
Computational Mechanics

Chapter 11 Constitutive Models – Plasticity
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Characteristic of Plasticity

• Plasticity: permanent strains are developed upon unloading

• Yield strength: stress when plastic strains are developed

• Major ingredients of plasticity theory:

➢ Each increment of strain is decomposed into elastic and plastic parts

➢ A yield function which governs the onset and continuance of plastic deformation

➢ A flow rule which governs the plastic flow and determines the plastic strain increment

➢ Evolution equations for inner properties (such as strain-hardening) of materials
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1D Rate-Independent Plasticity (1/3)

• Decomposition of strain increments:
𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝

[1] https://www.hindawi.com/journals/cpis/2013/267095/fig8/

Stress-strain curve for typical elastic-plastic material [1]

• Strain decomposition:
𝑑𝜀 = 𝑑𝜀𝑒 + 𝑑𝜀𝑝 𝑜𝑟 ሶ𝜀 = ሶ𝜀𝑒 + ሶ𝜀𝑝

• Stress calculation:
𝑑𝜎 = 𝐸𝑑𝜀𝑒 𝑜𝑟 ሶ𝜎 = 𝐸 ሶ𝜀𝑒

• Stress from whole strain:
𝑑𝜎 = 𝐸𝑡𝑎𝑛𝑑𝜀, ሶ𝜎 = 𝐸𝑡𝑎𝑛 ሶ𝜀

• Plastic flow potential for evolution of plastic strain:

ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎Plastic rate parameter

Elastic-plastic tangent modulus

Incremental form Rate form (preferred 
for simplicity)

Direction for plastic 
strain evolution
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1D Rate-Independent Plasticity (2/3)

ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎

• Plastic flow potential example:
Ψ = 𝜎 = ത𝜎 = 𝜎𝑠𝑖𝑔𝑛 𝜎

⇒
𝜕Ψ

𝜕𝜎
= 𝑠𝑖𝑔𝑛 𝜎

• Yield condition:
𝑓 = ത𝜎 − σ𝑌 ҧ𝜀 = 0

1D effective stress

Yield strength

Effective plastic strain, 
one internal variable

• Work/strain hardening:
𝑓 = 0 ⇒ σ𝑌 ҧ𝜀 = ത𝜎

ത𝜎, ҧ𝜀 ↑⇒ σ𝑌 ↑

• ҧ𝜀 calculation for metal:

ҧ𝜀 = න ሶҧ𝜀𝑑𝑡 = න ሶ𝜀𝑝 ሶ𝜀𝑝𝑑𝑡

• Plastic modulus:

𝐻 =
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀

Isotropic hardening – same 
tension and compression strength
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1D Rate-Independent Plasticity (3/3)

Ψ = 𝜎 = ത𝜎 = 𝜎𝑠𝑖𝑔𝑛 𝜎

⇒
𝜕Ψ

𝜕𝜎
= 𝑠𝑖𝑔𝑛 𝜎 =

𝜕 ത𝜎 − σ𝑌 ҧ𝜀

𝜕𝜎
=
𝜕𝑓

𝜕𝜎

ሶҧ𝜀 = ሶ𝜀𝑝 ሶ𝜀𝑝 = ሶλ2𝑠𝑖𝑔𝑛 𝜎 2 = ሶλ

⇒ ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎
= ሶҧ𝜀

𝜕𝑓

𝜕𝜎
= 𝑠𝑖𝑔𝑛 𝜎 ሶҧ𝜀

Associate plasticity for this specific model – plastic 
strain evolution direction normal to the yield surface.

• When plastic deformation happens, 𝑓 = ത𝜎 −
σ𝑌 ҧ𝜀 = 0, leading to consistency condition:

ሶ𝑓 = ሶത𝜎 −
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀
ሶ ҧ𝜀 = 0

⇒ ሶത𝜎 =
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀
ሶ ҧ𝜀 = 𝐻 ሶҧ𝜀

ሶത𝜎 = ሶ𝜎𝑠𝑖𝑔𝑛 𝜎 = 𝐻 ሶҧ𝜀 = 𝐻 ሶ𝜀𝑝𝑠𝑖𝑔𝑛 𝜎

ሶ𝜀 = ሶ𝜀𝑒 + ሶ𝜀𝑝, ሶ𝜎 = 𝐸𝑡𝑎𝑛 ሶ𝜀, ሶ𝜎 = 𝐸 ሶ𝜀𝑒

⇒
1

𝐸𝑡𝑎𝑛
=
1

𝐸
+
1

𝐻
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Plastic switch parameter

• Plastic switch to change between purely elastic loading/unloading and plastic loading:
1

𝐸𝑡𝑎𝑛
=
1

𝐸
+
1

𝐻
⇒ 𝐸𝑡𝑎𝑛 = 𝐸 −

𝐸2

𝐸 + 𝐻
= 𝐸 − 𝛽

𝐸2

𝐸 + 𝐻
ቊ

𝛽 = 1, 𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝛽 = 0, 𝑝𝑢𝑟𝑒𝑙𝑦 𝑒𝑙𝑎𝑠𝑡𝑖𝑐

• Kuhn-Tucker conditions for switch between elastic/plastic response:

➢ ሶλ ≥ 0 – non-negative plastic rate parameter following the stress direction

➢𝑓 ≤ 0 – stress state must on or within the yield surface

➢ ሶλ𝑓 = 0 –

1) During plastic loading when ሶλ > 0, stress must be on the yield surface (𝑓 = 0)

2) During elastic response when ሶλ = 0, there is no plastic flow (𝑓 < 0)
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Kinematic Hardening (1/2)

• Bauschinger effect for cyclic plastic loading –
center of yield surface moves with plastic flow:

[1] https://mechanical-engg.com/blogs/entry/481-what-is-bauschinger-effect/

[2] https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001479

Stress-strain curve for Bauschinger effect [1]

• Visualization of kinematic and isotropic hardening:

• Consideration of 1D kinematic hardening:

ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎
, Ψ = 𝜎 − 𝛼

𝑓 = 𝜎 − 𝛼 − σ𝑌 ҧ𝜀 = 0

2D yield surfaces for mixed hardening [2]

Backstress, internal variable

Effective plastic strain, 
another internal variable

https://mechanical-engg.com/blogs/entry/481-what-is-bauschinger-effect/
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Kinematic Hardening (2/2)

Ψ = 𝜎 − 𝛼 , 𝑓 = 𝜎 − 𝛼 − σ𝑌 ҧ𝜀

⇒
𝜕Ψ

𝜕𝜎
= 𝑠𝑖𝑔𝑛 𝜎 − 𝛼 =

𝜕𝑓

𝜕𝜎

ሶ ҧ𝜀 = ሶ𝜀𝑝 ሶ𝜀𝑝 = ሶλ2𝑠𝑖𝑔𝑛 𝜎 − 𝛼 2 = ሶλ

⇒ ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎
= ሶҧ𝜀

𝜕𝑓

𝜕𝜎
= 𝑠𝑖𝑔𝑛 𝜎 − 𝛼 ሶҧ𝜀

• Linear kinematic hardening:
ሶ𝛼 = κ ሶ𝜀𝑝

• Consistency condition when yield happens:
ሶ𝑓 = ሶ𝜎 − ሶ𝛼 𝑠𝑖𝑔𝑛 𝜎 − 𝛼 − 𝐻 ሶҧ𝜀 = 0

Associate plasticity

⇒ ሶҧ𝜀 =
1

𝐻
ሶ𝜎 − ሶ𝛼 𝑠𝑖𝑔𝑛 𝜎 − 𝛼

ሶ𝜎 = 𝐸 ሶ𝜀 − ሶ𝜀𝑝 = 𝐸 ሶ𝜀 − ሶҧ𝜀𝑠𝑖𝑔𝑛 𝜎 − 𝛼

⇒ ሶ𝜎 − ሶ𝛼 = 𝐸 ሶ𝜀 − ሶҧ𝜀𝑠𝑖𝑔𝑛 𝜎 − 𝛼 − ሶ𝛼

= 𝐸 ሶ𝜀 − ሶҧ𝜀𝑠𝑖𝑔𝑛 𝜎 − 𝛼 − κ ሶ𝜀𝑝

⇒ ሶҧ𝜀 =
𝐸 ሶ𝜀𝑠𝑖𝑔𝑛 𝜎 − 𝛼

𝐸 + 𝐻 + κ

⇒ 𝐸𝑡𝑎𝑛 =
ሶ𝜎

ሶ𝜀
=

𝐸 𝐻 + κ

𝐸 + 𝐻 + κ
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Summary for 1D Rate-Independent Plasticity

• Strain rate:
ሶ𝜀 = ሶ𝜀𝑒 + ሶ𝜀𝑝

• Stress rate:
ሶ𝜎 = 𝐸 ሶ𝜀𝑒 = 𝐸 ሶ𝜀 − ሶ𝜀𝑝

• Plastic flow rule (special case):

ሶ𝜀𝑝 = ሶλ
𝜕Ψ

𝜕𝜎
= ሶҧ𝜀

𝜕 𝜎 − 𝛼

𝜕𝜎

• Backstress (linear kinematic hardening):
ሶ𝛼 = κ ሶ𝜀𝑝

• Yield condition:
𝑓 = 𝜎 − 𝛼 − σ𝑌 ҧ𝜀 = 0

• Consistency condition:

ሶ𝑓 = 0 ⇒ ሶҧ𝜀 = ሶλ =
𝐸 ሶ𝜀𝑠𝑖𝑔𝑛 𝜎 − 𝛼

𝐸 + 𝐻 + κ

• Tangent modulus:

𝐸𝑡𝑎𝑛 =
𝐸 𝐻 + κ

𝐸 + 𝐻 + κ
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Multiaxial Hypoelastic-Plastic Materials (1/2)

• Elastic strains are small compared to plastic ones, 
causing negligible nonconservative energy error 

• Decomposition of rate-of-deformation tensor:
𝑫 = 𝑫𝑒 +𝑫𝑝

• Hypoelastic response of a specific model with
Jaumann rate Cauchy (true) stress [1]:

𝝈𝛻𝐽 = 𝑪𝑒𝑙
𝜎𝐽
: 𝑫𝑒 = 𝑪𝑒𝑙

𝜎𝐽
: 𝑫 − 𝑫𝑝

• Rate of plastic flow:
𝑫𝑝 = ሶλ𝒓 𝝈, 𝒒 , 𝐷𝑖𝑗

𝑃 = ሶλ𝑟𝑖𝑗 𝝈, 𝒒

[1] https://abaqus-docs.mit.edu/2017/English/SIMACAETHERefMap/simathe-c-stressrates.htm

Plastic flow direction Scalar plastic flow rate

• Utilization of plastic flow potential:

𝒓 𝝈, 𝒒 =
𝜕𝜓

𝜕𝝈

• Typical evolution of internal variable matrix 𝒒
(containing scalars and tensors, such as effective
plastic strain and backstress):

ሶ𝒒 = ሶλ𝒉 𝝈, 𝒒 , ሶ𝑞𝜶 = ሶλℎ𝛼 𝝈, 𝒒

• Yield condition:
𝑓 𝝈, 𝒒 = 0

ሶλ ≥ 0, 𝑓 ≤ 0, ሶλ𝑓 = 0

• Consistency condition on yield:

0 = ሶ𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
ሶ𝜎𝑖𝑗 +

𝜕𝑓

𝜕𝑞𝛼
ሶ𝑞𝛼 𝑜𝑟 0 = 𝑓𝝈: ሶ𝝈 + 𝑓𝒒 ∙ ሶ𝒒

Objective

Constitutive law and objective stress measurement 
should be changed based on actual needs
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Multiaxial Hypoelastic-Plastic Materials (2/2)

0 = 𝑓𝝈: ሶ𝝈 + 𝑓𝒒 ∙ ሶ𝒒

• Associative flow rule:
𝒓 = 𝐶𝑓𝝈

𝒓 =
𝜕𝜓

𝜕𝝈
⇒ 𝜓 = 𝐶𝑓

• Typical associative flow rule:
𝜓 = 𝑓, 𝒓 = 𝑓𝝈

• Property of Jaumann rate:
𝑓𝝈: ሶ𝝈 = 𝑓𝝈: 𝝈

𝛻𝐽

Normal to the yield 
surface

⇒ 0 = 𝑓𝝈: 𝝈
𝛻𝐽 + 𝑓𝒒 ∙ ሶ𝒒

• Calculation of scalar plastic flow rate:
0 = 𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫 − 𝑫𝑝 + 𝑓𝒒 ∙ ሶ𝒒 = 𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫 − ሶλ𝒓 + 𝑓𝒒 ∙ ሶλ𝒉

⇒ ሶλ =
𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

• Definition of continuum elasto-plastic tangent 
modulus:
𝝈𝛻𝐽 = 𝑪𝑒𝑙

𝜎𝐽
: 𝑫 − ሶλ𝒓

= 𝑪𝑒𝑙
𝜎𝐽
: 𝑫 −

𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝑫

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓
𝒓 = 𝑪𝜎𝐽: 𝑫

Also works for other objective 
rates except the Truesdell rate

Minor symmetry due to symmetry of 𝝈𝛻𝐽 and 𝑫
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Calculation of Tangent Modulus

𝑪𝑒𝑙
𝜎𝐽
: 𝑫 −

𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝑫

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓
𝒓 = 𝑪𝜎𝐽: 𝑫

⇒ 𝐶𝑖𝑗𝑘𝑙
𝜎𝐽

𝐷𝑘𝑙 = 𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑘𝑙
𝐷𝑘𝑙 −

𝑓𝝈 𝑚𝑛 𝐶𝑒𝑙
𝜎𝐽

𝑚𝑛𝑘𝑙
𝐷𝑘𝑙

− 𝑓𝒒 𝛼
ℎ𝛼 + 𝑓𝝈 𝑟𝑠 𝐶𝑒𝑙

𝜎𝐽

𝑟𝑠𝑡𝑢
𝑟𝑡𝑢

𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑝𝑞
𝑟𝑝𝑞

⇒ 𝐶𝑖𝑗𝑘𝑙
𝜎𝐽

𝐷𝑘𝑙 = 𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑘𝑙
−

𝑓𝝈 𝑚𝑛 𝐶𝑒𝑙
𝜎𝐽

𝑚𝑛𝑘𝑙
𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑝𝑞
𝑟𝑝𝑞

− 𝑓𝒒 𝛼
ℎ𝛼 + 𝑓𝝈 𝑟𝑠 𝐶𝑒𝑙

𝜎𝐽

𝑟𝑠𝑡𝑢
𝑟𝑡𝑢

𝐷𝑘𝑙

⇒ 𝐶𝑖𝑗𝑘𝑙
𝜎𝐽

= 𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑘𝑙
−

𝑓𝝈 𝑚𝑛 𝐶𝑒𝑙
𝜎𝐽

𝑚𝑛𝑘𝑙
𝐶𝑒𝑙
𝜎𝐽

𝑖𝑗𝑝𝑞
𝑟𝑝𝑞

− 𝑓𝒒 𝛼
ℎ𝛼 + 𝑓𝝈 𝑟𝑠 𝐶𝑒𝑙

𝜎𝐽

𝑟𝑠𝑡𝑢
𝑟𝑡𝑢

, 𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
−

𝑪𝑒𝑙
𝜎𝐽
: 𝒓 𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

Dyad (also can be denoted as ⊗) of two 
2nd order tensors for a 4th order tensor

Plastic flow contribution

𝑪𝜎𝐽 has major symmetry for associative flow due to symmetry of 𝑪𝑒𝑙
𝜎𝐽 and 𝒓 = 𝑓𝝈
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Summary of Hypoelastic-Plastic Constitutive Law

• Deformation rate tensor (objective):
𝑫 = 𝑫𝑒 +𝑫𝑝

• Cauchy stress with objective Jaumann rate:
𝝈𝛻𝐽 = 𝑪𝑒𝑙

𝜎𝐽
: 𝑫𝑒 = 𝑪𝑒𝑙

𝜎𝐽
: 𝑫 − 𝑫𝑝

• Plastic flow rule and internal variables evolution:
𝑫𝑝 = ሶλ𝒓 𝝈, 𝒒 , ሶ𝒒 = ሶλ𝒉 𝝈, 𝒒

• Yield condition:
𝑓 𝝈, 𝒒 = 0

• Loading-unloading conditions:
ሶλ ≥ 0, 𝑓 ≤ 0, ሶλ𝑓 = 0

• Scalar plastic rate parameter:

ሶλ =
𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

• Stress-rate and deformation rate relation:
𝝈𝛻𝐽 = 𝑪𝜎𝐽: 𝑫

𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
𝑓𝑜𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
−

𝑪𝑒𝑙
𝜎𝐽
: 𝒓 𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

𝑓𝑜𝑟 𝑝𝑙𝑎𝑠𝑡𝑖𝑐

Can be other stress rates with adjustment

*This hypoelastic-plastic law needs isotropic
elastic moduli and yield function, but enough for
most common engineering materials – metals
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J2 Flow Theory (1/3)

• J2 flow model based on von Mises yield surface
is suitable for metal plasticity

• Assume metal plastic flow is unaffected by
pressure – supported by experiments

• Stress decomposition:
𝝈 = 𝑝𝑰 + 𝝈𝑑𝑒𝑣

𝑝 =
1

3
𝑡𝑟𝑎𝑐𝑒 𝝈 =

1

3
𝜎𝑖𝑖

• Von Mises effective stress ത𝜎:

ത𝜎 =
3

2
𝝈𝑑𝑒𝑣: 𝝈𝑑𝑒𝑣 = 3𝐽2

• Plastic flow rule:
𝑫𝑝 = ሶλ𝒓 𝝈, 𝒒

• Internal variable – only one effective plastic strain:

𝒒 = 𝑞1 = ҧ𝜀 = න ሶҧ𝜀 𝑑𝑡

• Materials are usually characterized using the
uniaxial tension tests, when along 1 direction:

𝐷22
𝑝
= 𝐷33

𝑝
= −

1

2
𝐷11
𝑝

𝐷𝑖𝑗 = 0, 𝑖 ≠ 𝑗

𝐽2 = −𝐼2 𝝈𝑑𝑒𝑣 = −
1

2
𝑡𝑟 𝝈𝑑𝑒𝑣

2
− 𝑡𝑟 𝝈𝑑𝑒𝑣 ∙ 𝝈𝑑𝑒𝑣 =

1

2
𝝈𝑑𝑒𝑣: 𝝈𝑑𝑒𝑣

Volume conservation 
in plastic deformation
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J2 Flow Theory (2/3)

𝐷22
𝑝
= 𝐷33

𝑝
= −

1

2
𝐷11
𝑝

𝐷𝑖𝑗 = 0, 𝑖 ≠ 𝑗

• Physical meaning of 𝑫 is demonstrated in [1]

• In uniaxial tension, 𝐷11
𝑝

is the same as the rate
of effective plastic strain:

𝐷11
𝑝
= ሶҧ𝜀

⇒ ሶҧ𝜀 =
2

3
𝑫𝑝: 𝑫𝑝

• Yield condition:
𝑓 𝝈, 𝒒 = ത𝜎 − σ𝑌 ҧ𝜀 = 0

⇒ 𝑓𝝈 =
𝜕 ത𝜎

𝜕𝝈
=

3

2 ത𝜎
𝝈𝑑𝑒𝑣 = 𝒓

⇒ 𝑫𝑝: 𝑫𝑝 = ሶλ𝟐𝒓: 𝒓 = ሶλ2
9

4 ത𝜎2
𝝈𝑑𝑒𝑣: 𝝈𝑑𝑒𝑣 =

3

2
ሶλ2

⇒ ሶҧ𝜀 = ሶλ

ሶ𝑞1 = ሶλℎ1 = ሶҧ𝜀

⇒ ℎ1 = 1

[1] Rudnicki JW. Fundamentals of continuum mechanics. John Wiley & Sons; 2014 Sep 22.

General uniaxial 
loading condition

Associative flow rule

Can be also obtained through:
ത𝜎 ሶҧ𝜀 = 𝝈:𝑫𝑝



16

J2 Flow Theory (3/3)

• Yield condition:

𝑓 𝝈, 𝒒 = ത𝜎 − σ𝑌 ҧ𝜀 = 0 ⇒ 𝑓𝒒 = 𝑓𝑞1 = −
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀
= −𝐻 ҧ𝜀

• Plastic rate parameter:

ሶλ = ሶҧ𝜀 =
𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

=
𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

−𝑓𝑞1ℎ1 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

=
𝒓: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

𝐻 + 𝒓: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

• Tangent modulus:

𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
−

𝑪𝑒𝑙
𝜎𝐽
: 𝒓 𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

= 𝑪𝑒𝑙
𝜎𝐽
−

𝑪𝑒𝑙
𝜎𝐽
: 𝒓 𝒓: 𝑪𝑒𝑙

𝜎𝐽

𝐻 + 𝒓:𝑪𝑒𝑙
𝜎𝐽
: 𝒓

• Isotropic elastic law for the hypoelastic-plastic model:
𝑪𝑒𝑙
𝜎𝐽
= λ𝑒𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 ⇒ 𝑪𝑒𝑙

𝜎𝐽
: 𝒓 = 2𝜇𝒓, 𝒓: 𝑪𝑒𝑙

𝜎𝐽
: 𝒓 = 3𝜇

⇒ 𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
−

2𝜇𝒓 2𝜇𝒓

𝐻 + 3𝜇
= 𝑪𝑒𝑙

𝜎𝐽
−

4𝜇2

𝐻 + 3𝜇
𝒓𝒓

Plastic modulus from 
uniaxial tension experiments

𝒓 =
3

2ഥ𝜎
𝝈𝑑𝑒𝑣 is deviatoric
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Multiaxial Kinematic Hardening (1/2)

• Introduction of multiaxial backstress 𝜶

• Derived from J2 theory with isotropic hardening

• Definition of overall stress tensor:
𝜮 = 𝝈 − 𝜶

• Linear hardening law for backstress evolution:
𝜶∇𝐽 = κ𝑫𝑝

• Modified von Mises stress:

ത𝜎 =
3

2
𝜮𝑑𝑒𝑣: 𝜮𝑑𝑒𝑣

• Evolution of backstress as internal variable:
𝜶∇𝐽 = κ𝑫𝑝 = κ ሶλ𝒓 𝜮, 𝒒

• Yield condition:
𝑓 𝜮, 𝒒 = ത𝜎 − σ𝑌 ҧ𝜀 = 0

⇒ 𝑓𝜮 =
3

2ത𝜎
𝜮𝑑𝑒𝑣 = 𝒓

𝑓𝑞1 = −
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀
= −𝐻 ҧ𝜀

Associative plasticity

Jaumann rate works for strain smaller than about 0.4
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Multiaxial Kinematic Hardening (2/2)

𝑓𝜮 =
3

2ത𝜎
𝜮𝑑𝑒𝑣 = 𝒓, 𝑓𝑞1 = −𝐻 ҧ𝜀 , 𝜶∇𝐽 = κ𝑫𝑝 = κ ሶλ𝒓 𝜮, 𝒒

• Scalar plastic rate parameter from consistency condition:

ሶλ = ሶҧ𝜀 =
𝑓𝜮: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

−𝑓𝑞1ℎ1 − κ𝑓𝜶: 𝒓 + 𝑓𝜮: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

=
𝒓: 𝑪𝑒𝑙

𝜎𝐽
: 𝑫

𝐻 +
3
2
κ + 𝒓: 𝑪𝑒𝑙

𝜎𝐽
: 𝒓

• Continuum elasto-plastic tangent modulus:

𝑪𝜎𝐽 = 𝑪𝑒𝑙
𝜎𝐽
−

𝑪𝑒𝑙
𝜎𝐽
: 𝒓 𝒓: 𝑪𝑒𝑙

𝜎𝐽

𝐻 +
3
2
κ + 𝒓: 𝑪𝑒𝑙

𝜎𝐽
: 𝒓

= 𝑪𝑒𝑙
𝜎𝐽
−

4𝜇2

𝐻 +
3
2
κ + 3𝜇

𝒓𝒓

𝑓𝜶 = 𝑓𝝈−𝜮 = −𝑓𝜮 = −𝒓

Isotropic for the 
hypoelastic-plastic model



The End


