Computational Mechanics

Chapter 6 Strong and Weak Forms of Multidimensional Scalar Fields




Components for Formulation FEM Equations

Strong form Weak form

Discrete equations

Solution approximation

Gathering method

e 1D 9.% 3D * (Scalar field9)—> vector fields

* 2D fields, e.g., temperature fields
* post-processing like gradient will lead to vector fields




Operation of 2D Vectors

* Matrix expression of vectors: * Gradient of a scalar function:
7R SN _[CIx] ‘70_699 a0 |
q=Aq4xt T qy] = q qy —axl‘l‘ayl
* Scalar product of vectors as matrices: - Divergence of a vector field:
> - rx a a
q T = qxly +qyr, =[x Cly][r]=qTr dive =7 . = 9= 1y
y vq q ax | dy

Flow leaving a point

* Gradient operator:

"0 . Matri>gafg[mats of gradient and divergence:
ax 04y
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i dx ay] Ay
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2D Divergence Theorem

2D Green’s theorem:
If 8(x,y) € C° and integrable, then

j ﬁedgzjﬂ O1dr orj vTedﬂzf ondr
QO r QO r
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* Normal vector pointing to the outside: (08 jé
— > > —dQ=¢ 6n,drl
n="nyl+n, UQ dy LY
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* Goal of transformation — reduce 2D area integral to = 5 \ox + 3y dQ) = . (qxnx + qyny)dr

1D closed curve line integral

Divergence theorem




2D Green’s Formula
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* Special 1D example with ¢ = q,1, n = +1, n(0) = —T and n(l) =1, then:
dw L ag, l Low
:jér qundF—jQ aqxdﬂzjo WEdXZWCMo—JO aqxdx

1D Integration by parts




Heat Flux Analysis for 2D Heat Conduction
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» Effective heat flux is only in normal direction:

—

e Heat flux on the sides:

Gh=G4-1=q -n AD: qn, = —qyx
BC: gn = +qx
* A small segment with regular rectangular shape: AB: Gn = =0y

CD: qn = +qy




Energy Balance of 2D Heat Conduction
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* Energy balance in the control volume:
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Governing Equation for 2D Heat Conduction

Ax Ax Ay Ay
Qe |Xx ==Y Ay — q, x+7,y Ay + q, X,y = Ax — q, x,y+7 Ax + s(x,y)AxAy = 0
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2D Fourier’s Law

+ —s=0, divg—s=V-G—s=0, vi.q—s=
* |sotropic material:
q=—kVT or q = —kVT

9% 0%
0x? * dy?

S kV2T +s=0, V2=V.V=VT.V =

* Generalized (can be anisotropic) Fourier’_sal_fl_w:

kxx kxy a T
q__[kyx K ||oT|= D VT =V - (D-VD) +s5=0

@ Isotropli(c c%se:
D= k] = kI

Heat conductivity matrix D



Boundary Conditions of 2D Heat Conduction

* Temperature boundary condition:

F=TI,UT, T(x,y) =T(xy), (xy) €Ty

Essential/Dirichlet boundary condition

T=TonTy ¢ Normal heat flux boundary condition:

qnzi-ﬁzq, (x,y)EFq

* Requirements for boundary conditions: T

[‘qUI‘T =T, [‘qn[‘T =0 Natural/Neumann boundary condition
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Strong Form for 2D Heat Conduction

e \ector and matrix notations:

Equation item Vector notation Matrix notation Affecting region
Energy balance V-G—s=0 vVi-q—s=0 ¢)
Fourier’s law q= —kVT q=-D-VT Q
Natural boundary gn=G-1=q gho=q" ‘n=g I,
Essential boundary T(x,y) =T(x,y) T(x,y) =T(x,y) e

The governing equations and Fourier’s law are not combined for convenience of subsequent derivation

* Both notations can be switched to each other for analysis:

— Vector notation provides clear physical meaning and is more convenient for derivation

— Matrix notation enables component analysis in each dimension and is more convenient for computation
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Derivation of Weak Form for 2D Heat Conduction (1/2)

* Governing equation and natural boundary condition (vector notation):
V-g—s=0, qn=q4-n=q

* Introduction of the weight function and integration:

J W(\?'C_[)—S)dﬂ=0, f w(g —q-n)dlr =0, vw
Q r

q

* Green’s formula:

jwﬁ-qcm:jg wc?-r‘idl“—j Pw - dd0
Q r Q

wq - ndrl —j wsdQ, Yw
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q It

Separation of essential and natural boundary conditions




Derivation of Weak Form for 2D Heat Conduction (2/2)

jﬁw-cicm:j Wq-ﬁdmj Wq-ﬁdr—f wsdQ, g, =3-7=3q
Q Iy rr 0

=>f ﬁw-fldQ=J WC_[dF-I-j andF—f wsd()
Q r | Q

q T O

=>f ﬁw-ﬁdﬂ=] WC_[dF—f wsd{l, vYw € U,
Q r Q

q

 Matrix format:

=>j (ww)' - qdQ =j qu['—j wsd(}, vw € U,
) r )

q
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Weak Form for 2D Heat Conduction

f (vw)T - qdQ = J wqdrl —J wsdQ,Vw € U,, q=-D-VT
Q r Q

q

* Weak form in matrix form for calculation: Indispensable statement in weak form!

. /
Find T € U so that: < \

Satisfy essential boundary conditions

J (vw)T - D - VTdQ = —f wqdl +j wsd(l, vw e U,

Q Iy Q —
Arbitrary smooth functions
vanishing on essential boundary
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Equivalence Between Strong and Weak Forms

From weak form to strong form:

J(VW)T-D-VTdQ=—f WC_[dF-I-j wsdfl, q=-D-VT
Q r, Q

=>j (ww)T - qdQ = —j WC_[dF-I-j wsd(} orJ \7w-51dﬂ=f WC‘[dF—J wsd(}
Q Ty Q Q r Q

q

* Application of Green’s formula (to vector format for derivation convenience):

jﬁw-qcm:jé wc?-r‘idl“—j Wi - §d0
Q r Q

:0=j W(\?ﬁ—s)dﬂ+f w(c‘;—c?-ﬁ)dF—J wq - ndr, vw € U,
Q Fq O l-‘T
0
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Expansion to 3D Problems

Derivation and expression of strong and weak forms are similar between 2D and 3D problem:s,
the only difference are the specific component dimension of the related vectors/matrices.

. Sy _ * Divergence operator in 3D space:
Vectors (g) in 3D space: g . . 9qy, 0qy, aq,
R R R R x divg =V-q = + +
§=axi+qy/+ak,  q=|% dx ~ dy 0z
4z

* Laplacian operator in 3D space:

02 02 02
* Gradient operator in 3D space: o 72=V.V=pT .7 =

P a vy 0x2 " 9y2 T 822

d0x
V= if + ij + i;;, V = i e Heat conductivity matrix in 3D space:

dx 6y 0z 6y Kxx Xy Xz
i D = |kyx kyy ky;|=D"
L02Z- kzx kzy kzz
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Dimensionality of Domains and Boundaries

e Strong and weak forms of 1D to 3D problems can be transferred via changing the dimensionality of

domains and boundaries:

Entity Domain 2 Boundary I’
One dimension (1D) Line segment Two end points
Two dimensions (2D) Two-dimensional area Curve

Three dimensions (3D) Volume Surface

One example of the
3D problems:

g-i=q on Iy,

% > - >
/ rf y
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The End
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