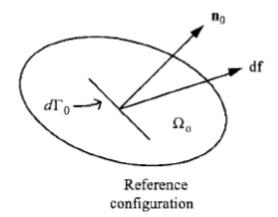
Computational Mechanics

Chapter 13 Supplementary Information for Constitutive Laws

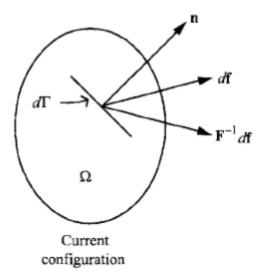
Review – Stress in Different Configurations



$$\boldsymbol{n} \cdot \boldsymbol{\sigma} d\Gamma = d\boldsymbol{f} = \boldsymbol{t} d\Gamma, \qquad \boldsymbol{\sigma} = \boldsymbol{\sigma}^T$$

Nominal stress (initial configuration):

$$\boldsymbol{n}_0 \cdot \boldsymbol{P} d\Gamma_0 = d\boldsymbol{f} = \boldsymbol{t}_0 d\Gamma_0, \qquad \boldsymbol{P} \neq \boldsymbol{P}^T$$



• PK2 stress:

$$\boldsymbol{n}_0 \cdot \boldsymbol{S} d\Gamma_0 = \underline{\boldsymbol{F}^{-1}} \cdot \boldsymbol{t}_0 d\Gamma_0$$

- Make S symmetric
- Make \boldsymbol{S} conjugate to \boldsymbol{E}^G in power

Review – Transformation of Stress Measures

• Stress measures can be transformed using deformation functions, refer to Box 3.2 of the textbook

Cauchy stress σ	Nominal stress P	2nd Piola–Kirchhoff stress S	Corotational Cauchy stress $\hat{\sigma}$
σ =	$J^{-1}\mathbf{F}\cdot\mathbf{P}$	$\mathbf{J}^{-1}\mathbf{F}\cdot\mathbf{S}\cdot\mathbf{F}^{T}$	$\mathbf{R} \cdot \hat{\mathbf{\sigma}} \cdot \mathbf{R}^T$
$P = JF^{-1} \cdot \sigma$		$\mathbf{S}\cdot\mathbf{F}^T$	$J\mathbf{U}^{-1}\cdot\hat{\mathbf{\sigma}}\cdot\mathbf{R}^{T}$
$S = JF^{-1} \cdot \sigma \cdot F^{-T}$	$\mathbf{P} \cdot \mathbf{F}^{-T}$		$J\mathbf{U}^{-1}\cdot\hat{\mathbf{\sigma}}\cdot\mathbf{U}^{-1}$
$\hat{\mathbf{\sigma}} = \mathbf{R}^T \cdot \mathbf{\sigma} \cdot \mathbf{R}$	$J^{-1}\mathbf{U}\cdot\mathbf{P}\cdot\mathbf{R}$	$J^{-1} \mathbf{U} \cdot \mathbf{S} \cdot \mathbf{U}$	
$\tau = J\sigma$	F·P	$\mathbf{F} \cdot \mathbf{S} \cdot \mathbf{F}^T$	$J\mathbf{R}\cdot\hat{\mathbf{\sigma}}\cdot\mathbf{R}^{T}$

Change between Current and Initial Configuration

• Nanson's formula from change in area enveloped by two Vectors (from Chapter 5):

$$\frac{d\Gamma}{d\Gamma_0} = \det(\mathbf{F}) \, \mathbf{n} \cdot \mathbf{n}_0 \cdot \mathbf{F}^{-1} \Rightarrow \mathbf{n} d\Gamma = \det(\mathbf{F}) \, \mathbf{n}_0 \cdot \mathbf{F}^{-1} d\Gamma_0$$

Link between current and initial surfaces (direction + area)

• Example – transformation between Cauchy and nominal stress:

$$\boldsymbol{n} \cdot \boldsymbol{\sigma} d\Gamma = d\boldsymbol{f} = \boldsymbol{n}_0 \cdot \boldsymbol{P} d\Gamma_0$$

Nanson's formula
$$\Rightarrow \det(\mathbf{F}) \mathbf{n}_0 \cdot \mathbf{F}^{-1} \cdot \boldsymbol{\sigma} d\Gamma_0 = J\mathbf{n}_0 \cdot \mathbf{F}^{-1} \cdot \boldsymbol{\sigma} d\Gamma_0 = \mathbf{n}_0 \cdot \mathbf{P} d\Gamma_0$$

Arbitrary
$$n_0$$
 and $d\Gamma_0 \Rightarrow JF^{-1} \cdot \sigma = P$

• Expansion to PK2:

Transpose of a vector is the vector itself

$$\mathbf{F} \cdot (\mathbf{n}_0 \cdot \mathbf{S}) d\Gamma_0 = \mathbf{F} \cdot (\mathbf{S}^T \cdot \mathbf{n}_0) d\Gamma_0 = \mathbf{t}_0 d\Gamma_0 = \mathbf{n}_0 \cdot \mathbf{P} d\Gamma_0 = \mathbf{P}^T \cdot \mathbf{n}_0 d\Gamma_0$$

Arbitrary
$$n_0$$
 and $d\Gamma_0 \Rightarrow F \cdot S^T = P^T \Rightarrow P = S \cdot F^T = JF^{-1} \cdot \sigma \Rightarrow F \cdot S \cdot F^T = \underline{J\sigma}$ Kirchhoff stress τ

Lagrangian, Eulerian and Two-Point Tensors

• Lagrangian tensors – tensors defined in the intial/Lagragian configuration X-Y-Z:

$$C(ds^2 = dX \cdot C \cdot dX = C_{XX}, \text{ defined using initial } X) \text{ and } E^G = \frac{1}{2}(C - I)$$

• Eulerian tensors – tensors defined in the current/Eulerian configuration x(t) - y(t) - z(t):

 $oldsymbol{\sigma}$ (defined with current $oldsymbol{n}$, $d\Gamma$ and $doldsymbol{f}$) and $oldsymbol{ au}=Joldsymbol{\sigma}$

$$\boldsymbol{L} = \frac{\partial \boldsymbol{v}}{\partial x} = \frac{\partial \dot{x}}{\partial x}$$
 and $\boldsymbol{D} = \frac{1}{2}(\boldsymbol{L} + \boldsymbol{L}^T)$

• Two-point tensor — link initial and current configurations:

$$F = \frac{\partial x}{\partial X} = \frac{\partial x_k}{\partial X_m} e_k e_{0m}$$
 (Eulerian – Lagrangian)

$$d {m f} = {m n}_0 \cdot {m P} d {m \Gamma}_0 \Rightarrow {m P} = {m P}_{ij} {m e}_{0i} {m e}_j$$
 (Lagrangian - Eulerian)

Pull-Back and Push-Forward Operations

• Pull-back – map current Eulerian entity back to its initial Lagrangian status:

$$dX = F^{-1} \cdot dx = \varphi^* dx$$

• Push-forward – map initial Lagrangian entity to its current Eulerian status:

$$d\mathbf{x} = \mathbf{F} \cdot d\mathbf{X} = \mathbf{\varphi}_* d\mathbf{X}$$

- 2nd order tensors in solid mechanics:
 - Stress:

$$\begin{cases} \boldsymbol{\tau} = \boldsymbol{F} \cdot \boldsymbol{S} \cdot \boldsymbol{F}^T = \varphi_* \boldsymbol{S} \\ \boldsymbol{S} = \boldsymbol{F}^{-1} \cdot \boldsymbol{\tau} \cdot \boldsymbol{F}^{-T} = \varphi^* \boldsymbol{\tau} \end{cases}$$

Strain/deformation:

$$\begin{cases} \mathbf{D} = \mathbf{F}^{-T} \cdot \dot{\mathbf{E}}^{G} \cdot \mathbf{F}^{-1} = \varphi_{*} \dot{\mathbf{E}}^{G} & \text{One special case:} \\ \dot{\mathbf{E}}^{G} = \mathbf{F}^{T} \cdot \mathbf{D} \cdot \mathbf{F} = \varphi^{*} \mathbf{D} & \varphi_{*} \mathbf{C} = \mathbf{F}^{-T} \cdot \mathbf{C} \cdot \mathbf{F}^{-1} = \mathbf{I} \end{cases}$$

Material Frame Indifference

- Large deformation constitutive laws should be independent from rigid body motion
- Constitutive laws should be the same for observers in relative motion principle of material objectivity
 Translation and rotation
- Motion of one body described by two observers in relative movement (refer to Chapter 5):

$$\underline{x}^*(X,t) = Q(t) \cdot \underline{x}(X,t) + \underline{c}(t), \qquad Q^{-T} = \underline{Q}, \qquad \begin{cases} Q(0) = I \\ c(0) = 0 \end{cases}$$
Motion from Sobserver #1 frame #1 to #2 frame #1 to #2

Infinitesimal vector formed by two points $\Rightarrow dx^* = Q(t) \cdot dx(X, t) = Q \cdot F \cdot dX = F^* \cdot dX$

$$\Rightarrow F^* = Q \cdot F$$

Transformation of Deformation gradient

Transformation of Basic Quantities

$$\mathbf{x}^*(\mathbf{X},t) = \mathbf{Q}(t) \cdot \mathbf{x}(\mathbf{X},t) + \mathbf{c}(t)$$

• Velocity ($v^* = \dot{x^*}$, and $v = \dot{x}$):

$$\boldsymbol{v}^* = \dot{\boldsymbol{Q}} \cdot \boldsymbol{x} + \boldsymbol{Q} \cdot \boldsymbol{v} + \dot{\boldsymbol{c}}$$

Right Cauchy-Green deformation tensor:

$$F^* = Q \cdot F$$

$$\Rightarrow C^* = F^{*T} \cdot F^* = F^T \cdot Q^T \cdot Q \cdot F = F^T \cdot F$$

• Spatial velocity gradient:

$$\boldsymbol{L}^* = \dot{\boldsymbol{F}}^* \cdot (\boldsymbol{F}^*)^{-1} = (\boldsymbol{Q} \cdot \boldsymbol{F}) \cdot (\boldsymbol{Q} \cdot \boldsymbol{F})^{-1}$$

$$\Rightarrow L^* = \dot{Q} \cdot F \cdot F^{-1} \cdot Q^T + Q \cdot \dot{F} \cdot F^{-1} \cdot Q^T$$
$$\Rightarrow L^* = \dot{Q} \cdot Q^T + Q \cdot L \cdot Q^T$$

• Rate of deformation:

$$D^* = \frac{1}{2} (L^* + L^{T*}) = \frac{1}{2} \left[(\underline{Q} \cdot \underline{Q}^T) + 2\underline{Q} \cdot \underline{D} \cdot \underline{Q}^T \right]$$
$$\stackrel{}{\mathbf{i}} = \mathbf{0}$$
$$\Rightarrow D^* = \underline{Q} \cdot \underline{D} \cdot \underline{Q}^T$$

Objectivity of Tensor Fields

• Base of a Cartesian system rotating with the • Objectivity of Lagrangian tensors (t=0): observer #2 relative to observer #1:

$$d\mathbf{x}^* = \mathbf{Q} \cdot d\mathbf{x} \Rightarrow \mathbf{e}_i^* = \mathbf{Q} \cdot \mathbf{e}_i = \mathbf{e}_i \cdot \mathbf{Q}^T$$

$$\Rightarrow dx_i^* = e_i^* \cdot dx^* = e_i \cdot Q^T \cdot Q \cdot dx = dx_i$$

$$D_{ij}^* = \boldsymbol{e}_i^* \cdot \boldsymbol{D}^* \cdot \boldsymbol{e}_j^* = \boldsymbol{e}_i \cdot \boldsymbol{Q}^T \cdot \boldsymbol{Q} \cdot \boldsymbol{D} \cdot \boldsymbol{Q}^T \cdot \boldsymbol{Q} \cdot \boldsymbol{e}_j$$
$$\Rightarrow D_{ij}^* = D_{ij}$$

 $dx^*(X,0) = Q(0) \cdot dx(X,0)$

$$\Rightarrow dX^* = I \cdot dX = dX$$

Objective requirement on *Lagrangian* tensors:

$$\left\{ egin{aligned} oldsymbol{a}_0^* &= oldsymbol{a}_0, & 1st\ order \ oldsymbol{A}_0^* &= oldsymbol{A}_0, & 2nd\ order \end{aligned}
ight.$$

 $doldsymbol{x}$ and $oldsymbol{D}$ are objective *Eulerian* tensors, but $oldsymbol{v}$ and $oldsymbol{L}$ are not $oldsymbol{\bullet}$

• Objective requirement on *Eulerian* tensors:

$$\begin{cases} \boldsymbol{a}^* = \boldsymbol{Q} \cdot \boldsymbol{a}, & 1st \ order \\ \boldsymbol{A}^* = \boldsymbol{Q} \cdot \boldsymbol{A} \cdot \boldsymbol{Q}^T, & 2nd \ order \end{cases}$$

Objective of *Eulerian-Lagrangian* tensors (for example F):

$$B_{ij}^* = oldsymbol{e}_i^* \cdot oldsymbol{B}^* \cdot oldsymbol{e}_j = B_{ij} = oldsymbol{e}_i \cdot oldsymbol{B} \cdot oldsymbol{e}_j$$
 or $oldsymbol{B}^* = oldsymbol{Q} \cdot oldsymbol{B}$

Objective Scalar Functions

- Tensor based constitutive equations frequently utilize scalar functions, such as the yield function $f(\sigma)$
- Scalar functions represent material properties and should be objective:

$$f^*(\boldsymbol{\sigma}^*) = f(\boldsymbol{\sigma}^*) = f(\boldsymbol{Q} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{Q}^T) = f(\boldsymbol{\sigma}), \quad \forall \boldsymbol{Q}$$

$$\Rightarrow f(\boldsymbol{\sigma}) = g[I_1(\boldsymbol{\sigma}), I_2(\boldsymbol{\sigma}), I_3(\boldsymbol{\sigma})] \leftrightarrow f \text{ is an isotropic function of } \boldsymbol{\sigma}$$

• To capture anisotropic yield behavior, objective stress measurement, such as PK2 S, should be applied

Frame Invariance Restriction on Elastic Moduli

Hypoelastic constitutive equation after transformation:

$$(\boldsymbol{\sigma}^{\nabla J})^* = \boldsymbol{C}_{el}^{\sigma J} : (\boldsymbol{D}^e)^*$$

Frame invariance of material properties requires constant $m{\mathcal{C}}_{el}^{\sigma J}$

Objective stress and deformation rates
$$\Rightarrow Q_{im}Q_{jn}\sigma_{mn}^{\nabla J} = (\mathbf{C}_{el}^{\sigma J})_{ijkl}(Q_{kr}Q_{ls}D_{rs}^{e})$$

$$\Rightarrow \sigma_{ij}^{\nabla J} = \left[Q_{mi} Q_{nj} Q_{pk} Q_{ql} (\boldsymbol{C}_{el}^{\sigma J})_{mnpq} \right] D_{kl}^{e}$$

$$\sigma_{ij}^{\nabla J} = \left(\boldsymbol{C}_{el}^{\sigma J}\right)_{ijkl} D_{kl}^{e}$$

$$\Rightarrow \left(\boldsymbol{C}_{el}^{\sigma J}\right)_{ijkl} = Q_{mi}Q_{nj}Q_{pk}Q_{ql}\left(\boldsymbol{C}_{el}^{\sigma J}\right)_{mnpq'} \quad \forall \boldsymbol{Q}$$

 $C_{el}^{\sigma J}$ is the same regardless of the coordinate rotation – isotropic!

