Computational Mechanics

Chapter 12 Stress Update Algorithm




Return Mapping for Rate-Independent Plasticity

* Small strain/deformation simplification: q = Ah
1. Negligible difference in stress measurement
2. Objective rate unnecessary 0=f:6+ fq . q

3. Disthesameas €

A>0, f<0, Af=0
* For large deformation, one critical change is
consideration of rigid rotation (rate)
 Mapping for Hyperelasto-plasticity is similar with
different stress and deformation (rates) measurement
* Hypoelasto-plasticity for small strain:

6 =C: %= C: (& — &P)  Numerical integration of rates for total values

&P =Ar * Goal —given (sn, b, qn) at time n and the strain

increment Ae = Atg, compute (£n+1, e qn+1)
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Forward Euler Integration Scheme

e Consistency condition for plastic rate parameter caIcuIa}ion under small strain:
(0) .
- foiCoi: €
- . 9/
—fq-h+ f:C, 1

* Update variables at discrete time n 4+ 1 purely based on variables at time n:
Eny1 = &, T AE

P _ gD — P 4
Ep1q1 = & T AN T, = &, + A ALY,

An+1 = qn + AN Ry,

Opi1 =0, +A0 =0, +C.r:As

Elasto-plastic tangent modulus at time n

Yield condition f,,;1 = f(6,,41, @n+1) = 0 is often not satisfied
as deformation from time n ton + 1 is not considered!




Fully Implicit Backward Euler Scheme

* Enforce f,,.1 = 0 to avoid drift from yield surface

e Calculation with variables at time n + 1:
Eny1 = &, T AE

p — P
€n+1 = €n + A}\n+1rn+1
qn+1 = qn + A}\n+1hn+1
- ep .

fae1 = f(0n41,9n+1) = 0 —Requirement atn + 1

* Challenge — obtain right values of variables at time



Meaning of Fully Implicit Backward Euler Scheme

P _ D P _
Agy 1 = &ppq — & = Dhpy1Tnyg

= 0py1 = 0y + C:(Ae— A€l ) = (0, + C:Ae) — C:Aeh | = (6, + C:Ag) — Ay 1 CiTp iy

Trial stress of elastic  Plastic corrector

predictor ¢£71¢! for plastic flow

* Plastic corrector returns overshoot trial stress onto yield surface along the direction of r,,, 4

trial
Gp+1

Plastic strain and internal

_ Total strain fixed, correction of
variables stay at n

stress AG,, 11 = —AA, 1 1CiT 4 q

Associative flow rule

Jo1=0




Introduction of Newton’s Method

* Numerical solution method for nonlinear algebraic equations, such as f(x) = 0:

1. Selection of initial trial root:
x(©) = 0 (can be other values)
b i)

2. lteration via linearization (k is the iteration number):

FG0) + £/ (x)6x4) = 0

Denoted as f(k) for simplification

|
¥
|
|
1
|
|
|
|
|

x kD) = 3 (B) 4 550 f(Xns2) 5
__,...--/ ,Jf X n+2 f.*fxn+1 Xn ;
3. Solved once convergence condition met: !
x K+ _ (k) = 54 (K) <« A lllustration of Newton’s method [1]

[1] https://github.com/Lehmannhen/Bisection-and-Newton-method




Newton’s Method to Update Stress at n + 1 (1/3)

* Solution target for time n + 1 (subscript n + 1 is b®) — 5q0) + AP SR 4 52D = ¢
omitted for simplification):

(k) (k). ¢ (k) (K) | o (k) —
e =g +Mr=>a=—¢e +¢, +Ar=0 [Tt g 00 A g0 =0

p(k) — _pr-1. 8 5(k)
q=q,+AMh=>b=—-q+q,+Ah=0 0 C 160

f=f(o,9) =0 5r(o,q)") = T((,k): Sl + rglk): sq

(k) — Rk, (k) (k). & (k)
* Linearization following Newton’s method: Sh(s, q) hg":007 + hy”:0q

a® — 5700 1 A\ 570 4 520K = 0



Newton’s Method to Update Stress at n + 1 (2/3)

a® + ¢~ 1: 50 + AN (rf,k): S + rflk): 5q(")) + 60 =0
b® — 5q% + a® (h§: 560 + h{P:5q0)) + 52O = 0

FUO 4 fa(k): 55 + fq(k) .5q00 =0

Update of 3 unknowns in each
iteration, x(Kt1D = x(K) 4 §x &)

* Matrix format (just symbolizing for simiplification, not representing true dimension):

c 1+ A?\(k)r(k) A)\(")r(k)

ArGO RO —1+Ax<k>hf,") 5q0)

[5 a(")] _ [a(")

400 @t

pR ]

(k)T
(k) |T
oA [ )

[f«(k)'

f(k) [(k) fq(k)][A(k)][’d(k)]

(k)
= [gg(z)] _[A(k)][a(k)] — SA) [A(k)][r(k)] = sAK) =

Yield equation

[ (k) fq(k)] [AGO[#(0]

of




Newton’s Method to Update Stress at n + 1 (3/3)

* Update of calculation targets:
ep(k+1) — gp(k) 4 5eP(k) = gp(k) _ =1, 54F)

q(k+1) e q(k) _|_ 5q(k)

ANEFD = AR 4 570

* Convergence condition — unknown variables converge and yield function becomes to O:
x*+D) _ 20 = §xK) < tolerance 1

f&+D) < tolerance 2

1. Refer to Box 5.13 in textbook for summarized return mapping procedure
2. Reliable but can be difficult to establish for complex constitutive models as
updated 7, h and their derivatives need to be calculated in each iteration




Radial Return for J2 Plasticity

e Fully implicit backward Euler scheme reduces to ° Initial unit normalin radial (plastic flow) direction:
the radial return method for J2 flow plasticity () 7(0) 3

n=

rl® = |=qa

Initial trial stress at O iteration of time n + 1: “r(o)” 3/2 2

0¥ =g, +C:Ac

« Newton iteration for stress: * Yield surfaces share the same centroid (kinematic
) = g _ A . 4K hardening is the same in ¥ space) — 1 remains
unchanged during iteration at time n + 1:
e =¢gb + Ar®

e Plastic flow in J2 models:

3
r= 2—50"16” = fo * Isotropic hardening J2 at time n + 1:
q=q1=)\h1=5_', h1=1
* \Von Mises vyield szurfacée: ) = g1 = qun + AN
- ev. pdev
oy =—-0“":.0o o _ dew
2 Sphere in high-dimensional ¢V space, 10

normal direction is along the radius



Essential Components for Radial Return Iteration

* Derivatives for return mapping in J2 models at time n + 1:

3 dev 3 . 3 1 R
re=\5=z0 == =-—\1yn —5Inqlong — NN

- \25 26 24 3
o
3
— — dev
rq —r§—<__0' >:
1 20 -
h=h1=1
$h0=h10-=0, hq=hq1=0
doy(€) _
fr=1, fr=——2=-H(




Matrices in Radial Return Iteration

3 .
r(,—%l, rqe =0, h, =0, hq=0, fe =T, fo = —H
e Calculation of iteration parameter matrices: . )
-1 (k) ,.(K) (k),.(K) - 3 . -
[A(k)] _ C "+ AA r, AA Tq e + A)\(R)Fl 0
MOREP 1+ MR o 0 _q

-1

3 . 3 .

c 1+ Ak 1= Cl+al= (c—l + AA(O 2—51> = C — 2ubl
o

Transformation based on isotropic elasticity b =
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teration of AA%) for Isotropic Materials

(k) — 2ubi (k)
f(k)_[fa(k) fq(k)][A(k)] [a FO — [0 fg(k)] [C gul _01] [a

sA) = b1 _ B
() (] rg007[TH (5 [C_ 2ubl 0 ] [r(k)]

* |sotropic elasticity:
r:C:r = 3y, r:(i:r)=r:(’i:1/3/2ﬁ)=r:0=0, —f;—;,(k) = H®

* Linear functions require one Newton’s method iteration to obtain roots:
a=-+e& +Mr®O=0=2a® =0, b=b=-q +q,+M=0=b% =0
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Common expression for Iteration of AN

r = ;o.dev — \/gﬁ — gdev — \/gaﬁ’ c®) = g0 _ mMa(B) . (k) = 5(0) _ A}\(k)zﬂr(k)
o)

only relates to o

: : 2 3
Plastic deformatlc?ell — gdev(k) — gdev(0) _ A}\(R)Z,ur(k) — \/;5(0) _ ZMAA(k)\/; fi

= gk = 500) _ 3.11A7\(k)

FOO GO _3,m _ g, (50)
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Algorithmic Modulus for Implicit Methods

e Abrupt tangent modulus change at yield can cause spurious loading and unloading in implicit methods

* Introduce algorithmic modulus (consistent tangent modulus) for fully implicit backward Euler update:
C9 = E
de
n+1

* Incremental form of the integration scheme at time n + 1 (omit subscript n + 1):
do = C:(de — d&P)

P
deP? = d(ANT + AMT 0y = do Ty q

dq = d(ADR+Mdh oo p e g

df = fy:do+f;-q =0
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From de to do

do = C:(de — d&P), deP = d(AN)r + AAdr, dq = d(AA)h + AAdh

dr(e,q) =rs:do+1,-q, dh(o,q) = hs:do + hy - q

] C 1+ A\ry, Adr, - | [dg] ) C 1+ A\ry, AMr, i _ [r]
AAh —I + AAh, ' AAh —I + AAh, h

df = fy:do+f;-q =0

= d(A)) =

/e fql:A [ds ] [ (A:T‘)(af:A)] [dg e
[fo fql:A:T of:A: 7

of
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Semi-Implicit Backward Euler Scheme

e Semi-implicit: * Integration scheme:
> Implicit in plasticity parameter A. Eny1 = &p T AE
» Explicit in plastic flow direction 7 and modulus.
Determined by 7 and h gﬁﬂ — gfl + ANy 1T
e Stress update visualization:
trial
On+1 An+1 = qn + A1 0y
T, On+1

On+1 = C: (£n+1 - £§+1)

far1 = f(Ons1,qne1) =0

Projection scheme for associative plasticity with r,~f; .
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Newton’s Method for Semi-Implicit Stress Update

p — P

S>a=—-¢  +& + A, 7, =0
An+1 = qn + A1 by
=b=—qni1+qn+ 20 1hy, =0

fa+1 = f(Ons1,qns1) =0

e Linearization attimen + 1 (omitn + 1):
a® 4+ ¢ 1:56% + 500, =0

b — 5q%) + 52 h, =0

FUOO 4 fa(k): 5™ + fq(k) .5q® =0
s a®) (k) 1(K). 5
= [5q(")] = [ (k)] oA AV Ty,

=[5 57 m=[a]

f(k)
k k -
[ (k) fq( )]A(k):rn
of

= §Alk) =

e Similar to fully implicit with unchanged r and h from time n

Plastic strain update: gPk+D = gPlk) _ -1, 5g(K)
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Algorithmic Modulus for Semi-Implicit Methods

* Similar to derivation for fully implicit methods at time n + 1:
do _ (A:7)(0f: 4) [ds
dq| ~ of: A:

a=[C 0 =[] ar=1f fu

alg _ E _ _ (C: rn)(fa: C)
> 0% = ( >n+1 = [c —f, T + i Gy

n+1

Caution: C*9 is asymmetric even for
associative flow as r,, # (f5),41!




The End




