use tests and experiments that

are quite different from the situation being modeled to validate a program. For example, a model for heat

lossofan electronic componentcan bevalidated to some extentby heat lossdata on motorfins.The scalesof

the two situations are quite different, but scaling laws are available for convective heat loss that can then be

used to assess how well the finite element model applies to the smaller scale model of an electronic

component. Obviously, the closer that data are to the actual situation of interest, the more useful they are for

validation.

In linear analysis, validation is simplified substantially as compared to nonlinear analysis because

the output, i.e. the results, depends linearly on the data. Thus, if there is error of 20% in the

conductivity, the maximum error in the heat flow due to this discrepancy is also 20%. Therefore,

estimates of worst possible situations as compared to the model can easily be made. In nonlinear

analysis, this is no longer the case; for example, a difference of 20% in the yield strength of a material can

spell the difference between acceptable strains and failure. Furthermore, in linear analysis, the major

assumptions in modeling are the source data, the boundary conditions and the material properties. Once

it has been determined that a linear model is adequate, these are the only sources of error. In nonlinear

analysis, there are many other aspects that need to be validated: the nonlinear material law, phase change

laws, stability of solutions, etc.
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In summary, validation is one of the major challenges in developing a model. Each problem domain

requires a distinct program of validation. It is crucial to be aware of the assumptions that have been made in

developing a model and the magnitude of their effects on the output and hence the design decisions.

Example 8.4

In this example, we consider a manufactured solution of the form

T ¼ ðr � aÞ2 ¼ x2 þ y2 � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ a2;

defined over the domain of a square plate with a hole as shown in Figure 8.14. For heat equation with

isotropic conductivity and k ¼ 1, the corresponding source term that satisfies (6.15) is given by

s ¼ �r2T ¼ 2a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � 4:

The essential boundary conditions on �T are

Tðr ¼ aÞ ¼ 0; Tðx ¼ �b; yÞ ¼ a2 þ b2 þ y2 � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b2

p
:

2b

2b
x

y

a

r

Γq

Γq

ΓTΓTΓT

C G

Figure 8.14 A square plate with a hole, with prescribed temperature at x ¼ � b and prescribed flux at y ¼ � b.

Figure 8.15 Temperature distribution for the coarsest (34-element) and the finest (502-elements) meshes.
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The natural boundary conditions on �q are (�q ¼ �knTrT)

�qðx; y ¼ bÞ ¼ � @T

@y
ðx; y ¼ bÞ ¼ 2b

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p � 1

 !
;

�qðx; y ¼ �bÞ ¼ � @T

@y
ðx; y ¼ �bÞ ¼ 2b 1� 2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p !

:

Figure 8.15 depicts the coarsest and the finest meshes considered in the convergence studies and the

temperature distribution in the two meshes. Figure 8.16 compares the temperature distribution along the

Figure 8.16 Temperature along the line GG0 for the coarsest (34-element) the finest (502-elements) meshes.

Figure 8.17 Convergence in L2 and energy norms.
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line GG0 obtained with the two meshes against the exact solution. Finally, Figure 8.17 depicts the log–log

plot of the error in the L2 and energy norms (see Equation (5.51)) and a linear approximation obtained by a

linear least squares regression. It can be seen that the slopes approximately equal 1 and 2 in the L2 and

energy norms, respectively, closely matching the theoretical values. Identical results were found in one

dimension in Section 5.7.

8.3 ADVECTION–DIFFUSION EQUATION3

In this section, we develop the discrete finite element equations for the multidimensional advection–

diffusion equation. The development parallels that for one-dimensional advection–diffusion. However,

herewewill introduce onewayforeliminating the ‘wiggles’, i.e. the instabilityof the Galerkin formulation.

The equations will be developed only for isotropic constant diffusion.

For purposes that will become clear later, we define the residual rðxÞ for the advection–diffusion

equation (6.43) as in Chapter 3:

rðxÞ ¼~v � ~r�� kr2�� s: ð8:21Þ

We consider essential and natural boundary conditions as given in (6.44). The trial solutions and the weight

functions are given by the standard finite element approximation, (8.6). These trial solution and weight

function approximations are admissible for the weak form of the advection–diffusion equation as they are

in U and U0 , respectively.

Substituting the finite element approximations (8.6) into the weak form (6.47) and subdividing the

domain � into element domains gives

WG ¼
Xnel

e¼1

We
G ¼ 0;

We
G ¼ weT

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �
þ BeTkeBe


 �
d� de þ

Z
�e

q

NeT�q d��
Z
�e

NeTs d�

8><>:
9>=>; ¼ 0;

ð8:22Þ

where the term WG on the left-hand side is used to indicate that this discrete term comes from the Galerkin

method. We define the element matrix to be the coefficient of de and the rest to be the element flux matrix.

This gives

Ke
G ¼

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �
þ BeTkeBe


 �
d�; ð8:23Þ

fe
G ¼ �

Z
�e

q

NeT�q d�þ
Z
�e

NeTs d�: ð8:24Þ

The first part in (8.23)arises fromthe advective term.The secondpart in the element matrix is the diffusivity

matrix and is identical to the matrix derived in Section 8.1, but here it is limited to the isotropic case. The

nodal fluxes are exactly equal to those in the diffusion equation, but we have added a subscript ‘G’ to

distinguish them from another set of nodal fluxes that enter for the stabilized case.

3Recommended for Advanced Track.
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Substituting (8.23) and (8.24) into (8.22) gives

WG ¼
Xnel

e¼1

weTðKe
Gde � fe

GÞ ¼ 0: ð8:25Þ

The stabilization method we will describe is GLS, Galerkin least square stabilization developed in Hughes

et al. (1989). Wewill develop the method only for linear elements. To motivate this method, we first observe

that one could solve the advection–diffusion equation by finite elements, by minimizing the square of the

residual, i.e. by minimizing

WLS ¼
1

2

Z
�

r2 d�: ð8:26Þ

Solving a partial differential equation by minimizing WLS is called a least square method. The solution

corresponds to the minimum of WLS , which is a stationary point of the functional WLS. Therefore, its

variation vanishes when the residual vanishes, i.e. at a solution, so using the methods developed in Section

3.9 it follows that

0 ¼ �WLS ¼
Z
�

�rr d�: ð8:27Þ

From (8.21), it follows that the variation of the residual is

�r ¼~v � ~r��� kr2��:

If we let �� ¼ w (the variation does not need to be small), then

�r ¼~v � ~rw� kr2w: ð8:28Þ

The source term does not appear in (8.28) because it is given data and does not change as the function�ðxÞ is
varied.

The least square method tends to be inaccurate but stable. The Galerkin method (8.25) tends to be

accurate but becomes unstable as the velocity~v increases. The idea of GLS is then to add a little of the least

square equation to the Galerkin weak form so that the method is accurate and stable. The resulting weak

form is obtained by adding (8.22)and (8.27), which gives

WG þ t�WLS ¼ WG þ t
Z
�

�rr d� ¼ 0: ð8:29Þ

The parameter t is a stabilization parameter, and its selection is discussed in Donea and Huerta (2003).

Substituting (8.28) into (8.29) gives

WG þ t
Z
�

ð~v � ~rw� kr2wÞr d� ¼ 0: ð8:30Þ

Now if you are alert, you will have noticed that the second derivatives of the weight functions and trial

solutions appear in (8.30), so the second integrand in the above is not integrable. As the second derivatives

appear in both theweight function and the trial solution, theycannot be eliminated by integrationby parts. It
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is one of the big mysteries of these methods that these unbounded terms are simply neglected, and yet the

method works.

Substituting the trial solution and weight function approximations with the diffusion terms neglected,

the least square integral in (8.30) becomes

�WLS ¼ weT

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �T

vx

@Ne

@x
þ vy

@Ne

@y


 �
d�de �

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �T

s d�

8><>:
9>=>;
ð8:31Þ

The element matrix is the coefficient of de in the above:

Ke
LS ¼

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �T

vx

@Ne

@x
þ vy

@Ne

@y


 �
d�: ð8:32Þ

The least square term also introduces another nodal flux, which is the second integral in (8.31):

fe
LS ¼

Z
�e

vx

@Ne

@x
þ vy

@Ne

@y


 �T

s d�:

The total element matrices are then

Ke ¼ Ke
G þ tKe

LS; fe ¼ fe
G þ tfe

LS:

Each matrix consists of a part from the Galerkin method and a part multiplied by the stabilization parameter

t from the least square stabilization. This follows from the original form (8.29), if the resulting expressions

in terms of the elements are substituted. It can be seen that the least square part of the element matrix is

symmetric. The natural boundary conditions are satisfied by the Galerkin part of the residual. The essential

boundary conditions are satisfied by construction, as usual. The matrices are assembled in the usual

manner; this can be seen by substituting de ¼ Led.
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Problems

Problem 8.1
Consider a problem on a rectangular (2 m� 1 m) domain as shown in Figure 8.18. The conductivity is

k ¼ 4 W �C�1. �T ¼ 10 �C is prescribed along the edge CD. Edges AB and AD are insulated, i.e.

�q ¼ 0 W m�1; along the edge DC, the boundary flux is �q ¼ 30 W m�1 . A constant heat source is given:

s ¼ 50 W m�2.
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Find the nodal temperature and nodal fluxes; evaluate the element matrices by Gauss quadrature. Use a

single rectangular finite element with node numbering shown in Figure 8.19 so that the local and global

node numberings coincide.

Problem 8.2
Consider a triangular panel made of two isotropic materials with thermal conductivities of k1 ¼ 4 W �C�1

and k2 ¼ 8 W �C�1 as shown in Figure 8.20. A constant temperature of T ¼ 10 �C is prescribed along the

edge BC. The edge AB is insulated and a linear distribution of flux, �q ¼ 15x W m�1 , is applied along the

edge AC. Point source P ¼ 45 W is applied at (x ¼ 3; y ¼ 0). Plate dimensions are in meters.

For the finite element mesh, consider two triangular elements, ABD and BDC. Carry out calculations

manually and find the temperature and flux distributions in the plate.

x

y

A B

CD

q = 0

q = 0

q = 30

T = 10

k = 4

s = 50

Figure 8.18 Rectangular domain of Problem 8.1.

x

y

4

3 2

1

Figure 8.19 Global and local node numberings of Problem 8.1.

x

Insulated

B

k2 = 8k1 = 4

q = 15x

D C
A

2 2 

T = 10

y

3

Figure 8.20 Bi-material triangular domain of Problem 8.2.
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Problem 8.3
A finite element mesh consisting of a rectangular and a triangular element is shown in Figure 8.21. The

dimensions of the plate are in meters. A constant temperature �T ¼ 10 �C is prescribed along the boundary

y ¼ 0. A constant and linear boundary flux as shown in Figure 8.21 is applied along the edges y ¼ xþ 2 and

x ¼ 0, respectively. The edge x ¼ 2 is insulated. A point source P ¼ 10 W is applied at (0, 2) m. The

material is isotropic with k ¼ 1 W �C�1 for element 1 and k ¼ 2 W �C�1 for element 2. Compute the nodal

temperatures and fluxes at the two elements center points.

Problem 8.4
Consider a triangular panel as shown in Figure 8.22. All dimensions are in meters. A constant temperature

T ¼ 5 �C is prescribed along the boundary y ¼ 0. A constant boundary flux �q ¼ 10 W m�1 is applied along

the edges x ¼ 0:5 and y ¼ x. A constant heat source s ¼ 10 W m�2 is supplied over the panel and a point

source P ¼ 7 W acts at the origin. The material is isotropic with k ¼ 2 W �C�1.

1. Number the nodes counterclockwise with nodes on the essential boundary numbered first. In this case

will the element matrices (Ke and f e) be any different from those of the global matrices?

2. Construct the conductance matrix.

3. Construct the boundary flux matrix resulting from the flux acting on the edges x ¼ 0:5 and y ¼ x.

4. Construct the source matrix consisting of uniformly distributed source s ¼ 10 and point source

P ¼ 7.

5. Calculate the unknown temperature matrix.

6. Find the unknown reactions.

2

2

2

x

y

21

3

4

5

q = 30
q = 0

q = 15y

P = 10

T = 10 T = 10 

e=1

e=2

Figure 8.21 Trapezoidal domain of Problem 8.3.

xC
A

y B (0.5,0.5) 

T = 5P = 7

q = 10 q = 10

Figure 8.22 Triangular domain of Problem 8.4.
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7. Calculate the flux matrix.

8. What is the maximal temperature in the panel? Explain.

Problem 8.5
Implement the three-node constant strain triangular element into the heat conduction finite element

program. Note that in this case, element matrices can be computed without numerical integration. Test

the code in one of the following two ways: (a) against manual calculations for a two-element problem (see

Problem 8.4) or (b) against the MATLAB code for the quadrilateral element provided in this chapter. In the

latter case, it is critical to consider very fine meshes (for instance, a 64-element mesh for the problem in

Figure 8.2 is a bare minimum requirement). This is because the results obtained with different (valid)

elements converge to the exact solution as the finite element mesh is sufficiently refined.

Problem 8.6
Consider a chimney constructed of two isotropic materials: dense concrete (k ¼ 2:0 W �C�1 ) and bricks

(k ¼ 0:9 W �C�1 ). The temperature of the hot gases on the inside surface of the chimneyis 140 �C, whereas

the outside is exposed to the surrounding air, which is at T ¼ 10 �C. The dimensions of the chimney (in

meters) are shown below. For the analysis, exploit the symmetry and consider 1/8 of the chimney cross-

sectional area. Consider a mesh of eight elements as shown below. Determine the temperature and flux in

the two materials.

Analyze the problem with 2� 2, 4� 4 and 8� 8 quadrilateral elements for 1/8 of the problem domain.

A 2� 2 finite element mesh is shown in Figure 8.23. Symmetry implies insulated boundary conditions on

edges AD and BC. Note that element boundaries have to coincide with the interface between the concrete

and bricks.

Problem 8.7
A uniform heat source is distributed over a circular domain 0 	 r 	 R, and the temperature at the outside is

zero, i.e. TðRÞ ¼ 0.

a. Using sixfold symmetry, solve the problem using a single 3-node triangular element as shown in

Figure 8.24. Compare this solution to the exact solution TðrÞ ¼ s=4kðR2 � r2Þ; also compare the

gradient.

C C o o n n c c r r e e t t e e             k k = = 2 2 . . 0 0     

B B r r i i c c k k s s             k k = = 0 0 . . 9 9     

24 

0.6 0.4 0.2 
0.2 

0.4 

1 2 

3 4 0 q =  (symmetry) 
0 q = 

(symmetry) 

T=10 

T=140 
A B 

C D 

Figure 8.23 Chimney cross section and a four-element finite element mesh for 1=8 of the problem domain.
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b. Repeat problem 2 with the 4-element mesh shown. Assume that nodes 4, 5 and 6 are on �T , so that

T4 ¼ T5 ¼ T6 ¼ 0.

c. Repeat problem 2 with a single six-node triangular element using the same nodal positions. Evaluate

only those parts of Ke and fe that are needed.

R

y

1

2

3
(a) (b)

Lines of
symmetry

Lines of
symmetry

All triangles  
are equilateral 

1

2

3

4

5

6

Figure 8.24 (a) Problem 1: one-element mesh. (b) Problem 2: four-element mesh.
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9
Finite Element Formulation for
Vector Field Problems – Linear
Elasticity

The discipline underlying linear stress analysis is the theory of elasticity. Both linear and nonlinear

elasticity have been studied extensively over the past three centuries, beginning with Hooke, a contem-

porary of Newton. Hooke formulated what has come to be known as Hooke’s law, the stress–strain relation

for linear materials. Linear elasticity is used for most industrial stress analyses, as under operating

conditions most products are not expected to undergo material or geometric nonlinearities.

Linear elasticity also deals with many important phenomena relevant to materials science, such as the

stress and strain fields around cracks and dislocations. These are not considered in this course. We start by

presenting the basic assumptions and governing equations for linear elasticity in Section 9.1, followed by

the exposition of strong and weak forms in Section 9.2. Finite element formulation for linear elasticity is

then given in Section 9.3. Finite element solutions for linear elasticity problems in 2D concludes this

chapter.

9.1 LINEAR ELASTICITY

The theory of linear elasticity hinges on the following four assumptions:

1. deformations are small;

2. the behavior of the material is linear;

3. dynamic effects are neglected;

4. no gaps or overlaps occur during the deformation of the solid.

In the following, we discuss each of these assumptions.

The first assumption is also made in any strength of materials course that is taught at the undergraduate

level. This assumption arises because in linear stress analysis, the second-order terms in the strain–

displacement equations are neglected and the body is treated as if the shape did not change under the

influence of the loads. The absence of change in shape is a more useful criterion for deciding as to when

linear analysis is appropriate: when the application of the forces does not significantly change the

configuration of the solid or structure, then linear stress analysis is applicable. For structures that are large

enough so that their behavior can readily be observed by the naked eye, this assumption implies that
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the deformations of the solid should not be visible. For example, when a car passes over a bridge, the

deformations of the bridge are invisible (at least we hope so). Similarly, wind loads on a high-rise building,

although often felt by the occupants, result in invisible deformations. The deformations of an engine block

due to the detonations in the cylinders are also invisible. On the other hand, the deformation of a blank in a

punch press is readily visible, so this problem is not amenable to linear analysis. Other examples that

require nonlinear analysis are

a. the deformations of a car in a crash;

b. the failure of an earth embankment;

c. the deformations of skin during a massage.

As a rough rule, the deformations should be of the order of 10�2 of the dimensions of a body to apply linear

stress analysis. As we will see later, this implies that the terms that are quadratic in the deformations are of

the order of 10�2 of the strains, and consequently, the errors due to the assumption of linearity are of the

order of 1%.

Many situations are just barely linear, and the analyst must exercise significant judgment as to whether a

linear analysis should be trusted. For example, the deformations of a diving board under a diver are quite

visible, yet a linear analysis often suffices. Sometimes these decisions are driven by practicality. For

example, you have probably seen the large motions of the wingtip of a Boeing 747 on takeoff. Would a

linear analysis be adequate? It turns out that the design of the aircraft is still primarily analyzed by linear

methods, because the errors due to the assumption of linearity are small and thousands of loadings need to

be considered, and this becomes much more complex with nonlinear analysis.

The linearity of material behavior is also a matter of judgment. Many metals exhibit a relationship

betweenstressandstrain thatdeviates from linearitybyonlya fewpercentuntil theonset ofplasticyielding.

Until the yield point, a linear stress–strain law very accurately reproduces the behavior of the material.

Beyond the yield point, a linear analysis is useless. On the contrary, materials such as concrete and soils are

often nonlinear even for small strains, but their behavior can be fit by an average linear stress–strain law.

The assumption of static behavior corresponds to assuming that the accelerations sustained during the

loading are small. This statement by itself gives no meaningful criterion, as one can immediately ask,

‘small compared to what?’ There are several ways to answer this question. One way is to consider the

d’Alembert force f d’Alem due to the acceleration, which is given by

jf d’Alemj ¼ jMaj;

where M is the mass of the body and a is the acceleration; we have put absolute value signs on both sides of

the equation because we are only interested in magnitudes. If the d’Alembert forces are small compared to

the loads, then dynamic effects are also small. The dynamic effect can be viewed as the overshoot that you

will see on a floor scale if you jump on it compared to stepping on it slowly.

An easier way to judge the appropriateness of a static analysis, i.e. neglecting dynamic effects, is to

compare the timeof loadapplication tothe lowestperiodof thesolidorstructure.Thelowestperiod is the time

for a structure to complete one cycle of vibration whenvibrating freely. If the time inwhich the load is applied

is large compared to the period associated with the lowest frequency, then static analysis is applicable.

The fourth assumption states that as the solid deforms, it does not crack or undergo any interpenetration

of material; in short, no gaps or overlaps develop in the body. Interpenetration of material is generally not

possible, unless one material is liquefied or vaporized, so this part of the assumption is just common sense.

The first part of the assumption states that the material does not crack or fail in some other way. Obviously,

materials do fail, but linear stress analysis is then not appropriate; instead, special nonlinear finite element

methods that account for cracking must be used.

The last assumption can be interpreted in terms of continuity. It states that the displacement field is

smooth. The order of smoothness that is required is something we have already learned and is associated
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with the requirements of the integrability of theweak form, but physically it can be justifiedby requiring the

deformation to be such that there are no gaps or overlaps.

The requirements of a linear stress analysis solution are closely related to the assumptions. The

requirements are

a. the body must be in equilibrium;

b. it must satisfy the stress–strain law;

c. the deformation must be smooth.

In addition to the above, in order to write a stress–strain law, we need a measure of the strain that expresses

the strain in terms of the deformation, which is called the strain–displacement equation. Equilibrium

requires that the sum of the forces at any point of the solid must vanish. The other two requirements have

already been discussed.

9.1.1 Kinematics

The displacement vector in two dimensions is a vector with two components. We will use a Cartesian

coordinate system, so the components of the displacement are the x-componentand the y-component. It can

be written in matrix and vector forms as

u ¼ ux

uy

� �
; ~u ¼ ux

~iþ uy
~j; ð9:1Þ

where the subscript indicates the component.

Figures 9.1(a) and (b), depict the deformation of a control volume � x��y in the x and y directions

respectively. The combined deformation is given in Figure 9.1(c). Under the assumption of small

displacement gradients, we can use three independent variables to describe the deformation of a control

volume. These variables correspond to the strains.

The extensional strains are exx and eyy; sometimes the repeated subscripts are dropped and the extensional

strains are written as ex and ey. The expressions for these strains can be derived exactly like the one-

dimensional extensional strain. The extensional strains ex and ey are the changes in the lengths of the

infinitesimal line segments in the x and y directions, �x and �y, respectively, divided by the original lengths

of the line segments. Based on this definition, we obtain the following relations for the extensional strains:

exx ¼ lim
�x!0

uxðxþ�x; yÞ � uxðx; yÞ
�x

¼ @ux

@x
;

eyy ¼ lim
�y!0

uyðx; yþ�yÞ � uyðx; yÞ
�y

¼ @uy

@y
;

ð9:2Þ

The shear strain,gxy, measures the change in angle between the unit vectors in the x and y directions in units

of radians:

gxy ¼ lim
�y!0

uxðx; yþ�yÞ � uxðx; yÞ
�y

þ lim
�x!0

uyðxþ�x; yÞ � uyðx; yÞ
�x

¼ @uy

@x
þ @ux

@y
¼ a1 þ a2:

ð9:3Þ

whereai are showninFigure9.1.Twoforms of the shear strainappear commonly infiniteelement software:

the engineering shear strain gxy given above and the tensor shear strain exy ¼ ð1=2Þgxy.
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Note that if a1 ¼ �a2, the shear strain vanishes. The resulting deformation is depicted in Figure 9.2. It

can be seen that the control volume undergoes axial elongations in addition to the rotation. The rotation of

the control volume in two dimensions, denoted by !xy, is computed by

!xy ¼
1

2

@ux

@y
� @uy

@x

� �
¼ 1

2
ða2 � a1Þ: ð9:4Þ

For an infinitesimal displacement field,~uðx; yÞ, the rotation!xy is very small, and therefore it does not affect

the stress field.

x

y

x

y

x

y

(a) (b)

(c)

ux(x + ∆ x,y + ∆ y) uy(x,y + ∆ y)

u(x,y + ∆ y)

uy(x + ∆ x,y + ∆ y)

u(x + ∆ x,y + ∆ y)

u(x + ∆ x,y)

u(x ,y)

ux(x + ∆ x,y)ux(x,y)

uy(x,y)

∆ y

∆ x

∆ y

∆ x

α2

α2

α2

α1

α1

α1

Figure 9.1 Deformation of a control volume: (a) deformation in x due to ~rux; (b) deformation in y due to ~ruy;

(c) deformation in x and y.
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α1

α2
u(x + ∆ x,y + ∆ y)

u(x + ∆ x,y)

u(x,y + ∆ y)

u(x,y)

Figure 9.2 Axial strains and rotation of a control volume.
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In finite element methods, the strains are usually arranged in a column matrix e, as shown below:

e ¼ ½exx eyy gxy�T: ð9:5Þ

Equations (9.2)–(9.3) can be written in terms of the displacements as a single matrix equation:

e ¼
exx

eyy

gxy

24 35 ¼ =Su ¼ =S
ux

uy

� �
; ð9:6Þ

where =S is a symmetric gradient matrix operator

=S ¼
@=@x 0

0 @=@y

@=@y @=@x

24 35: ð9:7Þ

9.1.2 Stress and Traction

Stresses in two dimensions correspond to the forces per unit area acting on the planes normal to the x or y

axes (these are called tractions). The traction on the plane with the normal vector~n aligned along the x-axis

is denoted by~�x and its vector form is~�x ¼ �xx
~iþ �xy

~j. Likewise, the traction with the outer normal unit

vector~n aligned along the y-axis is denoted by~�y and its corresponding components are~�y ¼ �yx
~iþ �yy

~j.
Wewill refer to~�x and~�y as stress vectors acting on the planes normal to the x and y directions, respectively.

The stress state ina two-dimensional body isdescribed by two normal stresses�xx and�yy and shear stresses

�xy and �yx as illustrated in Figure 9.3. From moment equilibrium in a unit square, it can be shown that

�xy ¼ �yx, so these stresses are identical.

Figure 9.3 depicts stress components acting on two planes, the normals pointing in the positive x and y

directions. Positive stress components act in the positive direction on a positive face. The first subscript on

the stress corresponds to the direction of the normal to the plane; the second subscript denotes the direction

of the force. The normal stresses are often written with a single subscript as �x and �y.

Stresses can be arranged in a matrix form similarly to strains:

rT ¼ ½�xx �yy �xy�: ð9:8Þ

Occasionally, it is convenient to arrange stress components in a 2� 2 symmetric matrix s as

s ¼ �xx �xy

�xy �yy

� �
: ð9:9Þ

x

y
σyy σy

σyx

σxy
σxx

−σy

xσ

−σx

Figure 9.3 Stress components.
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The stress vectors~�x and ~�y can be conveniently used to obtain the tractions on any surface of the body.

Tractions, like stresses, are forces per unit area, but they are associated with a specific surface, whereas the

stresses provide information about tractionsonanysurfaceat apoint. The relationship betweenstresses and

tractions is written in terms of the unit normal to the surface~n, as illustrated in Figure 9.4.

Consider the triangular body shown in Figure 9.4. The thickness of the triangle is taken to be unity. At the

surfacewith the unit normal vector~n, the tractionvector is~t.On the planes normal to the coordinate axes, the

traction vectors are�~�x and�~�y. The components of the unit normal vector are~n given by

~n ¼ nx
~iþ ny

~j:

The force equilibrium of the triangular body shown in Figure 9.4 requires that

~t d��~�x dy�~�y dx ¼~0:

Dividing the above equation by d� and noting that dy ¼ nx d� and dx ¼ ny d�, we obtain

~t �~�xnx �~�yny ¼~0:

Multiplying the above by unit vectors~i and~j yields, respectively,

tx ¼ �xxnx þ �xyny ¼ ~�x �~n;
ty ¼ �xynx þ �yyny ¼ ~�y �~n;

ð9:10Þ

where we have used the relations tx ¼~t �~i, ty ¼~t �~j, �xx ¼ ~�x �~i, �xy ¼ ~�y �~i, �xy ¼ ~�x �~j and �yy ¼ ~�y �~j.
Equation (9.10) can be written in the matrix form as

t ¼ sn: ð9:11Þ

9.1.3 Equilibrium

Consider an arbitrarily shaped body shown in Figure 9.5 of unit thickness; the body force and the surface

traction are assumed to be acting in the xy-plane.

t

n
ny j

nx i

dy

dΓ

dx x

y

−σx

−σy

Figure 9.4 Relationship between stress and traction.
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The forces acting on the body are the traction vector~t along the boundary � and the body force~b per unit

volume. The body force and the tractionvectorsarewritten as~b ¼ bx
~iþ by

~j and~t ¼ tx
~iþ ty~j, respectively.

Examples of the body forces are gravity and magnetic forces. Thermal stresses also manifest themselves as

body forces.

Next, consider the equilibrium of the infinitesimal domain of unit thickness depicted in Figure 9.5(b).

For a static problem (no dynamic effects), the equilibrium equation on the infinitesimal domain is

given by

�~�x x��x

2
; y

� �
�yþ~�x xþ�x

2
; y

� �
�y

�~�y x; y��y

2

� �
�xþ~�y x; yþ�y

2

� �
�xþ~bðx; yÞ�x�y ¼ 0:

Dividing the above by �x�y, taking the limit as �x! 0, �y! 0 and recalling the definition of partial

derivatives,

lim
�x!0

~�x xþ�x

2
; y

� �
�~�x x��x

2
; y

� �
�x

¼ @~�x

@x
;

lim
�y!0

~�y x; yþ�y

2

� �
�~�y x; y��y

2

� �
�y

¼ @~�y

@y
:

Combining the above two equations yields the equilibrium equation:

@~�x

@x
þ @~�y

@y
þ~b ¼ 0: ð9:12Þ

Multiplying (9.12) by unit vectors~i and~j gives two equilibrium equations:

@�xx

@x
þ @�xy

@y
þ bx ¼ 0;

@�yx

@x
þ @�yy

@y
þ by ¼ 0;

or in the vector form:

~r �~�x þ bx ¼ 0; ~r �~�y þ by ¼ 0: ð9:14Þ

n

t

b

Ω Γ
∆y ( , )

2
∆x

∆x
x y−σx

σy

σx

−σy −

−

( , )
2

y
x y

( , )
2

∆y

∆y

∆x

x y +

( , )O x y

(a)

( , )
2

x
x y+

(b)

Figure 9.5 Problem definition: (a) domain of the unit-thickness plate and (b) traction vectors acting on the infinite-

simal element.

ð9:13Þ
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The equilibrium equations will also be considered in the matrix form. If you consider the transpose of the

symmetric gradient operator given in (9.7) and the column matrix form of the stress:

=T
S ¼

@

@x
0

@

@y

0
@

@y

@

@x

2664
3775; r ¼

�xx

�yy

�xy

24 35;

then the matrix form of equilibrium equations (9.13) can be written as

=T
S rþ b ¼ 0: ð9:15Þ

The fact that the equilibrium equation (9.15) is the transpose of the strain–displacement equation (9.6) is an

interesting feature that characterizes what are called self-adjoint (or symmetric) systems of partial

differential equations. The heat conduction (or diffusion) equations are similarly self-adjoint. The self-

adjointness of these partial differential equations is the underlying reason for the symmetry of the discrete

equations, i.e. the stiffness matrix and the conductance matrix.

9.1.4 Constitutive Equation

Now let us consider the relation between stresses and strains, which is called the constitutive equation.

Examples of constitutive equations are elasticity, plasticity, viscoelasticity, viscoplasticity and creep.

Here, we focus on the simplest constitutive theory, linear elasticity.

Recall that in one dimension, a linear elastic material is governed by Hooke’s law � ¼ Ee, where the

material constant E is Young’s modulus. In two dimensions, the most general linear relation between the

stress and strain matrices can be written as

r ¼ De; ð9:16Þ

where D is a 3� 3 matrix. This expression is called the generalized Hooke’s law. It is always a symmetric,

positive-definite matrix; these two properties are due to energy considerations, which will not be discussed

here but can be found in any text on continuum mechanics or elasticity.

In two-dimensional problems, the matrix D depends on whether one assumes a plane stress or a plane

strain condition. These assumptions determine how the model is simplified from a three-dimensional

physical body to a two-dimensional model. A plane strain model assumes that the body is thick relative to

the xy-plane in which the model is constructed. Consequently, the strain normal to the plane, ez, is zero and

the shear strains that involve angles normal to the plane, gxz and gyz, are assumed to vanish. A plane stress

model is appropriate when the object is thin relative to the dimensions in the xy-plane. In that case, we

assume that no loads are applied on the z-faces of the body and that the stress normal to the xy-plane, �zz, is

assumed to vanish. The physical arguments for these assumptions are as follows. If a body is thin, as the

stress �zz must vanish on the outside surfaces, there is no mechanism for developing a significant nonzero

stress �zz. On the other hand, when a body is thick, significant stresses can develop on the z-faces, in

particular the normal stress �zz can be quite large.

The D matrix depends on the symmetry properties of the material. An isotropic material is a material

whose stress–strain law is independent of the coordinate system, which means that regardless of the

orientation of the coordinate system, the elasticity matrix is the same. Many materials, such as most steels,

aluminums, soil and concrete, are modeled as isotropic, even though manufacturing processes, such as

sheet metal forming, may induce some anisotropy.
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For an isotropic material, the D matrix is given by

Plane stress:

D ¼ E

1� �2

1 � 0

� 1 0

0 0 ð1� �Þ=2

24 35:
Plane strain:

D ¼ E

ð1þ �Þð1� 2�Þ

1� � � 0

� 1� � 0

0 0 ð1� 2�Þ=2

24 35:
As can be seen from the above, for an isotropic material, the Hookean matrix D has two independent

material constants: Young’s modulus E and Poisson’s ratio �. Note that for plane strain, as � ! 0:5, the

Hookean matrix becomes infinite. A Poisson’s ratio of 0.5 corresponds to an incompressible material.

This behavior of the Hookean matrix as the material tends toward incompressibility and other features

of finite elements make the analysis for incompressible and nearly incompressible materials more

difficult than for compressible materials. Therefore, special elements must be used for incompressible

materials. These difficulties do not occur for plane stress problems, but they do occur in three

dimensions.

The Hookean matrix for an isotropic material can also be written in terms of alternative material

constants, such as the bulk modulus K ¼ E=3ð1� �Þ and the shear modulus G ¼ E=2ð1þ �Þ.
In some circumstances, a two-dimensional model is appropriate but the standard plane stress or plane

strain assumptions are not appropriate because although the z components of the stress or strain are

constant, theyare nonzero. This is called a state of generalized plane stress orgeneralized plane strain when

�zz or ezz are constant, respectively.

9.2 STRONG AND WEAK FORMS

Let us summarize the relations established so far for 2D linear elasticity.

Equilibrium equation:

=T
S rþ b ¼ 0; or ~r �~�x þ bx ¼ 0 and ~r �~�y þ by ¼ 0: ð9:17Þ

Kinematics equation (strain–displacement relation):

e ¼ =Su:

Constitutive equation (stress–strain relation):

r ¼ De:

As in one dimension, we consider two types of boundary conditions: The portion of the boundary where the

traction is prescribed is denoted by �t, and the portion of the boundary where the displacement is prescribed

is denoted by �u. The traction boundary condition is written as

sn ¼ �t on �t; or ~�x �~n ¼ �tx and ~�y �~n ¼ �ty on �t: ð9:18Þ
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The displacement boundary condition is written as

u ¼ �u on �u; or ~u ¼~�u on �u: ð9:19Þ

The displacement boundary condition is an essential boundary condition, i.e. it must be satisfied by the

displacement field. The traction boundary condition is a natural boundary condition. As before, the

displacement and traction both cannot be prescribed on any portion of the boundary, so

�u \ �t ¼ 0:

However, on any portion of the boundary, either the displacement or the traction must be prescribed,

so

�u [ �t ¼ �:

We summarize the strong form for the linear elasticity problem in 2D in Box 9.1 in the mixed vector–matrix

notation, relevant for derivation of the weak form.

Box 9.1. Strong form for linear elasticity

ðaÞ ~r �~�x þ bx ¼ 0 and ~r �~�y þ by ¼ 0 on �;

ðbÞ r ¼ D=Su;

ðcÞ ~�x �~n ¼ �tx and ~�y �~n ¼ �ty on �t;

ðdÞ ~u ¼~�u on �u:

ð9:20Þ

To obtain the weak form, we first define the admissible weight functions and trial solutions as in Section

3.5.2. We then premultiply the equilibrium equations in the x and y directions (9.20a) and the two natural

boundary conditions (9.20c) by the corresponding weight functions and integrate over the corresponding

domains, which gives

ðaÞ
Z

�

wx
~r �~�x d�þ

Z
�

wxbx d� ¼ 0 8wx 2 U0;

ðbÞ
Z

�

wy
~r �~�y d�þ

Z
�

wyby d� ¼ 0 8wy 2 U0;

ðcÞ
Z

�t

wxð�tx �~�x �~nÞ d� ¼ 0 8wx 2 U0;

ðdÞ
Z

�t

wyð�ty �~�y �~nÞ d� ¼ 0 8wy 2 U0;

ð9:21Þ

where

w ¼ wx

wy

� �
; ~w ¼ wx

~iþ wy
~j:
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Green’s theorem is applied (see Chapter 6) to the first term in equations (9.21a) and (9.21b), which

yields Z
�

wx
~r �~�x d� ¼

I
�

wx~�x �~n d��
Z

�

~rwx �~�x d�;Z
�

wy
~r �~�y d� ¼

I
�

wy~�y �~n d��
Z

�

~rwy �~�y d�:

ð9:22Þ

Adding the two equations in (9.22) and recalling that the weight functions wx and wy vanish on �u yieldsZ
�

ð ~rwx �~�x þ ~rwy �~�yÞ d� ¼
I

�t

ðwx~�x �~nþ wy~�y �~nÞ d�þ
Z

�

ðwxbx þ wybyÞ d�: ð9:23Þ

Substituting (9.21c) and (9.21d) into (9.23) and writing the RHS in (9.23) in the vector form givesZ
�

ð ~rwx �~�x þ ~rwy �~�yÞ d� ¼
I

�t

~w �~t d�þ
Z

�

~w �~b d�: ð9:24Þ

Expanding the integrand on the LHS of (9.24) yields

~rwx �~�x þ ~rwy �~�y ¼
@wx

@x
�xx þ

@wx

@y
�xy þ

@wy

@x
�xy þ

@wy

@y
�yy

¼ @wx

@x

� �
@wy

@y

� �
@wx

@y
þ @wy

@x

� �� � �xx

�yy

�xy

264
375 ¼ ð=SwÞTr:

ð9:25Þ

Inserting (9.25) into (9.24) and writing the RHS of (9.24) in the matrix form gives

Z
�

ð=SwÞTr d� ¼
Z

�t

wT�t d�þ
Z

�

wTb d� 8w 2 U0:

After the substitution of (9.20b) for r the weak form in two dimensions can be written as follows:

Find u 2 U such thatZ
�

ð=SwÞTD=Su d� ¼
Z

�t

wT�t d�þ
Z

�

wTb d� 8w 2 U0;

where U ¼ fuju 2 H1 ; u ¼ �u on �ug; U0 ¼ fwjw 2 H1 ;w ¼ 0 on �ug :
ð9:26Þ

9.3 FINITE ELEMENT DISCRETIZATION

Consider a problem domain � with boundary � discretized with two-dimensional elements (triangles or

quadrilaterals) as shown in Figure 9.6.; the total number of elements is denoted by nel.

The x and y components of the displacement field u ¼ ½ux uy�T are generally approximated by the same

shape functions, although in principle different shape functions could be used for each of the components.
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There are two degrees-of-freedom per node corresponding to the two components of the global

displacements, so the nodal displacement matrix is:

d ¼ ux1 uy1 ux2 uy2 . . . uxnnp
uynnp
�T

h
where nnp is the number of nodes in the finite element mesh. The displacement field in the finite element is

written in terms of the shape functions, which from Chapter 7 we know depend on the type of element and

the number of nodes. The finite element approximation of the trial solution and weight function on each

element can be expressed by:

uðx; yÞ � ueðx; yÞ ¼ Ne x; yð Þde ðx; yÞ 2 �e

wT x; yð Þ � weT x; yð Þ ¼ weTNe x; yð ÞT ðx; yÞ 2 e
ð9:27Þ

where element shape function matrix Ne in Eq. (9.27) is given as

Ne ¼ Ne
1 0 Ne

2 0 . . . Ne
nen

0

0 Ne
1 0 Ne

2 . . . 0 Ne
nen

� �

and de ¼ ue
x1 ue

y1 ue
x2 ue

y2 . . . ue
xnen

ue
ynen

� �T
are the element nodal displacements and

we ¼ we
x1 we

y1 we
x2 we

y2 . . . we
xnen

we
ynen
�T

�
are the element nodal values of weight functions.

Recall from Chapter 6 that the finite element approximation is C0 continuous, i.e. it is smooth over

element domains but have kinks at the element boundaries. Therefore, the integral over � in the weak form

(9.26) is computed as a sum of integrals over element domains �e

Xnel

e¼1

Z
�e

=SweTDe=Sue d��
Z

�e
t

weT�t d��
Z

�e

weTb d�

( )
¼ 0 ð9:28Þ

Next we express the strains in terms of the element shape functions and the nodal displacements. Recall the

strain-displacement equations (9.6) expressed in terms of the symmetric gradient operator. Applying the

symmetric gradient operator to Ne gives

e ¼
exx

eyy

gxy

24 35 � ee ¼ =Sue ¼ =SNede ¼ Bede; ð9:29Þ

on Γt

Γu

τ 

Ω

x

y

on

n = t

u = u

Figure 9.6 Finite element mesh in two dimensions.
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where the strain–displacement matrix Be is defined as

Be � =SNe ¼

@Ne
1

@x
0

@Ne
2

@x
0 � � �

@Ne
nen

@x
0

0
@Ne

1

@y
0

@Ne
2

@y
� � � 0

@Ne
nen

@y

@Ne
1

@y

@Ne
1

@x

@Ne
2

@y

@Ne
2

@x
� � �

@Ne
nen

@y

@Ne
nen

@x

2666666664

3777777775
:

The derivatives of weight functions are:

ð=SweÞT ¼ ðBeweÞT ¼ weTBeT: ð9:30Þ

Substituting (9.30), (9.29) and (9.27) into (9.28) and recalling that de ¼ Led, weT ¼ wTLeT yields

wT
Xnel

e¼1

LeT

Z
�e

BeTDeBe d� Led�
Z
�e

t

NeT�t d��
Z
�e

NeTb d�

264
375

8><>:
9>=>; ¼ 0 8wF: ð9:31Þ

In the above, we have replaced the arbitrary weight functions wðx; yÞ by arbitrary parameters wF. wF is the

portion of wcorresponding to nodes that are noton an essential boundary.Following the derivation outlined

in Chapters 5 and 8, the element matrices are given as follows:

Element stiffness matrix:

Ke ¼
Z
�e

BeTDeBe d�: ð9:32Þ

Element external force matrix:

fe ¼
Z
�e

NeTb d�

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
fe

�

þ
Z
�e

t

NeT�t d�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
fe

�

; ð9:33Þ

where fe
� and fe

� in (9.33) are the body and boundary force matrices.

The weak form can then be written as

wT
Xnel

e¼1

LeTKeLe

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
K

0BBBB@
1CCCCAd�

Xnel

e¼1

LeTfe

|fflfflfflfflffl{zfflfflfflfflffl}
f

0BBBB@
1CCCCA

266664
377775 ¼ 0 8wF: ð9:34Þ
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Using (9.32) and (9.33) and the assembly operations (5.13) and (5.14), the system (9.34) reduces to

wTðKd� f Þ ¼ 0 8wF: ð9:35Þ

Equation (9.35) can be written as

wTr ¼ 0 8wF: ð9:36Þ

Partitioning Equation (9.36) into E- and F-nodes gives

wT
FrF þ wT

ErE ¼ 0 8wF:

AswE ¼ 0andwF is arbitrary, it follows thatrF ¼ 0.Consequently, theaboveequationcanbeconveniently

rewritten as

KE KEF

KT
EF KF

� � �dE

dF

� �
¼

fE þ rE

fF

� �
; ð9:37Þ

where KE, KF and KEF are partitioned to be congruent with the partition of d and f. Equation (9.37) is

solved using the two-step partition approach discussed in Chapter 5.

9.4 THREE-NODE TRIANGULAR ELEMENT

The triangular three-node element is illustrated in Figure 9.7. It is a linear displacement element.

The strains are constant in the element. The nodes must be numbered counterclockwise as shown in the

figure.

Each node has two degrees of freedom, so the column matrix de consists of six terms:

de ¼ ½ue
x1; u

e
y1; u

e
x2; u

e
y2; u

e
x3; u

e
y3�

T: ð9:38Þ

The displacement field in the element can then be expressed in the form of

ux

uy

� �e

¼
Ne

1 0 Ne
2 0 Ne

3 0

0 Ne
1 0 Ne

2 0 Ne
3

� �
de:

2
2

e
xu

2
e
yu

3
e
xu

3
e
yu

1
e
xu1

1
e
yu

3

Figure 9.7 A single triangular finite element.
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Applying the symmetric gradient operator (9.6) gives

exx

eyy

gxy

24 35e

¼
Ne

1;x 0 Ne
2;x 0 Ne

3;x 0

0 Ne
1;y 0 Ne

2;y 0 Ne
3;y

Ne
1;y Ne

1;x Ne
2;y Ne

2;x Ne
3;y Ne

3;x

24 35de; ð9:39Þ

where Ne
I;x ¼

@Ne
I

@x
and Ne

I;y ¼
@Ne

I

@y
. Using the relations given in Chapter 7, it follows that

ee ¼
exx

eyy

gxy

24 35e

¼ 1

2Ae

ye
23 0 ye

31 0 ye
12 0

0 xe
32 0 xe

13 0 xe
21

xe
32 ye

23 xe
13 ye

31 xe
21 ye

12

24 35de; ð9:40Þ

where xe
IJ ¼ xe

I � xe
J , which defines the Be matrix for the element. It can be seen that as expected, the Be

matrix is not a function of x or y, i.e. the strain is constant in the element.

The stiffness matrix is given by (9.32):

Ke ¼
Z
�e

BeTDeBed�:

In most cases, for a low-order element such as this, the material properties are assumed constant in the

element. Consequently, the integrand is a constant, and for an element of unit thickness, we have

Ke ¼ AeBeTDeBe:

The stiffness matrix is 6� 6, and it is quite large for manual computations, so it is usually evaluated by

computer.

9.4.1 Element Body Force Matrix

The element body force matrix is given by (9.21):

fe
� ¼

Z
�

NeTb d�: ð9:41Þ

There are two ways of evaluating this matrix:

(i) by direct numerical integration, and

(ii) by interpolating b, usually with a linear function, and integrating the result in the closed form. Note that

in direct integration, interpolation is still often required as the body forces may only be given at discrete

points and interpolation is required to evaluate the integral.

Evaluation of the matrix in the closed form is extremely difficult unless triangular coordinates are used,

so we will use them here. We interpolate the body force in the element by the linear shape functions in the

triangular coordinates as

b ¼ bx

by

� �
¼
X3

I¼1

N3T
I

bxI

byI

� �
; ð9:42Þ
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where bxI and byI are the x and y components of the body force at node I. Substituting (9.42) into (9.41), we

obtain

fe
� ¼

Z
�e

N3T
1 0

0 N3T
1

N3T
2 0

0 N3T
2

N3T
3 0

0 N3T
3

26666664

37777775
X3

I¼1

N3T
I

bxI

byI

� �
d� ¼ Ae

12

2bx1 þ bx2 þ bx3

2by1 þ by2 þ by3

bx1 þ 2bx2 þ bx3

by1 þ 2by2 þ by3

bx1 þ bx2 þ 2bx3

by1 þ by2 þ 2by3

2666664

3777775: ð9:43Þ

The last step was performed by using the integration formulas as given in Section 7.8.2.

9.4.2 Boundary Force Matrix

The boundary force matrix is given by

fe
� ¼

Z
�e

t

NeT�t d�: ð9:44Þ

Asfor the body forces, they can be evaluated by direct integrationor by interpolation.Weillustrate the latter

approach for a linearly interpolated traction.

To simplify the explanation, consider the triangular element shown in Figure 9.8; in the figure, the

traction is applied to the edge joining nodes 1 and 2, but the results are easily applied to any node numbers.

We know from the Kronecker delta property of shape functions that Ne
3 vanishes at nodes 1 and 2, and as the

shape function is linear along the edge, it vanishes along the entire edge. Furthermore, N2L
1 and N2L

2 are

linear along the edge and can be written in terms of the edge parameter � as

N2L
1 ¼ 1� �; N2L

2 ¼ �:

The integral (9.44) then becomes

fe
� ¼

Z1

0

1� � 0

0 1� �
� 0

0 �
0 0

0 0

26666664

37777775
tx1ð1� �Þ þ tx2�
ty1ð1� �Þ þ ty2�

� 	
l d�;

3

1

2
y2

element  e 

x

y ue
y2, f e

x1ue
y1, f e

x1ue
x1, f e

y3ue
y3, f e

x3ue
x3, f e

x2ue
x2, f e

Figure 9.8 Triangular three-node element showing nodal displacements and nodal forces (they are shown as collinear

that usually are not).
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where we have used d� ¼ l d� and changed the limits of integration to 0 to 1 (l is the length of the edge).

Note that we have used a linear interpolation of the two traction components.

The above is easily integrated in the closed form, giving

fe
� ¼

l

6

2tx1 þ tx2

2ty1 þ ty2

tx1 þ 2tx2

ty1 þ 2ty2

0

0

26666664

37777775:

Thus, there are no nodal forces on node 3 due to the tractions on the edge connecting nodes 1 and 2. The

nodal force at node 1 (or 2) is more heavily weighted by the traction at node 1 (or 2). For a constant traction,

tx1 ¼ tx2 ¼ �tx and ty1 ¼ ty2 ¼ �ty, we obtain

fe
� ¼

l

2

�tx

�ty

�tx

�ty

0

0

26666664

37777775;

which shows that the total forces (the thickness is unity) are split equally among the two nodes.

9.5 GENERALIZATION OF BOUNDARY CONDITIONS

Although we have subdivided the boundary into prescribed displacement and prescribed traction bound-

aries, in fact, one has substantially more versatility in stress analysis: on any portion of the outside surface,

any component of the traction or the displacement can be prescribed. To specify this mathematically, we

denote the portion of the surface on which the ith component of the traction is prescribed by �ti (the i ¼ 1

component is the x-component, the i ¼ 2 component is the y-component). Similarly, the portion of the

boundary on which the ith component of the displacement is prescribed is denoted by �ui
. The boundary

conditions are then written as

~�x �~n ¼ �tx on �tx;

~�y �~n ¼ �ty on �ty;

ux ¼ �ux on �ux;

uy ¼ �uy on �uy:

This weak form can be derived by an appropriate choice of wx and wy on the boundary. Note that the same

component of traction and displacement cannot be prescribed on any part of the boundary, so

�ux \ �tx ¼ 0; �uy \ �ty ¼ 0:

Furthermore, for each component, either the traction or the displacement can be prescribed, so

�ux [ �tx ¼ �; �uy [ �ty ¼ �:
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Observe that these boundary conditions conform to the rule that any two variables that are conjugate in

work cannot be prescribed. Thus, ux and tx are conjugate in work in the sense that an increment of work is

given by dW ¼ tx dux, whereas tx and uy are not conjugate in work, so they can be prescribed on any portion

of the boundary.

Example 9.1: Illustration of boundary conditions

In the following, we describe how to specify boundary conditions for various problems. We start with

some simple idealized problems and then proceed to situations that are more realistic. For the latter,

choosing appropriate boundary conditions is often an art.

Consider the plate with a hole shown in Figure 9.9 with loads applied at the top and bottom.

Sides AD and BC are traction free, and nothing needs to be done in a finite element model to

enforce a homogeneous (zero) natural boundary condition. Sides CD and AB are also natural

boundaries, but the tractions must be incorporated in the equations through the boundary force

matrix f� . However, these boundary conditions do not suffice to render the system solvable, as

these boundary conditions admit rigid body motion, so there are an infinite number of solutions

and K is singular. To eliminate rigid body motion, at least three nodal displacement components

must be specified so that translation and rotation of the body is prevented (corresponding to

translations in the x and y directions and rotation about the z-axis). One way to make K regular

(nonsingular) is to let

uxA ¼ uyA ¼ uyB ¼ 0:

Note that if you replace uyB ¼ 0 by uxB ¼ 0, K is still singular as rotation is not prevented. The above

conditions prevent both rigid body translation and rotation.

Another way to model this problem is to use symmetry, resulting in the model shown in

Figure 9.9(b). The lines of symmetry are FG and HK. Along a line of symmetry, the

displacement component normal to the line (or plane) of symmetry must vanish. Otherwise, as the

displacement fields in symmetric subdomains, i.e. �A and �B in Figure 9.9(c), are mirror images, so a

x

y

A B

CD Line of
symmetry

F

G

H K x

y

F

G

Overlap

(a)

(b)

(c)

ΩA

ΩB

Gap

Line of
symmetry

Figure 9.9 Plate with a hole: (a) a model of complete problem; (b) a model of symmetric portion; (c) an illustration

of why displacements normal to a line of symmetry must vanish.
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nonzero normal displacement along the line (or plane) of symmetry results in either gaps or overlaps,

which violates compatibility. The other symmetry condition is that the shear on the line of symmetry

must vanish. To summarize, for Figure 9.9(b),

ux ¼ 0 and ty ¼ �xy ¼ 0 on FG;

uy ¼ 0 and tx ¼ �xy ¼ 0 on HK :

As the above traction (natural) boundary conditions are homogeneous, they are naturally satisfied if we

do not constrain the corresponding displacement.

Figure 9.10 shows a bracket and a simplified model, which is aimed at finding the maximum stress in

the bracket. In many cases, it would be desirable to model the bolt and vertical rod, but this would entail

substantially more computational effort and the use of contact interfaces, which are nonlinear. Therefore

we model them with prescribed displacements and applied loads. The boundary conditions are as

follows:

1. along AB, ux ¼ 0 and at one node uy ¼ 0;

2. the remaining surfaces are all traction free, i.e. tx ¼ ty ¼ 0, except on the segment FG.

Note that the frictional force along AB is not modeled; friction is nonlinear and the effect of the frictional

forces would be small. Fillets are also not modeled.

Example 9.2: Quadrilateral element

Consider a linear elasticity problem on the trapezoidal panel domain as shown in Figure 9.11. The

vertical left edge is fixed. The bottom and the right vertical edges are traction free, i.e. �t ¼ 0.

Traction �ty ¼ �20 N m�1 is applied on the top horizontal edge. Material properties are Young’s

modulus E ¼ 3� 107 Pa and Poisson’s ratio � ¼ 0:3. Plane stress conditions are considered. The

problem is discretized using one quadrilateral element. The finite element mesh and nodal coordi-

nates in meters are shown in Figure 9.12.

The constitutive matrix D is

D ¼ E

1� �2

1 � 0

� 1 0

0 0
1� �

2

264
375 ¼ 3:3� 107

1 0:3 0

0:3 1 0

0 0 0:35

24 35:

A H

B
C

DE

x

y

F G

(a) (b)

Figure 9.10 A bracket and its model.
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The coordinate matrix is

½ xe ye� ¼

xe
1 ye

1

xe
2 ye

2

xe
3 ye

3

xe
4 ye

4

2664
3775 ¼

0 1

0 0

2 0:5
2 1

2664
3775:

The Lagrangian shape functions in the parent element are

N4Q
1 ð�; �Þ ¼

� � �2

�1 � �2

� � �4

�1 � �4

¼ 1

4
ð1� �Þð1� �Þ;

N4Q
2 ð�; �Þ ¼

� � �1

�2 � �1

� � �4

�1 � �4

¼ 1

4
ð1þ �Þð1� �Þ;

N4Q
3 ð�; �Þ ¼

� � �1

�2 � �1

� � �1

�4 � �1

¼ 1

4
ð1þ �Þð1þ �Þ;

N4Q
4 ð�; �Þ ¼

� � �2

�1 � �2

� � �1

�4 � �1

¼ 1

4
ð1� �Þð1þ �Þ;

Figure 9.12 Finite element mesh for Example 9.2.

ty = −20

t on Γt  

2 m 
0.5 m 

1 m 

Figure 9.11 Problem definition of Example 9.2.
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and the Jacobian matrix is given by

Je ¼

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

26664
37775

xe
1 ye

1

xe
2 ye

2

xe
3 ye

3

xe
4 ye

4

266664
377775

¼ 1

4

� � 1 1� � 1þ � �� � 1

� � 1 �� � 1 1þ � 1� �

� � 0 1

0 0

2 0:5

2 1

26664
37775 ¼ 0 0:125� � 0:375

1 0:125� þ 0:125

� �
:

The determinant and the inverse of the Jacobian matrix are

jJej ¼ �0:125� þ 0:375;

ðJeÞ�1 ¼

1þ �
3� � 1

8

� � 3
0

26664
37775:

The strain–displacement matrix is

Be ¼

@N4Q
1

@x
0

@N4Q
2

@x
0

@N4Q
3

@x
0

@N4Q
4

@x

0
@N4Q

1

@y
0

@N4Q
2

@y
0

@N4Q
3

@y
0

@N4Q
1

@y

@N4Q
1

@x

@N4Q
2

@y

@N4Q
2

@x

@N4Q
3

@y

@N4Q
3

@x

@N4Q
4

@y

0

@N4Q
4

@y

@N4Q
4

@x

2666666664

3777777775
:

The element matrices will be integrated using 2� 2 Gauss quadrature with the following coordinates in

the parent element and weights:

�1 ¼ �
1ffiffiffi
3
p ; �2 ¼

1ffiffiffi
3
p ;

�1 ¼ �
1ffiffiffi
3
p ; �2 ¼

1ffiffiffi
3
p ; W1 ¼ W2 ¼ 1:

The stiffness matrix is

K ¼ Kð1Þ ¼
Z
�

BeTDeBe d� ¼
Z 1

�1

Z 1

�1

BeTDeBejJej d� d�

¼
X2

i¼1

X2

j¼1

WiWj

����Jeð�i; �jÞ
����BeTð�i; �jÞDeBeð�i; �jÞ:
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We calculate the stiffness Ke at a Gauss point ð�1; �1Þ ¼ ð�ð1=
ffiffiffi
3
p
Þ;�ð1=

ffiffiffi
3
p
ÞÞ.

@N4Q
1

@x

@N4Q
2

@x

@N4Q
3

@x

@N4Q
4

@x

@N4Q
1

@y

@N4Q
2

@y

@N4Q
3

@y

@N4Q
4

@y

26664
37775
ð�1;�1Þ

¼ ðJeÞ�1ð�1; �1Þ

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

@N4Q
1

@�

@N4Q
2

@�

@N4Q
3

@�

@N4Q
4

@�

266664
377775
ð�1;�1Þ

¼
�0:44 �0:06 0:12 0:38

0:88 �0:88 �0:24 0:24

" #
:

Thus, the strain–displacement matrix at the Gauss point is given as

Beð�1; �1Þ ¼
�0:44 0 �0:06 0 0:12 0 0:38 0

0 0:88 0 �0:88 0 �0:24 0 0:24

0:88 �0:44 �0:88 �0:06 �0:24 0:12 0:24 0:38

24 35:
The stiffness matrix contribution coming from the Gauss point ð�1; �1Þ is

Keð�1; �1Þ ¼ W1W1BeTð�1; �1ÞDeBeð�1; �1ÞjJeð�1; �1Þj:

Repeating for the remaining three Gauss points at ð�1; �2Þ, ð�2; �1Þ and ð�2; �2Þ yields

Ke ¼
X2

i¼1

X2

j¼1

Keð�i; �jÞ

¼ 107

1:49 �0:74 �0:66 0:16 �0:98 0:65 0:15 �0:08

2:75 0:24 �2:46 0:66 �1:68 �0:16 1:39

1:08 0:33 0:15 �0:16 �0:56 �0:41

2:6 �0:08 1:39 �0:41 �1:53

2 �0:82 �1:18 0:25

SYM 3:82 0:33 �3:53

1:59 0:25

3:67

2666666666666664

3777777777777775
:

We now turn to calculating the force matrix. As there is no body force, the body force matrix vanishes, i.e.

f� ¼ 0. The only nonzero contribution to the boundary matrix comes from the traction applied along the

edge 1–4 of the panel. The edge 1–4 in the physical domain corresponds to � ¼ �1 in the natural

coordinate system. The boundary force matrix is integrated analytically as

fe
� ¼

Z
�14

ðN4QÞT�t d� ¼
Z 1

�¼�1

ðN4QÞTð� ¼ �1; �Þ d��t ¼

1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1

266666666664

377777777775
0

�20

� �
¼

0

�20

0

0

0

0

0

�20

266666666664

377777777775
:
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Note that the integral of N4Q
I ð� ¼ �1; �Þ over�1 � � � 1 is equal to one for any shape function I which

does not vanish on � ¼ �1. Assembling the boundary matrix and accounting for the reactions yields

fe
� þ re ¼

rx1

ry1 � 20

rx2

ry2

0

0

0

�20

266666666664

377777777775
; d ¼

0

0

0

0

ux3

uy3

ux4

uy4

266666666664

377777777775
:

The global system of equations is

107

1:49 �0:74 �0:66 0:16 �0:98 0:65 0:15 �0:08

2:75 0:24 �2:46 0:66 �1:68 �0:16 1:39

1:08 0:33 0:15 �0:16 �0:56 �0:41

2:6 �0:08 1:39 �0:41 �1:53

2 �0:82 �1:18 0:25

SYM 3:82 0:33 �3:53

1:59 0:25

3:67

266666666666664

377777777777775

0

0

0

0

ux3

uy3

ux4

uy4

266666666666664

377777777777775
¼

rx1

ry1 � 20

rx2

ry2

0

0

0

�20

266666666666664

377777777777775
:

The reduced system of equations is

107

2 �0:82 �1:18 0:25

3:82 0:33 �3:53

1:59 0:25

SYM 3:67

2664
3775

ux3

uy3

ux4

uy4

2664
3775 ¼

0

0

0

�20

2664
3775;

which yields

ux3

uy3

ux4

uy4

2664
3775 ¼ 10�6

�1:17

�9:67

2:67

�9:94

2664
3775 or de ¼ 10�6

0

0

0

0

�1:17

�9:67

2:67

�9:94

266666666664

377777777775
:

The resulting strains and stresses at the four Gauss points are

eeð�i; �jÞ ¼
exx

eyy

gxy

264
375

e

ð�i;�jÞ

¼ Beð�i; �jÞde; reð�i; �jÞ ¼
�xx

�yy

�xy

264
375

e

ð�i;�jÞ

¼ Deeeð�i; �jÞ;
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eeð�1; �1Þ ¼ Beð�1; �1Þde ¼ 107

�3:61

�0:628

�39:4

264
375; reð�1; �1Þ ¼ Deeeð�1; �1Þ ¼

�12:5

�5:64

�45:5

264
375;

eeð�1; �2Þ ¼ Beð�1; �2Þde ¼ 107

8:82

�0:628

�40:3

264
375; reð�1; �2Þ ¼ Deeeð�1; �2Þ ¼

28:5

6:65

�46:5

264
375;

eeð�2; �1Þ ¼ Beð�2; �1Þde ¼ 107

�11:7

�3:45

2:21

264
375; reð�2; �1Þ ¼ Deeeð�2; �1Þ ¼

�42:0

�23:0

2:55

264
375;

eeð�2; �2Þ ¼ Beð�2; �2Þde ¼ 107

6:65

�3:46

0:95

264
375; reð�2; �2Þ ¼ Deeeð�2; �2Þ ¼

18:5

�4:82

1:09

264
375:

Example 9.3

We consider an elasticity problem defined in Example 9.2. The domain is meshed with 16 elements. The

initial finite element mesh and the deformed mesh are shown in Figure 9.13. A user-defined scaling factor

(9:221� 103) is used to visualize the deformation.

To obtain the fringe or contour plots of stresses, stresses are computed at element nodes and then

averaged over elements connected to the node. Alternatively, stresses can be computed at the Gauss

points where they are most accurate and then interpolated to the nodes. The user is often interested not

only in the individual stress components, but also in some overall stress value such as von Mises stress. In

the case of plane stress, the von Mises stress is given by �Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ �2
2 � 2�1�2

p
, where �1 and �2 are

principal stresses given by �1;2 ¼
�xx þ �yy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx � �yy

2

� 
2

þ�2
xy

r
. Figure 9.14 plots the �xx stress

contours for the 64-element mesh.

Figure 9.13 Deformed and underformed meshes (with scaling factor 9:221� 103).
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9.6 DISCUSSION

In this section, some characteristics of elastic solutions are presented so that you can understand the finite

element solutions better. The underlying theory is quite extensive, but, a grasp of a few basic facts will help

immensely in developing finite element models and in interpreting and checking the results.

Similarly to the steady-state heat conduction problem considered in the previous chapters, the partial

differentialequation thatgoverns linearelasticity iselliptic.Oneof themost importantcharacteristicsof these

typesofequations is that their solutionsareverysmooth:discontinuities inthestressesoccuronlyat interfaces

between different materials. Thus, the roughness that appears in finite element solution of stresses is an

artifact of the finite element approximation. In order to capture the discontinuities in stresses on interfaces

between different materials, it is necessary that element edges coincide with the interfaces. However, this is

quite natural in the construction of a finite element model, as specifying different material properties to

different subdomains necessitates that the element edges coincide with the interfaces between the materials.

One characteristic of elliptic systems is that they are not sensitive to local perturbations, and as you get

away from the area of the perturbation, it has very little effect. This is known as St Venant’s principle. St

Venant’s principle implies that if you are interested in the stresses reasonably far from where the loads are

applied, it is not necessary to apply the loads as precisely as they would be applied in reality. For example,

the loads applied by a wrench to a pipe would be difficult to model. However, as long as the force you apply

to the model is equal to that of thewrench, the stresses at a small distance from thewrench would be affected

to a very little extent.

Similarly, geometric errors in a model have little effect on the stresses a moderate distance away. Thus, if

you model a holewith a rather rough approximation of 10 or so straight-sided elements, the stresses near the

hole can be quite erroneous, but away from the hole, the errors will be quite small.

One peculiarity of elastic solutions that can be quite troublesome if you try to obtain very accurate

solutions is that some solutions are singular, i.e. the exact stresses for these problems are infinite at some

points. Singularities occur in corners of less than 90	. Therefore, if you compare a fine mesh solution with a

Figure 9.14 �xx contour in the 64-element mesh.
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coarse mesh solution near a corner, you will often find large differences in the stresses in the elements

immediately adjacent to the corner, no matter how fine you make the mesh. The stresses in a real material

will not be infinite, because materials will not behave linearly when the stresses get very high. For example,

in a metal, a sharp corner would result in a small area in which the material becomes plastic.

Anothergroupofproblemsassociatedwithsingularsolutions isproblemswithpoint loads.Forexample, if

a point load is applied to a two-dimensional model, then the exact displacement solutions to the elasticity

equations become infinite at the point of the load. Again, this would mean that as you refine the mesh around

the load, the displacementwouldget larger and larger. In this case, you cannot use arguments like plasticity to

argue the overall meaningfulness of the results. However, according to Saint Venant’s principle, the solution

will be close to the solution for a distributed load with a resultant equal to the point load once you get away

from the area where the point load is applied. Thus, two-dimensional solutions with point loads are also of

engineering value if the displacements in the immediate vicinity of the point load are not of interest.

In this regard, it should be stressed that a point load is an idealization of the actual loads, as a point load

model assumes that the load is applied over zero area. This idealization is adequate when the stresses in the

area near the load are not of primary interest. However, immediately under the point load, the stresses are

infinite, which is not physically meaningful.

The stresses in a solid can be thought of as a force flux: recall the analogy between heat conduction and

linear elasticity, where stress corresponds to the heat flux. Stress behaves very much like a steady-state

flow: where there are obstructions, the stress rises, particularlyaround the obstruction.Forexample,around

a hole in a plate under tensile load, the stress increases significantly next to the hole: this is known as a stress

concentration.

9.7 LINEAR ELASTICITY EQUATIONS IN THREE DIMENSIONS1

Equilibrium

=T
S ¼

@

@x
0 0

@

@y

@

@z
0

0
@

@y
0

@

@x
0

@

@z

0 0
@

@z
0

@

@x

@

@y

266666664

377777775; r ¼

�xx

�yy

�zz

�xy

�xz

�yz

2666666664

3777777775
;

=T
S rþ b ¼ 0:

Stress–traction relation

t ¼ sn; s ¼ sT;

s ¼
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

264
375; t ¼

tx

ty

tz

264
375; n ¼

nx

ny

nz

264
375:

1Recommended for Advanced Track.
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Strain–displacement relation

e ¼ =Su;

e ¼ ½exx eyy ezz exy exz eyz�T; u ¼ ½ux uy uz�T:

Isotropic Hooke’s law

r ¼ De;

D ¼ E

ð1þ �Þð1� 2�Þ

1� � � � 0 0 0

� 1� � � 0 0 0

� � 1� � 0 0 0

0 0 0
1� 2�

2
0 0

0 0 0 0
1� 2�

2
0

0 0 0 0 0
1� 2�

2

2666666666664

3777777777775
:

Problems

Problem 9.1
Construct row 1 of the B matrix for the six-node triangle.

a. Show that for rigid body translation exx strain vanishes.

b. Let the nodal displacements be proportional to the coordinates, i.e. ux ¼ ax. Find the strain field. Does

this answer make sense?

Problem 9.2
A three-node triangular element is subjected to linear body force in the x-direction given by

bxðxÞ ¼ bx1�1 þ bx2�2 þ bx3�3. Develop the expression for the nodal forces corresponding to this body

force as given in (9.43).

Problem 9.3
Consider a quadrilateral domain model of unit thickness with a single finite element as shown in

Figure 9.15. All dimensions are in meters. The traction applied on the edge 1–2 is normal to the edge

and is given by 6 � n N m�2, where n is the unit vector normal to the edge.

Calculate the element boundary force matrix.

1(0.6, 1.5) 

2 (0, 0)
3(1.2, 0)

6 Nm–1

4(1.2, 1.5) 

Figure 9.15 Triangular domain of Problem 9.3.
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Problem 9.4
Consider a rectangular panel as shown in Figure 9.16.

The panel is modeled using a plane stress linear elastic material with the following properties: Young’s

modulus E ¼ 3� 1011 Pa and Poisson’s ratio � ¼ 0:3. The essential boundary conditions are

uAx ¼ uAy ¼ uBy ¼ 0:

The natural boundary conditions are as follows. Along each edge of the panel, the prescribed traction

consists of normal and lateral components, both equal to 103 N m�1 as shown in Figure 9.16.

Discretize the panel using a single rectangular element as shown below. For convenience, use identical

global and local numberings as shown in Figure 9.17. Calculate nodal displacements and stresses at the

element Gauss points.

Problem 9.5
Consider a one-element triangular mesh shown in Figure 9.18.The boundary conditions are as follows. The

edge BC is constrained in y and traction free in x, whereas the edge AB is constrained in x and traction free in

y. The edge AC is subject to traction normal to the edge as shown in Figure 9.18. Assume Young’s modulus

E ¼ 3 � 1011Pa and Poisson’s ratio � ¼ 0:3.

a. Construct the weak form corresponding to the generalized boundary conditions given in Section 9.5.

b. Construct the stiffness matrix.

c. Calculate the global force matrix.

d. Solve for the unknown displacement matrix and calculate the stress at (1.5, 1.5).

1 m

A B

CD

2 m 

Figure 9.16 Problem definition.

1 2

4 3

Figure 9.17 Node numbering for Problem 9.2.

242 FINITE ELEMENT FORMULATION FOR VECTOR FIELD PROBLEMS – LINEAR ELASTICITY



Problem 9.6
An elastic body subjected to temperature tends to expand. This expansion is given in the form of thermal

(prescribed) strain as

e0 ¼ aT½1 1 0�T;

where a is the thermal expansion coefficient (for isotropic materials) and T is the temperature. The stress

is

r ¼ Dðe� e0Þ

where the term corresponding to thermal strains is prescribed temperature data. Develop a weak form and

finiteelementmatrices for thecase of loadsarisingdue to thermalexpansion.Hint:Substitute the above into

the weak form and repeat the derivation given in Section 9.3.

Problem 9.7
Repeat Example 9.2 with two triangular elements as shown in Figure 9.19.

Problem 9.8
Develop MATLAB finite element program for the three-node constant strain triangular element. Note that

in this case, element matrices can be computed without numerical integration. Test the code in one of the

Figure 9.19 Quadrilateral domain meshed with two triangular elements.

3.0 m

A

B C

x

y
3.0 m

15 Nm–2

Figure 9.18 Triangular domain with mixed boundary conditions.
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following two ways: (a) against manual calculations for a two-element problem (see Problem 9.7) or (b)

against the MATLAB code for a quadrilateral element provided in chapter 12. In the latter case, consider

very fine meshes (at least 64-element mesh for the problem in Figure 9.14 for quadrilaterals)

Problem 9.9
Repeat Problem 9.8 for the six-node quadratic triangular element. The shape functions for the six-node

triangle and the quadrature scheme for triangular elements are described in Chapter 7. Test the code by

comparing the results of stresses against the MATLAB code of the 64-element mesh of quadrilaterals.

Problem 9.10
Using the2Delasticitycode,analyze thecantileverbeamshowninFigure9.20.Assumematerialproperties

to be as follows: Young’s modulus E ¼ 3� 1011 Pa and Poisson’s ratio � ¼ 0:3.

Consider the following three meshes: 2� 5; 4� 10 and 8� 20, where the first number corresponds to

the number of elements in the thickness direction. Compare the finite element solutions for the maximum

deflection and maximum stress against manual calculations using the beam theory.

Problem 9.11
Consider a square plate with a circular hole subjected to uniform tension load as shown in Figure 9.21. The

plate is of unit thickness and subject to tension in the horizontal direction. Because of the symmetry in

the model and loading, model one quarter of the plate. The plate is 20 cm� 20 cm and the radius of the hole

is2.5 cm.Assume Young’smodulus is2� 1011 N/m2 andPoisson’s ratio is0.3.The uniformloadapplied is

t ¼ 10�3 N cm�1.

Calculate the maximum stress component�xx in the plate. Grade the mesh toward the hole. An example

of such a mesh is given in Chapter 11 (see Figure 11.29). Compare the value of the applied load to the value

of the maximum stress component �xx obtained by using the MATLAB finite element code.

1000 Nm–1

4.0 m

0.4 m

Figure 9.20 Cantilever beam of Problem 9.8.

x

y

Figure 9.21 Plate under tension (left) and quarter-symmetry model (right).
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Problem 9.12
Repeat Problem 9.11 but with a radius of the hole equal to 19 cm.

Problem 9.13
Thin sheets which are rotationally symmetric (axisymmetric) can be considered one-dimensional pro-

blems where the only nonzero displacement is urðrÞ.

The nonzero strains are given by er ¼
@ur

@r
and e� ¼

ur

r
. The stress strain law for an isotropic material is

given by r ¼De where

r ¼ �r

��

� �
e ¼ er

e�

� �
D ¼ E

1� �2

1 �
� 1

� �
:

The weak form is Z
�

ð=SwÞTr d� ¼
Z
�

wbd�þ ðw2�r�tÞj�t
8w 2 U0

where the gradient in cylindrical coordinates of the weight function is =Sw¼
@wr

@r
wr

r

264
375 and h is the thickness

of the sheet.

a. Starting with the equation of equilibrium,
@�r

@r
þ ð�r � ��Þ=r þ b ¼ 0; ra < r < rb;multiply by wðrÞ

and integrate over the domain � to obtain the weak form given above. Consider all boundary conditions

to be essential boundary conditions. (Hint: Note that d� ¼ 2�rhdr because thevolume of each element

is toroidal.)

b. Consider a linear displacement element and with v ¼ 0. For an element with nodes at r1 and r2 develop

the Be matrix and show that the element stiffness Ke is

Ke ¼ 2�hE

r2 � r1ð Þ2
r2

2 ln
r2

r1

� �
� r2 � r1ð Þ2 r1r2 ln

r2

r1

� �
r1r2 ln

r2

r1

� �
r2 � r1ð Þ2þr2

1 ln
r2

r1

� �
2664

3775
c. Assuming a constant body force b show that fe is

fe ¼ 2�hb

6

2r1 þ r2

2r2 þ r1

� �
d. Use a 2-element mesh to solve with ra ¼ 10; rb ¼ 30; E ¼ 1011; � ¼ 0; h ¼ 1 and b ¼ 100 and

zero essential boundary conditions.

Problem 9.14
Consider a six-node triangular element of unit thickness with a uniform traction in the x-direction applied

along one edge see Figure 9.23.

z

r

h

Figure 9.22 Thin sheet of Problem 9.13.
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a. Show that the element external force matrix fe is

fe ¼ �hp

6
1 0 4 0 1 0½ �T:

b. Assemble the element force matrix to obtain the global external force matrix f for the nodes 1–5 as

shown in Figure 9.23(b).

Problem 9.15
For the 3D Serendipity element shown in Fig. 9.24, the shape functions are the following:


 At corner nodes

Ne
I ð�; �Þ ¼

1

8
ð1þ �I�Þð1þ �I�Þð1þ �I�Þð�I� þ �I� þ �I� � 2Þ


 At midpoint nodes the typical form is (if � ¼ 0; �I ¼ �1; �I ¼ �1)

Ne
I ð�; �Þ ¼

1

4
ð1� �2Þð1þ �I�Þð1þ �I�Þ

2

1

43

y

h/2

h/2

x

p

21 43 5

x

p

(a) (b)

L L

Figure 9.23 (a) Six-node triangular element subjected to constant pressure loading and (b) two six-node triangular

element mesh.

321

4

5678

ξ

η
ζ

Figure 9.24 Twenty-node 3D Serendipity element.
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a. Check that Ne
1 and Ne

2 satisfy the Kronecker delta conditions at nodes 1 and 2.

ð�1 ¼ �1; �1 ¼ �1; �1 ¼ �1; �2 ¼ 0; �2 ¼ �1; �2 ¼ �1; etc:Þ, i.e. show that Ne
I ðxe

JÞ ¼ �IJ for nodes

1 and 2.

b. Consider the case when the parent element is identical to the physical element, i.e. � ¼ x; � ¼ y; � ¼ z.

For a uniform pressure, p applied on the bottom surface, find the z-components of the nodal forces at

nodes 1 and 2.

c. Repeat (a) and (b) for 27-node Lagrange element.
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10
Finite Element Formulation
for Beams

Avery useful group of elements in finite element software are beam and shell elements. These elements are

used to model structures and components that are thin relative to their major dimensions. Some examples

where beam and shell elements are applied are

1. beams and columns of high-rise structures (Figure 10.1(a));

2. the sheet metal and frame of various vehicles (cars, trains and tractors) that are usually modeled by shell

elements (Figure 10.1(b)–(d));

3. the hull of a ship or fuselage of an aircraft, where shell elements are used for the skin and beam elements

for the stiffeners (Figure 10.1(e)).

The salient feature of entities that can be modeled by beam or shell elements is that they are thin compared

to their other dimensions so that the distribution of strain through the thickness (and hence the form of

the displacement field) takes a very simple form. In this chapter, we will describe the theory of structures

indetail forbeams.Wewill thensketchthe implicationsofwhatwehave learnedfrombeamstoshellelements

and cursorily describe some widely used shell elements so that the reader can intelligently use them.

10.1 GOVERNING EQUATIONS OF THE BEAM1

10.1.1 Kinematics of Beam

The major simplification in beam theory is brought about by assuming how a beam deforms. There are two

major theories for describing the behavior of beams: Euler–Bernoulli beam theory, often called engineer-

ing beam theory, and Timoshenko beam theory. We will consider only the former in detail; most strength of

materials courses deal with engineering beam theory, so most students have had some exposure to it. We

will call it engineering beam theory for brevity.

Abeam is shown inFigure 10.2.The x-axis isplaced coincident with the centroid of the cross section A; it

will be called the midline here (it is also called the neutral axis). An important class of loads on beams is

those normal to the axis of the beam, like pðxÞ in Figure 10.2.

The key assumption in engineering beam theory is that normals to the midline of a beam remain straight

and normal. This is illustrated in Figure 10.3, which shows a beam before and after the application of a load

A First Course in Finite Elements J. Fish and T. Belytschko

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)

1Recommended for Structural Mechanics Track.



(the deformation of the beam is magnified; in the linear elasticity theory considered here, deformations

should be invisible). In examining Figure 10.3, we can see that the normality assumption determines the

x-component of the displacement through the depth of the beam by

ux ¼ �y sin �ðxÞ; ð10:1Þ

where �ðxÞ is the rotation of the midline (positive counterclockwise) at x and y is the distance from the

midline. If �ðxÞ is small, then sin � ¼ � and the angle of rotation corresponds to the slope of the midline, so

� ¼ @uyðxÞ
@x

: ð10:2Þ

Substituting (10.2) into (10.1) gives

ux ¼ �y
@uy

@x
: ð10:3Þ

Figure 10.1 Applicationsofbeamandshell elements: (a)building;2 (b)car; (c) tractor;3 (d) schoolbus;3 (e) fuselageof

an aircraft.3

x

y

z

( )p x

Midline (neutral axis)
A

n

Figure 10.2 Nomenclature for a beam.

2Courtesy of Granite Engineering and Design.
3Courtesy of Mercer Engineering.
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Applying the standard expression for the elongational strain (3.3) and (10.3), we find that

exx ¼
@ux

@x
¼ �y

@2uy

@x2
: ð10:4Þ

We have assumed in the above that uy is only a function of x. The above equation shows one of the key

features of engineering beam theory: the strain along the axis of the beam varies linearly through the

thickness of the beam. For elastic materials, since as the stress is proportional to the strain, the stress also

varies linearly through the depth of the beam. The maximum stress always occurs on either so the top or the

bottom of the beam, i.e., next to one of the surfaces of the beam.

If we consider the more general case where the midline is also elongated, say due to an axial load, the

displacement through the depth is given by

uxðxÞ ¼ uM
x ðxÞ � y

@uyðxÞ
@x

; ð10:5Þ

where uM
x is the displacement of the midline.

The strains are then given by applying (9.6) to (10.5):

exx ¼
@uM

x

@x
� y

@2uy

@x2
; ð10:6Þ

eyy ¼
@uy

@y
¼ 0; ð10:7Þ

gxy ¼
@ux

@y
þ @uy

@x
¼ � @uy

@x
þ @uy

@x
¼ 0: ð10:8Þ

These equations reveal several other characteristics of beam deformations:

1. The axial strain is the sum of the midline extensional strain and the strain due to bending, the second

term in (10.6); the strain due to bending is called the bending or flexural strain.

2. The through-the-thickness eyy strain vanishes.

3. The transverse shear strain gxy vanishes.

The fact that the transverse shear gxy vanishes is not unexpected as this shear strain is the change in angle

between the x and y coordinates, and by the fundamental assumption of engineering beam theory that the

x  

y

A 

B 

A

B  

yu  

xu  

Deformed beam

n 

n'
 

 

Figure 10.3 Deformation of an Euler–Bernoulli (engineering) beam.
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normal remains normal, there is no change in the angle between line segments in the x and y directions. This

result is somewhat inconsistent with the rest of the theory, as it implies that there is no shear force across the

cross section; this is discussed in Belytschko et al. (2000).

10.1.2 Stress–Strain Law

We assume that the beam is in a state of plane stress (as it is thin in they-direction), so the only nonzero stress

is given by Hooke’s law and (10.6):

�xx ¼ Eexx ¼ E
duM

x

dx
� y

d2uy

dx2

� �
: ð10:9Þ

(We have reverted to the derivative notation because uM
x and uy are functions of x only.)

The stresses on the cross section of the beam can be related to the moment on the cross section as follows.

Using the standard definition of the moment as the product of the force and moment arm (see Figure 10.4),

we obtain

m ¼ �
Z
A

y�xx dA: ð10:10Þ

In the above,�xx dA is the force on the area dA and y is the moment arm. The right-hand rule convention has

been used for the moment; the negativesignappears in the expression because the moment is negativewhen

the stress is positive for y > 0. Substituting (10.9) into (10.10) gives

m ¼ �
Z
A

yE
duM

x

dx
� y

d2uy

dx2

� �
dA ¼

Z
A

Ey2 d2uyðxÞ
dx2

dA: ð10:11Þ

The second equality follows because y ¼ 0 is a centroidal axis, so
R

A
y dA ¼ 0.

If E is constant over the cross section, we can take E and d2uy=dx2 outside the integral, yielding

m ¼ E
d2uyðxÞ

dx2

Z
A

y2 dA ¼ EI
d2uyðxÞ

dx2
¼ EI�; ð10:12Þ

where I is the moment of inertia of the cross section and � the curvature given, respectively, by

I ¼
Z
A

y2 dA; � ¼ d2uyðxÞ
dx2

: ð10:13Þ

s

m x

A

y

z

A

m = −∫σx xydA

σxx

Figure 10.4 The resultant moment m and shear s on a cross section of the beam.
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Equation (10.12) can be viewed as a generalized stress–strain law: it relates an integral of the stress to

a measure of the deformation, the curvature �. In the form of (10.12), it is not readily recognized as a

stress–strain law, but the only difference between (10.12) and Hooke’s law� ¼ Ee is that (10.12) is in terms

of an integral of stress and the generalized strain �.

10.1.3 Equilibrium

The equilibrium equations for the beam relate the moment, the shear across and the vertical loading pðxÞ.
An infinitesimal segment of the beam is shown in Figure 10.5. Note that like the stresses, the internal

moment m is positive on the positive surfaces and negative on the negatives surfaces; we use the right-hand

rule, so a moment is positive when it is in the direction of your fingers when your thumb points in the

direction of the positive z-axis. The shear s is positive when it acts in the positive y-direction on a positive

face and in the negative y-direction on a negative face.

If we consider vertical equilibrium of the beam segment shown in Figure 10.5 by summing all vertical

forces, we obtain

sðxþ�xÞ � sðxÞ þ p xþ�x

2

� �
�x ¼ 0:

Dividing the above by �x and taking the limit as �x! 0, we obtain

ds

dx
þ p ¼ 0: ð10:14Þ

We next consider moment equilibrium about the point x ¼ y ¼ 0:

mðxþ�xÞ � mðxÞ þ�xsðxþ�xÞ þ 1

2
�x2p xþ�x

2

� �
¼ 0:

Dividing the above by �x and taking the limit as �x! 0 yields

dm

dx
þ s ¼ 0: ð10:15Þ

s(x + ∆x)

m(x + ∆x)m(x)

s(x)

p(x)

∆x

x

y

z

Figure 10.5 A segment of the beam used for development of equilibrium equations.
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Equations (10.14) and (10.15) are the two equilibrium equations for the beam. They can be combined into a

single equation by taking the derivative of (10.15), which gives ðd2m=dx2Þ þ ðds=dxÞ ¼ 0, and using with

(10.14) gives

d2m

dx2
� p ¼ 0: ð10:16Þ

Equations (10.12) and (10.16) are the strong form of the beam equations. These two equations can be

combined into a single equation, which for beams with constant EI is :

EI
d4uy

dx4
� p ¼ 0: ð10:17Þ

The above is a fourth-order ordinary differential equation in the vertical displacement of the midline of the

beam, uyðxÞ. This differential equation is of higher order than the differential equations we have considered

previously, which results in some important changes in the boundary conditions and the development of the

weak form.

10.1.4 Boundary Conditions

The boundary conditions on a beam can be written as follows:

uy ¼ �uy on �u; ð10:18Þ
duy

dx
¼ ��� on ��; ð10:19Þ

mn ¼ EI
d2uy

dx2
n ¼ �m on �m; ð10:20Þ

sn ¼ �EI
d3uy

dx3
n ¼ �s on �s: ð10:21Þ

In (10.20) and (10.21), we have inserted normal n to the natural boundary conditions. This is necessary for

consistency between the positive definition of internal moments (10.10) and shear forces (10.15) and the

definitions of �m and �s, which are positive when acting counterclockwise and in the positive y direction,

respectively.

These boundary conditions are combined in various ways to model different types of physical end

conditions. Three examples of end conditions are

1. a free end with an applied load:

sn ¼ �s on �s; mn ¼ �m on �m; ð10:22Þ

2. a simple support:

�m ¼ 0 on �m; �uy ¼ 0 on �u; ð10:23Þ

3. a clamped support:

�uy ¼ 0 on �u; �� ¼ 0 on ��: ð10:24Þ

It is interesting to note that the second condition in (10.24) for the clamped support can be explained in

terms of compatibility and the normality assumption: if � 6¼ 0 at a clamped support, gaps and overlaps
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develop at the support because any vertical line which was originally normal to the midline overlaps the

support on one side and forms a gap on the other side as shown in Figure 10.6.

It can be seen that each boundary point corresponds to two boundary conditions, e.g. a free end is both a

�s and a �m boundary. Two boundary conditions are required at each end of the beam because the

equilibrium equation is a fourth-order ordinary differential equation.

It is possible to infer which boundaries are the natural boundary conditions and which boundaries are

conjugate during the construction of the weak form. However, to simplify the development, we use a

guideline that evolved in Chapter 9: Variables that are conjugate in the sense of work cannot both be

prescribed on any point of the boundary, but one of these must be prescribed on the boundary. As s�uy and

m�� correspond to increments in work, the conjugacy relations are

�s \ �u ¼ 0; �s [ �u ¼ �: ð10:25Þ
�m \ �� ¼ 0; �m [ �� ¼ �: ð10:26Þ

10.2 STRONG FORM TO WEAK FORM 4

Development of the weak form is accomplished as follows: We multiply the equilibrium equation (10.16)

and the natural boundary conditions (10.21) and (10.20) by a weight function and its derivative, respec-

tively, and then integrate over the corresponding domains, which gives

ðaÞ
Z
�

w
d2m

dx2
� p

� �
dx ¼ 0; ðbÞ wðsn� �sÞ

����
�s

¼ 0; ðcÞ dw

dx
ðmn� �mÞ

����
�m

¼ 0 8w:

ð10:27Þ
As before, we now integrate by parts, but we will see that this integral equation needs to be integrated by

parts twice. Integrating (10.27a) by parts the first time yieldsZ
�

w
d2m

dx2
dx ¼

Z
�

d

dx
w

dm

dx

� �
dx�

Z
�

dw

dx

dm

dx
dx ¼ ð�wsnÞ

����
�

�
Z
�

dw

dx

dm

dx
dx;

wherewe have used the fundamental theorem of calculus and the equilibrium equation (10.16) to obtain the

second equality. As before, we require w to vanish on �u, which combined with (10.25) and (10.27b)

enables us to change the above toZ
�

w
d2m

dx2
dx ¼ ð�w�sÞ

����
�s

�
Z
�

dw

dx

dm

dx
dx: ð10:28Þ

Midline 

n+ n−

(a) (b)

Figure 10.6 Loss of compatibility in an Euler–Bernoulli beam due to gaps and overlaps: (a) due to � 6¼ 0 at a support

and (b) due to a kink in the displacement.

4Recommended for Structural Mechanics Track.
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We now integrate the second term on the RHS of the above by parts:Z
�

dw

dx

dm

dx
dx ¼

Z
�

d

dx

dw

dx
m

� �
dx�

Z
�

d2w

dx2
m dx

¼ dw

dx
�m

� �����
�m

�
Z
�

d2w

dx2
m dx:

ð10:29Þ

In obtaining the above, we have used the fundamental theorem of calculus to convert the first term on the

RHS of the above, required dw=dx to vanish on �� and substituted (10.27c).

Substituting (10.29) into (10.28) and the result into (10.27a) yields the following weak form:

Z
�

d2w

dx2
m dx ¼

Z
�

wp dxþ dw

dx
�m

� �����
�m

þðw�sÞj�s
for 8w 2 U0:

If we substitute the generalized stress–strain law for the moment m given in (10.12) into the above, we

obtain Z
�

d2w

dx2
EI

d2uy

dx2
dx ¼

Z
�

wp dxþ dw

dx
�m

� �����
�m

þðw�sÞj�s
for 8w 2 U0: ð10:30Þ

Note that the LHS is symmetric in w and uy, so we can expect symmetry in the discrete equations.

We next consider the structure of U and U0. Examining Equation (10.30), we can see that the second

derivatives of the weight function and the approximation appear in the integral on the LHS. The C0

functions used heretofore are therefore no longer adequate, as the square of the second derivative of a C0

function isnot integrable. Therefore,C1 functions, forwhich the integral in (10.30) is integrable,denotedas

H2, are needed for the approximation and the weight function.

The essential boundary conditions in a fourth-order system are the boundary conditions on the

displacement and first derivative; this will be seen more clearly in going from the weak form to the strong

form. In going back over the construction of the weak form, we can see that we required w to vanish on �u,

dw=dx on ��. Therefore, taking into account the required continuity, it follows that the function spaces for

the approximation and weight functions are

U ¼ uyjuy 2 H2; uy ¼ �uy on �u;
duy

dx
¼ �� on ��

� �
; ð10:31Þ

U0 ¼ wjw 2 H2;w ¼ 0 on �u;
dw

dx
¼ 0 on ��

� �
: ð10:32Þ

From the above, we can see that the boundary conditions on uy and duy=dx are essential boundary

conditions. The weak form can then be summarized as follows:

find uyðxÞ 2 U such that ð10:30Þ holds 8wðxÞ 2 U0:

The need for C1 functions can also be established physically from the implications of the assumption that

the normal remains straight and normal. Figure 10.6b shows the deformation of a beam at a kink in the

displacement of the midline, uyðxÞ. As can be seen, as the normal remains normal on each side of the kink,

the material overlaps on one side and a gap develops on the other side. Therefore, compatibility is not

satisfied with a C0 displacement field in a beam. Thus, the need for C1 approximation and weight functions
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can be explained both mathematically (from the integrability of the weak form) and physically (from

compatibility).

10.2.1 Weak Form to Strong Form

The taxonomy of the various boundary conditions is clarified by considering the development of the strong

form from the weak form. As usual, the strong form is obtained from the weak form by reversing the steps

used in developing the weak form. We start with the weak form (10.30) and only consider beams with

constant EI. Using the integration by parts on the LHS of (10.30), we obtain

Z l

0

EI
d2w

dx2

d2uy

dx2
dx ¼

Z l

0

d

dx
EI

dw

dx

d2uy

dx2

� �
dx�

Z l

0

EI
dw

dx

d3uy

dx3
dx

¼ EI
dw

dx

d2uy

dx2
n

� �����
�

�
Z l

0

EI
dw

dx

d3uy

dx3
dx

¼ dw

dx
mn

� �����
��[�m

�
Z l

0

EI
dw

dx

d3uy

dx3
dx:

ð10:33Þ

As dw=dx ¼ 0 on �� and �m ¼ �� ��, we then obtain

Z l

0

EI
d2w

dx2

d2uy

dx2
dx ¼ dw

dx
mn

� �����
�m

�
Z l

0

EI
dw

dx

d3uy

dx3
dx: ð10:34Þ

Using the integration by parts on the second term of the above gives

Z l

0

EI
dw

dx

d3uy

dx3
dx ¼

Z l

0

d

dx
wEI

d3uy

dx3

� �
dx�

Z l

0

wEI
d4uy

dx4
dx

¼ �ðwsnÞj�s[�u
�
Z l

0

EIw
d4uy

dx4
dx;

ð10:35Þ

where the fundamental theorem of calculus has been used to obtain the second line. As w ¼ 0 on �u, we

obtain

Z l

0

EI
dw

dx

d3uy

dx3
dx ¼ �ðwsnÞj�s

�
Z l

0

wEI
d4uy

dx4
dx: ð10:36Þ

Substituting (10.36), (10.34) and the result into (10.33) yields

Z l

0

w EI
d4uy

dx4
� p

� �
dxþ wðsn� �sÞj�s

þ dw

dx
ðmn� �mÞ

����
�m

¼ 0: ð10:37Þ
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The strong form can then be extracted as before by first selecting

w ¼  ðxÞ EI
d4uy

dx4
� p

� �
; ð10:38Þ

where is smooth and positive and ðxÞ > 0 on 0 < x < l and ðxÞ ¼ d =dx ¼ 0 at x ¼ 0 and x ¼ l. For

instance, ðxÞ can be chosen as ð1� cosð2�x=lÞÞ or any other positive function on 0 < x < l satisfying the

above four constraints. Equation (10.38) implies that w ¼ dw=dx ¼ 0 on �. Inserting (10.38) into (10.37)

yields

Z l

0

 ðxÞ EI
d4uy

dx4
� p

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
integrand

dx ¼ 0: ð10:39Þ

Note that the integrand in (10.39) is positive at every point in the problem domain. So the only way the

integral will vanish is if the integrand is zero at every point. Hence,

EI
d4uy

dx4
� p ¼ 0; 0 � x � l: ð10:40Þ

Substituting (10.40) into (10.37) yields

wðsn� �sÞj�s
þ dw

dx
ðmn� �mÞ

����
�m

¼ 0: ð10:41Þ

We further assume w ¼ 0 on �S and dw=dx arbitrary on �m, which gives

mn ¼ EI
d2uy

dx2
n ¼ �m on �m: ð10:42Þ

Finally, combining (10.42) and (10.41) and taking w arbitrary on �S yields

sn ¼ �EI
d3uy

dx3
n ¼ �s on �s: ð10:43Þ

Thus, the weak form yields the strong form, and for infinite-dimensional spaces U the two are equivalent.

The above development also clarifies the essential and natural boundary conditions for a beam. The

essential boundary conditions are those on uy and duy=dx; we must construct the approximation so that they

are met. The natural boundary conditions are the conditions on the second and third derivatives of uy, which

are the moment and shear, respectively. These boundary conditions will be met in a ‘weak’ sense, i.e.

approximately, by a finite element solution.

10.3 FINITE ELEMENT DISCRETIZATION 5

10.3.1 Trial Solution and Weight Function Approximations

As concluded in the previous section, the trial solutions and weight functions for a beam element shown in

Figure 10.7 must be C1 functions.

5Recommended for Structural Mechanics Track.
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One class of functions that provides C1 continuity is the Hermite polynomials (others are the various

B-splines). In order to use the Hermite polynomials and maintain C1 continuity between elements, both

the displacements and the derivatives of the displacement at the nodes must be degrees of freedom. The

derivatives of the displacement field can be viewed as a rotation � of the midline displacement (recall

(10.19)), so the element displacement matrix is

de ¼ ½uy1; �1; uy2; �2�T: ð10:44Þ

The nodal forces are conjugate in work, so

fe ¼ ½fy1;m1; fy2;m2�T; ð10:45Þ

where mI are the nodal moments (note that mI 6¼ mðxIÞ).
The Hermite polynomials for an element of length l are given by

Nu1 ¼
1

4
ð1� �Þ2ð2þ �Þ;

N�1 ¼
le

8
ð1� �Þ2ð1þ �Þ;

Nu2 ¼
1

4
ð1þ �Þ2ð2� �Þ;

N�2 ¼
le

8
ð1þ �Þ2ð� � 1Þ;

ð10:46Þ

where

� ¼ 2x

le
� 1; so � 1 � � � 1: ð10:47Þ

It can be verified that these shape functions have the following Kronecker delta properties:

NuIðxJÞ ¼ �IJ ;
dN�I

dx
ðxIÞ ¼ �IJ : ð10:48Þ

So the Hermite shape functions interpolate both the function and its derivatives at the nodes. To obtain the

derivative with respect to x, we need to use

d

dx
¼ l

2

d

d�
: ð10:49Þ

y

x

uy1 uy2

le

1 2

q2
q1

Figure 10.7 Two-node Euler–Bernoulli beam element.
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The four shape functions are shown in Figure 10.8. It can be seen that (10.48) is met.

The weight functions and trial solutions are interpolated with the same shape functions, so

ue
y ¼ Nede; we ¼ Newe: ð10:50Þ

To evaluate the domain integral in theweak form(10.30), weneed toevaluate d2ue
y=dx2,which from (10.50)

and (10.46) can be shown to be

d2Ne

dx2
¼ 1

le

6�

le
3� � 1 � 6�

le
3� þ 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Be

;
d2ue

y

dx2
¼ Bede: ð10:51Þ

As indicated, the above defines the matrix Be, which is used in the construction of the stiffness

matrix.

10.3.2 Discrete Equations

Wewill not repeat the procedure ofwriting theweak form in terms of the displacement field but leave it asan

exercise. The outcome is identical to that in the previous chapters we have considered. The finite element

equations are

Kd ¼ f þ r: ð10:52Þ

The element matrices are

stiffness matrix:

Ke ¼
Z
�e

EIBeTBe dx; ð10:53Þ
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Figure 10.8 Hermite C1 shape functions for a two-node beam.
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external force matrix:

fe ¼
Z
�e

NeTp dx

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
fe

�

þðNeT�sÞj�s
þ dNeT

dx
�m

� �����
�m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fe
�

; ð10:54Þ

where fe
� and fe

� are the element body and boundary force matrices, respectively.

These results could easily be obtained by considering a single element. The element matrices are

assembled into a global matrix exactly as before by using scatter and gather operations according to the

node numbers of the elements.

If the flexural stiffness EI is constant over the element, the element stiffness is given by

Ke ¼
Z
�e

EIBeTBe dx ¼ EI

le
3

12 6le �12 6le

4le
2 �6le 2le2

12 �6le

Sym 4le2

2664
3775: ð10:55Þ

Note that the sum of any row of this stiffness no longer vanishes; this is because de ¼ ½1; 1; 1; 1�T is not a

rigid body motion, as de includes both nodal rotations and nodal displacements.

The nodal forces corresponding to a constant load p are given by

fe
� ¼

Z
�e

NeTp dx ¼
Zle

0

Nu1

N�1

Nu2

N�2

2664
3775p dx ¼ ple

2

1

le=6

1

�le=6

2664
3775: ð10:56Þ

It can be seen that the uniform load results in both a nodal moment and vertical nodal forces; the vertical

nodal forces are identical to those on the edge of a linear triangular element loaded by a uniform pressure.

10.4 THEOREM OF MINIMUM POTENTIAL ENERGY 6

The finite element equations for a beam can be developed more readily than in the previous section by

invoking the theorem of minimum potential energy. For a beam,

Wint ¼
1

2

Z
�

Ee2 d� ¼
Z l

0

Z
A

Ee2 dA dx ¼ 1

2

Z l

0

EI
d2uy

dx2

� �2

dx; ð10:57Þ

where the second equality is just another wayof expressing the domain of the problem and the third equality

follows from (10.4). The external work is given by

Wext ¼
Z l

0

puy dxþ ðuy�sÞj�s
þ ð��mÞj�m

: ð10:58Þ

The theorem of minimum potential energy then states that the solution uy 2 U is the minimizer of �, where

� ¼ Wint �Wext; ð10:59Þ

where U is defined in (10.31), i.e. it is the set of admissible displacements.

6Recommended for Structural Mechanics Track.
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The theorem of minimum potential energy shows clearly why the derivative of the displacement field

must be square integrable. Obviously, the internal energy cannot be evaluated if the displacement field

derivative duy=dx is not square integrable.

The finite element equations can be obtained by approximating the displacement field by compatible

displacement fields, i.e. displacement fields so that uy 2 U, and minimizing � with respect to nodal

displacements not on the essential boundary, i.e. with respect to dF. If we use (10.50) for the approximation

of the displacement field, then

� ¼ 1
2

dT
Xnel

e¼1

LeT

Z
�e

EIBeTBe dxe Le

0@ 1Ad

� dT
Xnel

e¼1

LeT

Z
�e

NeTp dxþ NeT�sþ dNeT

dx
�m

� �������
�e

0@ 1A:
ð10:60Þ

It canbe seen that the first termonthe RHS involves thestiffnessmatrix,whereas theother two termsare due

to applied loads. Using the definitions (10.53) and (10.54) in combination with assembly, we can write the

above as

� ¼ 1
2

dTKd� dTðf þ rÞ: ð10:61Þ

The minimum of � is obtained by setting its derivative with respect to the nodal displacements, dF, equal to

zero, which gives

KFdF ¼ fF �KT
EF

�dE; ð10:62Þ

where KF and fF are the stiffness and force matrix blocks corresponding to F-nodes and KT
EF is the coupling

stiffness matrix. For more details on the partitioning see Chapter 5.

Example 10.1

Considera beam problemshown inFigure10.9.The beam ABCis clamped at the left side and is free at the

right side. Spatial dimensions are in meters, forces in N and distributed loading p in N m�1. The beam

bending stiffness is EI ¼ 104 N m2. The natural boundary conditions at x ¼ 12 m are �s ¼ �20 N and

�m ¼ 20 N m.

The beam is subdivided into two finite elements as shown in Figure 10.10.

A B C

4 4 4

p(x) = 1 
P1 = 10 

P2 =5 20m= s = 20
x

y

Figure 10.9 Problem definition of Example 10.1.
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The global displacement matrix is defined as dT ¼ ½uy1; �1; uy2; �2; uy3; �3�
Element stiffness matrices:

Based on (10.55) for element 1 ðEI ¼ 104; L ¼ 8Þ :

Ke ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

26664
37775 ¼ 103

0:23 0:94 �0:23 0:94

0:94 5:00 �0:94 2:50

�0:23 �0:94 0:23 �0:94

0:94 2:50 �0:94 5:00

26664
37775
½1�

½2�

½1� ½2�
and similarly for element 2 ðEI ¼ 104; L ¼ 4Þ :

Ke ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

26664
37775 ¼ 103

1:88 3:75 �1:88 3:75

3:75 10:00 �3:75 5:00

�1:88 �3:75 1:88 �3:75

3:75 5:00 �3:75 10:00

26664
37775
½2�

½3�

½2� ½3�
Global stiffness matrix:

The global stiffness matrix is computed using direct assembly :

K ¼ 103

0:23 0:94 �0:23 0:94 0 0

0:94 5:00 �0:94 2:50 0 0

�0:23 �0:94 2:11 2:81 �1:88 3:75

0:94 2:50 2:81 15:00 �3:75 5:00

0 0 �1:88 �3:75 1:88 �3:75

0 0 3:75 5:00 �3:75 10:00

2666666664

3777777775
½1�

½2�

½3�

½1� ½2� ½3�

Boundary force matrix :

fe
� ¼ ðNeT�sÞj�s

þ dNeT

dx
�m

� �����
�m

:

For element 1, f
ð1Þ
� ¼ ½0 0 0 0�T as it has no boundary on �s or �m.

For element 2,

f
ð2Þ
� ¼ 0 0 0 1½ �T �mþ 0 0 1 0½ �T�s ¼

0

0

�20

20

2664
3775 ½2�
½3�

321

q1 = 0

uy1 = 0 uy2 uy3

q2 q3(1) (2)

Figure 10.10 Finite element mesh of Example 10.1.
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The global boundary force matrix is obtained by direct assembly:

f� ¼

0

0

0

0

�20

20

26666664

37777775
½1�

½2�

½3�

Body force matrix:

fe
� ¼

Z xe
nen

xe
1

NeTp dx:

Recall from Chapter 5 that in the case of a point force acting at a coordinate�1 < �A � 1, the resulting

body force matrix is given by

fe
� ¼ NeTð�AÞPA:

For element 1: The body force matrix for element 1 is obtained by superposing the contributions from the

distributed loading pðxÞ ¼ �1 and a point force P1 ¼ �10 acting at � ¼ 0, which yields

f
ð1Þ
� ¼

Z xe
nen

xe
1

Nu1

N�1

Nu2

N�2

2664
3775p dxþ

Nu1

N�1

Nu2

N�2

2664
3775
�¼0

P1 ¼

�9

�15:3
�9

15:3

2664
3775 ½1�½2�

For element 2: The point force in element 2, P2 ¼ 5, acts at its first node where � ¼ �1, which yields

f
ð2Þ
� ¼

Nu1

N�1

Nu2

N�2

2664
3775
�¼�1

P2 ¼

5

0

0

0

2664
3775 ½2�
½3�

The direct assembly of the body force matrices yields

f� ¼

�9

�15:3
�4

15:3
0

0

26666664

37777775
½1�

½2�

½3�

Boundary conditions and solution:

The assembled and partitioned system is given below:

0:23 0:94 �0:23 0:94 0 0

0:94 5:00 �0:94 2:50 0 0

�0:23 �0:94 2:11 2:81 �1:88 3:75

0:94 2:50 2:81 15:00 �3:75 5:00

0 0 �1:88 �3:75 1:88 �3:75

0 0 3:75 5:00 �3:75 10:00

26666664

37777775
uy1 ¼ 0

�1 ¼ 0

uy2

�2

uy3

�3

26666664

37777775 ¼
�9þ ru1

�15:3þ r�1
�4

15:3
�20

20

26666664

37777775:
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Note that we have added reaction forces ru1 and r�1 corresponding to the unknown force and moment

reactions at node 1, respectively. Solution of the above system of equations gives the following global

displacement matrix:

uy2

�2

uy3

�3

2664
3775 ¼

�0:55

�0:11

�1:03

�0:12

2664
3775; ru1

r�1

� �
¼ 33

252

� �

Postprocessing:

Moments and shear forces in the two elements are obtained by (10.51), (10.42) and (10.43):

mð1Þ ¼ EI
d2uð1Þ

dx2
¼ EI

d2Nu1

dx2

d2N�1

dx2

d2Nu2

dx2

d2N�2

dx2

� � 0

0

uy2

�2

26664
37775 ¼ �240:64þ 25:785x;

sð1Þ ¼ �EI
d3uð1Þ

dx3
¼ �EI

d3Nu1

dx3

d3N�1

dx3

d3Nu2

dx3

d3N�2

dx3

� � 0

0

uy2

�2

26664
37775 ¼ �25:785;

mð2Þ ¼ EI
d2uð2Þ

dx2
¼ EI

d2Nu1

dx2

d2N�1

dx2

d2Nu2

dx2

d2N�2

dx2

� � uy2

�2

uy3

�3

26664
37775 ¼ �104:5þ 39:75x;

sð2Þ ¼ �EI
d3uð2Þ

dx3
¼ �EI

d3Nu1

dx3

d3N�1

dx3

d3Nu2

dx3

d3N�2

dx3

� � uy2

�2

uy3

�3

26664
37775 ¼ �39:75:

Figure 10.11 compares finite element solution of displacements, moments and shear forces with an

analytical solution of the strong form of beam equations (10.17)–(10.21). It can be seen from Figure

10.11(a) that the displacements obtained with the finite element mesh of just two elements are very

accurate. The piecewise linear variation of moments predicted by finite elements represents a reasonable

approximation from an engineering point of view as can be seen from Figure 10.11(b); a discontinuity in

moment at the element boundary is evident. On the contrary, a piecewise constant approximation of shear

forces is clearly inadequate to capture a significant variation in shear forces. Note the discontinuity in the

analytical solution of shear forces at the location where point forces are applied. Therefore, it is a good

practice to place a node at the point where point forces are acting.

10.5 REMARKS ON SHELL ELEMENTS7

Shell elements are used for modeling thin structures (see Figure 1.4). Examples of objects that are

conventionally modeled by shell elements rather than by solid elements are shown there. For these

applications, far too many solid elements would be needed to obtain a reasonable solution as solid elements

must have a reasonable aspect ratio to be accurate, so for a thin member a huge number of solid elements

would be needed.

7Optional for Structural Mechanics Track.
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Shells can be viewed as generalizations of beams to curved surfaces in three-dimensional space. Shell

theory is quite involved and beyond the scope of this introductory text, but we would like to describe some

aspects of shells so that the reader has some background to use these elements.

The easiest way to describe shell elements is to consider the triangular flat facet shell element shown in

Figure 10.12. We consider the counterpart of Euler–Bernoulli theory, which is called Kirchoff–Love shell

theory. The central assumption of this shell theory is identical to that in Euler–Bernoulli beam theory:

normals to themidsurface remainstraight andnormal. In thecoordinate systemtangent to the midsurfaceof

the shell, the displacements can then bewritten in terms of the rotations by using the same procedure used in

obtaining (10.3) for a beam, see Figure 10.12:

u_x ¼ u_M
x � z_�

_
y;

u_y ¼ u_M
y þ z_�

_
x;

u_z ¼ u_zðx_; y_Þ;
ð10:63Þ
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Figure 10.11 Finite element solution of Example 10.1 and comparison to the analytical beam solution.
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where u_M
x and u_M

y are the x and y components of the midsurface displacements. Note that the displacement

components are expressed in the local coordinate system of the tangent plane. From the assumption that

normals remain normal, it follows that

�
_

x ¼ �
@ u_z

@ y_
; �

_
y ¼

@ u_z

@x̂
: ð10:64Þ

From the strain–displacement equations in three dimensions (see the appendix), we then obtain

e_xx ¼
@ u_M

x

@ x_
� z_

@2u_z

@ x_2
; e_yy ¼

@ u_M
y

@ y_
þ z_

@2 u_z

@ y_2
; g_xy ¼

@ u_M
x

@ y_
þ
@ u_M

y

@ x_
� 2z_

@2u_z

@ x_@ y_
;

e_zz ¼ g_xz ¼ g_yz ¼ 0:

ð10:65Þ

It can be seen that the strains in a shell have the same basic character as in a beam: they vary linearly through

the thickness of the shell and consist of strains due to the midplane displacement and those due to the

displacements normal to the midplane; these are called the membrane strains and the bending (or flexural)

strains, respectively. The maximum strains occur the top and bottom surfaces of the shell. In an elastic

material, the stresses are related linearly to the strains, so the stresses vary similarly and maximum stresses

occur near the top and bottom surfaces.

In shell theory, a state of plane stress is assumed in the local z_-direction. The stress–strain lawisobtained

by substituting �zz ¼ 0 into Hooke’s law for three-dimensional elasticity (see Section 9.7). For isotropic

material, it reduces to

D ¼ E

1� �2

1 � 0 0 0

� 1 0 0 0

0 0
1� �

2
0 0

0 0 0
1� �

2
0

0 0 0 0
1� �

2

2666666664

3777777775
:

The assumption of plane stress seems somewhat contradictory as e_z ¼ 0 according to the displacement

field. This again is one of the contradictions that permeate beam and shell theory, which is tolerated because

the resulting theory is nevertheless quite effective in predicting strains and stresses in shells.

Some of thewidely used shell elements in practice are three-node flat facet and curved triangle; six-node

triangle; four-node, eight-node and nine-node quadrilaterals. In all elements, all nodes are in the midsur-

face of the element. Two types of elements are wisely used:

1. elements with five degrees of freedom per node (5 DOF);

2. elements with six degrees of freedom per node (6 DOF).

Midsurface 

M
xu

xθ

M
yu

yθ
M
zu

Figure 10.12 Flat facet shell triangular element.

REMARKS ON SHELL ELEMENTS 267



For a 6 DOF element node, the degrees offreedom are the three translations and three rotations. Fora 5 DOF

three-node triangle, the degrees of freedom are

de ¼ ½d1; d2; d3�T;
dI ¼ ½uxI uyI uzI �

_
xI �

_
yI �T:

The corresponding nodal forces are conjugate in the sense of work, so

fe ¼ ½fe
1 fe

2 fe
3�

T;

fe
I ¼ ½fxI fyI fzI m_xI m_yI �:

In the above, �̂xI and �̂yI are rotations about the x̂ and ŷ axes, respectively, see Figure 10.12, and m̂xI and m̂yI

are the nodal moments about the x̂ and ŷ axes, respectively. The displacement components can be expressed

in either a local or global coordinate system, whereas the rotational components have to be expressed in a

local coordinate system that is tangent to the midsurface of the shell at the node.

For a 6 DOF per node element, all of the components are expressed in the global coordinate

system:

de
I ¼ ½uxI uyI uzI �xI �yI �zI �;

fe
I ¼ ½fxI fyI fzI mxI myI mzI �:

The sides of the higher order quadrilateral elements can be curved in space. In fact, these elements

aredeveloped by the same isoparametric conceptemployed todevelopcurvedthree-dimensional elements.

In the isoparametric elements, an alternative theory for the transverse shears gxz and gyz is used. In this shell

theory, a normal remains straight but not necessarily normal as the shell deforms. However, the elements

are modified by rather technical procedures so that the element mimics the strains given in (10.65) (mixed

variational methods, selective-reduced integration and assumed strain elements are some of the methods

that are used to effect this artifice, see Belytschko, Liu and Moran (2000)); these techniques are beyond the

scope of this book. To illustrate how the displacement field is constructed, we consider the nine-node

element shown in Figure 10.13. The normal must remain straight (the normality is not enforced in the

displacement field), so the displacement through the thickness must be linear. The displacement can first be

written in terms of a set of secondary nodes as shown in Figure 10.13. These displacements are then related

to the rotations by the transformation techniques as described in Chapter 2.

Primary nodes (midplane) 
Secondary nodes 

1
2

3

4

5
6

7
8

9

( ) / 2M B T

I I I= +u u u

Top surface (T) 

Bottom surface (B) 

Figure 10.13 Nine-node quadrilateral shell element.
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The displacement field of the nine-node shell element is isoparametric with linear shape functions

through the thickness and quadratic shape functions in the plane, so

N
top
I ¼ N2L

2 ð&ÞN
9Q
I ð�; �Þ;

Nbot
I ¼ N2L

1 ð&ÞN
9Q
I ð�; �Þ;

where N2L
I are the one-dimensional two-node shape functions given in Chapter 7 that we studied in Chapter

4 and N9Q
I are the two-dimensional isoparamteric shape functions developed in Chapter 7.

Theapplication ofboundaryconditions is similar to that inbeams.Some typicalboundary conditionsare

shown in Figure 10.14, though they must be somewhat modified to account for the additional rotations. At a

clamped support, the rotations and translations must vanish.

As in one- and two-dimensional elasticity, the rate of convergence of the biquadratic elements is one order

higher than that of the bilinear element. Therefore, the nine-node element is recommended for most linear

applications. Gauss integration is used to evaluate the stiffness matrix. The programming of these elements is

beyondanelementarycourse,asmany technical ‘tricks’mustbeused toobtainanelement thatperformswell.
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Problems

Problem 10.1
Consider a beam AB subjected to uniform transverse loading as shown in Figure 10.15. Using a single finite

element, calculate the maximum deflection and compare the solution of the elementary beam theory.

x y

z

xθ yθ

0

0

0

z y

x y

z

Clamped

u u

θ θ

θ

= =
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=
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=

=
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Figure 10.14 Boundary conditions for plates and shells.
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Figure 10.15 Uniformly loaded beam of Problem 10.1.
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Problem 10.2
Consider a beam AB supported by an elastic rod BC at point B as shown in Figure 10.16. The

beam is subjected to uniform load p(x). Use Young’s modulus E for the entire structure and

cross-sectional area A and moment of inertial I for the beam and the rod, respectively. Model the

beam with a single beam finite element and the rod with a single truss element (considered in

Chapter 2). Find the nodal displacements and the stresses in the beam.

Problem 10.3
Consider a beam on an elastic foundation as shown in Figure 10.17. Formulate the strong and weak forms.

Hint: When considering an equilibrium of a beam segment (see Figure 10.3), account for the force of

ð�kðxþ 1
2
�xÞ uyðxþ 1

2
�xÞ �xÞ arising from the elastic foundation.

Problem 10.4
Consider a tapered beam element shown in Figure 10.18. The beam has a constant thickness, t, and

a linearly varying height hðxÞ ¼ hLð1� ðx=2LÞÞ. Derive the stiffness matrix for the tapered beam

element.

A B
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p(x)

x

y

C

L/2

Figure 10.16 The beam–rod structure of Problem 10.2.
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Figure 10.17 A beam on elastic foundation of Problem 10.3.
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Problem 10.5
Consider the tapered beam element in Figure 10.18. The beam of length L ¼ 4 m and Young’s modulus

E ¼ 1011 Pa is clamped at node 1. The force in the amount of 10 kN in the negative y-direction is applied at

node 2. The beam has a rectangular cross section with thickness 0.1 m and hL ¼ 0:5 m. Find the maximum

deflection and stress using the following finite element models:

a. a single tapered beam element;

b. two elements of length L ¼ 2 m with constant height; Choose the height of each element equal to the

height of the tapered beam at the center of each element.

Compare the value of maximum stress obtained with the two finite element models to the stress obtained

from the elementary beam theory.

Problem 10.6
Consider a beam with a rectangular hole as shown in Figure 10.19. The beam has a constant

thickness t. Derive the stiffness matrix for the beam element with a rectangular hole. The beam element

should have the usual four degrees of freedom: two rotations and two transverse displacements at x ¼ 0 and

x ¼ L.

Problem 10.7
Consider a two-span beam shown in Figure 10.20. The beam is subjected to uniformly distributed loading,

point forceat x ¼ 2 mandpointmomentatx ¼ 6 masshowninFigure10.20.Thebeambendingstiffness is

EI ¼ 2� 107 N m2.

h
a

a

b b

L

x

Figure 10.19 The beam with a rectangular hole of Problem 10.6.

y

xL

1 2

Lh

Figure 10.18 The tapered beam element of Problem 10.4.
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a. Using the finite element program provided in chapter 12 compute the deflections at x ¼ 2 m and

x ¼ 6 m; moments and shear forces at x ¼ 2 m, x ¼ 4 m and x ¼ 6 m. Consider two elements – one for

each span.

b. If you have three elements, what is an optimal mesh? Repeat (a) with the three-element mesh.

c. Verify the results of (b) with the eight-element mesh, four for each span.

Problem 10.8
Consider a frame structure aligned along the x-axis. A frame is a combination of a beam and a bar

considered inChapter 2. It is capable of supporting both transverse and axial loadings. Afree-body diagram

of the frame segment is shown in Figure 10.21. Note the axial force FðxÞ in addition to moments and shear

forces acting at the two ends of the frame segment.

Developstrongandweakformsfora frameof lengthLalignedalong thex-axis.Assumeaconstant cross-

sectional area A, moment of inertia I and Young’s modulus E.

Problem 10.9
Consider a frame element in the element coordinate system ðx0e; y0eÞ as shown in Figure 10.22. Write the

stiffness matrix derived in Problem 10.8 in the element coordinate system. Express the element stiffness

matrix in the global coordinate system ðxe; yeÞ.
Hint: The rotation matrix from global to element coordinate system is given by

p(x)

( )m x x+ ∆

( )s x x+ ∆

( )m x

( )s x

x∆

x

y

z

( )F x x+ ∆( )F x

Figure 10.21 A frame segment used for the development of equilibrium equations.

A B C

4 m 4 m 

p(x) = −2 kNm–1P = −10 kN M =5 kNm–1 

x

y

Figure 10.20 A two-span beam of Problem 10.7.
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Problem 10.10
Develop a finite element program for frame structures by modifying the finite element program for beams

provided in chapter 12. Verify the program by considering a single frame element subjected to both

transverse and axial loadings.

Problem 10.11
Using the finite element program for frame structures developed in Problem 10.10 compute the maximum

moments, shear forces, horizontal and vertical deflections for the two-story frame structure depicted in

Figure 10.23. The bending stiffness for all beams and columns is EI ¼ 2:5� 107 N m2.
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Figure 10.22 Nodal displacements in the element coordinate system of a frame element.
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Figure 10.23 A two-story frame structure of Problem 10.11.
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11
Commercial Finite Element
Program ABAQUS Tutorials
by ABAQUS, Inc.

11.1 INTRODUCTION

In this series of tutorials you will become familiar with the process of creating ABAQUS models

interactively using ABAQUS/CAE. Three problems will be considered: (1) steady-state heat conduction

in a trapezoidal plate, (2) bending of a short cantilever beam and (3) the elasticity problem of a plate with a

hole subjected to uniform far-field tension.

11.1.1 Steady-State Heat Flow Example

You will create a model of the plate as shown in Figure 11.1. The system of units is not specified but all units

are assumed to be consistent. The plate is of unit thickness and subjected to the conditions shown in the

figure. You will perform a series of simulations with increasing levels of mesh refinement using both linear

triangular and linear quadrilateral elements.

11.2 PRELIMINARIES

1. Start a new session of ABAQUS/CAE by entering abaqus cae at the prompt.

Note that abaqus should be replaced with the command on your system used to run ABAQUS. For

example, to run the ABAQUS v6.6 Student Edition, the command is abq662se.

2. Select Create Model Database from the Start Session dialog box.

The Model Tree is located to the left of the toolbox area of the ABAQUS/CAE window. If the Model

Tree is not visible, make sure that there is a check mark next to Show Model Tree in the View menu. If

the ModelTree is still not visible, drag the cursor from the left side of the ABAQUS/CAE window to

expand the Model Tree.

The Model Tree provides a visual description of the hierarchy of items in the model database along

with access to most of the functionality available in ABAQUS/CAE. If you click the mouse button 3

(MB3) on an item in the tree, a menu appears listing the commands associated with the item. For

example, Figure 11.2 shows the menu for the Models container. In the Models menu, the Create menu

A First Course in Finite Elements J. Fish and T. Belytschko
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item appears in bold because it is the default action that will be performed when you double-click the

Models container.

3. Before proceeding, rename the current model. In the Model Tree, click MB3 on the model named

Model-1 and select Rename from the menu that appears. Enter heat in the Rename Model dialog

box and click OK.

4. To save the model database, select File!Save As from the main menu bar and enter the name abq-
tutorials in the File Name line of the Save Model Database As dialog box. Click OK.

The .cae extension is added automatically.

11.3 CREATING A PART

The first step in modeling this problem involves sketching the geometry for a two-dimensional, planar,

deformable solid body.

1. In the Model Tree, double-click Parts to create a new part.

The Create Part dialog box appears.

Figure 11.1 Trapezoidal plate.

Figure 11.2 Models menu.
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2. Name the partplate. In the Create Part dialog box, select 2D Planar as the part’s modeling space,

Deformable as the type, and Shell as the base feature. In the Approximate size text field, type 15.

3. Click Continue to exit the Create Part dialog box.

ABAQUS/CAE displays text in the prompt area near the bottom of the window to guide you through the

procedure, as shown in Figure 11.3. Click the cancel button to cancel the current task; click the backup

button to cancel the current step in the task and return to the previous step.

The Sketcher toolbox appears in the left side of the main window, and the Sketcher grid appears in the

viewport.

You will first sketch an approximation of the plate and then use constraints and dimensions to refine the

sketch. To select the appropriate drawing tool, do the following:

a. Click the Create Lines: Rectangle tool in the upper-right region of the Sketcher toolbox, as shown in

Figure 11.4.

The rectangle drawing tool appears in the Sketcher toolbox with awhite background, indicating that

you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the

procedure.

Notice that asyoumove the cursoraround theviewport,ABAQUS/CAEdisplays thecursor’sX–and

Y–coordinates in the upper–left corner.

b. Select any two points as the opposite corners of the rectangle.

c. Use the dimension tool to dimension the top and left edges of the rectangle. The top edge should

have a horizontal dimension of 2 m, and the left edge should have a vertical dimension of 1 m. When

dimensioning each edge, simply select the line, click mouse button 1 to position the dimension text and

then enter the new dimension in the prompt area.

d. Use the Delete tool to delete the perpendicular constraints associated with the bottom edge of

the rectangle (select Constraints as the Scope in the prompt area to facilitate your selections).

e. Dimension the right edge of the plate so that it has a vertical dimension of 0.5 m. The final sketch

appears as shown in Figure 11.5.

f. Click mouse button 2 anywhere in the viewport to finish using the dimension tool. (Mouse button 2 is

the middle mouse button on a three-button mouse; on a two-button mouse, press both mouse buttons

simultaneously.)

g. Click Done in the prompt area to exit the sketcher.

Figure 11.3 Prompt area.

Figure 11.4 Connected lines sketch tool.
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ABAQUS/CAE displays the new part, as shown in Figure 11.6.

11.4 CREATING A MATERIAL DEFINITION

You will now create a single linear material with a conductivity of 5 units.

To define a material:

1. In the Model Tree, double-click Materials to create a new material.

2. In the Edit Material dialog box, name the materialexample. Notice the various options available in

this dialog box.

3. From the material editor’s menu bar, select Thermal!Conductivity, as shown in Figure 11.7.

Figure 11.5 Trapezoid drawn with sketcher.

1

2

3

Figure 11.6 Finished part.

Figure 11.7 Pull–down menu of the material editor.
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ABAQUS/CAE displays the Conductivity data form.

4. Enter a value of 5.0 for the conductivity, as shown in Figure 11.8. Use the mouse to select a cell for

data entry.

5. Click OK to exit the material editor.

11.5 DEFINING AND ASSIGNING SECTION PROPERTIES

Material properties are associated with part regions through the use of section properties. You will define a

solid section property that refers to the material created above and assign this section property to the part.

To define a homogeneous solid section:

1. In the Model Tree, double-click Sections to create a new section.

2. In the Create Section dialog box:

a. Name the section plateSection.

b. In the Category list, accept Solid as the default category selection.

c. In the Type list, accept Homogeneous as the default type selection.

d. Click Continue.

The solid section editor appears.

3. In the Edit Section dialog box:

a. Accept the default selection of example for the Material associated with the section.

b. Accept the default value of 1 for Plane stress/strain thickness.

c. Click OK.

To assign the section definition to the plate:

1. In the Model Tree, expand the branch for the part named plate (click the ‘þ’ symbol to expand the

Parts container and then click the ‘þ’ symbol next to the part named plate).

2. Double-click Section Assignments to assign a section to the plate.

ABAQUS/CAE displays prompts in the prompt area to guide you through the procedure.

3. Click anywhere on the plate to select the entire part.

ABAQUS/CAE highlights the plate.

4. Click mouse button 2 in the viewport or click Done in the prompt area to accept the selected geometry.

The Edit Section Assignment dialog box appears containing a list of existing section definitions.

5. Accept the default selection of plate Section, and click OK.

ABAQUS/CAE assigns the solid section definition to the plate and closes the Edit Section Assignment

dialog box.

Figure 11.8 Conductivity data form.
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11.6 ASSEMBLING THE MODEL

Every ABAQUS model is based on the concept of an assembly of part instances. You will create an

assembly containing a single instance of the part created earlier.

To assemble the model:

1. In the Model Tree, expand the branch for the Assembly container and double-click Instances to create

a new part instance.

2. In the Create Instance dialog box, select plate and click OK.

11.7 CONFIGURING THE ANALYSIS

To simulate the thermal response of the plate, a single heat transfer step will be used.

To create a heat transfer analysis step:

1. In the Model Tree, double-click Steps to create a step.

2. From the list of available general procedures in the Create Step dialog box, select Heat transfer and

click Continue.

The Edit Step dialog box appears.

3. In the Description field of the Basic tabbed page, enter Two-dimensional steady-state
heat transfer.

4. Change the response type to Steady-state.

5. Accept all other default values provided for the step.

6. Click OK to create the step and to exit the step editor.

11.8 APPLYING A BOUNDARY CONDITION AND A LOAD
TO THE MODEL

The loads and boundary conditions applied to the model are depicted in Figure 11.1. The temperature T¼ 0

is prescribed along the edges AB and AD. The heat fluxes �q ¼ 0 and �q ¼ 20 are prescribed on the edges BC

and CD, respectively. A constant heat source Q¼ 6 is applied over the entire plate.

When assigning these attributes, you have the choice of selecting regions directly in the viewport or

assigning them to predefinedsets and surfaces. In this example,we adopt the latter approach. Thus, you will

first define sets and surfaces.

To define sets and surfaces:

1. In the Model Tree, double-click Sets (underneath the Assembly) to create a new set. In the Create Set

dialog box, name the set left and click Continue. Select the left vertical edge of the plate and click

Done in the prompt area.

2. Similarly, create the following sets:

- bottom at the bottom (skewed) edge of the plate;

- plate for the entire plate.

3. In the Model Tree, double-click Surfaces (underneath the Assembly) to create a new surface. In the

Create Surface dialog box, name the surfacetop and click Continue. Select the top horizontal edge

of the plate and click Done in the prompt area.
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To apply boundary conditions to the plate:

1. In the Model Tree, double-click BCs to create a new boundary condition.

2. In the Create Boundary Condition dialog box:

- Name the boundary condition left temp.

- Select Step-1 as the step in which the boundary condition will be activated.

- In the Category list, select Other.

- In the Types for Selected Step list, select Temperature and click Continue.

3. In the prompt area, click Sets to open the Region Selection dialog box. Select the set left and toggle on

Highlight selections in viewport. The highlighted edge appears as shown in Figure 11.9.

4. When you are satisfied that the correct set has been selected, click Continue.

The Edit Boundary Condition dialog box appears.

5. In the Edit Boundary Condition dialog box, enter a magnitude of 0.

6. Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

7. Click OK to create the boundary condition and to exit the editor.

ABAQUS/CAE displays yellow squares along the edge to indicate a temperature boundary condition

has been prescribed.

8. Repeat the above steps to assign the boundary condition to the bottom edge. Name this boundary

condition bottom temp.

To apply a surface flux to the top edge of the plate:

1. In the Model Tree, double-click Loads to create a new load.

2. In the Create Load dialog box:

- Name the load surface flux.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Thermal.

- In the Types for Selected Step list, select Surface heat flux.

- Click Continue.

3. In the Region Selection dialog box, select the surface named top. The surface appears as shown in

Figure 11.10.

4. When you are satisfied that the correct surface has been selected, click Continue.

The Edit Load dialog box appears.

1

2

3

Figure 11.9 Left edge selected.
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5. In the Edit Load dialog box:

- Enter a magnitude of 20 for the load.

- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

- Click OK to create the load definition and to exit the editor.

ABAQUS/CAE displays green downward-pointing arrows along the top face of the plate to indicate an

inward flux.

To apply a body flux to the plate:

1. In the Model Tree, double-click Loads to create a new load.

2. In the Create Load dialog box

- Name the load body flux.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Thermal.

- In the Types for Selected Step list, select Body heat flux.

- Click Continue.

3. In the Region Selection dialog box, select the set named plate and click Continue.

4. In the Edit Load dialog box:

- Enter a magnitude of 6 for the load.

- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

- Click OK to create the load definition and to exit the editor.

ABAQUS/CAE displays yellow squares along the remaining edges of the plate.

The right edge of the plate is fully insulated. This is the default boundary condition for a thermal analysis

model. Thus, you need not apply a boundary condition or load to this edge.

11.9 MESHING THE MODEL

You use the Mesh module to generate the finite element mesh. You can choose the meshing technique that

ABAQUS/CAE will use to create the mesh, the element shape and the element type. ABAQUS/CAE offers

a number of different meshing techniques. The default meshing technique assigned to the model is

indicated by the color of the model when you enter the Mesh module; if ABAQUS/CAE displays the

model in orange, it cannot be meshed without assistance from the user.
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Figure 11.10 Top surface selected.
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To assign the mesh controls:

1. In the Model Tree, double-click Mesh in the branch for the part named plate.

2. From the main menu bar of the Mesh module, select Mesh ! Controls.

3. In the Mesh Controls dialog box, choose Tri as the Element Shape selection.

4. Accept Free as the default Technique selection.

5. Click OK to assign the mesh controls and to close the dialog box.

To assign an abaqus element type:

1. From the main menu bar, select Mesh! Element Type.

2. In the Element Type dialog box, choose the following:

- Standard as the Element Library selection.

- Linear as the Geometric Order.

- Heat Transfer as the Family of elements.

3. In the lower portion of the dialog box, examine the element shape options. A brief description of the

default element selection is available at the bottom of each tabbed page.

4. Click OK to assign DC2D3 elements to the part and to close the dialog box.

To mesh the part:

1. From the main menu bar, select Seed ! Part to seed the part.

The Global Seeds dialog box displays the default element size that ABAQUS/CAE will use to seed the

part. This default element size is based on the size of the part.

2. Enter an approximate global size of 2.0 and click OK. This element size is chosen so that only one

element will be created along each edge of the plate.

3. ABAQUS/CAE applies the seeds to the part, as shown in Figure 11.11. The squares in the figure

indicate fixed node locations.

4. From the main menu bar, select Mesh ! Part to mesh the part.

5. Click Yes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh

the part.

6. ABAQUS/CAE meshes the part and displays the resulting mesh, as shown in Figure 11.12a.

7. If you wish to change the diagonal of the elements, select Mesh! Edit. In the Edit Mesh dialog box,

select Element as the category andSwapdiagonal as the method. Click OK. In theviewport, select the

shared diagonaledge of the elements. Click Yes in the prompt area tocomplete the operation. The mesh

appears as shown in Figure 11.12b.
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Figure 11.11 Seeded part instance.
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11.10 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job:

1. In the Model Tree, double-click Jobs to create a new analysis job.

2. Name the job tri-coarse.

3. From the list of available models select heat.

4. Click Continue to create the job.

5. In the Description field of the Edit Job dialog box, enter Coarse triangle mesh.

6. Click the tabs to see the contents of each folder of the job editor and to review the default settings. Click

OK to accept the default job settings.

7. In the Model Tree, expand the Jobs container and click MB3 on the job named tri-coarse. In the menu

that appears, select Submit to submit your job for analysis. The icon for the job will change to indicate

the status of the job in parenthesis after the job name. As the job runs, the status Running will be shown

in the Model Tree.

8. When the job completes successfully, the status field will change to Completed.You are now ready to

view the results of the analysis in the Visualization module.

11.11 VIEWING THE ANALYSIS RESULTS

1. In the Model Tree, click MB3 on the job tri-coarse and select Results from the menu that appears.

ABAQUS/CAE opens the output database created by the job (tri-coarse.odb) and displays the

undeformed model shape.

You will create a contour plot of the temperature distribution.

2. From the main menu bar, select Result! Field Output and select NT11 as the output variable to be

displayed.

3. In the Select Plot State dialog box, select As is and click OK.

4. In the toolbox, click the Plot Contours tool to view a contour plot of the temperature distribution,

as shown in Figure 11.13.

11.12 SOLVING THE PROBLEM USING QUADRILATERALS

You will now solve the problem using quadrilateral elements. This involves changing the element shape

and creating and submitting a new job. The steps are outlined below.

1

2

3
1

2

3

(a)                                                                        (b) 

Figure 11.12 Swapped diagonals.
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To modify a model:

1. In the Model Tree, double-click Mesh in the branch for the part named plate to switch to the Mesh

module.

2. From the main menu bar of the Mesh module, select Mesh!Controls. Select Quad as the element

shape and click OK.

3. A warning is issued indicating that the current mesh will be deleted. Click Delete Meshes in the

ABAQUS dialog box to proceed.

4. From the main menu bar, select Mesh ! Part to mesh the part with DC2D4 elements.

5. ClickYes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh

the part.

6. Create a new job. Name this jobquad-coarse and give it the following description:Coarsequad
mesh.

7. Submit the job for analysis and monitor its progress. When the job completes, open the file quad-
coarse.odb in the Visualization module.

8. Plot the temperature contours for this model. The result is shown in Figure 11.14.

11.13 REFINING THE MESH

Clearly the mesh used to solve this problem was too coarse. For each choice of element shape (triangles and

quadrilaterals), change the mesh seed size to refine the mesh. Use the following mesh seed sizes:

� 0.20 (this produces a finer mesh than used previously)

� 0.05 (this produces the finest mesh used in this study)

Thus, you will create and run four additional jobs named:

� tri-finer

� tri-finest

� quad-finer

� quad-finest

NT11

+0.000e+00
+1.614e-01
+3.228e-01
+4.842e-01
+6.456e-01
+8.070e-01
+9.684e-01
+1.130e+00
+1.291e+00
+1.453e+00
+1.614e+00
+1.775e+00
+1.937e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

Figure 11.13 Temperature contour plot: coarse triangle mesh.
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For each case, edit the model to redefine the mesh, create a new job, and submit it for analysis. Repeat this

process until all jobs listed above have been submitted.

The results of the refined mesh models are shown in Figure 11.15.

From the main menu bar, select File ! Save to save your model database file.

NT11

+0.000e+00
+3.074e-01
+6.149e-01
+9.223e-01
+1.230e+00
+1.537e+00
+1.845e+00
+2.152e+00
+2.460e+00
+2.767e+00
+3.074e+00
+3.382e+00
+3.689e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

Figure 11.14 Temperature contour plot: coarse quad mesh.

NT11

+0.000e+00
+2.312e-01
+4.624e-01
+6.937e-01
+9.249e-01
+1.156e+00
+1.387e+00
+1.619e+00
+1.850e+00
+2.081e+00
+2.312e+00
+2.543e+00
+2.775e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

NT11

+0.000e+00
+2.324e-01
+4.648e-01
+6.971e-01
+9.295e-01
+1.162e+00
+1.394e+00
+1.627e+00
+1.859e+00
+2.091e+00
+2.324e+00
+2.556e+00
+2.789e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

NT11

+0.000e+00
+2.322e-01
+4.645e-01
+6.967e-01
+9.289e-01
+1.161e+00
+1.393e+00
+1.626e+00
+1.858e+00
+2.090e+00
+2.322e+00
+2.555e+00
+2.787e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

NT11

+0.000e+00
+2.323e-01
+4.646e-01
+6.969e-01
+9.292e-01
+1.161e+00
+1.394e+00
+1.626e+00
+1.858e+00
+2.091e+00
+2.323e+00
+2.555e+00
+2.788e+00

Step: Step-1, Two-dimensional steady state heat transfer
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set1

2

3

tri-finest quad-finest

Figure 11.15 Temperature contour plots: refined meshes.
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11.13.1 Bending of a Short Cantilever Beam

In this tutorial, you will modify the model created in the previous exercise to simulate the bending of a short

cantilever beam. The cross-section of the beam has a trapezoidal shape, as shown in Figure 11.16. The

system of units is not specified but all units are assumed to be consistent. The beam is of unit thickness and

subjected to the conditions shown in the figure. The material response is linear elastic with Young’s

modulus E¼ 30E6 and Poisson’s ratio � ¼ 0:3.

11.14 COPYING THE MODEL

In the model database file saved earlier, copy the existing model to a new model: in the Model Tree, click

MB3onthe modelnamed heatandselect CopyModel fromthe menuthat appears.Entercantilever in

the Copy Model dialog box and click OK.

All instructions that follow refer to the cantilever model.

11.15 MODIFYING THE MATERIAL DEFINITION

You will now edit the material definition to define linear elastic properties. You do not need to delete the

thermal properties defined earlier. These will be ignored during the static stress analysis that follows.

To edit a material

1. In the Model Tree, expand the Materials container and double-click example to edit the material.

2. From the material editor’s menu bar, select Mechanical ! Elasticity ! Elastic, as shown in

Figure 11.17.

ABAQUS/CAE displays the Elastic data form.

3. Enter a value of30e6 for Young’s modulus and0.3 for Poisson’s ratio, as shown in Figure 11.18. Use

[Tab] or move the cursor to a new cell and click to move between cells.

4. Click OK to exit the material editor.

11.16 CONFIGURING THE ANALYSIS

To simulate the structural response of the beam, replace the heat transfer step defined earlier with a single

general static step. The thermal loads and boundary conditions defined earlier will be automatically

suppressed when the heat transfer step is replaced.

Figure 11.16 Cantilever beam.
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To replace a step

1. In the Model Tree, expand the Steps container. Click MB3 on the step named Step-1 and select

Replace from the menu that appears.

2. From the list of available general procedures in the Replace Step dialog box, select Static, General

and click Continue.

3. In the Description field of the Basic tabbed page, enter Beam bending.

4. Accept all default values provided for the step.

5. Click OK to create the step and to exit the step editor.

6. Expand the BCs and Loads containers to confirm that their items have been suppressed (denoted by the

symbol).

11.17 APPLYING A BOUNDARY CONDITION AND A
LOAD TO THE MODEL

The loads and boundary conditions applied to the model are depicted in Figure 11.16 where edge DA is

fixed. Edges AB and BC are traction free; on edge CD, the traction is�ty ¼ �20.

To apply boundary conditions to the beam

1. In the Model Tree, double-click BCs to create a new boundary condition.

2. In the Create Boundary Condition dialog box:

Figure 11.17 Pull–down menu in material editor.

Figure 11.18 Elastic data form.
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- Name the boundary condition fix.

- Select Step-1 as the step in which the boundary condition will be activated.

- In the Category list, select Mechanical.
- In the Types for Selected Step list, Symmetry/Antisymmetry/Encastre and click Continue.

3. In the prompt area, click Sets to open the Region Selection dialog box. Select the set left and click

Continue.

The Edit Boundary Condition dialog box appears.

4. In the Edit Boundary Condition dialog box, select ENCASTRE.

5. Click OK to create the boundary condition and to exit the editor.

ABAQUS/CAE displays glyphs along the edge to indicate boundary conditions have been applied.

To apply a surface traction to the top edge of the beam:

1. In the Model Tree, double-click Loads to create a new load.

2. In the Create Load dialog box:

- Name the load traction.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Mechanical.

- In the Types for Selected Step list, select Surface traction.

- Click Continue.

3. In the Region Selection dialog box, select the surface named top and click Continue.

The Edit Load dialog box appears.

4. In the Edit Load dialog box:

- Select General as the traction type.

- Click Edit to define the traction direction. Select the top-left corner of the part as the first point

and the bottom-left corner of the part as the second point of the direction vector. This vector

points in the negative 2-direction.

- Enter a magnitude of 20 for the load.

- Accept all other default selections and click OK.

ABAQUS/CAE displays purple downward-pointing arrows along the top face of the beam to indicate a

negative normal traction.

The remaining edges of the beam are traction free. This is default boundary condition for a stress analysis

model. Thus, you need not apply a boundary condition or load to these edges.

11.18 MESHING THE MODEL

You now need to change the element type to use plane strain (CPE4R) elements. Plane strain elements are

used since the beam is thick relative to its cross-sectional dimensions. Use the finest mesh density from the

earlier model (global seed¼ 0.05) with a quadrilateral element shape.

To change the abaqus element type:

1. In the Model Tree, double-click Mesh in the branch for the part named plate.

2. From the main menu bar, select Mesh!Element Type.
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3. In the Element Type dialog box, choose the following:

- Standard as the Element Library selection.

- Linear as the Geometric Order.

- Plane Strain as the Family of elements.

4. In the lower portion of the dialog box, examine the element shape options. A brief description of the

default element selection is available at the bottom of each tabbed page.

5. Click OK to assign CPE4R elements to the part and to close the dialog box.

11.19 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job:

1. In the Model Tree, double-click Jobs to create a new analysis job.

2. Name the job beam.

3. From the list of available models select cantilever.

4. Click Continue to create the job.

5. In the Description field of the Edit Job dialog box, enter Bending of a short cantilever
beam.

6. Click OK to accept the default job settings.

7. In the Model Tree, expand the Jobs container and click MB3 on the job named beam. In the menu that

appears, select Submit to submit your job for analysis.

11.20 VIEWING THE ANALYSIS RESULTS

1. When the job completes successfully, switch to the Visualization module: In the Model Tree, click

MB3 on the job named beam and select Results from the menu that appears.

ABAQUS/CAE opens the output database created by the job (beam.odb) and displays the unde-

formed model shape.

Youwill createa contourplot of theMises stressdistribution.The Mises stress is the defaultfieldoutput

variable selection; thus, you do not need to select it prior to creating the contour plot.

2. In the toolbox, click the Plot Contours tool to view a contour plot of the Mises stress distribution,

as shown in Figure 11.19.

3. Plot the deformed model shape (click in the toolbox).

4. In the toolbox, click the Allow Multiple Plot States tool followed by the Plot Undeformed Shape

tool . This will overlay the deformed and undeformed model shapes, as shown in Figure 11.20.

For small-displacement analyses, the displacements are scaled automatically to ensure that they are

clearly visible. The scale factor is displayed in the state block. In this case the displacements have been

scaled by a factor of 7586.

Note: In Figure 11.20, only feature edges of the undeformed shape are visible (set via the Superimpose

Options tool ).

From the main menu bar, select File!Save to save your model database file.

11.20.1 Plate with a Hole in Tension

You will now create a model of the plate with a hole shown in Figure 11.21. The system of units is not

specified but all units are assumed to be consistent. The plate is of unit thickness and subjected to tension in
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the horizontal direction. Because of the symmetry in the model and loading, you need only one quarter of

the model plate. You will perform a series of simulations with increasing levels of mesh refinement

and compare the value of the stress in the horizontal direction at the top of the hole with the theoretical

value.

(Ave. Crit.: 75%)
S, Mises

+2.967e-01
+2.248e+01
+4.465e+01
+6.683e+01
+8.901e+01
+1.112e+02
+1.334e+02
+1.556e+02
+1.777e+02
+1.999e+02
+2.221e+02
+2.443e+02
+2.664e+02

Step: Step-1
Increment      1: Step Time =    1.000
Primary Var: S, Mises
Deformed Var: U   Deformation Scale Factor: +7.586e+03

1

2

3

Figure 11.19 Mises stress contour plot.

Step: Step-1
Increment      1: Step Time =    1.000

Deformed Var: U   Deformation Scale Factor: +7.586e+03
1

2

3

Figure 11.20 Overlay of deformed and undeformed model shapes.

Figure 11.21 Plate under tension (left); quarter-symmetry model (right).
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11.21 CREATING A NEW MODEL

In the model database file saved earlier, create a new model: in the Model Tree, double-click Models. Enter

plate as the model name in the Edit Model Attributes dialog box and click OK.

All instructions that follow refer to the plate model.

11.22 CREATING A PART

As before, the first step involves sketching the geometry for a two-dimensional, planar, deformable solid

body.

1. In the Model Tree, double-click Parts to create a new part.

The Create Part dialog box appears

2. Name the partplate. In the Create Part dialog box, select 2D Planar as the part’s modeling space,

Deformable as the type and Shell as the base feature. In the Approximate size text field, type 200.

3. Click Continue toexit the CreatePartdialogbox.To sketch theplate,youneed todrawarectangle.To

select the rectangle drawing tool, do the following:

- Click the Create Lines: Rectangle tool in the upper–right region of the Sketcher toolbox as

shown in Figure 11.22.
The rectangle drawing tool appears in the Sketcher toolbox with a white background, indicating

that you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the

procedure.

- Click one corner of the rectangle at coordinates (�20, �20).

- Move the cursor to the opposite corner (20, 20).

- Create a circle centered at the origin with a perimeter point located at (2.5, 0.0). The final sketch

appears as shown in Figure 11.23.

- Click Done in the prompt area to exit the sketcher.

- Quarter the plate to remove all but the upper right quadrant. To do this:

* From the main menu bar of the Part module, select Shape!Cut!Extrude.
* Using the Create Lines: Connected tool located in the upper right-hand corner of the Sketcher

toolbox, sketch the series of connected lines shown in Figure 11.24. Click Done to complete the

operation.

ABAQUS/CAE displays the new part, as shown in Figure 11.21 (right).

Figure 11.22 Rectangle sketch tool.
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11.23 CREATING A MATERIAL DEFINITION

You will now create a single linear elastic material.

To define a material:

1. In the Model Tree, double-click Materials to create a new material.

2. In the Edit Material dialog box, name the material steel.

Figure 11.23 Rectangle with a hole drawn with sketcher.

Figure 11.24 Sketch of cutting tool.
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3. From the material editor’s menu bar, select Mechanical!Elasticity!Elastic, as shown earlier in

Figure 11.17.

ABAQUS/CAE displays the Elastic data form.

4. Enter a value of 2e11 for Young’s modulus and 0.3 for Poisson’s ratio, as shown in Figure 11.25.

5. Click OK to exit the material editor.

11.24 DEFINING AND ASSIGNING SECTION PROPERTIES

You will define a solid section property that references the material created above and assign this section

property to the part.

To define a homogeneous solid section:

1. In the Model Tree, double-click Sections to create a new section.

2. In the Create Section dialog box:

- Name the section plateSection.

- In the Category list, accept Solid as the default category selection.

- In the Type list, accept Homogeneous as the default type selection.

- Click Continue.

The solid section editor appears.

3. In the Edit Section dialog box:

- Accept the default selection of steel for the Material associated with the section.

- Accept the default value of 1 for Plane stress/strain thickness.

- Click OK.

To assign the section definition to the plate:

1. In the Model Tree, expand the branch for the part named plate.

2. Double-click Section Assignments to assign a section to the plate.

3. Click anywhere on the plate to select the entire part.

ABAQUS/CAE highlights the plate.

4. Click mouse button 2 in the viewport or click Done in the prompt area to accept the selected geometry.

The Edit Section Assignment dialog box appears containing a list of existing section definitions.

5. Accept the default selection of plateSection as the section definition, and click OK.

ABAQUS/CAE assigns the solid section definition to the plate and closes the Edit Section Assignment

dialog box.

Figure 11.25 Elastic data form.
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11.25 ASSEMBLING THE MODEL

You will create an assembly containing a single instance of the part.

To assemble the model:

1. In the Model Tree, expand the branch for the Assembly container and double-click Instances to create

a new part instance.

2. In the Create Instance dialog box, select plate and click OK.

11.26 CONFIGURING THE ANALYSIS

To simulate the mechanical response of the plate, a single general static step will be used.

To create a general static analysis step:

1. In the Model Tree, double-click Steps to create a step.

2. From the list of available general procedures in the Create Step dialog box, select Static, General and

click Continue.

3. In the Description field of the Basic tabbed page, enter Plate with hole under tension.

4. Accept all default values provided for the step.

5. Click OK to create the step and to exit the step editor.

11.27 APPLYING A BOUNDARY CONDITION AND A LOAD
TO THE MODEL

You will apply symmetry boundary conditions along the left and bottom edges of the plate and a negative

pressure on the right edge to simulate tension. The use of a pressure load is equivalent to defining a surface

traction normal to a surface. Note that a positive pressure always acts into the surface. Thus, a negative

pressure load will act away from the surface (inducing tension). As before, sets and surfaces will be used to

assign the loads and boundary conditions.

To define sets and surfaces:

1. In the Model Tree, double-click Sets (underneath the Assembly) to create a new set. In the Create Set

dialog box, name the set left and click Continue. Select the left vertical edge of the plate and click

Done in the prompt area.

2. Similarly, create a set named bottom that includes the bottom horizontal edge of the plate.

3. In the Model Tree, double-click Surfaces (underneath the Assembly) to create a new surface. In the

Create Surface dialog box, name the surfacepull and click Continue. Select the right vertical edge

of the plate and click Done in the prompt area.

To apply boundary conditions to the plate:

1. In the Model Tree, double-click BCs to create a new boundary condition.

2. In the Create Boundary Condition dialog box:

- Name the boundary condition left.

- Select Step-1 as the step in which the boundary condition will be activated.

- In the Category list, select Mechanical.
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- In the Types for Selected Step list, select Symmetry/Antisymmetry/Encastre and click

Continue.

3. In the prompt area, click Sets to open the Region Selection dialog box. Select the set left and toggle on

Highlight selections in viewport. The highlighted edge appears as shown in Figure 11.26.

4. When you are satisfied that the correct set has been selected, click Continue.

The Edit Boundary Condition dialog box appears.

5. In the Edit Boundary Condition dialog box, select XSYMM.

Click OK to create the boundary condition and to exit the editor.

ABAQUS/CAE displays glyphs along the edge to indicate boundary conditions have been applied.

6. Similarly, create a symmetry boundary condition named bottom on the bottom edge of the plate.

Select bottom as the set and YSYMM as the type.

To apply a pressure to the right edge of the plate:

1. In the Model Tree, double-click Loads to create a new load.

2. In the Create Load dialog box:

- Name the load tension.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Mechanical.

- In the Types for Selected Step list, select Pressure.

- Click Continue.

3. In the Region Selection dialog box, select the surface named pull. The surface appears as shown in

Figure 11.27.

X
Y

Z

Figure 11.26 Left edge selected.

X

Y

Z

Figure 11.27 Right surface selected
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4. When you are satisfied that the correct surface has been selected, click Continue.

The Edit Load dialog box appears.

5. In the Edit Load dialog box:

- Enter a magnitude of -10e3 for the load.

- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

- Click OK to create the load definition and to exit the editor.

ABAQUS/CAE displays outward-pointing arrows along the edge of the plate to indicate a tensile

load.

11.28 MESHING THE MODEL

As before, use the Mesh module to generate the finite element mesh. You will use quadratic plane stress

(CPS8R) elements to discretize the plate. Quadratic elements are more effective in capturing stress

concentrations (a key feature of this problem) and the relative thinness of the plate suggests plane stress

conditions.

To assign the mesh controls:

1. In the Model Tree, double-click Mesh in the branch for the part named plate.

2. From the main menu bar of the Mesh module, select Mesh!Controls.

3. In the Mesh Controls dialog box, choose Quad as the Element Shape selection.

4. Accept Free as the default Technique selection.

5. Click OK to assign the mesh controls and to close the dialog box.

To assign an abaqus element type:

1. From the main menu bar, select Mesh!Element Type.

2. In the Element Type dialog box, choose the following:

- Standard as the Element Library selection.

- Quadratic as the Geometric Order.

- Plane Stress as the Family of elements.

3. In the lower portion of the dialog box, examine the element shape options. A brief description of the

default element selection is available at the bottom of each tabbed page.

4. Click OK to accept and assign CPS8R elements to the plate and to close the dialog box.

You will now partition the plate in half in order to gain better control over the mesh.

To partition the plate:

1. From the main menu bar, select Tools!Partition.

2. In the Create Partition dialog box, select Face as the type and Sketch as the method. Click OK.

3. In the sketcher, draw a line connecting the origin of the circle with the upper right corner of the plate.

4. Click the middle mouse button twice then click Done.

To mesh the part:

1. From the main menu bar, select Seed!Part to seed the part.

2. In the Global Seeds dialog box, specify an approximate global size of 2.0 and press OK.
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3. ABAQUS/CAE applies the seeds to the part, as shown in Figure 11.28. The squares in the figure

indicate fixed node locations. The circles indicate target node locations.

4. From the main menu bar, select Mesh!Part to mesh the part.

5. Click Yes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh

the part.

6. ABAQUS/CAE meshes the part and displays the resulting mesh, as shown in Figure 11.29.

11.29 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job

1. In the Model Tree, double-click Jobs to create a new analysis job.

2. Name the job hole-coarse.

3. From the list of available models select plate.

4. Click Continue to create the job.

5. In the Description field of the Edit Job dialog box, enter Coarse mesh.

6. Click the tabs to see the contents of each folder of the job editor and to review the default settings. Click

OK to accept the default job settings.

7. In the Model Tree, expand the Jobs container and click MB3 on the job named hole-coarse. In the

menu that appears, select Submit to submit your job for analysis.

X

Y

Z

Figure 11.28 Seeded part instance.

X

Y

Z

Figure 11.29 Part showing the resulting mesh.
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11.30 VIEWING THE ANALYSIS RESULTS

1. When the job completes successfully, switch to the Visualization module: In the Model Tree, click

MB3 on the job hole-coarse and select Results from the menu that appears.

ABAQUS/CAE opens the output database created by the job (hole-coarse.odb) and displays the

undeformed model shape.

You will create a contour plot of the stress distribution.

2. From the main menu bar, select Result!Field Output and select S11 as the output variable to be

displayed. This is the component of stress in the horizontal direction.

3. In the Select Plot State dialog box, select As is and click OK.

4. In the toolbox, click the Plot Contours tool to view a contour plot of the stress distribution, as

shown in Figure 11.30.

11.31 REFINING THE MESH

The theoretical value of the stress at the top of the hole is 3� the applied stress (30e3 in this case). Clearly

the mesh used to solve this problem was too coarse. Reduce the mesh seed size to refine the mesh. Use the

following mesh seed sizes:

� 1.2 global seed size (uniform)

� 1.2 global seed size with local biased edge seeds along the left, bottom and diagonal edges:

(i) From the main menu bar of the Mesh module, select Seed!Edge Biased.

(ii) Using [Shift]+[Click], select the left, bottom and diagonal edges at the ends near the hole.

(iii) Enter a bias ratio of 3.

(iv) Enter 20 for the number of elements along the edges.

Figure 11.30 Stress contour plot: coarse mesh model.
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Figure 11.31 Stress contour plot: fine mesh model.

Figure 11.32 Stress contour plot: biased mesh model.
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Thus, you will create and run two additional jobs named:

� hole-fine

� hole-biased

You do not need to create new models for each of these jobs. Simply edit the current model to refine the

mesh. Create a new job and submit it for analysis. Repeat this process until all jobs listed above have been

submitted.

The results of the refined mesh models are shown in Figure 11.31 and Figure 11.32.

From the main menu bar, select File!Save to save your model database file.

Close the ABAQUS/CAE session by selecting File!Exit from the main menu bar.
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APPENDIX

A.1 ROTATION OF COORDINATE SYSTEM IN THREE DIMENSIONS

Consider a point P in the global coordinate system xyz as shown in Figure A.1. The position vector

corresponding to point P is denoted by~s. It can be written in terms of its Cartesian components:

~s ¼ sx
~iþ sy

~jþ sz
~k; ðA:1Þ

where~i,~j and~k are unit vectors in the x, y and z directions, respectively.

We now define the same point P in the rotated coordinate system x0y0z0 as shown in Figure A.1. Writing

the vector~s in the rotated coordinate system x0y0z0 gives

~s ¼ s0x~i
0 þ s0y~j

0 þ s0z
~k 0; ðA:2Þ

where~i0,~j0 and~k0 are unit vectors in the x0, y0 and z0 directions, respectively, and s0x, s0y and s0z are the

corresponding vector components. As (A.1) and (A.2) represent the same vector, vector components sx, sy

and sz can be obtained by multiplying (A.1) and (A.2) with unit vectors~i,~j and~k, respectively, which yields

sx ¼~i �~s ¼ s0x~i �~i 0 þ s0y~i �~j 0 þ s0z~i �~k 0;
sy ¼~j �~s ¼ s0x~j �~i0 þ s0y~j �~j0 þ s0z~j �~k0;
sz ¼~k �~s ¼ s0x

~k �~i 0 þ s0y
~k �~j 0 þ s0z

~k �~k0:
ðA:3Þ

Denoting~i �~i0 ¼ cosðx; x0Þ � n11; ~i �~k0 ¼ cosðx; z0Þ � n13; ~j �~i0 ¼ cosðy; x0Þ � n21 and so on gives in

matrix notation

sx

sy

sz

264
375 ¼ n11 n12 n13

n21 n22 n23

n31 n32 n33

264
375 s0x

s0y

s0z

264
375; s ¼ Rs0: ðA:4Þ

It can be shown that the transformation matrix R is orthogonal, i.e., RT ¼ ðRÞ�1
. Thus, the inverse relation

is given by

s0 ¼ RTs: ðA:5Þ
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A.2 SCALAR PRODUCT THEOREM

Consider the scalar product of two vectors w and p equal to zero for any vector w denoted as 8w:

wT p ¼ 0 8w

or

w1p1 þ w2p2 þ � � � þ wnpn ¼ 0 8w:

As the vector component wi is arbitrary, it is convenient to make the following choices:

w1 ¼ 1 w2 ¼ w3 ¼ � � � ¼ wn ¼ 0) p1 ¼ 0;
w2 ¼ 1 w1 ¼ w3 ¼ � � � ¼ wn ¼ 0) p2 ¼ 0;

..

.

wn ¼ 1 w1 ¼ w2 ¼ � � � ¼ wn�1 ¼ 0) pn ¼ 0;

which yields p ¼ 0.

A.3 TAYLOR’S FORMULA WITH REMAINDER
AND THE MEAN VALUE THEOREM

Taylor’s formulawith remainder plays akeyrole inunderstanding the behavior of the finiteelement method

discussed in Section 5.7.2.

A function f ðxÞ defined on interval 0 � x � l can be expanded around a point 0 � x0 � l as follows:

f ðxÞ ¼ f ðx0Þ þ ðx� x0Þ
df

dx
ðx0Þ þ

1

2
ðx� x0Þ2

d2f

dx2
ðx0Þ

þ 1

k!
ðx� x0Þk

dkf

dxk
ðcÞ;

ðA:6Þ

where c is some point in the interval x � c � x0.

i

j
k

x

z

y

P

sy

sz

sx

x′

z′

y′

s

→

→

→
→

Figure A.1 Position of arbitrary point P in two coordinate systems.
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The mean value theorem is obtained as a special case for k ¼ 1:

f ðxÞ ¼ f ðx0Þ þ ðx� x0Þ f;xðcÞ: ðA:7Þ

Consider a special case of x0 ¼ 0 and x ¼ l, then

df

dx
ðcÞ ¼ f ðlÞ � f ð0Þ

l
; ðA:8Þ

whichmeans that for anydifferentiable function f ðxÞ there isapoint in the interval0 � c � l thathasa slope

defined by (A.8). See Problem A.1 for a specific choice of function f ðxÞ.

A.4 GREEN’S THEOREM

The gradient is a vector given by

~r ¼~i @
@y
þ~j @

@y
;

where~i and~j are unit vectors in the x and y directions, respectively. The gradient of a function is given by

~rf ¼~i @f

@y
þ~j @f

@y
:

Consider any scalar field � ¼ �ðx; yÞ defined on a domain �, as shown in Figure A.2. The boundary of the

domain is denoted by � as shown in the figure. The unit normal to the domain is denoted by~n, where in two

dimensions

~n ¼ nx
~iþ ny

~j; ðA:9Þ

and nx and ny are the x and y components of thevector normal to the domain, called the normal vector or just

the normal. As~n is a unit vector, it follows that n2
x þ n2

y ¼ 1.

P1

P2

Ω
dΩ

x

y

y = y2

x = Γ1(y)
x = Γ2(y)

y = y1

dx

dy

Γ 

Figure A.2 Two-dimensional domain and its boundary.
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The purpose of Green’s theorem is to relate an integralof a gradient of a function overan area to a contour

integral by Z
�

~r� d� ¼
I
�

�~n d�: ðA:10Þ

In Equation (A.10), in a two-dimensional problem, the LHS integral is a double integral and can also be

written as
R R
r� dx dy, where we have omitted the limits of integration because they are awkward to write

for arbitrary shapes. The RHS of (A.10) in two dimensions is a contour integral. Note that Equation (A.10)

in 2D represents two scalar equationsZ
�

@�

@x
d� ¼

Z
�

�nx d�;

Z
�

@�

@y
d� ¼

Z
�

�ny d� : ðA:11Þ

We will prove Green’s theorem for a convex domain (a convex domain is a domain for which any line

joining two points in the domain is entirely in the domain). This is not a very restrictive assumption because

any domain can be subdivided into convex subdomains and the same methods can then be used to prove the

theorem.

Let us consider the area integral

Ix ¼
Z
�

@�

@x
d�: ðA:12Þ

The maximum and minimum y-values of the domain are indicated by the points P1 and P2 in Figure A.2,

where the corresponding y-values are y ¼ y1 and y ¼ y2, respectively. These two points divide the

boundary into two curves as shown in the figure. The first curve, x ¼ �1ðyÞ, starts at P1 and follows a

clockwise path ending at P2. The second curve, x ¼ �2ðyÞ, follows a counterclockwise path from P1 to P2.

Using these definitions of the boundary of the domain, Equation (A.12) can be rewritten as follows:

Ix ¼
Z
�

@�

@x
d� ¼

Z Z
@�

@x
dx dy ¼

Zy2

y1

Z�2

�1

@�

@x
dx

0B@
1CA dy:

Now applying the fundamental theorem of calculus to the above, we obtain

Ix ¼
Zy2

y1

�
�ðx; yÞ

�����2ðyÞ

�1ðyÞ

�
dy ¼

Zy2

y1

�ð�2ðyÞ; yÞ dy�
Zy2

y1

�ð�1ðyÞ; yÞ dy:

Now we reverse the limits of integration on the second integral, which requires that we change the sign on the

integral. It can be seen that the first term is the integral of � evaluated on the boundary �2ðyÞ in the

counterclockwise direction. The second term is the integral of � taken along �1ðyÞ, also in the counter-

clockwisedirection.Thus, the sumof the twointegralsgivesthecompletecontour integralover� ¼ �1 [ �2:

Ix ¼
Zy2

y1

�ð�2ðyÞ; yÞ dyþ
Zy1

y2

�ð�1ðyÞ; yÞ dy �
I
�

�ðx; yÞ dy; ðA:13Þ

where
H

is the boundary integral taken counterclockwise on the boundary �.
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To complete the proof, let us express dx and dy in terms of the incremental arc length d� as shown in

Figure A.3. Due to similarity of the two triangles, it follows that

dy

d�
¼ nx

1
: ðA:14Þ

Combining Equations (A.13) and (A.14) givesZ
�

@�

@x
d� ¼

I
�

�nx d�: ðA:15Þ

Similarly, it can be shown that Z
�

@�

@y
d� ¼

I
�

�ny d�;

which completes the proof of Green’s theorem.

A.5 POINT FORCE (SOURCE)

In this section, we consider a body force (or source) acting at a point inside an element. In practice, however,

it is often desirable to design a finite element mesh so that the point force (source) acts at a finite element

node. Here, we consider the case where a point force (source) is acting anywhere in the interior of the

element domain.

Consider a point force (point source) as shown in Figure A.4. The magnitude of the force (heat source) is

denoted by P. The relation between the body force (distributed source) f ðxÞ and the point force (point

source) can be obtained by integration:

Z l

0

f ðxÞ dx ¼ P:

dΓ

ny j
n→ →

→
nx idx

dy

Figure A.3 A segment of the boundary showing the unit normal n.

0
x

x = a

P l

Figure A.4 Point force (point source) acting in the interior of the element.
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As the segment size on which the point force (point source) is acting is infinitesimally small and P is finite, it

follows that the equivalent body force (heat source) is infinite at the point where the point force (source) is

applied and vanishes elsewhere as shown in Figure A.5.

Mathematically, this distribution is denoted as

f ¼ P�ðx� aÞ;

where �ðx� aÞ is the Dirac delta defined so that tends to infinity at the point x ¼ a, and its integral over any

problem domain that includes x ¼ a is 1:

Zx2

x1

�ðx� aÞ dx ¼ 1 if x1 < a < x2:

In a more general case, for any function gðxÞ, the Dirac delta function has the property thatZx2

x1

gðxÞ�ðx� aÞdx ¼ gðaÞ if x1 < a < x2

0 otherwise:

�
ðA:16Þ

We now proceed with computing the external nodal forces by (5.11) resulting from the point forces

fe ¼
Zx2

x1

NeTðxÞP�ðx� aÞdx ¼ NeTðaÞP if x1 < a < x2

0 otherwise:

�

where the last step follows from (A.16). Similar formulas can be obtained for nodal fluxes.

A.6 STATIC CONDENSATION

Static condensation is a technique aimed at reducing the number of element degrees of freedom prior to

scattering (or assembling) the element matrices. For instance, in the nine-node Lagrange quadrilateral

(Figure 7.16), the center node is not connected to any other element. This degree of freedom can be

eliminated (or condensed out) to obtain the element matrices corresponding to the boundary nodes only.

To establish the static condensation equations, we partition the element equations as

Kbb Kbi

Kib Kii

� �
db

di

� �
¼ fb

f i

� �
; ðA:17Þ

f

x

∞

x = a

Figure A.5 Graphical illustration of the point force (point source).
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where db and di are nodal displacements of boundary nodes to be retained and those in the interior to be

condensed out, respectively; the remaining matrices in (A.17) correspond to the nodal displacements

partitions.

From the second equation in (A.17), we get

di ¼ ðKiiÞ�1ðf i �KibdbÞ: ðA:18Þ

Substituting (A.18) into (A.17), we get the condensed element equations

ðKbb �KbiðKiiÞ�1KibÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�Kbb

db ¼ fb �KbiðKiiÞ�1f i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�fb

: ðA:19Þ

The advantage of using static condensation is that it provides smaller element matrices and thus reduced

global system of equations. Note that the static condensation affects the right-hand side vector, �fb, as well.

From the physical point of view, this means that the nodal force that has been acting on the interior node, f i,

has been redistributed to the boundary nodes, according the right-hand side of equation (A.19).

A.7 SOLUTION METHODS

You have probably noticed that for problems considered in this book, it took the MATLAB or ABAQUS

finite element programs a few seconds to obtain the solution. You then ask yourself an obvious question: If

you refine the mesh by a factor of 1000, how much longer will the program run? Will the CPU time increase

to hours and even days?

The answers to these questions depend on many factors. First, you should be aware that a significant

portion of computational cost (often more than 50–90 % of the total running time) goes in solving the linear

system of equations

KFdF ¼ f�F: ðA:20Þ

The CPU time for solving the symmetric positive-definite system of equations (A.20) is given by

CPU ¼ C � na; ðA:21Þ

where n is the number of unknowns or the number of degrees of freedom in the finite element model. The

valuesofC andadependon the choice of solutionmethod(or solver), aswell as sparsity andconditioning of

KF. For instance, if KF is a dense matrix (fully populated with few zeros), the value of the exponent a ¼ 3

for most commonly used direct solvers. Consequently, if it takes 1 s to solve the problem with 1000

unknowns, it will take 109 s or approximately 30 years of CPU time to solve a problem with one million

unknowns, not uncommon in engineering practice. Fortunately, the systems of equations arising from the

finite element discretizations are sparse, so the value of a ranges from 1 to 2 depending on the solver and

problem characteristics (sparsity and conditioning). Now assume that you have an optimal solver to your

disposition (a ¼ 1) and assume that it takes 10 s to solve a problem with 1000 unknowns (we took the value

of C in Equation(A.21) 10 times larger than before), then the above problem with one million degrees of

freedom can be solved in less than 3 h! If on the contrary, a ¼ 2 and assuming that C is the same, then CPU

time goes up to 120 days, which is something that an engineer cannot afford in particular when he has to

solve the same problem many times with different loadings (sources) and boundary conditions.

There are two types of solvers for linear systems: (1) direct solvers and (2) iterative solvers. The constant

C in Equation (A.21) for iterative methods is significantly higher than that for direct methods, whereas the

exponent a for iterative methods is typically lower. The major advantage of direct methods is their
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robustness, which is manifested by the fact that parameters C and a are independent of problem

conditioning (except for close to singular systems). Direct solvers are ideal for solving small- and

medium-sized problems, but the choice between the two types of solvers depends not only on the problem

characteristics but also on the hardware architecture. On parallel machines, iterative methods offer near-

perfect scalability, i.e. CPU timedecreases nearlyproportionallywith increase in the number ofprocessors.

Direct methods, on the contrary, offer limited scalability. On serial machines, the breakeven point between

the two solvers is in the range between 50 000 and 100 000 unknowns.

Direct Solvers

Any nonsingular matrix KF can be expressed as a product KF ¼ LU, where L and U are lower and upper

triangular matrices. If KF is also a symmetric and positive-definite matrix, which is the case for many of the

physical problems considered in this book, then it can be decomposed more efficiently into KF ¼ LLT,

where

L ¼

l11 0 . . . 0

l21 l22 . . . 0

..

. ..
. . .

. ..
.

ln1 ln2 . . . lnn

26664
37775: ðA:22Þ

This is known as Cholesky factorization. To solve Equation (A.19), one first solves Ly ¼ f�F for y, and then

LTdF ¼ y for dF.

The reader can easily observe that the solution to these equations is trivial.

When a sparse matrix KF is factored, it typically suffers some fill-in; this means that the matrix Lþ LT is

nonzerowhereentries inKF are zero.The extentoffill-in is the determining factor of the computational cost

involved in solving the linear system of equations. State-of-the-art direct solvers are optimized to minimize

fill-in in the factor L. A typical sparse direct solver consists of four steps:

1. An ordering step that reorders the rows and columns such that the factor L has minimal fill.

2. A symbolic factorization that determines the nonzero structures of the factors and creates suitable data

structures for L.

3. A factorization step that computes L.

4. A solution step that solves Ly ¼ f�F for y, and then solves LTdF ¼ y for dF.

Usuallysteps 1and2 involveonly integeroperations.Steps3and4 involve realnumberoperations.Step3 is

usually the most time-consuming part, whereas step 4 is about an order of magnitude faster. For more

details we refer to Dongarra et al. (1998) and Heath, Ng and Peyton (1991).

Iterative Solvers

The most general approach to constructing an iterative solution method is by splitting the matrix KF

as

KF ¼ P� ðP�KFÞ; ðA:23Þ

where P is a nonsingular matrix, which is called a preconditioner. With this splitting, the solution of the

linear system (A.20) can be written as

dF ¼ P�1ðP�KFÞdF þ P�1f�F: ðA:24Þ

310 APPENDIX



An iterative method is constructed by

d
ðkþ1Þ
F ¼ P�1ðP�KFÞdðkÞF þ P�1f�F; ðA:25Þ

where the superscript denotes the iteration count. Starting with d
ðkÞ
F ¼ 0, an iterative method (A.25)

calculates a sequence of matrices d
ðkÞ
F , which converge to the solution of the system (A.20); that is

lim
k!1
ðdðkÞF Þ ¼ dF: ðA:26Þ

The efficiency of an iterative solver depends on the choice of the preconditioner P. A good preconditioner

must have many desirable attributes. First, the preconditioned system should converge quickly.

This generally means that P�1KF should be as close as possible to the identity matrix. Second, it

should be easy to solve a linear system of the form Py ¼ z. Finally, the construction of the preconditioner

should be quick.

The simplest possible preconditioner P is a diagonal matrix of KF, also known as Jacobi preconditioner.

Thegeneration of good preconditioners involves as much art as science. The best preconditioners tend to be

application specific, exploiting insight into the precise problem being solved. For more details we refer to

Saad (1996). Construction of good preconditioners is still an active area of research. In mid-1990s, Pravin

Vaidya developed a remarkable preconditioner that spurred widespread adoption of iterative methods by

commercial software vendors. He chose not to publish his work, but to commercialize it instead, so he

licensed it to ANSYS for over one million dollars.

Conditioning

To illustrate the purpose and effects of conditioning, consider the two-bar structure described in Chapter 2.

We rewrite the system of equations as

kð1Þ þ kð2Þ �kð1Þ

�kð1Þ kð1Þ

� �
u2

u3

� �
¼ 0

10

� �
:

We now consider two cases:

Case 1: kð1Þ ¼ kð2Þ ¼ 1.

Case 2: kð1Þ ¼ 1 and kð2Þ ¼ 105.

The condition number � is the ratio between the largest and the smallest eigenvalues of matrix KF. For the

system with equal springs (case 1), the condition number is � ¼ 6:8541, whereas for case 2, � ¼ 4� 105.

For case 1, the iterative sequence (A.24) with Jacobi preconditioner converges within 0.1 % of the exact

solution dF ¼ ½10 20�T in about 20 iterations. For case 2, it takes almost one million iterations to converge

to the exact solution dF ¼ 106 � ½1 1�T. In both cases, we used ½0 0�T as the initial guess. The performance of

the iterative method could have been improved with a better preconditioner. The convergence of the

preconditioned iterative solver is governed by the condition number of P�1KF and not KF alone. For

instance, if P ¼ KF, then � ¼ 1 and the exact solution is obtained in a single iteration, as can be seen from

Equation (A.24).

This example illustrates the importance of conditioning measured in terms of condition number on the

performance of iterative solution methods. Extremely poor conditioning may even affect the performance
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of a direct method due to round-off error. The reader is encouraged to test the direct solver in MATLAB or

other package assuming kð1Þ ¼ 1 and kð2Þ ¼ 1020.
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Problem

Problem A.1
Consider a cubic function f ðxÞ ¼ x2ð3l� 2xÞ=l3 defined on the interval 0 � x � l and its linear approx-

imation~f ðxÞdefined such that~f ð0Þ ¼ f ð0Þ and~f ðlÞ ¼ f ðlÞ ¼ 1 (Figure A.6). Verify (A.8) and find a point c,

where
df

dx
ðcÞ ¼ d~f

dx
.

x

1

l

f (x)

f (x)

∼

Figure A.6 Cubic function f (x) and its linear approximation g(x).

312 APPENDIX



Index

ABAQUS, 4, 6, 275–301, 309

Accuracy, 1, 70, 77, 79, 82, 92, 99, 105, 117–118,

129, 154, 160, 175

Admissible,

displacement, 69–70, 261

solution, 48, 50, 56

trial solution, 60, 95, 106, 120, 143, 191, 207, 224

weight function, 56, 60, 93, 106, 120, 191, 207, 224

Advection matrix, 121

Advection-diffusion, 9, 65–66, 70, 93, 121–122,

146–148, 189, 207–209

Analysis, 1–4, 6–9, 22, 31, 41–42, 47, 58–60, 67,

70–72, 93, 96, 99, 114–115, 117–118, 154,

186, 204, 212, 215–217, 223, 231, 280,

282, 284–287, 289–290, 295,

298, 301

linear, 2–4, 204, 216

nonlinear, 2–4, 204, 216

stress, 1–4, 22, 41–42, 47, 58–60, 67, 70–71,

93, 96, 99, 114–115, 215–217, 231, 287, 289

Approximation of trial solution, 77–92

Assembled,

external force matrix, 96, 102, 264

stiffness equations, 17, 96, 122

stiffness matrix, 17, 96, 121, 192, 264

system matrix, 25, 27, 96, 264

Assembly,

direct, 18, 20, 23, 25, 32, 96, 101–103, 128, 192,

195–196, 263–264

procedure, 18, 20, 96

matrix operation, 96, 100

Assumption,

Linearity, 216

small-displacement, 217

normality, 250, 254, 267

plane stress, 267

Axial force, 12–14, 74, 111, 272

Axial strain, 13, 218, 251

Balance principle, 146

Bar, 11–40, 41–44, 46, 58–60, 62, 73–76, 98–100,

106–107, 113, 115, 123–124, 126–128,

172, 191, 212, 216, 272, 311

Beam, 4, 70, 244, 249–273

theory, 244, 249, 251, 266, 269, 271

Bilinear,

Function, 182

monomial/term, 161, 165–166

shape functions, 164–165, 182

element, 269

Body force, 42, 68, 74–76, 97–99, 109, 115, 124,

128–129, 220–221, 229–230, 236, 241,

245, 264, 307–308

matrix, 99, 109, 124, 229, 236, 264

Boundary,

arbitrary, 58–61, 105–107

condition, 17, 20, 22, 31, 39, 41, 44, 46–48,

50, 52–54, 56, 58–64, 66–67, 69, 72–75,

93–95, 99–100, 104–106, 108, 111–112,

118–121, 123–126, 129, 131, 139,

141–143, 145, 148, 150–151, 193,

202–207, 209, 212, 223–224, 231–233,

242–243, 245, 254–258, 262, 264, 269,

280–282, 287–289, 295–296, 309

essential boundary condition, 50, 53–54, 56,

58, 60, 62–64, 67, 73, 93–95, 100, 104,

106, 112, 118–120, 142–143, 193,

204–205, 209, 224, 242, 245, 256,

258

natural boundary condition, 50, 53–54, 56, 58,

61–64, 66, 69, 72–73, 93, 104–105, 112,

118, 123, 131, 139, 142, 145, 148, 202, 204,

206–207, 209, 224, 232–233, 242,

254–255, 258, 262

traction boundary condition, 47–48, 50, 52–53,

59, 129, 223–224

homogeneous boundary condition, 232–233

A First Course in Finite Elements T. Belytschko and J. Fish

# 2007 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (cased) 0 470 85276 3 (Pbk)



Boundary,

curved, 152,154, 164, 168

domain, 204, 305–306

flux matrix, 100–102, 123, 196, 199, 211

force matrix, 110, 230, 232, 236, 241, 263–264
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Bulk modulus, 223
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