Computational Mechanics

Chapter 1 Introduction

(Covers Chapter 1, and Sections 2.1, 2.2, 2.4 and 2.6 of A first course in finite elements)




Introduction to Computational Mechanics

* Computational mechanics is the discipline concerned with the use of computational methods to study

phenomena governed by the principles of mechanics!.

* Computational mechanics is interdisciplinary:
o Mechanics — Objective
o Mathematics — Method

o Computational science — Tool

e Common computational mechanics method:

o Finite different method — direct approximation for partial differential equations, cannot handle complex geometry

o Finite element method (FEM) — wide application areas, great for complicated engineering problems

% Lagrangian mesh: deform with body, suitable for solid analysis
¢ Eulerian mesh: fixed mesh, appropriate for fluid/field analysis

Similar equations for infinitesimal deformation

1. Ghaboussi J, Wu XS. Numerical Methods in Computational Mechanics. CRC Press; 2016 Nov 25.




Introduction to Finite Element Method (FEM)

 The FEM was developed in 1950s in the aerospace industry, from industry to academia

* FEM divides complex objectives/fields into regular finite elements:

1. Convert complex domains and boundary
conditions into simple and unified ones

Mesh
generation

2. Change one set of mechanics equations to
numerous ones — applicable to computers

Geometric model?! Finite element model

 Commercial FEM software packages: Abaqus, LS-DYNA, NASTRAN, etc.
MATLAB is also a useful tool in development stage

1. Chen W, Zheng X, Liu S. Finite-element-mesh based method for modeling and optimization of lattice structures for
additive manufacturing. Materials. 2018 Nov;11(11):2073.




Applications of FEM

* The range of applications of FEM is very large:
o Categorized based on field types — mechanical, thermal, electromagnetic, etc.
o Categorized based on industries — automotive, consumer electronics, arms, etc.

Automotive crash analysis?! Electronic chip performance analysis? Seismic analysis for architectures?

1. https://ctag.com/en/servicios/tecnologia-seguridad-pasiva/simulacion-impacto_crash-simulation/

2. https://www.finiteelementanalysis.com.au/featured/dcir-analysis-of-pcb-in-ansys-siwave/

3. http://pepconsultingengineers.it/en/fem-analysis-e-seismic-design/



https://ctag.com/en/servicios/tecnologia-seguridad-pasiva/simulacion-impacto_crash-simulation/
https://www.finiteelementanalysis.com.au/featured/dcir-analysis-of-pcb-in-ansys-siwave/
http://pepconsultingengineers.it/en/fem-analysis-e-seismic-design/

5-Step Analysis in FEM

Preprocessing: subdividing the target domain into finite elements by automatic mesh generators.

Element formulation: development of equations for elements.

Assembly: obtaining equations for the whole system by gathering ones at the element-level.

Easiest analysis with 1D bar elements and no partial differential equations

Solving equations.

Postprocessing: calculation results visualization and output.




Single Bar Element

Mesh Bar elements are assumed to be thin:
generation

— 1. Negligible torsion, bending and shear

2. Internal forces only along axes — spring

Truss structure? Bar element
e e
F;, ou,?
Nodal internal force / \ Nodal displacement
Notation:

* Element number — superscript
* Node number — subscript

1. https://www.karamba3d.com/tutorials/tutorials_workflow/export-gable-truss-to-revit-with-geometry-gym-rhynamo/



https://www.karamba3d.com/tutorials/tutorials_workflow/export-gable-truss-to-revit-with-geometry-gym-rhynamo/

1D Single Bar Element — Stress and Deformation

* For simplification: Calculation of axial stress:

1. Straight bar el p¢ F;
. traight bar element g = — 2 Sign of p and F?
A¢  A°
2. Material obeying Hooke’s Law
* Hooke’s Law:
3. Only axial loading g€ = E€¢°€

4. Static analysis

Compatible deformation — no gap or overlap

X
e —
Ff, uf —mOom——— [ U
1 2 * Calculation of axial strain:
., 0% Lew—1° uj—uj
* Equilibrium of the element (static analysis): &€ =7~ Je E
FF+F; =0




1D Single Bar Element — Stiffness Matrix

X * Force —displacement relationship written in the
e e € e e matrix form for computation:
Fr)ug F7,u3 F§ L€ _ke
1 2 =
el = L l l
* Definition of stiffness: Fe
ere
F; = A%0° = A°E®e® = T (ug —uf) = F¢ = K°d°
ke
* Element stiffness matrix:
ere
= F§ = ke (u$ — uf) ke =[ K, kAR
—ke ke e |—
el s . 1. Symmetric matrix
e Equilibrium condition: :
. Fe = — F2 = ke(uf — u) 2. 1D element with constant A°

3. Linearity for all ingredients




FEM Model for a 2-Bar System

* A system is made by several elements — starting from a 2-bar system:

Cross-section size does not matter for 1D analysis
E— w@”3 L ©
3 (1) 2 (2) 1
}( /D >~( /@

2-bar system FEM model of the 2-bar system

E® 4@

* Global nodes and elements are not numbered in a specific order in FEM

e Constraint of FEM problems:
o Boundary conditions are intentionally applied on nodes
o Boundary conditions are either external forces or displacements, but not both to avoid over-constraint




Force Equations for a 2-Bar System

f3* U3 — fz Uz -%fl* E]

QG x

3 (1) (2) 1

-2

* Internal forces and displacements for elements: . . . —
Local node numbering are unified to increase along x direction

(1) (2)

(1) . (D)o (1) (1) 2) . Q) oo (2) _ (2)
E7u E~,u E,u E“,u
1 1 1 ) 2 2 1 1 1 5 2 2

* Free-body diagrams of nodes:

f2 (()1) E 2(2) " 0 r

El+l.@] = [fz‘ =|f2l+10

Fl(l) «—O—> f3 Fz(l) 4—4:;'1(2) FZ(Z) +«—O—> 1 Fl(l) Flo f3 f3 0
3 2 1 - ) p -

Internal forces change directions because of Newton’s 3" law. FD F® f r




Stiffness Equations for a 2-Bar System (1/2)

fouy > b U —> 1, I
A X
3 (1) 2 (2) |
(1) (2)
Fl(l) u(l)—>c_3—> Fz(l)r ugl) F1(2) u§2)—>c_3—> Fz(Z)'uEZ)
1 2 1 2

* Utilize the 1D single bar stiffness equation:

Element (1): Element (2):
Fl(l) [k —® [usl F1(2) [ k@ _k(2)] [u2]
Fz(l) — k@D @ | lup FZ(Z) k@ @ |y
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Stiffness Equations for a 2-Bar System (2/2)

(()1) FZ(Z) r 0 r, KD d K® d
B+ F@ = [fz] =|fz|+|0 0 0 0 Uq K@ k@ o11uq
Fl(l) 10 f3 13 0 [O kD — @ +|-k@ @ 0] [uzl

- 0 —k® kWM 0 0 ollus

F F(2) f r (0] o
0 1 1o =|fz[+ |0

& Jfolk e, 1}:&” fz] 10 |

(@( ) kh) k(l Equation for unknowns
T (R® + R®)d

2) i

( ) ‘r(é)(z) —k(2) (2) o k@ — k@ 0
F { k%2 K (2) }jﬁ ] K= ZK(‘) =@ O 4@ @
2 0 — k@ D
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Direct Assembly of Global Stiffness Matrix

1 @) & 1 @)
7, uy E7, u,
’—) fy. s —> 1. U, —> 1. U 1 2
@ _¥
(H 2 (2) 1 (2)
F1(2)' u§2)—>c—3—> Fz(Z)' uEZ)
1 2
Element (1): Element (2):
3 2 2 1
D M]3 k@ @] 2
kO @ ]9 k@ @] 4
e Direct assembly — computer implementation: ] 1 2 3 )
' k() — k@) 0o |1
K=K, = 2 RO - |p@ 4@ |2
0 — k@ Kk |3
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Introduction of Gather Matrices

13, uy —>» 1. U, —>1, i
A X
3 (1) 2 (2) ]
(1) (2)
F(l) u(l)—>c—3—> F(l) gl) F1(2) u§2)—>c_3—> F(Z) gZ)
1 2 1 2

e Gather matrices are introduced to enforce compatibility among elements:

251
S e A A M L v B R
LD L2
d® = Léd
F¢ = K¢d® = F¢ = K°Led




Application of Gather Matrices for Stiffness

N I TRy
E7 =10 1 Fl(l) — L MTE@)
(1)
Fl 1 10 2 This is another approach to calculate the
(@] global stiffness matrix.
2
F, 0 11[-®@
E
@|=[1 of|,.[=LATF® _ z OTRO
Flo o ollE? Z LOTF® = f + r trr= 2 L0F
o » LOTROLD g
o E?L 1 [9] Fe = K°Led z
B+ F@| = 2=zl +]0 = Kd
D L f 0
_Fl | 0 | 3 _f3_

Cumbersome but the symbolic expression is suitable for theoretical analysis
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Solution Method — System Partition

* System equation:

1
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E-Nodes and F-Nodes

=10
Y
* 3 unknowns — 3 equations: _
k(2
— k@)
0

* E-nodes — essential boundary conditions with known displacements and unknown external forces.

(1) h=—4
<)
kO 2
— k@ 0
KO 4 2 @
— k@ AONI]

N

(&1
_4‘
10

* F-nodes — free boundary conditions with unknown displacements and known external forces.

Nodes with no boundary conditions applied is F-nodes (0 external forces).
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Matrix Partition

£=10

* 3unknowns -3 equations: _ "% Ker
k(z) I _k(z) 0
k@ O L @
0, —k® KD ||
Kig K

* E-nodes can be numbered first for partition convenience.
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Solution to F-Nodes

4
=10 (1) f=-4 (2) / HI=W
3 ) ) k(2 1 & h
* 3unknowns -3 equations: % Ker o dg ] T
B S 1 0 _[|4/kP]_ ]
k@D O 4 @ O[] w, |=]|-4
0, —k® KO || us 10
* Solve F-nodes part first: B
Kgr - dg + Kp - dp = f;
10
_ [H2] _ -1 T 3\ — W
ool
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Solution to E-Nodes

* 3 unknowns — 3 equations: _

* Solve E-nodes part:

5 =10 (1) L=-4 (2)
—>() <)
3 kO 2 k@
E Kgr dg

@ o k@ o |[4/k®)
k@D D 4 k@ O[]
0 1Y) KO [ us

Kig K dp

KE-&E+KEF-dF=I‘E

> 1g =[] = [KP][4/kP] + [k@ 0]
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10
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10

FoRTo)
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5-Step Analysis in FEM

Preprocessing: subdividing the target domain into finite elements by automatic mesh generators.

Element formulation: development of equations for elements.

Assembly: obtaining equations for the whole system by gathering ones at the element-level.

* Only determined by element and node numbers
* Applicable to other problems with different elements

Solving equations.

Postprocessing: calculation results visualization and output.
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2D Truss System

* Expand the single bar element from 1D space to 2D space:

X
e
e e e e
—-OlaaO—>
Fllul FZIuZ

Fe= [T = (ke FgT »
- er - 1 2
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Local Coordinate for 2D Single Bar Elements

* Local coordinate facilitates force-displacement analysis: * Along bar direction, similar to the 1D

element:
o F" Transverse displacement has negligible effect
2?;

Ey uy, k® —ke U'ly
I u, B! —k® u2x

Fpu, g A~ i
) P° 'gw/' ) ¢’ > * |In transverse direction, bar elements
‘ ., are assumed to have 0 shear stiffness:
L F xR F'¢, = F', =0
. PRl [10 -1 0 UTx
F’e u'
T ,Zy — ke 0O 0 0 0 ,Zy
Fox -1 0 1 0]u'3,
F'g ] 0 0 0 O] u's,,
Fle Kle dle
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Transformation Law

* Local equations should be transformed to the global coordinate for system-level analysis:

* Displacement vector coordinate transformation:

fe fe

Haw Foy w1 : 1 Tué,
B ,1" cos @€  sin @€ 0 0 1x

207 oy e u f : e e 0 0 uf
F o e e y| _ |—sin®® cos® y

2z 2z 2x" 2x re — e . e e
. D) U5, 0 O cos @ sin @€ || us,,

"Flfr g (U']( k¢ 2 le ple re — i e e e
vy u,F! u's,] L 0 O sin®® cos P us, |

@ > T
) > d’e R¢ d¢
e Y ult Fl’_'r"

| Fi., u;’r y 1 1z 9 (Re)_l — ReT = Rerle — ReTRed’e — de
z'c

x e Similarly for force vectors:
REéF¢ = F’e ReTFle — F¢

= F¢ = R¢TF’¢ = R¢TK’¢d’¢ = R¢TK’'¢R¢d¢
Ke
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3D Truss System

* Further expand the single bar element from 1D space to 3D space:

- * Transformation from local to global coordinates:

A
N
. FQFT Hj‘ , —),_l(e—)_l_ e—>+ eE)
T ; X L= e X21l T Y21] T 271
Fy. . u;.
: ) 221z (x5, = x5 — x%, etc.)

J > F, ., —e __ _1e re > e r _ ..e e = e
v U = Ul FUup) Uk =unt+upnj+upk

- - - - I

(B . Su'f =unl- U tup,j 1+ugk-1

s ]".
I _
re __ e e e e e e
= U =75 (x21u1x T YUy t ZZluIz)
le
T re 1 1€ e e
e _ e e e e e e u X Z 0
F —[le 1y Flz FZx F2y FZZ] = ,éx :_e[ 21 Y21 21 e e e]de
U 2x l 0 X21 Y21 221
T
e e e e e e e e
- [ulx Uty Uiz Uzx Uyy uZZ] R

e _ peT re e
= Kgxe = Rgx2K'5x2R5%6

Local stiffness matrix is 2X2, but coordinate transformation add dimension
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The End
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