Computational Mechanics

Chapter 2 Strong and Weak Forms for 1D Problems




5-Step Analysis in FEM

* Preprocessing: subdividing the target domain into finite elements by automatic mesh generators.

Fundamental mechanics analysis related to FEM equation formulation

* Assembly: obtaining equations for the whole system by gathering ones at the element-level.
* Solving equations.

* Postprocessing: calculation results visualization and output.




Introduction to Strong and Weak Forms

* This section focuses on 1D analysis for various physical problems from the viewpoint of FEM.
e Strong form: governing equations (partial differential ones) and boundary conditions from physical analysis

* Weak form: an integral form of the strong form — to reduce requirement for the trial solution.

Strong form: Weak form:

VEasy to build x Complex to build
x Difficult to solve VEasy to solve

Finite difference method with simple regions Finite element method




Roadmap of FEM

Strong form Weak form

Discrete equations

Approximation of functions

* Advantage of weak form — complicated geometry for real engineering problems




Analysis for An Axially Loaded Elastic Bar

e Static, elastic, linear and infinitesimal deformation:

1. Equilibrium constraint 2. Hooke’s law of the material

3. Compatible displacement field 4. Strain-displacement equation




Force Equilibrium Conditions

e Equilibrium of a small segment in a complex object:

Ax
—p(x)+b<x+7>-Ax+p(x+Ax)=O

+ Ax) — A
:p(x x) p(x)+b x+—x =0
Ax 2

d
Ax—>0=>Lx)+b(x)=O
dx




Calculation of the Governing Equation

 Hooke’s Law:

o(x) = E(x)e(x)

dp(x) d du
F-I_b(X) _O:E<AEE)+I?_O

2nd order ODE

e Stress:

o(x) = % = p(x) = A(x)a(x)
* Strain:
ulx + Ax) — u(x)

e(x) = X
X du Definition based on infinitesimal deformation

Ax—>0=>e(x)=a




Strong Form for an Axially Loaded Elastic Bar

« Governing equation:

d
E(AE%@O’ 0<x<I

* Traction boundary condition:

d
x a(x=0)=E8=E—u=@
dx

* Displacement boundary condition:

ulx =1) :@




Strong Form for 1D Heat Conduction

e Stable heat conduction analysis for a small segment:

q(x)A(x) +i(x + %) -Ax —q(x + Ax)A(x + Ax) =0

o b 2
q(x)A(x) qx + Ax)A(x + Ax)
i d(gA)
Ax - 0= @ S =
dx
* Fourier’s law: u
= kdl=> a Ade +s=0
1= dx dx dx >
* Boundary conditions:
dT(x = 0 _
—q(x=0)=k (x )=c_1, Tx=D=T

Similar to mechanical analysis, can be solved using one method



Introduction of Weight Function

e Stress analysis as an example:
» Governing equation:

(42 4 b =0,0< <l=>fl 2 (42 4 blax=0,v
dx dx R Owdx dx TR

Arbitrary smooth weight function

» Traction boundary condition:
du _ du _
E—=—t =>|wWAlE—+t =0,Vw
dx dx
x=0 x=0

e Equation simplification at the essential boundary:
w(l) =0
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Review of the Integration by Parts
LZW[%(AE%>+b]dx=O,VW LlW%g ZZ)dxl N
[ bl

l
)dx+fwbdx=0,‘v’w

0 lAEdudd+flbd

dx |o dx ) dx OW *

* Derivation of Integration by parts: =0, Yw

L g
fOWd—idx—(Wf)xl (Wf)x=0 Jf_dx w(l) =0= — (WAEdu)x O—II(AE@)d—V;dx+

f wbdx = 0, Yw withw(l) =0
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1D Weak Form

l du\ d l :
— (WAE —)x:O -/, (AE d—z)d—vsdx + J,wbdx = 0, Yw withw(l) = 0

X

* Given the traction boundary condition:
wAo(x = 0) = —wAt

iy
Ldw du : , .
= f AE —dx = (WAt),—o + f wbdx ,Vw withw(l) =0 Strong form
o dx  dx 0
15t order derivative i AE@ +h=0
dx dx

* Find solution u(x) among the smooth functions that satisfy u(l) = u

) : 2"d order derivative
and the above integration

Weak form
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Continuity of functions

« C™ function: its derivatives of order j for 0 < j < n exist and are continuous in the whole domain

4 fo

Smoothness of fiinctions.

Weak discontinuit
eak discontinuity Strong discontinuity

_____ Smoothness (:iumps) Lomments
Jumps - ‘ ] ‘
Kinks C Yes Yes Piecewise continuous
_ ? Yes No Piecewise continuously differentiable
— _(5 C' No No Continuously differentiable
P X

Examples of C™1, C° and C? functions.

Ldw  du l
Weak form J AE dx = (WADx:O + j wbdx V
o dx dx 0

d —
o« —(CN =" 1
dx

Strong form d du
<AE

E E)-Fb:()x

 Smooth surface in CAD usually utilize C1, while FEM employs C° approximation
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Equivalence between Weak and Strong Forms (1/3)

* From weak form to strong form:

j‘l d AEdu Iy — AEdu l Jl AEdu dwd
Ode dx ) T\ ax o 0 dx)dx

part of strong form

= ldWAEdud = (wae 22 jl (a2
o dx  dx A\ A o Owdx dx )"

weak form

ldw  du _
j AE —dx = (WAt) =0 + j wbdx ,Vw with w(l) = 0
o dx  dx 0

sty jl (452 dx = (wap) +fl bdx, Yw with w(l) = 0
w I lo Ode I x = (WAt) =g 0W x,Vw withw(l) =

L Td du _
j w [— (AE —) + b] dx + wWA(t + 0) =0 = 0,Vw withw(l) = 0
o |dx dx —
v
dx
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The Equivalence between Weak and Strong Forms (2/3)

J ! ( >+b]dx+WA(t+U)x o = 0,VYwwithw(l) =0

* Utilize arbitrariness of w(x):

d{ d
w(x) = P(x) [ﬂ (AE d—Z) + b]

smooth function
P(x) 0<x<lI (LlJ(x) =x(l — x))
= 0, x =0orl

(o [ (a2 46| ax = 0o L(a5D) 4 b= 0,0 <x <
Oqjx dx dx * = dx dx - ous
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The Equivalence between Weak and Strong Forms (3/3)

J ! ( >+b]dx+WA(t+U)x o = 0,VYwwithw(l) =0

= WAt + 0),=¢9 = 0,Vw withw(l) =0

* Utilize the arbitrariness of w(x):
w)=1landw(l)=0w=(U—-x)/x)

= (t_-‘l‘ O-)x=0 — O

Traction boundary condition
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Generalized Strong Form for 1D Stress Analysis

Exact positions of boundary conditions can be arbitrary

e\ sp=0 1 <x<I
dx dx - 0S XSk

* Traction boundary conditions

du _ N
Traction and stress sign difference: on =En— =t, x € I, * Natural boundary conditions
dx e 1storder derivative boundaries

n=-1whenx =1,

n=+1whenx =1 B
u=u, xely . Displacement boundary conditions

e Essential boundary conditions
* Function boundaries

 Complementary boundaries:
[;Ul, =T, NI, =0
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Generalized Weak Form for 1D Stress Analysis

« Strong form:
d du
—|AE— |+ b =0, O<x<l

dx dx
E du t e
on = En—=1t, X
dx t
u=1u, x €I},

* Derivation to weak form:
d du

f w|—|AE— |+ b|dx = 0,Vw
q |dx dx

w(t —on) =0, x €T}

j d AEdu p
Q Wdx dx )
du f dWAE dud
ry+ry  Jo dx dx *

= WAE —n
t
_ dw du
WAt +j Wbdx=j —AE —dx
r. Jg q dx  dx

d_x
vw withw|p =0
Weak form

« Define smooth function set H! € C°:

> Trial solution set] = {ul|u € H',u|r, = up
> Weight function set:g = {w|w € HY,w| =0Tp
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From Elastic to Heat Conduction Analysis

* Previous slides show elastic and heat conduction analysis share similar governing equations and boundary

conditions in strong form:

Stress analysis: Heat conduction analysis:
a4 p =0 eq a4 p =0 €
dx dx - * dx dx - *

du _ dT
0n=Ena=—t, x €I} qn=—kna=q, x €Iy
u=1, x€TI T=T, «x€Tly

* Weak form of elastic analysis can be transferred directly to weak form of heat conduction analysis:

Elasticity Heat conduction
u T ) . )
E k This transferring method can also be applied
b s to other similar systems, such as diffusion.
! —q
i T
F; Fq
L, Iy
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Approximation of Solutions to 1D Weak Form

* QObtain a solution to the weak form:

Find u(x) € U = {u(x)|u(x) € H, u = 10~* on I,} such that

dw du
J —AE —dx = 10wd
Q

+ j 10wAxdx ,Vw € Uy, = {w(x)|w(x) € H',w = 0 on T;}
dx  dx r. Jg

where
»Iisx=0,Qis0<x<2andl;isx =2
> A is constant and E = 10°

* Approximation of solutions — FEM uses C° functions:
o «a; are unknown parameters

» Trial solutions: u(x) = ay + a1 x _
o [5; are arbitrary parameters

» Weight functions: w(x) = B + B1x

C° functions can be piecewise for complex geometry.
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Determination of Parameters (1/2)

* Trial solutions: u(x) = ay + a;x * Essential boundary condition:
* Weight functions: w(x) = Sy + B1x ux=0)=ap+a;-0

— ao — 10_4

> u(x) =107* + ayx

* w(x) vanishes at the essential boundary I;:
wx=0)=p+p1-0=,=0 du

= —=q
dx 1

= w(x) = f1x

dw * Integral in weak form:

2
Af BiEaydx = A-10p;x|
0 X

2
+ Af 10B,x? dx
2 0
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Determination of Parameters (2/2)

* Integral in weak form:

2 2
Aj p1Eajdx = A-106x ‘ + Af 1061x dx
0 x=2 0

2

= ZﬁlEal = ZOﬁl + j 10,31362 dx

0

80
= 2p1Ea; = 2006, + ?[31; VB,
70 7 « 10~
=S = — = —
=373

* Linear trial solution:

. 7
ulm(x) = 107% + 3% 10~ 4*x

gl = nEd—u =
dx

du_70

F— =
dx 3

Only approximation because
weight function type is constrained

* Quadratic solution?
> Displacement: u9“2?(x) = a; + a,x + azx
> Weight function: wa%4(x) = B; + Box + B3x?

2
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Minimum Potential Energy Approach

* The theorem of minimum potential energy:
The solution of the strong form is the minimizer of

du
dx

)2 dx — (fﬂ ubdx + (uADlFt)

Wint Wext

W (u(x)) for Vu(x) € U where W (u(x)) = %fﬂ AE(

* The theorem holds for any elastic system, as it only consider internal elastic potential and external work
made by traction and body force
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Deriving FEM Equations Using Energy Approach (1/2)

2
W(u(x)) = %fﬂ AE (3—;‘) dx — (fﬂ ubdx + (uADIFt), find the minimizer u(x) € U

* Introduce an infinitesimal change in function u(x): U = {ulu € HY, ulr, =)
Su(x) = cw(x), 0<¢K1, w(x) € U, Uy = (wlw € H wr, = 0]

* Internal elastic energy:

SW, 1f ag (B4 29 1J as (24 4 j AE Y 4 (62 - 0)
. - — N S —_— N — R -
2, dx " °dx) T2 Q dx) “F 75 q  dxdx £

* External work:

SWE, = J (u + qw)bdx —f ubdx = gj whbdx
Q Q Q

= ¢(wAt)

It
Ft)

SWL, = (u+w)At

— (uAt)
It I't

= W,y = <f whbdx + (WAt)
Q
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Deriving FEM Equations Using Energy Approach (2/2)

W(u(x)) = Wint — Wext

du dw

oW:., = AE ——dx, ow.,., = bd At
int gfﬂ dx dx X ext g(fﬂ wbdx + (WAt)

3

* The minimizer corresponds to the stationary point of W'
u(x) cU 6W — SWint — SWext — O

dw du
Weak form N J AE — dx = f wbdx + (WAt) | , vw(x) € U,
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Link to Principle of Virtual Work

* Weak form from the theorem of potential energy:
Find u(x) € U such that

dw du
f AE —dx — f wbdx — (WAt)
Q Q

=0, vw(x) € U,

[¢

dx dx

- 0, V6u € UO

It

L dud(
= SW = j ¢ (u)dx—j Su - bdx — (5u - AF)
dx dx Q

5W=f AEe&c:dx—f du-bdx — (bu-At)| =0
Q

Q [¢

) Wint 6Wext

Principle of virtual work




Integrability

Jumps
®  Kinks

P X

Examples of C™1, C° and C* functions.

dw du

wAt +J wbdx = —AE —dx
e Q Q

dx dx

C! (usually splines) are complicate to build.

Derivatives of C~! (Dirac delta functions) are integrable, but the
integral of the product of two Dirac delta functions are meaningless.

C~! form of displacement field does not ensure compatibility.

C9 is the choice for weight functions and trial solutions.

Hl
Derivatives of w and u should be square integrable.
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An Approximation Function Example (1/2)

( A ( A
1\ x [ 1\ 1 [
_(Z) = _ =) Z 0<xy <=
U = 4 —-_ = _
x 1\* [1\'x I dx |a/x 1\7" 1”1l< -
\17z) “\z) 12 7= \1 72 2) 1257
du 1\"1
* Check C° continuity: _‘ === =
X 2) 1

| - 17\1_ 17\+1 dx
lrTT\2) 2772 .
du‘ l+=z\(0+)}‘_1_(1>1 d_u‘ I

X——

‘ B 1 1 A 1 }\1_ 1 }\+1_ ‘ dx x—>7 l 2 2 dx 2
e T\272) T\z) 277\ TR

When 0 < A < 1, u belongs to C°
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An Approximation Function Example (2/2)

* Check square integrability H:

l — —_
jlduzd_151”1d+j‘7\2x 12“2}\x 1“1“+1”1d
o \dx) T \2) ET T e\l 2\1"2) \2 2) 2|

l x 1 2A-2 I X 1 2A—1 I 1 2A—1 I
J —__ dx = - _= |§+ — _ _ (O+)2)\—1
% [ 2 2 —1\1l 2 20— 1\2 20— 1

—>—oowhen0<7\<%

u does not belong to H?!
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The End




