
Computational Mechanics

Chapter 12 Stress Update Algorithm
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Return Mapping for Rate-Independent Plasticity

• Small strain/deformation simplification:
1. Negligible difference in stress measurement

2. Objective rate unnecessary

3. 𝑫 is the same as 𝜺 ̇

• For large deformation, one critical change is
consideration of rigid rotation (rate)

• Hypoelasto-plasticity for small strain:

ሶ𝝈 = 𝑪: ሶ𝜺𝑒 = 𝑪: ሶ𝜺 − ሶ𝜺𝑝

ሶ𝜺𝑝 = ሶλ𝒓

ሶ𝒒 = ሶλ𝒉

0 = 𝑓𝝈: ሶ𝝈 + 𝑓𝒒 ∙ ሶ𝒒

ሶλ ≥ 0, 𝑓 ≤ 0, ሶλ𝑓 = 0

• Mapping for Hyperelasto-plasticity is similar with
different stress and deformation (rates) measurement

• Numerical integration of rates for total values

• Goal – given 𝜺𝑛, 𝜺𝑛
𝑝
, 𝒒𝑛 at time 𝑛 and the strain 

increment ∆𝜺 = ∆𝑡 ሶ𝜺, compute 𝜺𝑛+1, 𝜺𝑛+1
𝑝

, 𝒒𝑛+1
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Forward Euler Integration Scheme

• Consistency condition for plastic rate parameter calculation under small strain:

ሶλ =
𝑓𝝈: 𝑪𝑒𝑙

𝜎𝐽
: ሶ𝜺

−𝑓𝒒 ∙ 𝒉 + 𝑓𝝈: 𝑪𝑒𝑙
𝜎𝐽
: 𝒓

• Update variables at discrete time 𝑛 + 1 purely based on variables at time 𝑛:
𝜺𝑛+1 = 𝜺𝑛 + ∆𝜺

𝜺𝑛+1
𝑝

= 𝜺𝑛
𝑝
+ ∆λ𝑛𝒓𝑛 = 𝜺𝑛

𝑝
+ ሶλ𝑛∆𝑡𝒓𝑛

𝒒𝑛+1 = 𝒒𝑛 + ∆λ𝑛𝒉𝑛

𝝈𝑛+1 = 𝝈𝑛 + ∆𝝈 = 𝝈𝑛 + 𝑪𝑛
𝑒𝑝
: ∆𝜺

Elasto-plastic tangent modulus at time 𝑛

Yield condition 𝑓𝑛+1 = 𝑓 𝝈𝑛+1, 𝒒𝑛+1 = 0 is often not satisfied 
as deformation from time 𝑛 to 𝑛 + 1 is not considered!
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Fully Implicit Backward Euler Scheme

• Enforce 𝑓𝑛+1 = 0 to avoid drift from yield surface

• Calculation with variables at time 𝑛 + 1:
𝜺𝑛+1 = 𝜺𝑛 + ∆𝜺

𝜺𝑛+1
𝑝

= 𝜺𝑛
𝑝
+ ∆λ𝑛+1𝒓𝑛+1

𝒒𝑛+1 = 𝒒𝑛 + ∆λ𝑛+1𝒉𝑛+1

𝝈𝑛+1 = 𝝈𝑛 + 𝑪𝑛+1
𝑒𝑝

: ∆𝜺

𝑓𝑛+1 = 𝑓 𝝈𝑛+1, 𝒒𝑛+1 = 0

• Challenge – obtain right values of variables at time

– Requirement at 𝑛 + 1



5

Meaning of Fully Implicit Backward Euler Scheme

∆𝜺𝑛+1
𝑝

= 𝜺𝑛+1
𝑝

− 𝜺𝑛
𝑝
= ∆λ𝑛+1𝒓𝑛+1

⇒ 𝝈𝑛+1 = 𝝈𝑛 + 𝑪: ∆𝜺 − ∆𝜺𝑛+1
𝑝

= 𝝈𝑛 + 𝑪: ∆𝜺 − 𝑪:∆𝜺𝑛+1
𝑝

= 𝝈𝑛 + 𝑪:∆𝜺 − ∆λ𝑛+1𝑪: 𝒓𝑛+1

• Plastic corrector returns overshoot trial stress onto yield surface along the direction of 𝒓𝑛+1

Trial stress of elastic 

predictor 𝝈𝑛+1
𝑡𝑟𝑖𝑎𝑙

Plastic corrector 
for plastic flow

Associative flow rule

Plastic strain and internal 
variables stay at 𝑛

Total strain fixed, correction of 
stress ∆𝝈𝑛+1 = −∆λ𝑛+1𝑪: 𝒓𝑛+1



6

Introduction of Newton’s Method

• Numerical solution method for nonlinear algebraic equations, such as 𝑓 𝑥 = 0:

1. Selection of initial trial root:
𝑥 0 = 0 (𝑐𝑎𝑛 𝑏𝑒 𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠)

2. Iteration via linearization (𝑘 is the iteration number):

𝑓 𝑥 𝑘 + 𝑓′ 𝑥 𝑘 𝛿𝑥 𝑘 = 0

𝑥 𝑘+1 = 𝑥 𝑘 + 𝛿𝑥 𝑘

3. Solved once convergence condition met:
𝑥 𝑘+1 − 𝑥 𝑘 = 𝛿𝑥 𝑘 < ∆

[1] https://github.com/Lehmannhen/Bisection-and-Newton-method

Illustration of Newton’s method [1]

Denoted as 𝑓 𝑘 for simplification
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Newton’s Method to Update Stress at 𝑛 + 1 (1/3)

• Solution target for time 𝑛 + 1 (subscript 𝑛 + 1 is 
omitted for simplification):

𝜺𝑝 = 𝜺𝑛
𝑝
+ ∆λ𝒓 ⇒ 𝒂 = −𝜺𝑝 + 𝜺𝑛

𝑝
+ ∆λ𝒓 = 𝟎

𝒒 = 𝒒𝑛 + ∆λ𝒉 ⇒ 𝒃 = −𝒒 + 𝒒𝑛 + ∆λ𝒉 = 𝟎

𝑓 = 𝑓 𝝈, 𝒒 = 0

• Linearization following Newton’s method:

𝒂 𝑘 − 𝛿𝜺𝑝 𝑘 + ∆λ 𝑘 𝛿𝒓 𝑘 + 𝛿λ 𝑘 𝒓 𝑘 = 𝟎

𝒃 𝑘 − 𝛿𝒒 𝑘 + ∆λ 𝑘 𝛿𝒉 𝑘 + 𝛿λ 𝑘 𝒉 𝑘 = 𝟎

𝑓 𝑘 + 𝑓𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝑓𝒒

𝑘
∙ 𝛿𝒒 𝑘 = 0

𝛿𝜺𝑝 𝑘 = −𝑪−1: 𝛿𝝈 𝑘

𝛿𝒓 𝝈, 𝒒 𝑘 = 𝒓𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝒓𝒒

𝑘
: 𝛿𝒒 𝑘

𝛿𝒉 𝝈, 𝒒 𝑘 = 𝒉𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝒉𝒒

𝑘
: 𝛿𝒒 𝑘
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Newton’s Method to Update Stress at 𝑛 + 1 (2/3)

𝒂 𝑘 + 𝑪−1: 𝛿𝝈 𝑘 + ∆λ 𝑘 𝒓𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝒓𝒒

𝑘
: 𝛿𝒒 𝑘 + 𝛿λ 𝑘 𝒓 𝑘 = 𝟎

𝒃 𝑘 − 𝛿𝒒 𝑘 + ∆λ 𝑘 𝒉𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝒉𝒒

𝑘
: 𝛿𝒒 𝑘 + 𝛿λ 𝑘 𝒉 𝑘 = 𝟎

𝑓 𝑘 + 𝑓𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝑓𝒒

𝑘
∙ 𝛿𝒒 𝑘 = 0

• Matrix format (just symbolizing for simiplification, not representing true dimension):
𝑪−1 + ∆λ 𝑘 𝒓𝝈

𝑘
∆λ 𝑘 𝒓𝒒

𝑘

∆λ 𝑘 𝒉𝝈
𝑘

−𝑰 + ∆λ 𝑘 𝒉𝒒
𝑘

𝛿𝝈 𝑘

𝛿𝒒 𝑘 = − 𝒂 𝑘

𝒃 𝑘
− 𝛿λ 𝑘 𝒓 𝑘

𝒉 𝑘

⇒
𝛿𝝈 𝑘

𝛿𝒒 𝑘 = − 𝑨 𝑘 ෥𝒂 𝑘 − 𝛿λ 𝑘 𝑨 𝑘 ෤𝒓 𝑘 ⇒ 𝛿λ 𝑘 =
𝑓 𝑘 − 𝑓𝝈

𝑘
𝑓𝒒

𝑘 𝑨 𝑘 ෥𝒂 𝑘

𝑓𝝈
𝑘

𝑓𝒒
𝑘 𝑨 𝑘 ෤𝒓 𝑘

Update of 3 unknowns in each 

iteration, 𝑥 𝑘+1 = 𝑥 𝑘 + 𝛿𝑥 𝑘

𝑨 𝑘 −1 ෥𝒂 𝑘 ෤𝒓 𝑘

Yield equation
𝜕𝒇
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Newton’s Method to Update Stress at 𝑛 + 1 (3/3)

• Update of calculation targets:
𝜺𝑝 𝑘+1 = 𝜺𝑝 𝑘 + 𝛿𝜺𝑝 𝑘 = 𝜺𝑝 𝑘 − 𝑪−1: 𝛿𝝈 𝑘

𝒒 𝑘+1 = 𝒒 𝑘 + 𝛿𝒒 𝑘

∆λ 𝑘+1 = ∆λ 𝑘 + 𝛿λ 𝑘

• Convergence condition – unknown variables converge and yield function becomes to 0:
𝑥 𝑘+1 − 𝑥 𝑘 = 𝛿𝑥 𝑘 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 1

𝑓 𝑘+1 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 2

1. Refer to Box 5.13 in textbook for summarized return mapping procedure
2. Reliable but can be difficult to establish for complex constitutive models as

updated 𝒓, 𝒉 and their derivatives need to be calculated in each iteration
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Radial Return for J2 Plasticity

• Fully implicit backward Euler scheme reduces to
the radial return method for J2 flow plasticity

• Initial trial stress at 0 iteration of time 𝑛 + 1:
𝝈 0 = 𝝈𝑛 + 𝑪:∆𝜺

• Newton iteration for stress:
𝝈 𝑘 = 𝝈 0 − ∆λ 𝑘 𝑪: 𝒓 𝑘

• Plastic flow in J2 models:

𝒓 =
3

2 ത𝜎
𝝈𝑑𝑒𝑣 = 𝑓𝝈

• Von Mises yield surface:

σ𝑌
2 =

3

2
𝝈𝑑𝑒𝑣: 𝝈𝑑𝑒𝑣

• Initial unit normal in radial (plastic flow) direction:

ෝ𝒏 =
𝒓 0

𝒓 0
=
𝒓 0

3/2
⇒ 𝒓 0 =

3

2
ෝ𝒏

• Yield surfaces share the same centroid (kinematic
hardening is the same in 𝜮 space) – ෝ𝒏 remains
unchanged during iteration at time 𝑛 + 1:

𝜺𝑝 = 𝜺𝑛
𝑝
+ ∆λ𝒓 0

• Isotropic hardening J2 at time 𝑛 + 1:
𝒒 = 𝑞1 = λℎ1 = ҧ𝜀, ℎ1 = 1

⇒ 𝑞1 = 𝑞1𝑛 + ∆λ

Sphere in high-dimensional 𝝈𝑑𝑒𝑣 space, 
normal direction is along the radius
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Essential Components for Radial Return Iteration

• Derivatives for return mapping in J2 models at time 𝑛 + 1:

𝒓𝝈 =
3

2 ത𝜎
𝝈𝑑𝑒𝑣

𝝈

=
3

2 ത𝜎
෠𝑰 =

3

2 ത𝜎
𝑰4𝑡ℎ −

1

3
𝑰2𝑛𝑑𝑰2𝑛𝑑 − ෝ𝒏ෝ𝒏

𝒓𝑞1 = 𝒓ത𝜀 =
3

2ത𝜎
𝝈𝑑𝑒𝑣

ത𝜀

= 𝟎

𝒉 = ℎ1 = 1

⇒ 𝒉𝝈 = ℎ1𝝈 = 𝟎, 𝒉𝒒 = ℎ𝑞1 = 0

𝑓𝝈 = 𝒓, 𝑓𝝈 = −
𝑑σ𝑌 ҧ𝜀

𝑑 ҧ𝜀
= −𝐻 ҧ𝜀
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Matrices in Radial Return Iteration

𝒓𝝈 =
3

2ത𝜎
෠𝑰, 𝒓𝒒 = 𝟎, 𝒉𝝈 = 𝟎, 𝒉𝒒 = 0, 𝑓𝝈 = 𝒓, 𝑓𝝈 = −𝐻

• Calculation of iteration parameter matrices:

𝑨 𝑘 =
𝑪−1 + ∆λ 𝑘 𝒓𝝈

𝑘
∆λ 𝑘 𝒓𝒒

𝑘

∆λ 𝑘 𝒉𝝈
𝑘

−𝑰 + ∆λ 𝑘 𝒉𝒒
𝑘

−1

= 𝑪−1 + ∆λ 𝑘
3

2 ത𝜎
෠𝑰 𝟎

𝟎 −1

−1

𝑪−1 + ∆λ 𝑘
3

2 ത𝜎
෠𝑰 = 𝑪−1 + 𝑎෠𝑰 ⇒ 𝑪−1 + ∆λ 𝑘

3

2ത𝜎
෠𝑰

−1

= 𝑪 − 2𝜇𝑏෠𝑰

⇒ 𝑨 𝑘 = 𝑪 − 2𝜇𝑏෠𝑰 𝟎
𝟎 −1

Transformation based on isotropic elasticity 𝑏 =
2𝜇𝑎

1 + 2𝜇𝑎
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Iteration of ∆λ 𝑘 for Isotropic Materials

𝛿λ 𝑘 =
𝑓 𝑘 − 𝑓𝝈

𝑘
𝑓𝒒

𝑘 𝑨 𝑘 𝒂 𝑘

𝒃 𝑘

𝑓𝝈
𝑘

𝑓𝒒
𝑘 𝑨 𝑘 𝒓 𝑘

𝒉 𝑘

=
𝑓 𝑘 − 𝒓 𝑘 𝑓ത𝜀

𝑘 𝑪 − 2𝜇𝑏෠𝑰 𝟎
𝟎 −1

𝒂 𝑘

𝒃 𝑘

𝒓 𝑘 𝑓ത𝜀
𝑘 𝑪 − 2𝜇𝑏෠𝑰 𝟎

𝟎 −1
𝒓 𝑘

1

• Isotropic elasticity:

𝒓: 𝑪: 𝒓 = 3𝜇, 𝒓: ෠𝑰: 𝒓 = 𝒓: ෠𝑰: 3/2ෝ𝒏 = 𝒓: 𝟎 = 𝟎, −𝑓ത𝜀
𝑘
= 𝐻 𝑘

• Linear functions require one Newton’s method iteration to obtain roots:
𝒂 = −𝜺𝑝 + 𝜺𝑛

𝑝
+ ∆λ𝒓 0 = 𝟎 ⇒ 𝒂 𝑘 = 𝟎, 𝒃 = 𝑏 = −𝑞1 + 𝑞1𝑛 + ∆λ = 0 ⇒ 𝑏 𝑘 = 0

⇒ 𝛿λ 𝑘 =
𝑓 𝑘

3𝜇 + 𝐻 𝑘
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Common expression for Iteration of ∆λ 𝑘

𝒓 =
3

2ത𝜎
𝝈𝑑𝑒𝑣 =

3

2
ෝ𝒏 ⇒ 𝝈𝑑𝑒𝑣 =

2

3
ത𝜎ෝ𝒏, 𝝈 𝑘 = 𝝈 0 − ∆λ 𝑘 𝑪: 𝒓 𝑘 = 𝝈 0 − ∆λ 𝑘 2𝜇𝒓 𝑘

⇒ 𝝈𝑑𝑒𝑣 𝑘 = 𝝈𝑑𝑒𝑣 0 − ∆λ 𝑘 2𝜇𝒓 𝑘 =
2

3
ത𝜎 0 − 2𝜇∆λ 𝑘

3

2
ෝ𝒏

⇒ ത𝜎 𝑘 = ത𝜎 0 − 3𝜇∆λ 𝑘

⇒ 𝛿λ 𝑘 =
𝑓 𝑘

3𝜇 + 𝐻 𝑘
=

ത𝜎 0 − 3𝜇∆λ 𝑘 − 𝜎𝑌 ҧ𝜀 𝑘

3𝜇 + 𝐻 𝑘

Plastic deformation 
only relates to 𝝈𝑑𝑒𝑣
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Algorithmic Modulus for Implicit Methods

• Abrupt tangent modulus change at yield can cause spurious loading and unloading in implicit methods

• Introduce algorithmic modulus (consistent tangent modulus) for fully implicit backward Euler update:

𝑪𝑎𝑙𝑔 =
𝑑𝝈

𝑑𝜺
𝑛+1

• Incremental form of the integration scheme at time 𝑛 + 1 (omit subscript 𝑛 + 1):
𝑑𝝈 = 𝑪: 𝑑𝜺 − 𝑑𝜺𝑝

𝑑𝜺𝑝 = 𝑑 ∆λ 𝒓 + ∆λ𝑑𝒓

𝑑𝒒 = 𝑑 ∆λ 𝒉 + ∆λ𝑑𝒉

𝑑𝑓 = 𝑓𝝈: 𝑑𝝈 + 𝑓𝒒 ∙ 𝒒 = 0

𝑑𝒓 𝝈, 𝒒 = 𝒓𝝈: 𝑑𝝈 + 𝒓𝒒 ∙ 𝒒

𝑑𝒉 𝝈, 𝒒 = 𝒉𝝈: 𝑑𝝈 + 𝒉𝒒 ∙ 𝒒
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From 𝑑𝜺 to 𝑑𝝈

𝑑𝝈 = 𝑪: 𝑑𝜺 − 𝑑𝜺𝑝 , 𝑑𝜺𝑝 = 𝑑 ∆λ 𝒓 + ∆λ𝑑𝒓, 𝑑𝒒 = 𝑑 ∆λ 𝒉 + ∆λ𝑑𝒉

𝑑𝒓 𝝈, 𝒒 = 𝒓𝝈: 𝑑𝝈 + 𝒓𝒒 ∙ 𝒒, 𝑑𝒉 𝝈, 𝒒 = 𝒉𝝈: 𝑑𝝈 + 𝒉𝒒 ∙ 𝒒

⇒
𝑑𝝈
𝑑𝒒

=
𝑪−1 + ∆λ𝒓𝝈 ∆λ𝒓𝒒

∆λ𝒉𝝈 −𝑰 + ∆λ𝒉𝒒

−1

:
𝑑𝜺
𝟎

− 𝑑 ∆λ
𝑪−1 + ∆λ𝒓𝝈 ∆λ𝒓𝒒

∆λ𝒉𝝈 −𝑰 + ∆λ𝒉𝒒

−1

:
𝒓
𝒉

𝑑𝑓 = 𝑓𝝈: 𝑑𝝈 + 𝑓𝒒 ∙ 𝒒 = 0

⇒ 𝑑 ∆λ =
𝑓𝝈 𝑓𝒒 : 𝑨:

𝑑𝜺
𝟎

𝑓𝝈 𝑓𝒒 : 𝑨: ෤𝒓
⇒

𝑑𝝈
𝑑𝒒

= 𝑨 −
𝑨: ෤𝒓 𝜕𝒇: 𝑨

𝜕𝒇: 𝑨: ෤𝒓
𝑑𝜺
𝟎

𝑨 ෤𝒓

𝜕𝒇

𝑪𝑎𝑙𝑔
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Semi-Implicit Backward Euler Scheme

• Semi-implicit:

➢ Implicit in plasticity parameter λ.

➢ Explicit in plastic flow direction 𝒓 and modulus.

• Stress update visualization:

Determined by 𝒓 and 𝒉

𝝈𝑛+1
𝑡𝑟𝑖𝑎𝑙

𝝈𝑛

𝝈𝑛+1𝒓𝑛

Projection scheme for associative plasticity with 𝒓𝑛~𝑓𝝈𝑛.

• Integration scheme:
𝜺𝑛+1 = 𝜺𝑛 + ∆𝜺

𝜺𝑛+1
𝑝

= 𝜺𝑛
𝑝
+ ∆λ𝑛+1𝒓𝑛

𝒒𝑛+1 = 𝒒𝑛 + ∆λ𝑛+1𝒉𝑛

𝝈𝑛+1 = 𝑪: 𝜺𝑛+1 − 𝜺𝑛+1
𝑝

𝑓𝑛+1 = 𝑓 𝝈𝑛+1, 𝒒𝑛+1 = 0
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Newton’s Method for Semi-Implicit Stress Update

𝜺𝑛+1
𝑝

= 𝜺𝑛
𝑝
+ ∆λ𝑛+1𝒓𝑛

⇒ 𝒂 = −𝜺𝑛+1
𝑝

+ 𝜺𝑛
𝑝
+ ∆λ𝑛+1𝒓𝑛 = 𝟎

𝒒𝑛+1 = 𝒒𝑛 + ∆λ𝑛+1𝒉𝑛

⇒ 𝒃 = −𝒒𝑛+1 + 𝒒𝑛 + ∆λ𝑛+1𝒉𝑛 = 𝟎

𝑓𝑛+1 = 𝑓 𝝈𝑛+1, 𝒒𝑛+1 = 0

• Linearization at time 𝑛 + 1 (omit 𝑛 + 1):
𝒂 𝑘 + 𝑪−1: 𝛿𝝈 𝑘 + 𝛿λ 𝑘 𝒓𝑛 = 𝟎

𝒃 𝑘 − 𝛿𝒒 𝑘 + 𝛿λ 𝑘 𝒉𝑛 = 𝟎

𝑓 𝑘 + 𝑓𝝈
𝑘
: 𝛿𝝈 𝑘 + 𝑓𝒒

𝑘
∙ 𝛿𝒒 𝑘 = 0

⇒
𝛿𝝈 𝑘

𝛿𝒒 𝑘 = −𝑨 𝑘 : 𝒂
𝑘

𝒃 𝑘
− 𝛿λ 𝑘 𝑨 𝑘 : ෤𝒓𝑛

𝑨 𝑘 =
𝑪 𝟎
𝟎 −𝑰

𝑘

, ෤𝒓𝑛 =
𝒓𝑛
𝒉𝑛

⇒ 𝛿λ 𝑘 =
𝑓 𝑘

𝑓𝝈
𝑘

𝑓𝒒
𝑘 𝑨 𝑘 : ෤𝒓𝑛

• Similar to fully implicit with unchanged 𝒓 and 𝒉 from time 𝑛

• Plastic strain update: 𝜺𝑝 𝑘+1 = 𝜺𝑝 𝑘 − 𝑪−1: 𝛿𝝈 𝑘

𝜕𝒇



19

Algorithmic Modulus for Semi-Implicit Methods

• Similar to derivation for fully implicit methods at time 𝑛 + 1:
𝑑𝝈
𝑑𝒒

= 𝑨 −
𝑨: ෤𝒓 𝜕𝒇: 𝑨

𝜕𝒇:𝑨: ෤𝒓
𝑑𝜺
𝟎

𝑨 =
𝑪 𝟎
𝟎 −𝑰

, ෤𝒓 =
𝒓𝑛
𝒉𝑛

, 𝜕𝒇 = 𝑓𝝈 𝑓𝒒

⇒ 𝑪𝑎𝑙𝑔 =
𝑑𝝈

𝑑𝜺
𝑛+1

= 𝑪 −
𝑪: 𝒓𝑛 𝑓𝝈: 𝑪

−𝑓𝒒 ∙ 𝒉𝑛 + 𝑓𝝈: 𝑪: 𝒓𝑛 𝑛+1

Caution: 𝑪𝑎𝑙𝑔 is asymmetric even for 
associative flow as 𝒓𝑛 ≠ 𝑓𝝈 𝑛+1!



The End


