Computational Mechanics

Chapter 5 Continuum Mechanics




Introduction to Continuum Mechanics

Building block for multidimensional and nonlinear finite element analysis

Mathematical tools to capture multidimensional values — vectors and tensors

Components of body movement — deformation and rigid body rotation

Universal measurement in mechanics analysis — stress and strain

Coordinate system rotation — polar decomposition and frame-invariant rates of stress




Introduction to 2" Order Tensors

2nd order tensors are commonly used in mechanics * Inverse of a tensor:
v=F-ueou=F11v

2"d order tensors can be express similarly to 2D matrices

All tensors can be regarded as vector — vector function:
v=F(u) * Orthogonal tensor — pure rotation:
lv| =[A-ul| = |u|

Fundamental properties of 2"d order

» Homogenous:
F(au) = aF(u)

su-u=v-v=u-AT-4-u

=A"-A=1, A"=A"1

> Linear:

F(u, +u;) = F(uy) + F(uy) . o .
* Principal values and directions — linear scale:

>v=Fu)=F-u F-u=au
* Transpose of a tensor: * Expansion to nth order tensors:
F-u=u-FT * Same as matrices FM .y = -1 3

e Tensors are physical entities



Cartesian Coordinates

* Introduction to rectangular Cartesian system and * Tensor Components:
base vectors to describe vectors and tensors: v=F-u

4V, X

>v,=e,-v=ep-F-u=e;-F-ue

=>Uk = (ek°F-el)ul

Fip

= F = Fklekel

ei-ej = 51]

* Vector CompOnentS:
u=ueq + u,e, + Uz€3 = U;€;

Summation convention — two and only two same indices (i)




Vector Product in Cartesian System

 Calculation of vector product in component format (not the right-hand rule):
w=uXxv=(ue;) X (vjej) = u;vje; X ej = U;Vj€; ey

1, ijk =123,312,0r 231

0, if 2 indices are the same
€ijk =
-1, ijk = 213,321,0r 132

* Express vector product in matrix format for convgnienece: o
1 €2 é3

Uy Uy Uus
V1 Vy V3

W =

Determinant




Products of Tensors

* Tensor product:
F-G= (Fklekel) . (Gijeiej) = ekalel . eiGijej = ekalGljej

H=FG:>HL]=FllGl]

e Scalar product — type 1:
F - G = (Fyexe) - (Gijee;) = FruGij(ey - ej)(e; - e;) = F Gy

e Scalar product — type 2:
F:G = (Fyere)):(Gijeie;) = FiuGij(ey - e)(e; - €)) = Fi Gy




Determinant of 2" Order Tensors

e Determinant calculation in component format:
Myy Myp; M3

M21 M22 M23
M31 M32 M33

det(M) = = €jxMq1; M M3y

 Transpose property: Write all terms out to prove
det(M) = €;j;My;MyjM3) = € Mis Mj Mz = det(M")

e Cofactor in determinant:
det(M) = €;, My ;M5 M3, = My cq;

= det(M) = My,;c,; = My, ¢y, (no sum on p)

1
C1i = 56123EijkM2jM3k + 56123EijkM2jM3k

1
= C1; = 56123EijkM2jM3k + 561326ijkM3jM2k
1
= (= EelmneijkajMnk

Adjugate of M
My = (c)" = EeimneljkajMnk

. 1 1
Mleli = EeimneljkMleijnk = Eeimnepmn det(M)

Inverse of M M

= Mlel*i = Opj dettM) > M~ = det(M)

Identity tensor I



Transformation Matrix for Coordinate Rotation

Orthogonal transformation, no axis scaling!!!
¢ Two coordinate systems with relative rotation: = A =e,e;

Dyadic product

» Transpose property of A:
e,=A1.-e, =A" .e},

e, -e,=e, A -e,, = AL = cos(m,n') = A,,,

I=A ‘AT = 61] = ALRA£] = AikAjk

I=A"-A> 68 = AxAjx = AiArj = AicAjx

o 2 cos(i, k') cos(j, k") = z cos(k,i") cos(k,j') = &;;

ﬁei'e} =COS(i,j’) =el--A-ej =Al]




Vector Components after Coordinate Rotation

* Consider one vector v: e Similarly:
> In system el-e2-e3: vy =e,-v=e,-(ve;)=v e, e = AV
UV =7v;€;

) I
Ay A Azl ™

I/
= [V1 V2 V3| = |43, Ay Axs||v,

Az1 Azz Azz||vj)

» In system e’1-e'2-e’3:
f— ,. ’-

UV =v;e; = v'je'j

Note: avoid format u = A - v as we

I o _ / _ are working on the same vector v!!!
S>vi=er-v=ey-(vie) =vey-e =vAy

A1r Aip Agz
=>[v; vy vzl =1[V1 V2 V3]|Ay Az Aps

Az Azy Asz




Tensor Components after Coordinate Rotation

e Express two vectors and their linking tensor in el-e2-e3 system:
Uk = Fiqu

The same vector v and u in e’1-e’2-e’3

e Similarly:

I - _ I __ !/ !/
= U = Apn Vi = AgnFraiy = AgnFraAyju; = Fyju;

nj=J

= FT,l] — AkanlAlj == AngklAlj

= [F'] = [A"][F][A]

[F]

[AI[F'][A"]

Note: [F] and [F']are matrix formats of the
same tensor F in different rotated coordinates!!!
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Definition of Domains

e Continuum mechanics focuses on macroscopic behaviors and ignore discontinuity within materials

* Different multi-dimensional body domains induced by deformation:

Q,: initial/undeformed™ configuration, usually
also reference configuration to define motion

Undeformed®: idealizationatt = 0
@D (X, t): deformation descriptor

Q: current/deformed configuration

11



Lagrangian and Eulerian Description

* Lagrangian/material coordinates — position of one material
point using initial configuration with no time effect:
X(point p) = X;e;

* Eulerian/spatial coordinates — trace spatial motion of one
material point using reference condition at time t:
x(point p,t) = @(X(point p),t)

* Lagrangian description is preferred in solid mechanics to
take deformation history into consideration
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Deformation Gradient

reference current

* Definition of deformation gradient tensor:

0x
Fim = 55— (X)
m

e Coordinate free notation:
dx=F -dX =dX - FT
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Change in Length of Lines

e Obtain length by scalar product of vectors:
(ds)? =dx-dx = (dX-F") - (F-dX)

= (ds)? =dX-(FT -F)-dX

dX = NdS

2
ds
:(E) :N.(FT.F)'N:N.E.N

Green deformation tensor

e Calculate stretch ratio:

Calculate reciprocal value of A:

dX=F ' -dx=dx -FT
= dS)?’=dX-dX=dx-(FT-F1).-dx

2
dS
— | =A2=n-(FT-F1)'n

ds
Cauchy-Green tensor B = F - FT

U
Il
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Change in Angle between Vectors

dX, o
dX,
reference
current
e Calculate angle after deformation:
dxA * de
cos @ =
ldx,||dxp|

dSANA'FT'F'NBdSB

_NA.C'NB

= cos O =

e Change in angle (shear):

y=0—0 =cos (N, -Ng) — cos‘1<

dSy/Ns-C-Ny /[Ny -C-NpdSy Mg

NA.C.NB
AVYAY:

15



Change in Area Enveloped by Two Vectors

* Utilize vector product, before deformation: =>n-Fda = €, Fy, Fjr Fis(dX ), (dXp)sey
NdA = dX, X dXg = eiEijk(dXA)j(dXB)k

det(F) = det(F") = €; F;; Fj;Fys

e After deformation:

nda = dxy X dxg = (F - dX,) x (F - dXp) *Take different values tou, r and s:

> n-Fda = ¢e,,.det(F) (dX,),(dXg).e,
= nda = eiEiij}'r(dXA)rst(dXB)s
=>n-Fda = det(F)dX, X dXz = det(F) NdA
F = Fl-jel-ej
= nda = det(F) N - F1dA
=n-Fda = eieijkP}'r(dXA)rst(dXB)s - Fecey
da

= — =det(F)n-N-F!
= n-Fda = Eiij}'r(dXA)rst(dXB)sFiueu dA

16




Change in Volume Enveloped by Three Vectors

» Before deformation (right-hand rule):
dV =dX, - (dXpg X dX¢) = dX, - €;e;(dXp)j(dXc)r = €;jx(dX4)i(dXp);(dX )k

e After deformation:
dv = dx, - (dxg X dx¢) = €r5:(dxy),(dxp)s(dxc);

* Application of deformation gradient F:
dv = ErstFristFtk(dXA)i(dXB)j(dXC)k

= dv = det(F) Eijk(dXA)i(dXB)j(dXC)k
dV

* Volume change ratio:
= = det(F)
]

(Jacobian) determinant
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Rigid Body Rotation

 Large rigid rotation causes complexity/nonlinearity even under small actual deformation

* Expression of rigid body rotation R(t) to a material point:

X =R - X X
x(X,t) () +L(t)TransIation motion

* Rigid body rotation matrix is orthogonal:
(dx)* =dx-dx=dX-R"-R-dX=(dX)?=dX-dX=>R"-R=1

* Rigid rotation of vectors:
e,=R-e,=e¢,-RT>v'=R-v=v-RT

* Rigid rotation of 2" order tensors:
U= Ul-jeiej => U = Uijege]'- = UUR . eiej . RT =R Ul-jeiej . RT =R-U- RT

Becomes a new tensor in the same coordinate,
different from coordinate rotation

18




Principal Values and Principal Directions

* Stretch along and only along principal directions:
AML=F-u

=>F-MN)-u=0

e uis nonzero along principal directions, so:
|[F —AIl =0

Principal value(s)

« 2nd order (3x3 matrix) tensors lead to 3 principal values, corresponding to 3 principal directions:
AxkUg = F - ux (K =1,11 and I11,no sum on K)

Unit principal vectors |ux| = 1

e Determine principal values and directions:
IF—M|=0->F—-AI)-u=0
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Components of Deformation

dx=F-dX=R-U-dX

Pure stretch U

dX ‘

* Rigid rotation is orthogonal:

RT-R=1

Rigid rotation R

‘ dx

e Calculation of stretch ratio from Green deformation tensor C:

A

Note: square root operation only applicable

ds

=—=+VN:-C-N
ds v
=>U=+C

when in principal direction coordinates and
C is expressed as a diagonal matrix!!!
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Properties of Principal Directions

* Prove principal directions with different principal values are orthogonal:

. L BN N,
Assume two principal directions are not orthogonal: N
C-Ng =ugNg (K =1,2and py # u,)
N2 = C(Nl +IBN (CZ * O,N]_J_N)
> aN,

= N;-(C-N;) =Ny (ap;Ny +BC-N)=au; =Ny - 13Ny = Ny - (ap;Ny + BupN) = ap, X

* Principal directions with different principal values can be base axes of a Cartesian system

e Orthogonal principal directions will keep orthogonal after deformation:
N;-C-N, :N1'M2N2 —0

NN, VAV

cosf =cos<ny,n, >=

T
ﬁg_——r d
2 a

21




Polar Decomposition

* Geometrical meaning of polar decomposition with ¢ Rigid rotation tensor in principal vectors:

principal direction axes: ng =R -Nyg = R =ngNg
Reference configuration N, Dyadic product format
N e Polar decomposition of F:
N I dsz'dX:(R'U)'dX$F=R°U

Current configuration

Pure stretch {} Ay
3/) C=FT . F=UT-RT-R-U=U-U>U-=+C
AN

AN, Results need to be transferred back to original coordinate

"I‘\‘H.f n I

& e Alternative route — rotate then deform:

ANy, dx = (V . R) - dX

AN, Rigid rotation

* Stretch tensor expressed with principal vectors: V. =Amm; + Aygnyny + Ay

U=MANN;+AyNyN; + ANy Ny
>V=R-U-RT

Ul =U 22



Requirements for Material Strain Tensors

* Material strain tensors are calculated in respect of reference/initial configuration

 Strain tensors should capture deformation, exclude rigid rotation and cover small-strain scenario:

» Has the same principal directions as pure stretch tensor U:
E=f(ADN/N; + f(A DNy Ny + J (AN Ny = E" =E
Smooth and monotonic
» Exclude pure rotation — f vanishes when U = I:

f(1) =0

» Agrees with small strain tensor:
ffA=1
Taylor expansion to 15t order: f(A) = f(1) + f'(1)(A— 1) + o[(A — 1)?]
>fM)=fO+(VDA-1)=A-1

Under small deformation, reduce to change in length per
unit reference/initial length along principal directions.
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Material Green Strain Tensor

E = f(AI)NINI + f(AII)NIINII + f(Am)NmNm» f(l) =0, f’(l) =1

1 1 1
f(A) =§(A2—1) = E¢ =§(UT-U—I) =§(FT-F—I)
Green strain

* Express Green strain in component format:

1 1 1 axk axk
Ej; = §(Fi71; - Fij — 6ij) = E(Fki - Fij — 6ij) = E(axi ' ox; 5ij>

* Before and after deformation, node positions can be linked by displacement vectors:
X, + axk an + Up 5 n auk
X, = U, = = = Op;
o Tk TR 5%, 0X; KT aX,

:EG—l 5 +(3uk 5 +6uk 5 _1 aui_l_auj_l_aukauk
U2\ Tax )\ Tax; ) Y| T 2\ax; " ax; ' aX; dX;

24



Other Typical Material Strain Tensors

fAN=A-1=EM =U-1

1
fN)=1——=2ED=1-y"!

Logarithm strain:

A

f(A) = InA = EM = nU

Note:
* Format of f(A) only makes sense along principal directions;
* These tensors cannot be calculated directly from F.

25



Linear Analysis for Small Strain

e Utilized to demonstrate that material strain tensors can cover small strain scenarios.

* Node positions can be linked by displacement vectors before and after deformation:

u=x—X, uk=xk—Xk
d0x; du;
:>Fij:a_)(;:5ij+a_)(;:>F:I+(VXu)T

Displacement gradient tensor

C=F"-F=(I+Wxw) - I+ WVxw)T) =1+ WVxw) + (Vxu) + (Vxu) - (Vxu)T

Ouj Oui au] Oui auj Oui
ij t

e+ — ~ 8 = 5, + 2¢;;
T ox, T ax; " 9x; 0x, axi+axj> i+ 28y

— _ Small strain
Negligible under small deformation

=>C~1I+2¢ 1
5((qu)T + (qu)) 26




Linear Geometrical Measurement (1/2)

* Stretch ratio anng base vector e
= (e;:C- 31)2 ~ (e;- I+ 2¢) - 31)2 =(1+2e, € 31)2 ~1+e -€-€
(1+x)°~1+cx+o0(x?)

e &€e=N—1=¢

Same as conventional
* Angle change of orthogonal base vectors e; and ej: small strain definition!

e,-C-e, e -(I+2¢)-e,
/\1/\2 N 1‘1

0-—y)=

<
Q
(o)
o
9]

~

=2e,-&-6€,

Small deformation

)14
:>el-£°ez=€12 zz

27




Linear Geometrical Measurement (2/2)

* Volume change:

dv ou; du;
v det(F) = €;jxFi1Fj2Fys = €ijx | 811 + X, Ojz + X, Ok3 + X,

Neglect high order terms due to small deformation

:>dv~ 1+6u2+0u1 5 +0uk ~1+0u1+0u2+6u3_1+
av 2\ T ox Toax, )\ T ax, ) T T T ax, T ox, ox, W

28



LinearPolar Decomposition

* Linear approximation of C along principal directions:
C~(1+2¢)NN;+ (1+2e)NyNy+ 1+ 2N Ny

= U=\/Ez1/1+2€ININI +W/1+2€IINIINII+\/1+2€HINIIINIII

>U~Q+e)NN + A +¢e))NyNy+ L+ ey)Ny Ny =>U=1+¢
Approximation from small g;

> U1

NINI-I_“. =~ (1—€I)NINI+°" = l]_1 =] —¢
+ &

Neglect high order terms due to small deformation
R=F- U=+ Wxw)- - e) ~I—e+WVxw) =1+= ((VXu)T — (Vxw))

= ((qu) + (Vxu)) Infinitesimal rotation tensor:

0 _1 Oui Ou]
7 2\0x;,  ax;

* Displacement combines deformation and rotation: (Vyu)” = £ + 2 29



Small Strain Compatibility Condition

+ components — has further constraint/relationship.

6 strai ts f 3 displ t
o 1 au] aui strain components frrom ISplacemen
Joo2\0X;  0X;
 Strain compatibility (no crack) — strain leads to single-value displacement field

* Derivatives of single-value and differentiable function:
0™"u 0"u

0X;y 0K 0Kjp . 0Xiy

,(i1...inand j1 ...jn are components with dif ferent order)

Interchangeable differential order
= 281212 = U112 T Uz 112 = Uy g2 T U211 = E1122 + E2211

Expand to other components = Vy X (Vy x )T =0

! 0 d&jy 0%ejy
= Eem X eiﬂa—Xiekel = EmknEijlmenel

0%¢: : :
jk 6 equations but only contains

0= i ————
Emkn€iji 0X;0X,, |3independent conditions 30




Rate of Deformation

» Spatial velocity gradient tensor — variation of velocity field in the current configuration:
Jdv
L=—>=>dv=1L-dx
ox
dx=F-dX=>dv=dx=F-dX=L-dx=L-F-dX=>L=F-F'

* Symmetric partin L:

1 1,. .
D=§(L+LT)=§(F-F‘1+F‘T-FT)

o1, . 1, . . . .
EG=E(FT-F+FT-F):FT-D-F=§(FT-F+FT-F)=EG=>D=F‘T-EG-F‘1

Pull-back (to initial configuration) operation Push-forward (to current
configuration) operation

31




Common Stress Measures

o e Cauchy stress (true stress in current configuration):

. n-odl =df =tdl’, o =o'

* Nominal stress (engineering stress in initial configuration):
no‘Pd[b:df:todro, P:;tPT

Reference
configuration

e PK2 stress:
nO 'Sdro = F_l . todl—'o

df
4 * Make § symmetric

F o « Make S conjugate to E¢ in power

Current
configuration

32



Corotational Stress and Deformation

* Describe stress and deformation in the coordinate corotates with the body to analyze structure elements
and anisotropic materials

e Corotation is rigid and can be measured using R from polar decomposition

e Utilization of coordinate transformation for 2"d order tensors:
6 =R"-0-R Corotational Cauchy stress

D=R"-D-R Corotational rate-of-deformation

Same tensors expressed in different coordinate systems!

33




Transformation of Stress Measures

» Stress measures can be transformed using deformation functions, refer to Box 3.2 of the textbook

Box 3.2 Transformations of stresses

Cauchy stress @ Nominal stress P 2nd Piola—Kirchhoff Corotational Cauchy
stress S stress G

o= J'F-P J'F-S§-F' R-6 R’

P=JF'o S-F’ JU'.6-R’

S=J/F'o-F' P-F' Ju'.g-U!

6=R"0-R J'U-P-R J'U-S-U

1=Jo F-P F-S-F JR-6-R

Notes: dx=F - dX=R . U.dX
U is the stretch tensor; see Section 3.7.1
dx=R-dX = R-dX in rotation
t= Kirchhoff stress




Pairing of Stress and Strain Tensors

 Stress and Strain/Deformation tensors can be defined in various ways (coordinates, time derivative, etc.)

* Pairing of stress and strain tensors should follow work conjugate requirement (Box 3.2 in textbook):

Box 3.4 Stress-deformation (strain) rate pairs conjugate in power

Cauchy stress/rate of deformation: " =D:o=0:D= DJ_IJ,‘,-
Nominal stress/rate of deformation gradient: p ™ =F' :P=P' :F = F”P:
PK2 stress/rate of Green strain: pw™ =E:S=S:E=ES,

Corotational Cauchy stress/rate-of-deformation: pw'™ = D:6=6:D=D

y=a

~

* Derivation of work conjugate starts from conservation of energy

* Constitutive law/equations of a material should link paired stress and strain tensors
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Objective Rates in Constitutive Equations

* Importance of objective rates — test rate form linear elastic law with Cauchy stress tensor:

- Do
- = CqDlel or D_t= CGD:D

Material time derivative in respect to reference configuration

 Change of C°? under rigid rotation with prestress:

g Ay * Rigid rotation:

1 . . 1.
0 F=R=>D=E(R-RT+R-RT)=§I=O

T * Stress changes in respect to reference configuration:




Jaumann Rate

* Antisymmetric spin tensor:

1
W=§(L—LT) =L—-D
* Jaumann rate of Cauchy stress:
v Do T
c'/=—-W-6-0-W
Dt
e Correct constitutive law:
"/ =¢C%:D
Do T
:Ezcaf:D+W-a—a-W
Material Rotation

Validity of Jaumann rate is demonstrated in Example 3.12 in the textbook.
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Common Objective Rates

* Truesdell rate and Green-Naghdi rate are also frequently used due to easy implementation

* Comparison of the objective rates (Box 3.5 in the textbook)

Box 3.5 Objective rates
Jaumann rate
, ) : ., Do
o ='TD—?-“'-0'—J-W;, J:;'J =T!J—W‘D'“ _mee\j (B3.5.1)
Truesdell rate
w Do T
:E+dw (vjc-L-o0-0-L (B3.5.2)
. Do. oy dv. dv.
VT y k i !
ol = + O — g. -0, — (B3.5.3)
! Dt ox, " ox, Y "o
Green—Naghdi rate
» . . Do ,
o' :%—Q-J—dn’. 0" :Tr”—ﬂ,{cri_, -0,Q, (B3.5.4)
1 ﬂ\" a\'J
Q=R-R', L=—=D+W, L,=—=D,+W, (B3.5.5)
ox ox;

» Different objective rates utilize different measures of rotation



The End
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