Computational Mechanics

Chapter 11 Constitutive Models — Plasticity




Characteristic of Plasticity

* Plasticity: permanent strains are developed upon unloading
* Yield strength: stress when plastic strains are developed

* Major ingredients of plasticity theory:

» Each increment of strain is decomposed into elastic and plastic parts
» Avyield function which governs the onset and continuance of plastic deformation
» A flow rule which governs the plastic flow and determines the plastic strain increment

» Evolution equations for inner properties (such as strain-hardening) of materials




1D Rate-Independent Plasticity (1/3)

Slope Ep—elastic-plastic tangent modulus

Strain decomposition:

Stress, o . . .
o | de = de® +deP or é = €¢ + €P
/
! - f’_-ﬂc_ s Incremental form Rate form (preferred
3 /7’“ I.'ag"{ for simplicity)
7 o DI * Stress calculation:
e! . .
U i i do = Ede® or ¢ = E&°
| de
N
Slope E—elasti dul .
ope S—clastic modutus * Stress from whole strain:
. do = Et%(e, g = Et4n¢
Strain, & - S
O > Elastic-plastic tangent modulus

Stress-strain curve for typical elastic-plastic material [1]

Plastic flow potential for evolution of plastic strain:

* Decomposition of strain increments: &P = )\ —
de = de® + deP Plastic rate parameter do
Direction for plastic

strain evolution
[1] https://www.hindawi.com/journals/cpis/2013/267095/fig8/




1D Rate-Independent Plasticity (2/3)

. al_IJ . . . .
ep — 328 Work/strain hardening:
do f

* Plastic flow potential example:
¥ = |o| =7 = agsign(o)
1D effective stress

e £ calculation for metal:

o £= Jé_dt = j\/e’pépdt
= — = sign(o
5 = sign(o)
Effective plastic strain,
e Yield condition: one internal variable e Plastic modulus:

f =g — Gy(g) =( o,(£) T T dO'y(cc,_')
Yield strength 1  dé

Isotropic hardening — same
tension and compression strength

mi



1D Rate-Independent Plasticity (3/3)

Y = |o| =6 = agsign(o)

0w 0(6 —oy(8)) of

= Ao = sign(o) = do do

Associate plasticity for this specific model — plastic

strain evolution direction normal to the yield surface.

* When plastic deformation happens, f = 7 —
oy (&) = 0, leading to consistency condition:
- - dO-Y(g) > O
=0 — E =
f de

doy(€)

'_:H'_
de ° "¢

= F =

o = dsign(o) = HE = HéPsign(o)

£ =¢°%+ &P, g = Et9"¢, o= Eé&°

1 1 1
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Plastic switch parameter

* Plastic switch to change between purely elastic loading/unloading and plastic loading:

1 1 1 E? E? { B =1,  plastic
B

- L tan _— _ — .
Eta"_E+H:>E E E+H E ’BE+H =0, purely elastic

* Kuhn-Tucker conditions for switch between elastic/plastic response:

» A > 0 — non-negative plastic rate parameter following the stress direction

» f < 0 —stress state must on or within the yield surface

>Af =0-
1) During plastic loading when A > 0, stress must be on the yield surface (f =0)
2) During elastic response when A = 0, there is no plastic flow (f <0)



Kinematic Hardening (1/2)

* Bauschinger effect for cyclic plastic loading —  Visualization of kinematic and isotropic hardening:
center of yield surface moves with plastic flow:

Yield strength in monotonic tension

g, stress

_ ardening-Area
K g, strain

2D yield surfaces for mixed hardening [2]

| | e Consideration of 1D kinematic hardening:
Yield strength on strain

reversal, exhibiting . . 6‘1’
’ Bauschinger effect, P = -, Y = |O' —ﬂl
;! early yielding 60‘

Yield strength in Lo

‘ ’

monotonic compression ,/ )/ ——

Backstress, internal variable

f=lo—al—oy(@® =0
Effective plastic strain,
[1] https://mechanical-engg.com/blogs/entry/481-what-is-bauschinger-effect/ another internal variable

[2] https://www.dlubal.com/en/support-and-learning/support/knowledge-base/001479 7



https://mechanical-engg.com/blogs/entry/481-what-is-bauschinger-effect/

Kinematic Hardening (2/2)

Y=lo—a|, f=lo—a|l-0oy(&)
oy of
:%—SLgn(a—a) =5

Associate plasticity

£ =VEPEP = \/Xzsign(a —a)2 =2

eb = 50'_800'_Sl'gn0 a)é
* Linear kinematic hardening:
a = k&P

* Consistency condition when yield hap.pens:
f=(00—-a)sign(c —a) —He=0

.1
= &= T (6 — a)sign(o — a)

¢ = E(¢ —£P) = E(& — &sign(o — )

= (6—a) = E(é—é’sign(a—a)) —a
= E(é — &sign(o — a)) — kéP

Eésign(o — a)

= &=

E+ H+x
:>Etan_a_ E(H + x)
e E+H+x



Summary for 1D Rate-Independent Plasticity

e Strain rate: * Yield condition:
£ =¢6°+ &P f=lo—al—o0oy(&) =0
* Stress rate: * Consistency condition:
y = Fg€ = F(& — &P : . . Féesign(o—«a
o (& =€") fo0o i LESlan —a)
F+H+x
* Plastic flow rule (special case):
.p }-\0‘1’ .0|o — «af * Tangent modulus:
P =A—=¢
do do tan _ E(H +x)
E+H+x

Backstress (linear kinematic hardening):
a = k&P




Multiaxial Hypoelastic-Plastic Materials (1/2)

* Elastic strains are small compared to plastic ones, Utilization of plastic flow potential:

causing negligible nonconservative energy error r(o,q) = oY
* Decomposition of rate-of-deformation tensor: do
D = D¢ + DP * Typical evolution of internal variable matrix g
Objective (containing scalars and tensors, such as effective
plastic strain and backstress):
* Hypoelastic response of a specific model with q = Ah(o, q), 4o = Mg (0, q)
Jaumann rate Cauchy (true) stress [1]: : .
Vi — Ol.me — 0l (P * Yield condition:
07 =Cq:D® = C,p: (D — DF) fo,q) =0
Constitutive law and objective stress measurement }\ > 0, f <0, }\f —0

should be changed based on actual needs
* Rate of plastic flow: Consistency condition on yield:

D? =ir(o,q), D} =§7‘ij(0; q) 0=f= aa—f ———qqor0=fs:0+/;-q
0y

6qa

Plastic flow direction Scalar plastic flow rate

[1] https://abaqus-docs.mit.edu/2017/English/SIMACAETHERefMap/simathe-c-stressrates.htm
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Multiaxial Hypoelastic-Plastic Materials (2/2)

0=fs:0+fg-q
Normal to the yield

~surface
e Associative flow rule:

r=_Cf,

_
r—%:M/J—Cf

* Typical associative flow rule:

Y =f, r=fg

* Property of Jaumann rate:
fo:6 = fg:0"
Also works for other objective
rates except the Truesdell rate

— 9.
=C,:

>0=fr0"l+f,-q

e Calculation of scalar plastic flow rate:
0=1f:CoH:(D—DP)+f,-q=fr: Co:(D—Ar) + £, - Ah

.97/,
L3 fs:Col:D
—fq-h+fa:CZl]:r

» Definition of continuum elasto-plastic tangent
modulus:

0" =% (D - ir)

. 9.
__JoiCaD r)zC”f:D
—fq-h+f(,:Cgl]:r

Minor symmetry due to symmetry of ¢/ and D
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Calculation of Tangent Modulus

fy: €D
c?:| D - 2 =C?:D
~fo - h+ f5: €Y T

(fa)mn( mnkl Dy o
_(fq) hg +(fa)rs(Ca] (Cl iqurpq

rstu

Fdmn(Co), . (Co

e
ijpq P4 D
Kl

o
= Cl]lekl (Cel ijkl

(fq) h + (fa)rs(c rstur u
Plastic flow contribution
cr] cr ___________ ®
= Cijie = \bet )i ~ ) = Lo
(fq) he + (fa)rs( rstu Ttu |_fq h + fa- el l

Dyad (also can be denoted as ) of two

2nd order tensors for a 4th order tensor
12

C°’ has major symmetry for associative flow due to symmetry of CZ{ andr = f,



Summary of Hypoelastic-Plastic Constitutive Law

* Deformation rate tensor (objective):  Scalar plastic rate parameter:
D = D® + DP ; f5: €D
~fq R+ [ €

Cauchy stress with objective Jaumann rate:

Vi — 9. pe — 9. (p — pP
o Cer:D Cer: (D — DP) e Stress-rate and deformation rate relation:
Can be other stress rates with adjustment g’/ =C%:-D

Plastic flow rule and internal variables evolution:

D? =Ar(e,q), = Ah(o,q) ¢’ = C% for elastic
. e c:r
Yield condition: - Ccol = Cgl] ( )(fa for plastic
flo,q9) =0 —fy h+f5C
_ . N *This hypoelastic-plastic law needs isotropic
y Loadlng-u_nloadlng conditions: . elastic moduli and yield function, but enough for
A=0, f =<0, Af =0 most common engineering materials — metals
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J2 Flow Theory (1/3)

* J2 flow model based on von Mises yield surface * Plastic flow rule: .
is suitable for metal plasticity D?P = Ar(o,q)
 Assume metal plastic flow is unaffected by * Internal variable — only one effective plastic strain:

pressure — supported by experiments _ J .
q=q,=&= | &dt

Stress decomposition:
o = pl + o%¢ , _ _
 Materials are usually characterized using the

1 uniaxial tension tests, when along 1 direction:

- 1 1
p =g trace(o) = 70 Dy, = D33 = _EDfl

Volume conservation
in plastic deformation

Von Mises effective stress a:

_ 3
g = EO-dev:o-dev= /3]2 .

T 1
]2 — _]2 (O-dev) — _E ltT(O‘dev)z . tr(o.dev . o.dev)] — EO.dev: o.dev

Dij=0' l:/:]
14



J2 Flow Theory (2/3)

1 * Yield condition:
P _npP _ __nb :
P22 = P33 = =30 fle,q) =G —oy(&) =0
, _ Associative flow rule
D;; =0, [ # ] :»f=ag=30de”=r
00 20
* Physical meaning of D is demonstrated in [1] 9
= DP:DP = A°r:ir = Azr;zade” ge? = 2?\2
* In uniaxial tension, D, is the same as the rate L
of effective plastic strain: >&=A
Df1 =&
Can be also obtained through: = A, = &
gE = ag:DP 1 1
General uniaxial . 2 g
loading condition = € = §D D =>h =1

15

[1] Rudnicki JW. Fundamentals of continuum mechanics. John Wiley & Sons; 2014 Sep 22.



J2 Flow Theory (3/3)

Plastic modulus from
uniaxial tension experiments

= —H(&)

Yield condition:
_ _ doy (&)
fOq) =0y =0=fy=fo, =——

Plastic rate parameter:

fa:CZl]:D B fa:Cgl]:D o CZ{:D

A=¢= = —
_fq.h+fa:Cgl]:r —fq, 1 +fa:CZl]:r H+r:C:l]:r

* Tangent modulus:

aj . O] aj, . 9]
Cg] . Ca] . (Cel 'r)(f(f' Cel _ Ca] . (Cel .1‘)(1‘. Cel
— Lel — Lel
e _fq.h_|_fa;cgl];r € H+r:C;‘l]:r
Isotropic elastic law for the hypoelastic-plastic model:
Co = 268;;61 + p (881 + 638 ) = €ir = 2ur,  1:C2ir =3y
de

3 . . .
r = — 0%°Y is deviatoric

20

2ur) Qur 4u?
=>caf=cg{—(“)(”)=cj{— LA
H+3u H+3u 16




Multiaxial Kinematic Hardening (1/2)

* |Introduction of multiaxial backstress a e Evolution of backstress as in’gernal variable:
a’’/ = xD?P = xAr(Z, q)

* Derived from J2 theory with isotropic hardening
* Yield condition:
f(Z,q)=0—0y(&) =0
* Definition of overall stress tensor:
X=0—«

= f :iZ‘de":r
2725

e Linear hardening law for backstress evolution:
Jaumann rate works for strain smaller than about 0.4

Associative plasticity

doy (€
o= -9 e
 Modified von Mises stress: de
Ezdev: Edev
2
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Multiaxial Kinematic Hardening (2/2)

3 .
f5 = %Z‘de” =r, f;,, =—H(), a’’/ = «D? = xAr(Z, q)

* Scalar plastic rate parameter from consistency]condition: ;
[ ] O- L ] [ ] O- L ]
xzé.T: fZ.Cel.D . r.Cel.D
. ). 0
~fo, 1 —Kfai T+ f5 €T H+§K+T:Cgl]:1‘

2
fa =fo-x=—fr=—T

e Continuum elasto-plastic tangent modulus:

aj. . o)
o] — 0] _ (Cel .1')(1'. Cel _ o] 4‘,112
¢ B Cﬁ 3 o] o Cel 3 rr
Isotropic for the H+ 7]( T Cel T H + jK +3u

hypoelastic-plastic model




The End




