
Computational Mechanics

Chapter 2 Strong and Weak Forms for 1D Problems
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5-Step Analysis in FEM

• Preprocessing: subdividing the target domain into finite elements by automatic mesh generators.

• Element formulation: development of equations for elements.

• Assembly: obtaining equations for the whole system by gathering ones at the element-level.

• Solving equations.

• Postprocessing: calculation results visualization and output.

Fundamental mechanics analysis related to FEM equation formulation
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Introduction to Strong and Weak Forms

• This section focuses on 1D analysis for various physical problems from the viewpoint of FEM.

• Strong form: governing equations (partial differential ones) and boundary conditions from physical analysis

• Weak form: an integral form of the strong form – to reduce requirement for the trial solution.

Strong form:

Easy to build

Difficult to solve

Weak form:

Complex to build

Easy to solve

Finite difference method with simple regions Finite element method
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Roadmap of FEM

• Advantage of weak form – complicated geometry for real engineering problems

Strong form Weak form

Approximation of functions

Discrete equations
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Analysis for An Axially Loaded Elastic Bar

• Static, elastic, linear and infinitesimal deformation:

1. Equilibrium constraint 2. Hooke’s law of the material

3. Compatible displacement field 4. Strain-displacement equation
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Force Equilibrium Conditions

• Equilibrium of a small segment in a complex object:

−𝑝 𝑥 + 𝑏 𝑥 +
∆𝑥

2
∙ ∆𝑥 + 𝑝 𝑥 + ∆𝑥 = 0

⇒
𝑝 𝑥 + ∆𝑥 − 𝑝 𝑥

∆𝑥
+ 𝑏 𝑥 +

∆𝑥

2
= 0

∆𝑥 → 0 ⇒
𝑑𝑝 𝑥

𝑑𝑥
+ 𝑏 𝑥 = 0
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Calculation of the Governing Equation 

• Stress:

𝜎 𝑥 =
𝑝 𝑥

𝐴 𝑥
⇒ 𝑝 𝑥 = 𝐴 𝑥 𝜎 𝑥

• Strain:

𝜀 𝑥 =
𝑢 𝑥 + ∆𝑥 − 𝑢 𝑥

∆𝑥

∆𝑥 → 0 ⇒ 𝜀 𝑥 =
𝑑𝑢

𝑑𝑥

• Hooke’s Law:
𝜎 𝑥 = 𝐸 𝑥 𝜀 𝑥

𝑑𝑝 𝑥

𝑑𝑥
+ 𝑏 𝑥 = 0 ⇒

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0

2nd order ODE

Definition based on infinitesimal deformation
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Strong Form for an Axially Loaded Elastic Bar

• Governing equation:

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 0 < 𝑥 < 𝑙

• Traction boundary condition:

𝜎 𝑥 = 0 = 𝐸𝜀 = 𝐸
𝑑𝑢

𝑑𝑥
= − ҧ𝑡

• Displacement boundary condition:

𝑢 𝑥 = 𝑙 = ത𝑢
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• Stable heat conduction analysis for a small segment:

𝑞 𝑥 𝐴 𝑥 + 𝑠 𝑥 +
∆𝑥

2
∙ ∆𝑥 − 𝑞 𝑥 + ∆𝑥 𝐴 𝑥 + ∆𝑥 = 0

∆𝑥 → 0 ⇒
𝑑 𝑞𝐴

𝑑𝑥
− 𝑠 = 0

• Fourier’s law:

𝑞 = −𝑘
𝑑𝑇

𝑑𝑥
⇒

𝑑

𝑑𝑥
𝐴𝑘

𝑑𝑇

𝑑𝑥
+ 𝑠 = 0

• Boundary conditions:

−𝑞 𝑥 = 0 = 𝑘
𝑑𝑇 𝑥 = 0

𝑥
= ത𝑞, 𝑇 𝑥 = 𝑙 = ത𝑇

Strong Form for 1D Heat Conduction

𝜎

𝑃
𝑏

𝑢

Similar to mechanical analysis, can be solved using one method
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Introduction of Weight Function

• Stress analysis as an example:
➢ Governing equation:

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 0 < 𝑥 < 𝑙 ⇒ න

0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 = 0, ∀𝑤

➢ Traction boundary condition:

𝐸
𝑑𝑢

𝑑𝑥
= − ҧ𝑡

𝑥=0

⇒ 𝑤𝐴 𝐸
𝑑𝑢

𝑑𝑥
+ ҧ𝑡

𝑥=0

= 0, ∀𝑤

• Equation simplification at the essential boundary:
𝑤 𝑙 = 0

Arbitrary smooth weight function
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Review of the Integration by Parts

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 = 0, ∀𝑤

⇒ න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 + න

0

𝑙

𝑤𝑏𝑑𝑥 = 0, ∀𝑤

• Derivation of Integration by parts:

න
0

𝑙

𝑤
𝑑𝑓

𝑑𝑥
𝑑𝑥 = 𝑤𝑓 𝑥=𝑙 − 𝑤𝑓 𝑥=0 −න

0

𝑙

𝑓
𝑑𝑤

𝑑𝑥
𝑑𝑥

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

= 𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥
|0
𝑙 −න

0

𝑙

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥

⇒ 𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥
|0
𝑙 −න

0

𝑙

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥 + න

0

𝑙

𝑤𝑏𝑑𝑥

= 0, ∀𝑤

𝑤 𝑙 = 0 ⇒ − 𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥 𝑥=0
− 0׬

𝑙
𝐴𝐸

𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥 +

0׬
𝑙
𝑤𝑏𝑑𝑥 = 0, ∀𝑤 with 𝑤 𝑙 = 0
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1D Weak Form

− 𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥 𝑥=0
− 0׬

𝑙
𝐴𝐸

𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥 + 0׬

𝑙
𝑤𝑏𝑑𝑥 = 0, ∀𝑤 with 𝑤 𝑙 = 0

• Given the traction boundary condition:
𝑤𝐴𝜎 𝑥 = 0 = −𝑤𝐴 ҧ𝑡

⇒ න
0

𝑙 𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴 ҧ𝑡 𝑥=0 +න

0

𝑙

𝑤𝑏𝑑𝑥 , ∀𝑤 with 𝑤 𝑙 = 0

• Find solution 𝑢 𝑥 among the smooth functions that satisfy 𝑢 𝑙 = ത𝑢
and the above integration

𝜎

Weak form

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 01st order derivative

2nd order derivative

Strong form
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Continuity of functions

• 𝐶𝑛 function: its derivatives of order 𝑗 for 0 ≤ 𝑗 ≤ 𝑛 exist and are continuous in the whole domain

•
𝑑

𝑑𝑥
𝐶𝑛 = 𝐶𝑛−1

• Smooth surface in CAD usually utilize 𝐶1, while FEM employs 𝐶0 approximation

Examples of 𝐶−1, 𝐶0 and 𝐶1 functions. 

Smoothness of functions. Weak discontinuity
Strong discontinuity

න
0

𝑙 𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴 ҧ𝑡 𝑥=0 +න

0

𝑙

𝑤𝑏𝑑𝑥

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0

Weak form

Strong form
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Equivalence between Weak and Strong Forms (1/3)

• From weak form to strong form:

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴𝐸

𝑑𝑢

𝑑𝑥
|0
𝑙 −න

0

𝑙

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥

⇒ න
0

𝑙 𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴𝐸

𝑑𝑢

𝑑𝑥
|0
𝑙 −න

0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

න
0

𝑙 𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴 ҧ𝑡 𝑥=0 +න

0

𝑙

𝑤𝑏𝑑𝑥 , ∀𝑤 with 𝑤 𝑙 = 0

weak form

𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥
|0
𝑙 −න

0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 𝑤𝐴 ҧ𝑡 𝑥=0 +න

0

𝑙

𝑤𝑏𝑑𝑥 , ∀𝑤 with 𝑤 𝑙 = 0

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 + 𝑤𝐴 ҧ𝑡 + 𝜎 𝑥=0 = 0, ∀𝑤 with 𝑤 𝑙 = 0

part of strong form

𝐸
𝑑𝑢

𝑑𝑥
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The Equivalence between Weak and Strong Forms (2/3)

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 + 𝑤𝐴 ҧ𝑡 + 𝜎 𝑥=0 = 0, ∀𝑤 with 𝑤 𝑙 = 0

• Utilize arbitrariness of 𝑤 𝑥 :

𝑤 𝑥 = ψ 𝑥
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏

ψ 𝑥 ቐ
𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
> 0, 0 < 𝑥 < 𝑙
= 0, 𝑥 = 0 𝑜𝑟 𝑙

ψ 𝑥 = 𝑥 𝑙 − 𝑥

⇒ න
0

𝑙

ψ 𝑥
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏

2

𝑑𝑥 = 0 ⇒
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 0 < 𝑥 < 𝑙
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The Equivalence between Weak and Strong Forms (3/3)

න
0

𝑙

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 + 𝑤𝐴 ҧ𝑡 + 𝜎 𝑥=0 = 0, ∀𝑤 with 𝑤 𝑙 = 0

⇒ 𝑤𝐴 ҧ𝑡 + 𝜎 𝑥=0 = 0, ∀𝑤 with 𝑤 𝑙 = 0

• Utilize the arbitrariness of 𝑤 𝑥 :
𝑤 0 = 1 𝑎𝑛𝑑 𝑤 𝑙 = 0 𝑤 = 𝑙 − 𝑥 /𝑥

⇒ ҧ𝑡 + 𝜎 𝑥=0 = 0

0

Traction boundary condition
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Generalized Strong Form for 1D Stress Analysis

𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 𝑙0 < 𝑥 < 𝑙1

𝜎𝑛 = 𝐸𝑛
𝑑𝑢

𝑑𝑥
= ҧ𝑡, 𝑥 ∈ Γ𝑡

𝑢 = ത𝑢, 𝑥 ∈ Γ𝑢

• Complementary boundaries:
Γ𝑡 ∪ Γ𝑢 = Γ, Γ𝑡 ∩ Γ𝑢 = 0

Traction and stress sign difference:
𝑛 = −1 when 𝑥 = 𝑙0
𝑛 = +1 when 𝑥 = 𝑙1

• Traction boundary conditions
• Natural boundary conditions
• 1st order derivative boundaries

• Displacement boundary conditions
• Essential boundary conditions
• Function boundaries

Exact positions of boundary conditions can be arbitrary
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Generalized Weak Form for 1D Stress Analysis

• Strong form:
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 0 < 𝑥 < 𝑙

𝜎𝑛 = 𝐸𝑛
𝑑𝑢

𝑑𝑥
= ҧ𝑡, 𝑥 ∈ Γ𝑡

𝑢 = ത𝑢, 𝑥 ∈ Γ𝑢

• Derivation to weak form:

න
Ω

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 𝑑𝑥 = 0, ∀𝑤

𝑤 ҧ𝑡 − 𝜎𝑛 = 0, 𝑥 ∈ Γ𝑡

න
Ω

𝑤
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

= 𝑤𝐴𝐸
𝑑𝑢

𝑑𝑥
𝑛 ቚ

Γ𝑢+Γ𝑡
−න

Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

⇒ 𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡
+න

Ω

𝑤𝑏𝑑𝑥 = න
Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

∀𝑤 with 𝑤|Γ𝑢 = 0

• Define smooth function set 𝐻1 ∈ 𝐶0:

➢ Trial solution set: 𝑈 = 𝑢 𝑢 ∈ 𝐻1, 𝑢 Γ𝑢 = ത𝑢

➢Weight function set: 𝑈0 = 𝑤 𝑤 ∈ 𝐻1, 𝑤 Γ𝑢 = 0

ҧ𝑡

Weak form
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From Elastic to Heat Conduction Analysis

• Previous slides show elastic and heat conduction analysis share similar governing equations and boundary 
conditions in strong form:

• Weak form of elastic analysis can be transferred directly to weak form of heat conduction analysis:

Stress analysis:
𝑑

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
+ 𝑏 = 0, 𝑥 ∈ Ω

𝜎𝑛 = 𝐸𝑛
𝑑𝑢

𝑑𝑥
= − ҧ𝑡, 𝑥 ∈ Γ𝑡

𝑢 = ത𝑢, 𝑥 ∈ Γ𝑢

Heat conduction analysis:
𝑑

𝑑𝑥
𝐴𝑘

𝑑𝑇

𝑑𝑥
+ 𝑏 = 0, 𝑥 ∈ Ω

𝑞𝑛 = −𝑘𝑛
𝑑𝑇

𝑑𝑥
= ത𝑞, 𝑥 ∈ Γ𝑞

𝑇 = ത𝑇, 𝑥 ∈ Γ𝑇

This transferring method can also be applied 
to other similar systems, such as diffusion.
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Approximation of Solutions to 1D Weak Form

• Obtain a solution to the weak form:

Find 𝑢 𝑥 ∈ 𝑈 = 𝑢 𝑥 |𝑢 𝑥 ∈ 𝐻1, 𝑢 = 10−4 on Γ𝑢 such that

න
Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = 10𝑤𝐴 ቚ

Γ𝑡
+න

Ω

10𝑤𝐴𝑥𝑑𝑥 , ∀𝑤 ∈ 𝑈0 = 𝑤 𝑥 |𝑤 𝑥 ∈ 𝐻1, 𝑤 = 0 𝑜𝑛 Γ𝑢

where 

➢Γ𝑢 is 𝑥 = 0, Ω is 0 < 𝑥 < 2 and Γ𝑡 is 𝑥 = 2

➢𝐴 is constant and 𝐸 = 105

• Approximation of solutions – FEM uses 𝐶0 functions:
➢Trial solutions: 𝑢 𝑥 = 𝛼0 + 𝛼1𝑥

➢Weight functions: w 𝑥 = 𝛽0 + 𝛽1𝑥

o 𝛼𝑖 are unknown parameters
o 𝛽𝑖 are arbitrary parameters

𝐶0 functions can be piecewise for complex geometry.
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Determination of Parameters (1/2)

• Trial solutions: 𝑢 𝑥 = 𝛼0 + 𝛼1𝑥

• Weight functions: w 𝑥 = 𝛽0 + 𝛽1𝑥

• w 𝑥 vanishes at the essential boundary Γ𝑢:
w 𝑥 = 0 = 𝛽0 + 𝛽1 ∙ 0 = 𝛽0 = 0

⇒ w 𝑥 = 𝛽1𝑥

⇒
𝑑𝑤

𝑑𝑥
= 𝛽1

• Essential boundary condition:
𝑢 𝑥 = 0 = 𝛼0 + 𝛼1 ∙ 0 = 𝛼0 = 10−4

⇒ 𝑢 𝑥 = 10−4 + 𝛼1𝑥

⇒
𝑑𝑢

𝑑𝑥
= 𝛼1

• Integral in weak form:

𝐴න
0

2

𝛽1𝐸𝛼1𝑑𝑥 = 𝐴 ∙ 10𝛽1𝑥 ቚ
𝑥=2

+ 𝐴න
0

2

10𝛽1𝑥
2 𝑑𝑥
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Determination of Parameters (2/2)

• Integral in weak form:

𝐴න
0

2

𝛽1𝐸𝛼1𝑑𝑥 = 𝐴 ∙ 10𝛽1𝑥 ቚ
𝑥=2

+ 𝐴න
0

2

10𝛽1𝑥 𝑑𝑥

⇒ 2𝛽1𝐸𝛼1 = 20𝛽1 +න
0

2

10𝛽1𝑥
2 𝑑𝑥

⇒ 2𝛽1𝐸𝛼1 = 20𝛽1 +
80

3
𝛽1, ∀𝛽1

⇒ 𝛼1=
70

3𝐸
=
7

3
× 10−4

• Linear trial solution:

𝑢𝑙𝑖𝑛 𝑥 = 10−4 +
7

3
× 10−4𝑥

𝜎𝑙𝑖𝑛 = 𝑛𝐸
𝑑𝑢

𝑑𝑥
= 𝐸

𝑑𝑢

𝑑𝑥
=
70

3

• Quadratic solution?

➢ Displacement: 𝑢𝑞𝑢𝑎𝑑 𝑥 = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑥
2

➢Weight function: 𝑤𝑞𝑢𝑎𝑑 𝑥 = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥
2

……

Only approximation because 
weight function type is constrained
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Minimum Potential Energy Approach

• The theorem of minimum potential energy:

The solution of the strong form is the minimizer of

𝑊 𝑢 𝑥 for ∀𝑢(𝑥) ∈ 𝑈 where 𝑊 𝑢 𝑥 =
1

2
Ω׬ 𝐴𝐸

𝑑𝑢

𝑑𝑥

2
𝑑𝑥 − Ω׬ 𝑢𝑏𝑑𝑥 + 𝑢𝐴 ҧ𝑡 |Γ𝑡

• The theorem holds for any elastic system, as it only consider internal elastic potential and external work 
made by traction and body force 

𝑊𝑖𝑛𝑡 𝑊𝑒𝑥𝑡
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Deriving FEM Equations Using Energy Approach (1/2)

𝑊 𝑢 𝑥 =
1

2
Ω׬ 𝐴𝐸

𝑑𝑢

𝑑𝑥

2
𝑑𝑥 − Ω׬ 𝑢𝑏𝑑𝑥 + 𝑢𝐴 ҧ𝑡 |Γ𝑡 , find the minimizer 𝑢 𝑥 ∈ 𝑈

• Introduce an infinitesimal change in function 𝑢 𝑥 :
δ𝑢 𝑥 = ς𝑤 𝑥 , 0 < ς ≪ 1, 𝑤 𝑥 ∈ 𝑈0

• Internal elastic energy:

δ𝑊𝑖𝑛𝑡 =
1

2
න
Ω

𝐴𝐸
𝑑𝑢

𝑑𝑥
+ ς

𝑑𝑤

𝑑𝑥

2

𝑑𝑥 −
1

2
න
Ω

𝐴𝐸
𝑑𝑢

𝑑𝑥

2

𝑑𝑥 = ςන
Ω

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥 ς2 → 0

• External work:

δ𝑊𝑒𝑥𝑡
Ω = න

Ω

𝑢 + ς𝑤 𝑏𝑑𝑥 − න
Ω

𝑢𝑏𝑑𝑥 = ςන
Ω

𝑤𝑏𝑑𝑥

δ𝑊𝑒𝑥𝑡
Γ = 𝑢 + ς𝑤 𝐴 ҧ𝑡 ቚ

Γ𝑡
− 𝑢𝐴 ҧ𝑡 ቚ

Γ𝑡
= ς 𝑤𝐴 ҧ𝑡 ቚ

Γ𝑡

⇒ δ𝑊𝑒𝑥𝑡 = ς න
Ω

𝑤𝑏𝑑𝑥 + 𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡

𝑈 = 𝑢 𝑢 ∈ 𝐻1, 𝑢 Γ𝑢 = ത𝑢

𝑈0 = 𝑤 𝑤 ∈ 𝐻1, 𝑤 Γ𝑢 = 0
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Deriving FEM Equations Using Energy Approach (2/2)

𝑊 𝑢 𝑥 = 𝑊𝑖𝑛𝑡 −𝑊𝑒𝑥𝑡

δ𝑊𝑖𝑛𝑡 = ςන
Ω

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑𝑤

𝑑𝑥
𝑑𝑥 , δ𝑊𝑒𝑥𝑡 = ς න

Ω

𝑤𝑏𝑑𝑥 + 𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡

• The minimizer corresponds to the stationary point of 𝑊:
δ𝑊 = δ𝑊𝑖𝑛𝑡 − δ𝑊𝑒𝑥𝑡 = 0

⇒ න
Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 = න

Ω

𝑤𝑏𝑑𝑥 + 𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡
, ∀𝑤 𝑥 ∈ 𝑈0

𝑢 𝑥 ∈ 𝑈

Weak form
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Link to Principle of Virtual Work

• Weak form from the theorem of potential energy:

Find 𝑢 𝑥 ∈ 𝑈 such that

න
Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥 − න

Ω

𝑤𝑏𝑑𝑥 − 𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡
= 0, ∀𝑤 𝑥 ∈ 𝑈0

⇒ 𝛿𝑊 = න
Ω

𝐴𝐸
𝑑𝑢

𝑑𝑥

𝑑 𝛿𝑢

𝑑𝑥
𝑑𝑥 − න

Ω

𝛿𝑢 ∙ 𝑏𝑑𝑥 − 𝛿𝑢 ∙ 𝐴 ҧ𝑡 ቚ
Γ𝑡
= 0, ∀𝛿𝑢 ∈ 𝑈0

𝛿𝑊 = න
Ω

𝐴𝐸𝜀𝛿𝜀 𝑑𝑥 − න
Ω

𝛿𝑢 ∙ 𝑏𝑑𝑥 − 𝛿𝑢 ∙ 𝐴 ҧ𝑡 ቚ
Γ𝑡
= 0

𝜀

𝛿𝑊𝑖𝑛𝑡 𝛿𝑊𝑒𝑥𝑡
Principle of virtual work
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Integrability

𝑤𝐴 ҧ𝑡 ቚ
Γ𝑡
+න

Ω

𝑤𝑏𝑑𝑥 = න
Ω

𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

• 𝐶1 (usually splines) are complicate to build.

• Derivatives of 𝐶−1 (Dirac delta functions) are integrable, but the 
integral of the product of two Dirac delta functions are meaningless.

• 𝐶−1 form of displacement field does not ensure compatibility.

• 𝐶0 is the choice for weight functions and trial solutions.

• Derivatives of 𝑤 and 𝑢 should be square integrable.

Examples of 𝐶−1, 𝐶0 and 𝐶1 functions. 

𝐻1
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An Approximation Function Example (1/2)

𝑢 =

−
1

2

λ
𝑥

𝑙
, 0 ≤ 𝑥 ≤

𝑙

2

𝑥

𝑙
−
1

2

λ

−
1

2

λ
𝑥

𝑙
,
𝑙

2
< 𝑥 ≤ 𝑙

• Check 𝐶0 continuity:

𝑢 ቚ
𝑥→

𝑙−

2

= −
1

2

λ
1

2
= −

1

2

λ+1

𝑢 ቚ
𝑥→

𝑙+

2

=
1

2
−
1

2

λ

−
1

2

λ
1

2
= −

1

2

λ+1

= 𝑢 ቚ
𝑥→

𝑙−

2

𝑑𝑢

𝑑𝑥
=

−
1

2

λ
1

𝑙
, 0 ≤ 𝑥 ≤

𝑙

2

λ

𝑙

𝑥

𝑙
−
1

2

λ−1

−
1

2

λ
1

𝑙
,
𝑙

2
< 𝑥 ≤ 𝑙

𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙−

2

= −
1

2

λ
1

𝑙

𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙+

2

=
λ

𝑙
0+ λ−1 −

1

2

λ
1

2
≠
𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙−

2

𝑑𝑢

𝑑𝑥
=

−
1

2

λ
1

𝑙
, 0 ≤ 𝑥 ≤

𝑙

2

λ

𝑙

𝑥

𝑙
−
1

2

λ−1

−
1

2

λ
1

𝑙
,
𝑙

2
< 𝑥 ≤ 𝑙

𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙−

2

= −
1

2

λ
1

𝑙

𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙+

2

=
λ

𝑙
0+ λ−1 −

1

2

λ
1

2
≠
𝑑𝑢

𝑑𝑥
ቚ
𝑥→

𝑙−

2

When 0 < λ < 1, 𝑢 belongs to 𝐶0
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An Approximation Function Example (2/2)

𝑑𝑢

𝑑𝑥
=

−
1

2

λ
1

𝑙
, 0 ≤ 𝑥 ≤

𝑙

2

λ

𝑙

𝑥

𝑙
−
1

2

λ−1

−
1

2

λ
1

𝑙
,
𝑙

2
< 𝑥 ≤ 𝑙

• Check square integrability 𝐻1:

න
0

𝑙 𝑑𝑢

𝑑𝑥

2

𝑑𝑥 = න
0

𝑙
2 1

2

2λ
1

𝑙2
𝑑𝑥 + න

𝑙
2

𝑙 λ2

𝑙2
𝑥

𝑙
−
1

2

2λ−2

− 2
λ

𝑙2
𝑥

𝑙
−
1

2

λ−1
1

2

λ

+
1

2

2λ
1

𝑙2
𝑑𝑥

න
𝑙
2

𝑙 𝑥

𝑙
−
1

2

2λ−2

𝑑𝑥 =
𝑙

2λ − 1

𝑥

𝑙
−
1

2

2λ−1

|𝑙+
2

𝑙 =
𝑙

2λ − 1

1

2

2λ−1

−
𝑙

2λ − 1
0+ 2λ−1

→ −∞ when 0 < λ <
1

2

𝑢 does not belong to 𝐻1



The End


