
Chapter

12

Chapter 12 includes a general introduction to MATLAB functions, selected topics in
linear algebra with MATLAB, and a collection of finite element programs for: trusses
(Chapter 2), general one-dimensional problems (Chapter 5), heat conduction in 2D
(Chapter 8) and elasticity in 2D (Chapter 9). This Chapter is published electronic format
only for several reasons:

1. the data structure of the finite element program will be periodically updated to
reflect emerging finite element technologies and MATLAB syntax changes;

2. to allow the course instructors to use their own MALAB or other finite element
codes.

3. to create a forum where students and instructors would exchange ideas and place
alternative finite element program data structures. The forum is hosted at

 http://1coursefem.blogspot.com/

12.1 Using MATLAB for FEM1

12.1.1 The MATLAB Windows

Upon opening MATLAB you should see three windows: the workspace window, the
command window, and the command history window as shown in Figure 12.1. If you do
not see these three windows, or see more than three windows you can change the layout
by clicking on the following menu selections: View → desktop layout → default.

1 May not be covered in the class. Recommended as independent reading.

Finite Element Programming with
MATLAB

 2

Figure 12.1: Matlab Windows

12.1.2 The Command Window

If you click in the command window a cursor will appear for you to type and enter various
commands. The cursor is indicated by two greater than symbols (>>).

12.1.3 Entering Expressions

After clicking in the command window you can enter commands you wish MATLAB to execute.
Try entering the following: 8+4. You will see that MATLAB will then return: ans = 12.

12.1.4 Creating Variables

Just as commands are entered in MATLAB, variables are created as well. The general
format for entering variables is: variable = expression. For example, enter y = 1 in the
command window. MATLAB returns: y = 1. A variable y has been created and assigned
a value of 1. This variable can be used instead of the number 1 in future math operations.
For example: typing y*y at the command prompt returns: ans = 1. MATLAB is case
sensitive, so y=1, and Y=5 will create two separate variables.

 3

12.1.5 Functions

MATLAB has many standard mathematical functions such as sine (sin(x)) and cosine
(cos(x)) etc. It also has software packages, called toolboxes, with specialized functions
for specific topics.

12.1.6 Getting Help and Finding Functions

The ability to find and implement MATLAB’s functions and tools is the most important
skill a beginner needs to develop. MATLAB contains many functions besides those
described below that may be useful.
There are two different ways obtain help:

• Click on the little question mark icon at the top of the screen. This will open up the
help window that has several tabs useful for finding information.

• Type “help” in the command line: MATLAB returns a list of topics for which it has
functions. At the bottom of the list it tells you how to get more information about a
topic. As an example, if you type “help sqrt” and MATLAB will return a list of
functions available for the square root.

12.1.7 Matrix Algebra with MATLAB

MATLAB is an interactive software system for numerical computations and graphics. As
the name suggests, MATLAB is especially designed for matrix computations. In addition,
it has a variety of graphical and visualization capabilities, and can be extended through
programs written in its own programming language. Here, we introduce only some basic
procedures so that you can perform essential matrix operations and basic programming
needed for understanding and development of the finite element program.

12.1.8 Definition of matrices

A matrix is an mxn array of numbers or variables arranged in m rows and n columns; such
a matrix is said to have dimension mxn as shown below





















=

mnm

n

aa

OM

aa

aLaa

a

1

2221

11211

Bold letters will denote matrices or vectors. The elements of a matrix a are denoted
by

ija , where i is the row number and j is the column number. Note that in both

describing the dimension of the matrix and in the subscripts identifying the row and
column number, the row number is always placed first.

An example of a 3x3 matrix is:

















=

087

654

321

a

 4

The above matrix a is is an example of a square matrix since the number of rows and
columns are equal.

The following commands show how to enter matrices in MATLAB (>> is the
MATLAB prompt; it may be different with different computers or different versions of
MATLAB.)

>> a = [1 2 3; 4 5 6; 7 8 0]

a =

 1 2 3

 4 5 6

 7 8 0

Notice that rows of a matrix are separated by semicolons, while the entries on a row are
separated by spaces (or commas). The order of matrix a can be determined from

()size a

The transpose of any matrix is obtained by interchanging rows and columns. So for
example, the transpose of a is:

















=

063

852

741
Ta

In MATLAB the transpose of a matrix is denoted by an apostrophe (‘).

 If T =a a , the matrix a is symmetric.

A matrix is called a column matrix or a vector if n=1, e.g.

















=

3

2

1

b

b

b

b

In MATLAB, single subscript matrices are considered row matrices, or row vectors.
Therefore, a column vector in MATLAB is defined by

>> b = [1 2 3]'

b =

 1

 2

 3

Note the transpose that is used to define b as a column matrix. The components of the
vector b are 1 2 3, ,b b b . The transpose of b is a row vector

 5

[]321 bbbbT
=

or in MATLAB

>> b = [1 2 3]

b =

 1 2 3

A matrix is called a diagonal matrix if only the diagonal components are nonzero,
i.e., 0,ija i j= ¹ . For example, the matrix below is a diagonal matrix:

1 0 0

0 5 0

0 0 6

a

 
 

=  
  

A diagonal matrix in MATLAB is constructed by first defining a row vector b = [1 5 6],
and then placing this row vector on the diagonal

>> b = [1 5 6];

>> a = diag (b)

a =

 1 0 0

 0 5 0

 0 0 6

A diagonal matrix where all diagonal components are equal to one is called an identity or

unit matrix and is denoted by I. For example, 2 2´ identity matrix is given by

 







=

10

01
I

The MATLAB expression for an order n unit matrix is

 ()eye n

Thus, the MATLAB expression (2)I eye= gives the above matrix.

A matrix in which all components are zero is called a zero matrix and is denoted by 0. In
MATLAB, B = zeros (m, n) creates m n´ matrix B of zeros. A random m n´ matrix can
be created by rand (m,n).

 6

In finite element method, matrices are often sparse, i.e., they contain many zeros.
MATLAB has the ability to store and manipulate sparse matrices, which greatly increases
its usefulness for realistic problems. The command sparse (m, n) stores an m n´ zero
matrix in a sparse format, in which only the nonzero entries and their locations are sorted.
The nonzero entries can then be entered one-by-one or in a loop.

>> a = sparse (3,2)

a =

 A ll zero sparse: 3-by-2

>> a(1,2)=1;

>> a(3,1)=4;

>> a(3,2)=-1;

>> a

a =

 (3,1) 4

 (1,2) 1

 (3,2) -1

Notice that the display in any MATLAB statement can be suppressed by ending the line
with a semicolon.

The inverse of a square matrix is defined by

 1 1- -= =a a aa I

if the matrix a is not singular. The MATLAB expression for the inverse is ()inv a . Linear
algebraic equations can also be solved by using backslash operator as shown in Section
1.3.10, which avoids computations of the inverse and is therefore faster.
 The matrix a is nonsingular if its determinant, denoted by ()det a , is not equal to
zero. A determinant of a 2x2 matrix is defined by

 







=

2221

1211

aa

aa
a 21122211)det(aaaaa −=

 The MATLAB expression for the determinant is

 det ()a

For example,

 7

>> a = [1 3; 4 2];

>> det (a)

ans =

 -10

12.1.9 Operation with matrices

Addition and Subtraction





















±±

±±

±±±

=±=

mnmnmm

nn

baba

OM

baba

baLbaba

bac

11

22222121

1112121111

An example of matrix addition in MATLAB is given below:

>> a = [1 2 3;4 5 6;7 8 9];

>> a = [1 1 1;2 2 2;3 3 3];

>> c = [1 2;3 4;5 6];

>> a+b

ans =

 2 3 4

 6 7 8

 10 11 12

>> a+c

??? Error using ==> +

Matrix dimensions must agree

Multiplication

1. Multiplication of a matrix by a scalar





















=





















⋅=⋅

mnm

n

mnm

n

caca

OM

caca

caLcaca

aa

OM

aa

aLaa

cac

1

2221

11211

1

2221

11211

 8

2. Scalar product of two column vectors

 [] ii

n

i
n

n
T

ba

b

M

b

b

aKaaba

a
°

=

=





















=⋅

1

2

1

21 .

In MATLAB the scalar product as defined above is given by either *a b¢or (,)dot a b .

The length of a vector a is denoted by |a| and is given by

2 2 2
1 2 na a a= + + +La

The length of a vector is also called its norm.

3. Product of two matrices

The product of two matrices a ()m k´ and b ()k n´ is defined as















































==

°°

°°

°°°

==

==

===

jnmj

k

j

jmj

k

j

jj

k

j

jj

k

j

jnj

k

j

jj

k

j

jj

k

j

baba

OM

baba

baLbaba

abc

aa

aa

aaa

1

1

1

22

1

121

1

1

1

21

1

11

1

Alternatively we can write the above as

1

n

ij ik kj

k

c a b
=

= å

Note the the i,j entry of c is the scalar product of row i of a and column j of b.

The product of two matrices a and b c is defined only if the number of columns in
a equals the number of rows in a. In other words, if a is an ()m k´ matrix, then

b must be an ()k n´ matrix, where k is arbitrary. The product c will then have

the same number of rows as a and the same number of columns as b, i.e. it will be
an m n´ matrix.

 9

An important fact to remember is that matrix multiplication is not commutative,
i.e. ¹ab ba except in unusual circumstances.

The MATLAB expression for matrix multiplication is

 *c a b=

Consider the same matrices a and c as before. An example of matrix
multiplication with MATLAB is:

>> a*c

ans =

 22 28

 49 64

 76 100

>> c*c

??? Error using ==> *

Inner matrix dimensions must agree.

4. Other matrix operations

a) Transpose of product: ()T T T=ab b a

b) Product with identity matrix: =aI a
c) Product with zero matrix: =a0 0

12.1.10 Solution of system of linear equations

Consider the following system of n equations with n unknowns,
kd , 1, 2, , :k n= L

We can rewrite this system of equations in matrix notation as follows:

=Kd f

 10

where





















=

nmn

n

KK

OM

KK

KLKK

K

1

2221

11211





















=

nf

M

f

f

f
2

1





















=

nd

M

d

d

d
2

1

The symbolic solution of the above system of equation can be found by multiplying both
sides with inverse of K, which yields

 1-=d K f

MATLAB expression for solving the system of equations is

 \d K f=
or
 ()*d inv K f=

An example of solution of system of equations with MATLAB is given below:

>> A = rand (3,3)

A =

 0.2190 0.6793 0.5194

 0.0470 0.9347 0.8310

 0.6789 0.3835 0.0346

>> b = rand (3,1)

b =

 0.0535

 0.5297

 0.6711

>> x = A \ b

x =

 -159.3380

 314.8625

 -344.5078

As mentioned before, the backslash provides a faster way to solve equations and should
always be used for large systems. The reason for this is that the backslash uses
elimination to solve with one right hand side, whereas determining the inverse of an nxn

 11

matrix involves solving the system with n right hand sides. Therefore, the backslash
should always be used for solving large system of equations.

12.1.11 Strings in MATLAB

MATLAB variables can also be defined as string variables. A string character is a text
surrounded by single quotes. For example:

>> str='hello world'

str =

hello world

It is also possible to create a list of strings by creating a matrix in which each row is a
separate string. As with all standard matrices, the rows must be of the same length. Thus:

>> str_ mat = ['string A ' ; 'string B']

str_ mat =

string A

string B

Strings are used for defining file names, plot titles, and data formats. Special built-in
string manipulation functions are available in MATLAB that allow you to work with
strings. In the MATALB codes provided in the book we make use of strings to compare
functions. For example the function strcmpi compares two strings

>> str = 'print output';

>> strcmpi(str,'PR INT OUT PUT ')

ans =

 1

A true statment results in 1 and a false statement in 0. To get a list of all the built-in
MATLAB functions type

>> help strfun

Another function used in the codes is fprintf. This function allows the user to print to the
screen (or to a file) strings and numeric information in a tabulated fasion. For example

>>fprintf(1,'T he number of nodes in the mesh is %d \ n',10)

T he number of nodes in the mesh is 10

 12

The first argument to the function tells MATLAB to print the message to the screen. The
second argument is a string, where %d defines a decimal character with the value of 10
and the \n defines a new line. To get a complete description type

>> help fprintf

12.1.11 Programming with MATLAB

MATLAB is very convenient for writing simple finite element programs. It provides the
standard constructs, such as loops and conditionals; these constructs can be used
interactively to reduce the tedium of repetitive tasks, or collected in programs stored in
''m-files'' (nothing more than a text file with extension ``.m'').

12.1.11.1 Conditional and Loops

MATLAB has a standard if-elseif-else conditional.
The general form An example

if expression1
 statements1
elseif expression2
 statements2
…
…
…
else
 statements
end

>> t = 0.76;
>> if t > 0.75
 s = 0;
 elseif t < 0.25
 s = 1;
 else
 s = 1-2*(t-0.25);
 end
>> s
s =
 0

MATLAB provides two types of loops, a for-loop (comparable to a Fortran do-loop or a
C for-loop) and a while-loop. A for-loop repeats the statements in the loop as the loop
index takes on the values in a given row vector; the while-loop repeats as long as the
given expression is true (nonzero):

The general form Examples

for index = start:increment:end
 statements
end

>> for i=1:1:3
 disp(i^2)
 end
 1
 4
 9

while expression
 statements
end

>> x=1;
>> while 1+x > 1
 x = x/2;
 end

 13

>> x
x =
 1.1102e-16

12.1.11.2 Functions

Functions allow the user to create new MATLAB commands. A function is defined in an
m-file that begins with a line of the following form:

function [output1,output2,...] = cmd_name(input1,input2,...)

The rest of the m-file consists of ordinary MATLAB commands computing the values of
the outputs and performing other desired actions. Below is a simple example of a
function that computes the quadratic function 2() 3 1f x x x= - - . The following
commands should be stored in the file fcn.m (the name of the function within MATLAB
is the name of the m-file, without the extension)

function y = fcn(x)

y=x^ 2-3*x-1;

T hen type command:

>> fcn(0.1)

ans =

 -1.2900

12.1.12 Basic graphics

MATLAB is an excellent tool for visualizing and plotting results. To plot a graph the user
specifies the x coordinate vector and y coordinate vector using the following syntax

>> x=[0:0.01:1];

>> y=x.^ 2;

>> plot(x,y);

The above will generate

 14

Figure 12.2 Typical outpout of plot(x,y) function

Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s is a
character string consisting of elements from any combination of the following 3 columns:

b blue . point - solid
g green o circle : dotted
r red x x-mark -. dashdot
c cyan + plus -- dashed
m magenta * star (none) no line
y yellow s square
k black d diamond

To add a title, x and y labels, or a grid, the user should use the following MATLAB
functions. Note that the arguments to the functions are strings

>> title('circle');

>> xlabel('x');

>> ylabel('y');

>> grid

In the MATLAB Finite Element code provided in the book, we also use two specialized
plots. The first plot is the patch function. This function is used to visualize 2D polygons
with colors. The colors are interpolated from nodes of the polygon to create a colored
surface. The following example generates a filled square. The colors along the x axis are
the same while the colors along the y axis are interpolated between the values [0,1].

 15

>> x = [0 1 1 0];

>> y = [0 0 1 1];

>> c = [0 0 1 1];

>> patch(x,y,c)

Figure 12.3 Typical outpout of patch(x,y,c) function

We will use the patch function to visualize temperatures, stresses and other variables
obtained at the finite element solutions. Another specialized plot function is the quiver.
This function is used to visualize gradients of functions as an arrow plot. The following
example demonstrates the use of quiver function for plotting the gradients to the function
y=x

2

>> x=0:0.1:1; y=x.^ 2;

>> cx=ones(1,11); cy=2*x;

>> plot(x,y); hold on

>> quiver(x,y,cx,cy)

 16

Figure 12.4 Typical outpout of quiver(x,y,cx,cy) function

The hold on command is used to hold the current plot and all axis properties so that
subsequent graphing commands will executed on the existing graph.
Using the text function, the user can add to a plot a text message. For example

text(1,1,'flux')
 The first and second arguments define the position of the text on the plot, while the
string gives the text.

12.1.13 Remarks

a) In practice the number of equations n can be very large. PCs can today solve
thousands of equations in a matter of minutes if they are sparse (as they are in
FEM analysis-you will learn about this later) but sometimes millions of
equations are needed, as for an aircraft carrier or a full model of an aircraft;
parallel computers are then needed.

b) Efficient solution techniques that take advantage of the sparsity and other
advantageous properties of FEM equations are essential for treating even
moderately large systems. The issue of how to efficiently solve large systems
will not be considered in this course.

c) In this course, we will see that
• The matrix corresponding to the system of equations arising from

FEM (denoted as K) is non-singular (often called regular), i.e.,
1-K exists if the correct boundary conditions are prescribed and the

elements are properly formulated. Furthermore, for good models it is
usually well-conditioned, which means it is not very sensitive to
roundoff errors.

 17

• K is symmetric, i.e. T =K K .
• K is positive definite, i.e., 0 T > "x Kx x (meaning for any value of x)

Alternatively, K is said to be positive definite if all the eigenvalues are
strictly positive. The eigenvalue problem consists of finding nonzero
eigenvectors y and the corresponding eigenvalues l satisfying

 l=Ky y

The MATLAB expression for the eigenvalues problem is:

>> K=[2 -2;-2 4];

>> [y, lamda]=eig(K)

y =

 0.8507 -0.5257

 -0.5257 0.8507

lamda =

 0.7639 0

 0 5.2361

12.2 Finite element programming with MATLAB for trusses

In Chapter 2 the basic structure of the finite element method for truss structures
has been illustrated. In this section we present a simple finite element program using
MATLAB programming language. Since MATLAB manipulates matrices and vectors
with relative ease the reader can focus on fundamentals ideas rather than on algorithmic
details.

The code is written to very closely follow the formulation given in this chapter.
In order to better understand how the program works Figure 2.8 and Example Problem
2.2 in Chapter 2 have been included as examples solved by the program. Going through
the code along with this guide and the example problems is an effective method to
comprehend the program.

The main routines in the finite element code are:
1. Preprocessing including input data and assembling the proper arrays, vectors,

and matrices.
2. Calculation of element stiffness matrices and force vectors
3. Direct assembly of matrices and vectors
4. Partition and solution
5. Postprocessing for secondary variables

Explanation for various MATLAB routines (stored in *.m files) are described as
comments within each subroutine.

 18

12.2.1 Notations and definitions

12.2.1.1 User provided

nsd: number of space dimension (1 for 1D problems)
ndof: number of degrees-of-freedom per node
nnp: number of nodal points
nel: number of elements
nen: number of element nodes (2 in this case)
nd: number of prescribed (known) displacements
CArea: cross-sectional area
 Area = CArea(element number)
E: Young’s Modulus
 Young = E(element number)
leng: element length
 Length = leng(element number)
phi: angle from x ¢axis to x axis for each element specified in degrees. Remember,

x ¢ is
 always from local node 1 to 2
 phi = phi(element number)
IEN: connectivity information matrix
 global node number = IEN (local node number, element number)
d_bar: prescribed displacement vector - d in Eq. Error! Reference source not found..

f_hat: given force vector - f̂ in Eq. Error! Reference source not found..

plot_truss: string for output control: [‘yes’] to plot truss elements
plot_nod: string for output control: [‘yes’] to plot truss global node numbers
plot_stress: string for output control: [‘yes’] to plot stresses

12.1.1.2 Calculated or derived by program

neq: total number of equations
K: global stiffness matrix
d: global displacement vector is stored as:

 for 1-D problems for 2-D problems

 d

u

M

u

n

=















 1

 d

u

M

u

u

ny

y

x

=





















1

1

 19

f: global force vector (excluding the reactions) is stored as:

 for 1-D problems for 2-D problems

 f

f

M

f

n

=















 1

 f

f

M

f

f

ny

y

x

=





















1

1

e: element number
ke: element stiffness matrix
de: element nodal displacement vector:

 for 1-D problems for 2-D problems

 de
u

u
=









2

1 de

u

u

u

u

e
y

e
x

e
y

e
x

=





















2

2

1

1

LM: gather matrix
 The gather matrix is used to extract the element and local degrees-of-freedom. It

has the following structure:

 global degree-of-freedom=LM (local degree-of-freedom, element number)

 When ndof = 1 (see example in Figure 2.8) IEN and LM are defined as follows:

 IEN

ee

=

















 ==

32
21

21

 LM

ee

=

















 ==

32
21

21

When ndof = 2 (example Problem 2.2), IEN and LM are defined as:

 IEN

ee

=

















 ==

33
21

21

 LM=





















6

5

4

3

6

5

2

1

In both examples, columns indicate the elements and rows indicate global degrees-of-

freedom.

K_E: partition of the global stiffness matrix K based on Eq.
Error! Reference source not found.

K_EF: partition of the global stiffness matrix K based on Eq.
Error! Reference source not found.

K_F: partition of the global stiffness matrix K based on Eq.
Error! Reference source not found.

d_F: unknown (free) part of the global displacement vector d based on Eq.
Error! Reference source not found.

 20

d_E: prescribed (essential) part of the global displacement vector d based on
Eq. Error! Reference source not found.

f_E: reaction force (unknown) vector based on Eq.
Error! Reference source not found.

stress: stress for each element

Remark: In this chapter nodes where the displacements are prescribed have to be
numbered first.

12.21.2 MATLAB Finite element code for trusses

truss.m

%%%%%%%%%%%%%%%%%%%%%%
% 2D Truss (Chapter 2) %
% Haim Waisman, Rensselaer %
%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;

% include global variables
include_flags;

% Preprocessor Phase
 [K,f,d] = preprocessor;

% Calculation and assembly of element matrices
for e = 1:nel
 ke = trusselem(e);
 K = assembly(K,e,ke);
end

% Solution Phase
 [d,f_E] = solvedr(K,f,d);

% Postprocessor Phase
postprocessor(d)

include_flags.m

% file to include global variables
global nsd ndof nnp nel nen neq nd
global CArea E leng phi
global plot_truss plot_nod plot_stress
global LM IEN x y stress

preprocessor.m

% preprocessing– read input data and set up mesh information
function [K,f,d] = preprocessor;
include_flags;

 21

% input file to include all variables
input_file_example2_2;
%input_file_example2_8;

% generate LM array
for e = 1:nel
 for j = 1:nen
 for m = 1:ndof
 ind = (j-1)*ndof + m;
 LM(ind,e) = ndof*IEN(j,e) - ndof + m;
 end
 end
end

input_file_example2_2.m

% Input Data for Example 2.2
nsd = 2; % Number of space dimensions
ndof = 2; % Number of degrees-of-freedom per node
nnp = 3; % Number of nodal points
nel = 2; % Number of elements
nen = 2; % Number of element nodes

neq = ndof*nnp; % Number of equations

f = zeros(neq,1); % Initialize force vector
d = zeros(neq,1); % Initialize displacement matrix
K = zeros(neq); % Initialize stiffness matrix

% Element properties
CArea = [1 1]; % Elements area
leng = [1 sqrt(2)]; % Elements length
phi = [90 45]; % Angle
E = [1 1]; % Young’s Modulus

% prescribed displacements
% displacement d1x d1y d2x d2y
d = [0 0 0 0]';
nd = 4; % Number of prescribed displacement degrees-of-freedom

% prescribed forces
f(5) = 10; % Force at node 3 in the x-direction
f(6) = 0; % Force at node 3 in the y-direction

% output plots
plot_truss = 'yes';
plot_nod = 'yes';

% mesh Generation
truss_mesh_2_2;

 22

truss_mesh_2_2.m

% geometry and connectivity for example 2.2
function truss_mesh_2_2
include_flags;

% Nodal coordinates (origin placed at node 2)
x = [1.0 0.0 1.0]; % x coordinate
y = [0.0 0.0 1.0]; % y coordinate

% connectivity array
IEN = [1 2
 3 3];

% plot truss
plottruss;

input_file_example2_8.m

% Input Data from Chapter 2 Figure 2.8
nsd = 1; % Number of spatial dimensions
ndof = 1; % Number of degrees-of-freedom per node
nnp = 3; % Total number of global nodes
nel = 2; % Total number of elements
nen = 2; % Number of nodes in each element

neq = ndof*nnp; % Number of equations

f = zeros(neq,1); % Initialize force vector
d = zeros(neq,1); % Initialize displacement vector
K = zeros(neq); % Initialize stiffness matrix

% Element properties
CArea = [.5 1]; % Elements cross-sectional area
leng = [2 2]; % Elements length
E = [1 1]; % Young’s Modulus

% prescribed displacements
d(1) = 0;
nd = 1; % Number of prescribed displacement degrees of freedom

% prescribed forces
f(3) = 10; % force at node 3 in the x-direction

% output controls
plot_truss = 'yes';
plot_nod = 'yes';

% mesh generation
truss_mesh_2_8;

 23

truss_mesh_2_8.m

% geometry and connectivity for example problem in Figure 2.8
function truss_mesh_2_8;
include_flags;

% Node coordinates (origin placed at node 1)
x = [0.0 1.0 2.0]; % x coordinate
y = [0.0 0.0 0.0]; % y coordinate

% connectivity array
IEN = [1 2
 2 3];

% plot truss
plottruss;

Plottruss.m
% function to plot the elements, global node numbers and print mesh parameters
function plottruss;
include_flags;

% check if truss plot is requested
if strcmpi(plot_truss,'yes')==1;
 for i = 1:nel
 XX = [x(IEN(1,i)) x(IEN(2,i)) x(IEN(1,i))];
 YY = [y(IEN(1,i)) y(IEN(2,i)) y(IEN(1,i))];
 line(XX,YY);hold on;

 % check if node numbering is requested
 if strcmpi(plot_nod,'yes')==1;
 text(XX(1),YY(1),sprintf('%0.5g',IEN(1,i)));
 text(XX(2),YY(2),sprintf('%0.5g',IEN(2,i)));
 end
 end
 title('Truss Plot');
end

% print mesh parameters
fprintf(1,'\tTruss Params \n');
fprintf(1,'No. of Elements %d \n',nel);
fprintf(1,'No. of Nodes %d \n',nnp);
fprintf(1,'No. of Equations %d \n\n',neq);

trusselem.m
% generate the element stiffness matrix for each element
function ke = trusselem(e)
include_flags;

const = CArea(e)*E(e)/leng(e); % constant coefficient within the truss element

 24

if ndof == 1
 ke = const * [1 -1 ; % 1-D stiffness
 -1 1];
elseif ndof == 2
 p = phi(e)*pi/180; % Converts degrees to radians

 s = sin(p); c = cos(p);
 s2 = s^2; c2 = c^2;

 ke = const*[c2 c*s -c2 -c*s; % 2-D stiffness
 c*s s2 -c*s -s2;
 -c2 -c*s c2 c*s;
 -c*s -s2 c*s s2];

end

assembly.m
% assemble element stiffness matrix
function K = assembly(K,e,ke)
include_flags;

for loop1 = 1:nen*ndof
 i = LM(loop1,e);
 for loop2 = 1:nen*ndof
 j = LM(loop2,e);
 K(i,j) = K(i,j) + ke(loop1,loop2);
 end
end

solvedr.m
% partition and solve the system of equations
function [d,f_E] = solvedr(K,f,d)
include_flags;

% partition the matrix K, vectors f and d
K_E = K(1:nd,1:nd); % Extract K_E matrix
K_F = K(nd+1:neq,nd+1:neq); % Extract K_E matrix
K_EF = K(1:nd,nd+1:neq); % Extract K_EF matrix
f_F = f(nd+1:neq); % Extract f_F vector
d_E = d(1:nd); % Extract d_E vector

% solve for d_F
d_F =K_F\(f_F - K_EF'* d_E);

% reconstruct the global displacement d
d = [d_E
 d_F];

% compute the reaction r

 25

f_E = K_E*d_E+K_EF*d_F;

% write to the workspace
solution_vector_d = d
reactions_vector = f_E

postprocessor.m
% postprocessing function
function postprocesser(d)
include_flags;

% prints the element numbers and corresponding stresses
 fprintf(1,'element\t\t\tstress\n');
 % compute stress vector
 for e=1:nel
 de = d(LM(:,e)); % displacement at the current element
 const = E(e)/leng(e); % constant parameter within the element

 if ndof == 1 % For 1-D truss element
 stress(e) = const*([-1 1]*de);
 end
 if ndof == 2 % For 2-D truss element
 p = phi(e)*pi/180; % Converts degrees to radians
 c = cos(p); s = sin(p);
 stress(e) = const*[-c -s c s]*de; % compute stresses
 end

 fprintf(1,'%d\t\t\t%f\n',e,stress(e));
 end

12.3 Shape functions and Gauss quadrature with MATLAB

 In Chapter 2 the basic finite element programming structure was introduced for
one- and two-dimensional analysis of truss structures. In this section we give the
functions for the construction of element shape functions in one-dimension and their
derivatives. The shape functions are defined in the physical coordinate system.

12.3.1 Notations and definitions

xe: element nodal x-coordinates
xt: x coordinate at which the functions are evaluated
N: array of shape functions
B: array of derivatives of the shape functions
gp: array of position of Gauss points in the parent element domain - []ngpxLxx 21

W: array of weights - []ngpWLWW 21

 26

12.3.2 MATLAB code for shape functions and derivatives

Nmatrix1D.m

% shape functions computed in the physical coordinate - xt
 function N = Nmatrix1D(xt,xe)
include_flags;

 if nen == 2 % linear shape functions
 N(1) = (xt-xe(2))/(xe(1)-xe(2));
 N(2) = (xt-xe(1))/(xe(2)-xe(1));
 elseif nen == 3 % quadratic shape functions
 N(1)=(xt-xe(2))*(xt-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3)));
 N(2)=(xt-xe(1))*(xt-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3)));
 N(3)=(xt-xe(1))*(xt-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2)));
 end

Bmatrix1D.m

% derivative of the shape functions computed in the physical coordinate - xt
 function B = Bmatrix1D(xt,xe)
include_flags;

 if nen == 2 % derivative of linear shape functions (constant)
 B = 1/(xe(1)-xe(2))*[-1 1];
 elseif nen == 3 % derivative of quadratic shape functions
 B(1)=(2*xt-xe(2)-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3)));
 B(2)=(2*xt-xe(1)-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3)));
 B(3)=(2*xt-xe(1)-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2)));
 end

12.3.3 MATLAB code for Gauss quadrature

gauss.m

% get gauss points in the parent element domain [-1, 1] and the corresponding weights
function [w,gp] = gauss(ngp)

 if ngp == 1
 gp = 0;
 w = 2;
 elseif ngp == 2
 gp = [-0.57735027, 0.57735027];
 w = [1, 1];
 elseif ngp == 3
 gp = [-0.7745966692, 0.7745966692, 0.0];
 w = [0.5555555556, 0.5555555556, 0.8888888889];
 end

 27

12.4 Finite element programming in 1D with MATLAB

 In Section 12.2 the basic finite element programming structure was introduced
for one- and two- dimensional analysis of truss structures. In 12.3, the program functions
for the calculation of the element shape functions, their derivatives and Gauss quadrature
in one-dimension were introduced. In this section we introduce a more general finite
element program structure for one-dimensional problems that in principle is similar to
that in multidimensions to be developed in Sections 12.5 and 12.6 for heat conduction
and elasticity problems, respectively.
 In Chapter 2 we discussed various methodologies for imposing boundary
conditions. In the partition-based approach, the so-called E-nodes (where displacements
are prescribed) are numbered first. In general, however, node and element numberings
are initially defined by mesh generators and subsequently renumbered to maximize
efficiency of solving a system of linear equations. In our implementation we tag nodes
located on the natural boundary or essential boundary. Nodes on a natural boundary are
assigned flag=1, while nodes on an essential boundary are tagged as flag=2.
Subsequently, nodes are renumbered by the program so that E-nodes are numbered first.
This is accomplished by constructing the ID and LM arrays in the function
setup_ID_LM. With some minor modifications the program for the one-dimensional
elasticity problems can be modified to analyze heat conduction problems.

Explanation for various MATLAB routines is given as comments within each function.

Only the nomenclature and definitions which have been modified from the previous
chapters are included below. Much of the code is either identical or very similar to the
code developed in Section 12.2. An input file for the Example 5.2 in Chapter 5 modeled
with two quadratic elements is given below. Additional input files for one quadratic
element mesh and four quadratic elements mesh are provided in the disk.

12.4.1 Notations and definitions

User provided

nd: number of nodes on the essential boundary (E-nodes)
ngp: number of Gauss points
body: vector of values of body forces – defined at the nodes and then interpolated using
shape functions
E: vector of nodal values of Young’s modulus
CArea: vector of nodal values of cross-sectional area

flags: Flag array denoting essential and natural boundary conditions

 flags(Initial global node number) = flag value

 Flag values are: 1 – natural boundary; 2 – essential boundary

 28

x: vector of nodal x-coordinates
y: vector of nodal y-coordinates (used for the plots only)
e_bc: vector of essential boundary conditions (displacements or temperatures)
n_bc: vector of natural boundary conditions (tractions or boundary fluxes)
P: vector of point forces (point sources in heat conduction)
xp: vector of the x-coordinates where the point forces are applied

np: number of point forces (point sources in heat conduction)
nplot: number of points used to plot displacements and stresses (temperatures and fluxes
in heat conduction)
IEN: location matrix
 The location matrix relates initial global node number and element local node
 numbers. Subsequently nodes are renumbered (see setup_ID_LM.m) so that
 E-nodes are numbered first. IEN matrix has the following structure:

 (,)Initial global node number IEN local node number element number=

Calculated by FE program:

ID: Destination array

 ()R eordered global node number ID Initial global node number=

LM: Location matrix

 (,)R eordered global node number LM Local node number element number=

Note that LM matrix is related to IEN matrix by

(,) ((,))LM I e ID IEN I e=

12.4.2 MATLAB Finite element code for one-dimensional problems

bar1D.m

%%%%%%%%%%%%%%%%%%
% 1D FEM Program (Chapter 5) %
% Haim Waisman, Rensselaer %
%%%%%%%%%%%%%%%%%%
clear all;
close all;

% include global variables
include_flags;

% Preprocessing
 [K,f,d] = preprocessor;

% Element matrix computations and assembly
for e = 1:nel

 29

 [ke,fe] = barelem(e);
 [K, f] = assembly(K,f,e,ke,fe);
end

% Add nodal boundary force vector
f = NaturalBC(f);

% Partition and solution
[d,f_E] = solvedr(K,f,d);

% Postprocessing
postprocessor(d);

% plot the exact solution
ExactSolution;

include_flags.m
% Include global variables
global nsd ndof nnp nel nen neq nd CArea E
global flags ID IEN LM body x y
global xp P ngp xplot n_bc e_bc np
global plot_bar plot_nod nplot

preprocessor.m
% preprocessing– reads input data and sets up mesh information
function [K,f,d] = preprocessor;
include_flags;

% input file to include all variables
input_file5_2_2ele;
%input_file5_2_1ele;
%input_file5_2_4ele;

% generate LM and ID arrays
d = setup_ID_LM(d);

input_file5_2_2ele.m

% Input Data for Example 5.2 (2 elements)

nsd = 1; % number of space dimensions
ndof = 1; % number of degrees-of-freedom per node
nnp = 5; % number of nodal points
nel = 2; % number of elements
nen = 3; % number of element nodes

neq = ndof*nnp; % number of equations

f = zeros(neq,1); % initialize nodal force vector

 30

d = zeros(neq,1); % initialize nodal displacement vector
K = zeros(neq); % initialize stiffness matrix

flags = zeros(neq,1); % initialize flag vector
e_bc = zeros(neq,1); % initialize vector of essential boundary condition
n_bc = zeros(neq,1); % initialize vector of natural boundary condition

% element and material data (given at the element nodes)
E = 8*ones(nnp,1); % nodal values Young's modulus
body = 8*ones(nnp,1); % nodal values body forces
CArea = [4 7 10 11 12]'; % nodal values of cross-sectional area

% gauss integration
ngp = 2; % number of gauss points

% essential boundary conditions
flags(1) = 2; % flags to mark nodes located on the essential boundary
e_bc(1) = 0; % value of essential B.C
nd = 1; % number of nodes on the essential boundary

% natural boundary conditions
flags(5) = 1; % flags to mark nodes located on the natural boundary
n_bc(5) = 0; % value of natural B.C

% point forces
P = 24; % array of point forces
xp = 5; % array of coordinates where point forces are applied
np = 1; % number of point forces

% output plots
plot_bar = 'yes';
plot_nod = 'yes';
nplot = nnp*10; % number of points in the element to plot displacements and stresses

 % mesh generation
bar_mesh5_2_2ele;

bar_mesh5_2_2ele.m

function bar_mesh5_2_2ele
include_flags;

% Node: 1 2 3 4 5
x = [2.0 3.5 5.0 5.5 6.0]; % x coordinate
y = 2*x; % y is used only for the bar plot

% connectivity array
IEN = [1 3
 2 4
 3 5];
plotbar;

 31

setup_ID_LM.m

% setup ID and LM arrays
function d = setup_ID_LM(d);
include_flags;

count = 0; count1 = 0;
for i = 1:neq
 if flags(i) == 2 % check if essential boundary
 count = count + 1;
 ID(i) = count; % number first the nodes on essential boundary
 d(count)= e_bc(i); % store the reordered values of essential B.C
 else
 count1 = count1 + 1;
 ID(i) = nd + count1;
 end
end

for i = 1:nel
 for j = 1:nen
 LM(j,i)=ID(IEN(j,i)); % create the LM matrix
 end
end

barelem.m

% generate element stiffness matrix and element nodal body force vector
function [ke, fe] = barelem(e);
include_flags;

IENe = IEN(:,e); % extract local connectivity information
xe = x(IENe); % extract element x coordinates
J = (xe(nen) - xe(1))/2; % compute Jacobian
[w , gp] = gauss(ngp); % extract Gauss points and weights

ke = zeros(nen,nen); % initialize element stiffness matrix
fe = zeros(nen,1); % initialize element nodal force vector

for i = 1:ngp
 xt = 0.5*(xe(1)+xe(nen))+J*gp(i); % Compute Gauss points in physical coordinates

 N = Nmatrix1D(xt,xe); % shape functions matrix
 B = Bmatrix1D(xt,xe); % derivative of shape functions matrix

 Ae = N*CArea(IENe); % cross-sectional area at element gauss points
 Ee = N*E(IENe); % Young's modulus at element gauss points
 be = N*body(IENe); % body forces at element gauss points
 ke = ke + w(i)*(B'*Ae*Ee*B); % compute element stiffness matrix
 fe = fe + w(i)*N'*be; % compute element nodal body force vector
end
ke = J*ke;
fe = J*fe;

 32

% check for point forces in this element
for i=1:np % loop over all point forces
 Pi = P(i); % extract point force
 xpi = xp(i); % extract the location of point force within an element
 if xe(1)<=xpi & xpi<xe(nen)
 fe = fe + Pi*[Nmatrix1D(xpi,xe)]'; % add to the nodal force vector
 end
end

assembly.m

% assemble element stiffness matrix and nodal force vector
function [K,f] = assembly(K,f,e,ke,fe)
include_flags;

for loop1 = 1:nen
 i = LM(loop1,e);
 f(i) = f(i) + fe(loop1); % assemble nodal force vector
 for loop2 = 1:nen
 j = LM(loop2,e);
 K(i,j) = K(i,j) + ke(loop1,loop2); % assemble stiffness matrix
 end
end

naturalBC.m

% compute and assemble nodal boundary force vector
function f = naturalBC(f);
include_flags;

for i = 1:nnp
 if flags(i) == 1
 node = ID(i);
 f(node) = f(node) + CArea(node)*n_bc(node);
 end
end

postprocessor.m

% postprocessing
function postprocessor(d)
include_flags;

 fprintf(1,'\n Print stresses at the Gauss points \n')
 fprintf(1,'Element\t\t x(gauss1) \t\t x(gauss2) \t\t stress(gauss1) \t\t stress(gauss2)\n')
 fprintf(1,'--- \n')

 % loop over elements to compute the stresses
 for e = 1:nel
 % compute stresses and displacements for the current element

 33

 disp_and_stress(e,d);
 end

12.5 MATLAB finite element program for heat conduction in 2D

In Section 12.2 the basic finite element program structure was introduced for one- and
two- dimensional analysis of truss structures. In Section 12.3 a more general finite
element program structure for one-dimensional problems was developed. In this section
we describe a finite element program for scalar field problems in two-dimensions
focusing on heat conduction. You will notice that the program structure is very similar to
that introduced for one-dimensional problems. A brief description of various functions is
provided below.

Main program: heat2D.m

The main program is given in heat2D.m file. The finite element program structure
consists of the following steps:

- preprocessing
- evaluation of element conductance matrices, element nodal source vectors and

their assembly
- adding the contribution from point sources and nodal boundary flux vector
- solution of the algebraic system of equations
- postprocessing

heat2d.m

%%%%%%%%%%%%%%%%%%%%%
% Heat conduction in 2D (Chapter 8) %
% Haim Waisman, Rensselaer %
%%%%%%%%%%%%%%%%%%%% %
clear all;
close all;

% Include global variables
include_flags;

% Preprocessing
[K,f,d] = preprocessor;

% Evaluate element conductance matrix, nodal source vector and assemble
for e = 1:nel
 [ke, fe] = heat2Delem(e);
 [K,f] = assembly(K,f,e,ke,fe);
end

% Compute and assemble nodal boundary flux vector and point sources
f = src_and_flux(f);

% Solution
 [d,f_E] = solvedr(K,f,d);

% Postprocessing

 34

postprocessor(d);

Preprocessing: preprocessor.m

In the preprocessing phase, the input file (input_file), which defines material properties,
mesh data, vector and matrices initializations, essential and natural conditions, point
sources, the required output, is defined by the user. In the implementation provided here,
fluxes are prescribed along element edges and are defined by nodal values interpolated
using shape functions. The n_bc array is used for the fluxes data structure. For the heat
conduction problem given in Example 8.1 with 16 quadrilateral elements (see Figure
8.9), the n_bc array is defined as follows:

21 22 23 24

22 23 24 25
_

20.0 20.0 20.0 20.0

20.0 20.0 20.0 20.0

n bc

 
 
 =
 
 
 

The number of columns corresponds to the number of edges (specified by nbe) on the
natural boundary; the first and second rows indicate the first and the second node
numbers that define the element edge; the third and fourth rows correspond to the
respective nodal flux values. Note that a discontinuity in fluxes at the element boundaries
could be prescribed. The input files for the 1-element and 64-element meshes are given
on the website.

In the preprocessing phase, the finite mesh is generated and the working arrays IEN, ID
and LM are defined. The mesh generation function mesh2d utilizes MATLAB’s built-in
function linspace (see Chapter 1) for bisection of lines.

preprocessor.m

function [K,f,d] = preprocessor;
include_flags;

% read input file
%input_file_1ele;
input_file_16ele;
%input_file_64ele;

% generate ID and LM arrays
d = setup_ID_LM(d);

input_file_16ele.m

% Input file for Example 8.1 (16-element mesh)

 35

% material properties
k = 5; % thermal conductivity
D = k*eye(2); % conductivity matrix

% mesh specifications
nsd = 2; % number of space dimensions
nnp = 25; % number of nodes
nel = 16; % number of elements
nen = 4; % number of element nodes
ndof = 1; % number of degrees-of-freedom per node
neq = nnp*ndof; % number of equations

f = zeros(neq,1); % initialize nodal flux vector
d = zeros(neq,1); % initialize nodal temperature vector
K = zeros(neq); % initialize conductance matrix

flags = zeros(neq,1); % array to set B.C flags
e_bc = zeros(neq,1); % essential B.C array
n_bc = zeros(neq,1); % natural B.C array
P = zeros(neq,1); % initialize point source vector defined at a node
s = 6*ones(nen,nel); % heat source defined over the nodes

ngp = 2; % number of Gauss points in each direction

% essential B.C.
flags(1:5) = 2; e_bc(1:5) = 0.0;
flags(6:5:21) = 2; e_bc(6:5:21) = 0.0;
nd = 9; % number of nodes on essential boundary

 % what to plot
compute_flux = 'yes';
plot_mesh = 'yes';
plot_nod = 'yes';
plot_temp = 'yes';
plot_flux = 'yes';

% natural B.C - defined on edges positioned on the natural boundary
n_bc = [21 22 23 24 % node1
 22 23 24 25 % node2
 20 20 20 20 % flux value at node 1
 20 20 20 20]; % flux value at node 2
nbe = 4; % number of edges on the natural boundary

% mesh generation
 mesh2d;

 mesh2d.m

function mesh2d;
include_flags;

lp = sqrt(nnp); % number of nodes in x and y direction
x0 = linspace(0,2,lp); % equal bisection of the x nodes

 36

y0 = 0.5*x0/2; % y coordinates of the bottom edge
x = [];
for i = 1:lp
 x = [x x0]; % define x coordinates
 y1 = linspace(y0(i),1,lp); % bisection of y coordinates starting from a new location
 y(i:lp:lp*(lp-1)+i) = y1; % define y coordinates
end

% generate connectivity array IEN
rowcount = 0;
for elementcount = 1:nel
 IEN(1,elementcount) = elementcount + rowcount;
 IEN(2,elementcount) = elementcount + 1 + rowcount;
 IEN(3,elementcount) = elementcount + (lp + 1) + rowcount;
 IEN(4,elementcount) = elementcount + (lp) + rowcount;
 If mod(elementcount,lp-1) == 0
 rowcount = rowcount + 1;
 end
end

% plot mesh and natural boundary
plotmesh;

plotmesh.m

function plotmesh;
include_flags;

if strcmpi(plot_mesh,'yes')==1;
% plot natural BC
for i=1:nbe

 node1 = n_bc(1,i); % first node
 node2 = n_bc(2,i); % second node
 x1 = x(node1); y1=y(node1); % coordinates of the first node
 x2 = x(node2); y2=y(node2); % coordinates of the second node

 plot([x1 x2],[y1 y2],'r','LineWidth',4); hold on
end

legend('natural B.C. (flux)');

for i = 1:nel
 XX = [x(IEN(1,i)) x(IEN(2,i)) x(IEN(3,i)) x(IEN(4,i)) x(IEN(1,i))];
 YY = [y(IEN(1,i)) y(IEN(2,i)) y(IEN(3,i)) y(IEN(4,i)) y(IEN(1,i))];
 plot(XX,YY);hold on;

 if strcmpi(plot_nod,'yes')==1;
 text(XX(1),YY(1),sprintf('%0.5g',IEN(1,i)));
 text(XX(2),YY(2),sprintf('%0.5g',IEN(2,i)));
 text(XX(3),YY(3),sprintf('%0.5g',IEN(3,i)));
 text(XX(4),YY(4),sprintf('%0.5g',IEN(4,i)));
 end
 end

 37

end

fprintf(1,' Mesh Params \n');
fprintf(1,'No. of Elements %d \n',nel);
fprintf(1,'No. of Nodes %d \n',nnp);
fprintf(1,'No. of Equations %d \n\n',neq);

 include_flags.m

% file to include global variables
global ndof nnp nel nen nsd neq ngp nee neq
global nd e_bc s P D
global LM ID IEN flags n_bc
global x y nbe
global compute_flux plot_mesh plot_temp plot_flux plot_nod

Element conductance matrix and nodal source flux vector: heat2Delem.m

This function is used for the integration of the quadrilateral element conductance matrix
and nodal source vector using Gauss quadrature. The integration is carried over the parent
element domain. The shape functions are computed in Nmatheat2D and their derivatives
along with the Jacobian matrix and its determinant are computed in Bmatheat2D. The
source is obtained by interpolation from nodal values.

heat2Delem.m

% Quadrilateral element conductance matrix and nodal source vector
function [ke, fe] = heat2Delem(e)
include_flags;

ke = zeros(nen,nen); % initialize element conductance matrix
fe = zeros(nen,1); % initialize element nodal source vector

% get coordinates of element nodes
je = IEN(:,e);
C = [x(je); y(je)]';

[w,gp] = gauss(ngp); % get Gauss points and weights

% compute element conductance matrix and nodal source vector
for i=1:ngp
 for j=1:ngp
 eta = gp(i);
 psi = gp(j);

 N = NmatHeat2D(eta,psi); % shape functions matrix
 [B, detJ] = BmatHeat2D(eta,psi,C); % derivative of the shape functions

 ke = ke + w(i)*w(j)*B'*D*B*detJ; % element conductance matrix
 se = N*s(:,e); % compute s(x)
 fe = fe + w(i)*w(j)*N'*se*detJ; % element nodal source vector

 end

 38

end

NmatHeat2D.m

% Shape function
function N = NmatHeat2D(eta,psi)

N = 0.25 * [(1-psi)*(1-eta) (1+psi)*(1-eta) (1+psi)*(1+eta) (1-psi)*(1+eta)];

BmatHeat2D.m

% B matrix function

function [B, detJ] = BmatHeat2D(eta,psi,C)

% calculate the Grad(N) matrix
GN = 0.25 * [eta-1 1-eta 1+eta -eta-1;
 psi-1 -psi-1 1+psi 1-psi];

J = GN*C; % Get the Jacobian matrix
detJ = det(J); % Jacobian
B = J\GN; % compute the B matrix

Point sources and nodal boundary flux function: src_and_flux.m

This function adds the contribution of point sources P (prescribed at nodes only) and the
boundary flux vector to the global flux vector. The ID array is used to relate the initial
and reordered node numbering. To calculate the nodal boundary flux vector, the function
loops over all boundary edges nbe and performs one-dimensional integration using Gauss
quadrature. The integration is performed by transforming the boundary edge to the parent
domain. The boundary flux vector is then assembled to the global nodal flux vector using
the ID array. Note that fG has a minus sign based on
Error! Reference source not found..

src_and_flux.m

% - Compute and assemble nodal boundary flux vector and point sources
function f = src_and_flux(f);
include_flags;

% assemble point sources to the global flux vector
f(ID) = f(ID) + P(ID);

% compute nodal boundary flux vector
for i = 1:nbe

 fq = [0 0]'; % initialize the nodal source vector
 node1 = n_bc(1,i); % first node
 node2 = n_bc(2,i); % second node
 n_bce = n_bc(3:4,i); % flux values at an edge

 39

 x1 = x(node1); y1 = y(node1); % coordinates of the first node
 x2 = x(node2); y2 = y(node2); % coordinates of the second node

 leng = sqrt((x2-x1)^2 + (y2-y1)^2); % length of an edge
 J = leng/2; % 1D Jacobian
 [w,gp] = gauss(ngp); % get Gauss points and weights

 for i=1:ngp % integrate along the edge

 psi = gp(i);
 N = 0.5*[1-psi 1+psi]; % 1D shape functions in the parent domain
 flux = N * n_bce; % interpolate flux using shape functions
 fq = fq + w(i)*N' *flux*J; % nodal flux
 end
 fq = -fq; % define nodal flux vectors as negative

 % assemble the nodal flux vector
 f(ID(node1)) = f(ID(node1)) + fq(1) ;
 f(ID(node2)) = f(ID(node2)) + fq(2);

end

The postprocessing: postprocessor.m

The postprocessing is the final phase of the finite element method. The results are plotted
in Figures 8.10-8.12 in Chapter 8.

postprocess.m

% plot temperature and flux
function postprocess(d);
include_flags

% plot the temperature field
if strcmpi(plot_temp,'yes') == 1;
 d1 = d(ID);
 figure(2);
 for e = 1:nel
 XX = [x(IEN(1,e)) x(IEN(2,e)) x(IEN(3,e)) x(IEN(4,e)) x(IEN(1,e))];
 YY = [y(IEN(1,e)) y(IEN(2,e)) y(IEN(3,e)) y(IEN(4,e)) y(IEN(1,e))];
 dd = [d1(IEN(1,e)) d1(IEN(2,e)) d1(IEN(3,e)) d1(IEN(4,e)) d1(IEN(1,e))];
 patch(XX,YY,dd);hold on;
 end
title('Temperature distribution'); xlabel('X'); ylabel('Y'); colorbar;
end

%compute flux vector at Gauss points
if strcmpi(compute_flux,'yes')==1;
 fprintf(1,'\n Heat Flux at Gauss Points \n')
 fprintf(1,'--- \n')

 40

 for e = 1:nel
 fprintf(1,'Element %d \n',e)
 fprintf(1,'-------------\n')
 get_flux(d,e);
 end
end

get_flux.m

function get_flux(d,e);
include_flags;

de = d(LM(:,e)); % extract temperature at element nodes

% get coordinates of element nodes
je = IEN(:,e);
C = [x(je); y(je)]';

[w,gp] = gauss(ngp); % get Gauss points and weights

% compute flux vector
ind = 1;
for i=1:ngp
 for j=1:ngp
 eta = gp(i); psi = gp(j);

 N = NmatHeat2D(eta,psi);
 [B, detJ] = BmatHeat2D(eta,psi,C);

 X(ind,:) = N*C; % Gauss points in physical coordinates
 q(:,ind) = -D*B*de; % compute flux vector
 ind = ind + 1;
 end
end
q_x = q(1,:);
q_y = q(2,:);

% #x-coord y-coord q_x(eta,psi) q_y(eta,psi)
flux_e1 = [X(:,1) X(:,2) q_x' q_y'];
fprintf(1,'\t\t\tx-coord\t\t\t\ty-coord\t\t\t\tq_x\t\t\t\t\tq_y\n');
fprintf(1,'\t\t\t%f\t\t\t%f\t\t\t%f\t\t\t%f\n',flux_e1');

if strcmpi(plot_flux,'yes')==1 & strcmpi(plot_mesh,'yes') ==1;
 figure(1);
 quiver(X(:,1),X(:,2),q_x',q_y','k');
 plot(X(:,1),X(:,2),'rx');
 title('Heat Flux');
 xlabel('X');
 ylabel('Y');
end

Functions, which are identical to those in Chapter 5:

 41

setup_ID_LM.m, assembly.m, solvedr.m

disp_and_stress.m
% compute stresses and displacements
function disp_and_stress(e,d)
include_flags;

de = d(LM(:,e)); % extract element nodal displacements
IENe = IEN(:,e); % extract element connectivity information
xe = x(IENe); % extract element coordinates
J = (xe(nen) - xe(1))/2; % Jacobian
[w , gp] = gauss(ngp); % Gauss points and weights

 % compute stresses at Gauss points
for i = 1:ngp
 xt = 0.5*(xe(1)+xe(nen))+J*gp(i); % location of Gauss point in the physical coordinates
 gauss_pt(i) = xt; % store Gauss point information

 N = Nmatrix1D(xt,xe); % extract shape functions
 B = Bmatrix1D(xt,xe); % extract derivative of shape functions

 Ee = N*E(IENe); % Young's modulus at element Gauss points
 stress_gauss(i) = Ee*B*de; % stresses at Gauss points
end

% print stresses at element Gauss points
fprintf(1,'%d\t\t\t%f\t\t\t%f\t\t\t%f\t\t\t%f\n',e,gauss_pt(1),gauss_pt(2),stress_gauss(1),stress_gauss
(2));

% compute displacements and stresses
xplot = linspace(xe(1),xe(nen),nplot); % equally distributed coordinate within an element

for i = 1:nplot
 xi = xplot(i); % x coordinate
 N = Nmatrix1D(xi,xe); % shape function value
 B = Bmatrix1D(xi,xe); % derivative of shape functions

 Ee = N*E(IENe); % Young's modulus
 displacement(i) = N*de; % displacement output
 stress(i) = Ee*B*de; % stress output
 end

% plot displacements and stress
figure(2)
subplot(2,1,1);
plot(xplot,displacement); legend('sdf'); hold on;
ylabel('displacement'); title('FE analysis of 1D bar');

subplot(2,1,2); plot(xplot,stress); hold on;
ylabel('stress'); xlabel('x');
legend('FE');

 42

ExactSolution.m

% plot the exact stress
function ExactSolution
include_flags;

% divide the problem domain into two regions
xa = 2:0.01:5;
xb = 5:0.01:6;

subplot(2,1,1);
% exact displacement for xa
c1 = 72; c2 = 1 - (c1/16)*log(2);
u1 = -.5*xa + (c1/16)*log(xa) + c2;
% exact displacement for xb
c3 = 48; c4 = log(5)/16*(c1-c3) + c2;
u2 = -.5*xb + (c3/16)*log(xb) + c4;
% plot displacement
h = plot([xa xb],[u1 u2], '--r');
legend(h,'exact');

subplot(2,1,2);
% exact stresses for xa
ya = (36-4*xa)./xa;
% exact stress for xb
yb = (24-4*xb)./xb;
% plot stresses
plot([xa xb],[ya yb], '--r');

Functions provided in Chapter 4: Nmatrix1D.m, Bmatrix1D.m, gauss.m
Functions provided in Chapter 2: solvedr.m

12.6 2D Elasticity FE Program with MATLAB

In this chapter, we introduce the finite element program for the two-dimensional linear
elasticity problems. Only 4-node quadrilateral element is implemented. In Problems 9-6
and 9-7 in Chapter 9, students are assigned to implement the 3-node and 6-node
triangular elements.

Main file: elasticity2D.m

The main program is given in elasticity2D.m file. The FE program structure consists of
the following steps:

- preprocessing
- evaluation of element stiffness matrices and element body force vectors and

assembly
- assembly of point forces (point forces defined at nodes only)
- evaluation and assembly of nodal boundary force vector
- solution of the algebraic system of equations
- postprocessing

 43

elasticity2D.m

%%%%%%%%%%%%%%%%%
% 2D Elasticity (Chapter 9) %
% Haim Waisman %
%%%%%%%%%%%%%%%% %
clear all;
close all;

% include global variables
include_flags;

% Preprocessing (same as in Chapter 8)
[K,f,d] = preprocessor;

% Element computations and assembly
for e = 1:nel
 [ke, fe] = elast2Delem(e);
 [K,f] = assembly(K,f,e,ke,fe); % (same as in Chapter 8)
end

% Compute and assemble point forces and boundary force vector
f = point_and_trac(f);

% Solution (same as in Chapter 8)
 [d,r] = solvedr(K,f,d);

% Postprocessing (same as in Chapter 8)
postprocessor(d);

Input file: input_file.m

The data for natural B.C. is given in n_bc array. For example, for the 16-element mesh in
Example 9.3 in Chapter 9, the n_bc array is given as

21 22 23 24

22 23 24 25

0.0 0.0 0.0 0.0
_

20.0 20.0 20.0 20.0

0.0 0.0 0.0 0.0

20.0 20.0 20.0 20.0

n bc

 
 
 
 

=  
− − − − 
 
 
− − − −  

The number of columns indicates the number of edges that lie on the natural boundary
(specified by nbe). The first and second rows indicate the first and the second node that
define of an element edge. The third and fourth rows correspond to the appropriate
traction values in x and y directions at the first node, respectively, whereas rows fifth and
sixth correspond to tractions in x and y directions specified at the second node. Input files
for the 1 and 64 element meshes are given on the program website.

 44

Input_file_16ele.m

% Input Data for Example 9.3 (16-element mesh)

% material properties
E = 30e6; % Young’s modulus
ne = 0.3; % Poisson’s ratio
D = E/(1-ne^2) * [1 ne 0 % Hooke’s law – Plane stress
 ne 1 0
 0 0 (1-ne)/2];

% mesh specifications
nsd = 2; % number of space dimensions
nnp = 25; % number of nodal nodes
nel = 16; % number of elements
nen = 4; % number of element nodes
ndof = 2; % degrees-of-freedom per node
neq = nnp*ndof; % number of equations

f = zeros(neq,1); % initialize nodal force vector
d = zeros(neq,1); % initialize nodal displacement matrix
K = zeros(neq); % initialize stiffness matrix

counter = zeros(nnp,1); % counter of nodes for the stress plots
nodestress = zeros(nnp,3); % nodal stress values for plotting [sxx syy sxy]

flags = zeros(neq,1); % an array to set B.C flags
e_bc = zeros(neq,1); % essential B.C array
n_bc = zeros(neq,1); % natural B.C array

P = zeros(neq,1); % point forces applied at nodes
b = zeros(nen*ndof,nel); % body force values defined at nodes

ngp = 2; % number of gauss points in each direction
nd = 10; % number of dofs on essential boundary (x and y)

% essential B.C.
ind1 = 1:10:(21-1)*ndof+1; % all x dofs along the line y=0
ind2 = 2:10:(21-1)*ndof+2; % all y dofs along the line x=0
flags(ind1) = 2; e_bc(ind1) = 0.0;
flags(ind2) = 2; e_bc(ind2) = 0.0;

% plots
compute_stress = 'yes';
plot_mesh = 'yes'; % (same as in Chapter 8)
plot_nod = 'yes';
plot_disp = 'yes';
plot_stress = 'yes';
plot_stress_xx = 'yes';
plot_mises = 'yes';
fact = 9.221e3; % factor for scaled displacements plot

% natural B.C - defined on edges
n_bc = [21 22 23 24 % node1
 22 23 24 25 % node2

 45

 0 0 0 0 % traction value given at node1 in x
 -20 -20 -20 -20 % traction value given at node1 in y
 0 0 0 0 % traction value given at node2 in x
 -20 -20 -20 -20]; % traction value given at node2 in y
nbe = 4; % number of edges on natural boundary

% mesh generation
 mesh2d;

include_flags.m

% file to include global variables
global ndof nnp nel nen nsd neq ngp nee neq
global nd e_bc P b D
global LM ID IEN flags n_bc
global x y nbe counter nodestress
global compute_stress plot_mesh plot_disp plot_nod
global plot_stress_xx plot_mises fact

Node Renumbering: setup_ID_LM.m

The generation of the ID array is similar to that in heat conduction problem with the
exception that nd defines the number of degrees-of-freedom on the essential boundary.
The LM array is a pointer to the renumbered degrees-of-freedom. For this purpose, we
treat every node as a block consisting of two degrees-of-freedom. We define a pointer,
denoted as blk to the beginning of each block and loop over all degrees-of-freedom ndof
in that block.

setup_ID_LM.m

function d=setup_ID_LM(d);
include_flags;

count = 0; count1 = 0;
for i = 1:neq
 if flags(i) == 2 % check if a node on essential boundary
 count = count + 1;
 ID(i) = count; % arrange essential B.C nodes first
 d(count)= e_bc(i); % store essential B.C in reordered form (d_bar)
 else
 count1 = count1 + 1;
 ID(i) = nd + count1;
 end
end

for i = 1:nel
 n = 1;
 for j = 1:nen
 blk = ndof*(IEN(j,i)-1);
 for k = 1:ndof
 LM(n,i) = ID(blk + k); % create the LM matrix
 n = n + 1;
 end
 end

 46

end

Element stiffness and forces function: elast2Delem.m

The elast2Delem function for numerical integration of the element stiffness matrix and
element nodal body force vector remains the same as for heat conduction code except for
the shape functions NmatElast2D and their derivatives BmatElast2D.

elast2Delem.m

function [ke, fe] = elast2Delem(e)
include_flags;

ke = zeros(nen*ndof,nen*ndof); % initialize element stiffness matrix
fe = zeros(nen*ndof,1); % initialize element body force vector

% get coordinates of element nodes
je = IEN(:,e);
C = [x(je); y(je)]';

[w,gp] = gauss(ngp); % get gauss points and weights

% compute element stiffness and nodal force vector
for i=1:ngp
 for j=1:ngp
 eta = gp(i);
 psi = gp(j);
 N = NmatElast2D(eta,psi); % shape functions
 [B, detJ] = BmatElast2D(eta,psi,C); % derivative of the shape functions
 ke = ke + w(i)*w(j)*B'*D*B*detJ; % element stiffness matrix
 be = N*b(:,e); % interpolate body forces using shape functions
 fe = fe + w(i)*w(j)*N'*be*detJ; % element body force vector

 end
end

NmatElas2D.m

% Shape functions for 2D elasticity defined in parent element coordinate system
function N = NmatElast2D(eta,psi)

N1 = 0.25*(1-psi)*(1-eta);
N2 = 0.25*(1+psi)*(1-eta);
N3 = 0.25*(1+psi)*(1+eta);
N4 = 0.25*(1-psi)*(1+eta);

N = [N1 0 N2 0 N3 0 N4 0; % shape functions
 0 N1 0 N2 0 N3 0 N4];

BmatElas2D.m

% B matrix function for 2D elasticity
function [B, detJ] = BmatElast2D(eta,psi,C)

 47

 % Calculate the Grad(N) matrix
 GN = 0.25 * [eta-1 1-eta 1+eta -eta-1;
 psi-1 -psi-1 1+psi 1-psi];
 J = GN*C; % Get the Jacobian matrix

 detJ = det(J); % compute Jacobian

 BB = J\GN; % compute derivatives of the shape function in physical coordinates
 B1x = BB(1,1);
 B2x = BB(1,2);
 B3x = BB(1,3);
 B4x = BB(1,4);
 B1y = BB(2,1);
 B2y = BB(2,2);
 B3y = BB(2,3);
 B4y = BB(2,4);

 B = [B1x 0 B2x 0 B3x 0 B4x 0 ;
 0 B1y 0 B2y 0 B3y 0 B4y;
 B1y B1x B2y B2x B3y B3x B4y B4x];

Point forces and nodal boundary force vector function: point_and_trac.m

The function loops over nbe edges on the essential and performs a one-dimensional
integration using Gauss quadrature. The integration is performed by transforming the
boundary edge to the parent coordinate system [0,1]x Ì . The nodal boundary force
vector is then assembled to the global force vector using ID array. Similarly, point forces
defined at the nodes are assembled into the global nodal force vector using the ID array.

point_and_trac.m

% Compute and assemble point forces and boundary force vector
function f = point_and_trac(f);
include_flags;

% Assemble point forces
f(ID) = f(ID) + P(ID);

% Calculate the nodal boundary force vector
for i = 1:nbe

 ft = [0 0 0 0]'; % initialize the nodal boundary vector
 node1 = n_bc(1,i); % first node
 node2 = n_bc(2,i); % second node
 n_bce = n_bc(3:6,i); % traction values

 x1 = x(node1); y1=y(node1); % coordinate of the first node
 x2 = x(node2); y2=y(node2); % coordinate of the second node
 leng = sqrt((x2-x1)^2 + (y2-y1)^2); % edge length
 J = leng/2; % 1D Jacobian
 [w,gp] = gauss(ngp); % get gauss points and weights

 48

 for i=1:ngp % perform1D numerical integration

 psi = gp(i);
 N = 0.5*[1-psi 0 1+psi 0; % 1D shape functions in the parent edge
 0 1-psi 0 1+psi]; % for interpolating tractions in x and y
 T = N * n_bce;
 ft = ft + w(i)*N' *T *J; % compute traction
 end

 % Assemble nodal boundary force vector
 ind1 = ndof*(node1-1)+1; % dof corresponding to the first node
 ind2 = ndof*(node2-1)+1; % dof corresponding to the second node
 f(ID(ind1)) = f(ID(ind1)) + ft(1) ;
 f(ID(ind1+1)) = f(ID(ind1+1)) + ft(2) ;
 f(ID(ind2)) = f(ID(ind2)) + ft(3) ;
 f(ID(ind2+1)) = f(ID(ind2+1)) + ft(4);

end

Postprocessing: postprocessor.m

The postprocessing function first calls displacements function to plot the deformed
configuration based on the nodal displacements. The user sets a scaling factor in the input
file to scale the deformation as shown in Figure 9.13 in Chapter 9.

To obtain the fringe or contour plots of stresses, stresses are computed at element nodes
and then averaged over elements connected to the node. Alternatively, stresses can be
computed at the Gauss points where they are most accurate and then interpolated to the
nodes. The user is often interested not only in the individual stress components, but in
some overall stress value such as Von-Mises stress. In case of plane stress, the von Mises

stress is given by 2 2
1 2 1 22Yσ σ σ σ σ= + − , where σ1 and σ2 are principal stresses given

by
2

2
1,2 2 2

x y x y

xy

σ σ σ σ
σ τ

+ − 
= ± + 

 
. Figure 9.14 in Chapter 9 plots the

xxs stress

contours for the 64-element mesh.

postprocessor.m

% deformation and stress ouput
function postprocess(d);
include_flags

% plot the deformed mesh
displacements(d);

% Compute strains and stresses at gauss points

 49

s = zeros(neq,1);
if strcmpi(compute_stress,'yes')==1;
 fprintf(1,'\n Stress at Gauss Points \n')
 fprintf(1,'--- \n')
 for e=1:nel
 fprintf(1,'Element %d \n',e)
 fprintf(1,'-------------\n')
 get_stress(d,e);
 nodal_stress(d,e);
 end
 stress_contours;
end

displacement.m

% scale and plot the deformed configuration
function displacements(d);
include_flags;

if strcmpi(plot_disp,'yes')==1;
displacement = d(ID)*fact; % scale displacements

% Compute deformed coordinates
 j = 1;
 for i = 1:ndof:nnp*ndof
 xnew(j) = x(j) + displacement(i);
 ynew(j) = y(j) + displacement(i+1);
 j = j + 1;
 end
% Plot deformed configuration over the initial configuration
 for e = 1:nel
 XXnew = [xnew(IEN(1,e)) xnew(IEN(2,e)) xnew(IEN(3,e)) xnew(IEN(4,e)) xnew(IEN(1,e))];
 YYnew = [ynew(IEN(1,e)) ynew(IEN(2,e)) ynew(IEN(3,e)) ynew(IEN(4,e)) ynew(IEN(1,e))];
 plot(XXnew,YYnew,'k');hold on;
 end
title('Initial and deformed structure'); xlabel('X'); ylabel('Y');
end

get_stress.m

% Compute strains and stresses at the gauss points
function get_stress(d,e);
include_flags;

de = d(LM(:,e)); % element nodal displacements

% get coordinates of element nodes
je = IEN(:,e);
C = [x(je); y(je)]';

 50

[w,gp] = gauss(ngp); % get gauss points and weights

% compute strains and stress at gauss points
ind = 1;
for i=1:ngp
 for j=1:ngp
 eta = gp(i); psi = gp(j);

 N = NmatElast2D(eta,psi);
 [B, detJ] = BmatElast2D(eta,psi,C);

 Na = [N(1,1) N(1,3) N(1,5) N(1,7)];
 X(ind,:) = Na*C; % gauss points in the physical coordinates
 strain(:,ind) = B*de;
 stress(:,ind) = D*strain(:,ind); % compute the stress [s_xx s_yy s_xy];
 ind = ind + 1;
 end
end
e_xx = strain(1,:); e_yy = strain(2,:); e_xy = strain(3,:); % strains at gauss points
s_xx = stress(1,:); s_yy = stress(2,:); s_xy = stress(3,:); % stress at gauss points

% Print x-coord y-coord sigma_xx sigma_yy sigma_xy
stress_gauss = [X(:,1) X(:,2) s_xx' s_yy' s_xy'];
fprintf(1,'\tx-coord\t\t\ty-coord\t\t\ts_xx\t\t\ts_yy\t\t\ts_xy\n');
fprintf(1,'\t%f\t\t%f\t\t%f\t\t%f\t\t%f\n',stress_gauss');

nodal_stress.m

% compute the average nodal stress values
function nodal_stress(d,e);
include_flags;

de = d(LM(:,e)); % displacement at the current element nodes

% get coordinates of element nodes
je = IEN(:,e);
C = [x(je); y(je)]';

psi_val = [-1 1 1 -1]; % psi values at the nodes
eta_val = [-1 -1 1 1]; % eta values at the nodes

% Compute strains and stress at the element nodes
ind = 1;
for i=1:nen
 eta = eta_val(i);
 psi = psi_val(i);

 [B, detJ] = BmatElast2D(eta,psi,C);
 strain(:,ind) = B*de;
 stress(:,ind)= D*strain(:,ind); % compute the stress [s_xx s_yy s_xy];
 ind = ind + 1;
end
e_xx = strain(1,:); e_yy = strain(2,:); e_xy = strain(3,:); % strains at gauss points
s_xx = stress(1,:); s_yy = stress(2,:); s_xy = stress(3,:); % stress at gauss points

 51

counter(je) = counter(je) + ones(nen,1); % count tnumber of elements connected to the node
nodestress(je,:) = [s_xx' s_yy' s_xy']; % accumulate stresses at the node

Stress_contours.m

function stress_contours;
include_flags;

if strcmpi(plot_stress_xx,'yes')==1;
 figure(2);
 for e=1:nel
 XX = [x(IEN(1,e)) x(IEN(2,e)) x(IEN(3,e)) x(IEN(4,e)) x(IEN(1,e))];
 YY = [y(IEN(1,e)) y(IEN(2,e)) y(IEN(3,e)) y(IEN(4,e)) y(IEN(1,e))];

 sxx = nodestress(IEN(:,e),1)./counter(IEN(:,e));
 dd = [sxx' sxx(1)];
 patch(XX,YY,dd);hold on;
 end
 title('\sigma_x_x contours'); xlabel('X'); ylabel('Y'); colorbar
end

if strcmpi(plot_mises,'yes')==1;
 for e=1:nel
 XX = [x(IEN(1,e)) x(IEN(2,e)) x(IEN(3,e)) x(IEN(4,e)) x(IEN(1,e))];
 YY = [y(IEN(1,e)) y(IEN(2,e)) y(IEN(3,e)) y(IEN(4,e)) y(IEN(1,e))];

 sxx = nodestress(IEN(:,e),1)./counter(IEN(:,e));
 syy = nodestress(IEN(:,e),2)./counter(IEN(:,e));
 sxy = nodestress(IEN(:,e),3)./counter(IEN(:,e));

 S1 = 0.5*(sxx+syy) + sqrt((0.5*(sxx-syy)).^2 + sxy.^2); % first principal stress
 S2 = 0.5*(sxx+syy) - sqrt((0.5*(sxx-syy)).^2 + sxy.^2); % second principal stress
 mises = sqrt(S1.^2 + S2.^2 - S1.*S2); % plane-stress case

 dd = [mises' mises(1)];

 figure(3);
 patch(XX,YY,dd);hold on;

 end
 title('Von Mises \sigma contours'); xlabel('X'); ylabel('Y'); colorbar
end

Functions, which are identical to those in Chapter 8:
preprocessor.m, mesh2d.m, plotmesh.m, assembly.m, solvedr.m

 52

12.6 MATLAB finite element program for beams in 2D

In this section we describe a finite element program for beams in two-dimensions. The
program structure is very similar to that introduced for one-dimensional problems in
Section 12.3 with a main differences being two degrees-of freedom per node. A brief
description of various functions is provided below.

beam.m

The main program is given in beam.m file. It can be seen that it is almost identical to that
in Section 12.3.
%%%%%%%%%%%%%%%%%%%%%%
% Beam (Chapter 10) %
% Suleiman M. BaniHani, Rensselaer %
% Rensselaer Polytechnic Institute %
%%%%%%%%%%%%%%%%%%%%%%

clear all;
close all;

% include global variables
include_flags;

% Preprocessing
 [K,f,d] = preprocessor;

% Element matrix computations and assembly
for e = 1:nel
 [ke,fe] = beamelem(e);
 [K, f] = assembly(K,f,e,ke,fe);
end
% Add nodal boundary force vector
f = NaturalBC(f);

% Partition and solution
 [d,f_E] = solvedr(K,f,d);

% Postprocessing
postprocessor(d)

include_flags.m
% Include global variables
global nsd ndof nnp nel nen neq nd ngp
global CArea E leng phi xp P
global plot_beam plot_nod plot_stress
global LM IEN x y stress body
global flags ID xplot n_bc e_bc np nplot neqe

preprocessor.m
The preprocessor function reads input file and generates ID and LM arrays. The structure of ID
array is identical to that for the scalar field problems (see for instance program in Chapter 5); The
LM relates elements (columns) to equation numbers after renumbering. The LM array for

Example Problem 10.1 is

1 3

2 4

3 5

4 6

LM =

 
 
 
 
 
 

.

 53

% reads input data and sets up mesh information
function [K,f,d] = preprocessor;
include_flags;

% input file to include all variables
 input_file_example10_1;

% Generate LM array
count = 0; count1 = 0;
for i = 1:neq
 if flags(i) == 2 % check if essential boundary
 count = count + 1;
 ID(i) = count; % number first the degrees-of-freedom on essential boundary
 d(count)= e_bc(i); % store the reordered values of essential B.C
 else
 count1 = count1 + 1;
 ID(i) = nd + count1;
 end
end
for e = 1:nel
 for j = 1:nen
 for m = 1:ndof
 ind = (j-1)*ndof + m;
 LM(ind,e) = ID(ndof*IEN(j,e) - ndof + m) ; % create the LM matrix
 end
 end
end

input_file_example10_1.m
The cross-sectional area is prescribed at the nodes and interpolated using linear shape functions.
The Young’s modulus and body forces are assumed to be constant within one element; they are
prescribed for each element. Essential and natural boundary conditions are prescribed for each
degree of freedom on essential and natural boundary, respectively.

% Input Data for Example 10.1
nsd = 2; % Number of spatial dimensions
ndof =2; % Number of degrees-of-freedom per node
nnp = 3; % Total number of global nodes
nel = 2; % Total number of elements
nen = 2; % Number of nodes in each element
neq = ndof*nnp; % Number of equations
neqe = ndof*nen; % Number of equations for each element

f = zeros(neq,1); % Initialize force vector
d = zeros(neq,1); % Initialize displacement vector
K = zeros(neq); % Initialize stiffness matrix

flags = zeros(neq,1); % initialize flag vector
e_bc = zeros(neq,1); % initialize vector of essential boundary condition
n_bc = zeros(neq,1); % initialize vector of natural boundary condition

% Element properties
CArea = [1 1 1]'; % Elements cross-sectional area
leng = [8 4]; % Elements length
body = [-1 0]'; % body forces
E = [1e4 1e4]'; % Young’s Modulus

% gauss integration
ngp = 2; % number of gauss points

% essential boundary conditions
% odd numbers for displacements; even for numbers for rotations

 54

flags(1) = 2; % flags to mark degrees-of-freedom located on the essential boundary
flags(2) = 2; % flags to mark degrees-of-freedom located on the essential boundary
e_bc(1) = 0; % value of prescribed displacement
e_bc(2) = 0; % value of prescribed rotation
nd = 2; % number of degrees-of-freedom on the essential boundary

% natural boundary conditions
% odd numbers for shear forces; even numbers for moments
flags(5) = 1; % flags to mark degrees-of-freedom located on the natural boundary
n_bc(5) = -20; % value of force
flags(6) = 1; % flags to mark degrees-of-freedom located on the natural boundary
n_bc(6) = 20; % value of moment

% Applied point forces
P = [-10 5]'; % array of point forces
xp = [4 8]' ; % array of coordinates where point forces are applied
np = 2 ; % number of point forces

% output controls
plot_beam = 'yes';
plot_nod = 'yes';

% mesh generation
beam_mesh_10_1;
% number of points for plot
nplot=300;

beam_mesh_10_1.m
function beam_mesh_10_1
include_flags;

% Node: 1 2 3 (origin placed at node 2)
x = [0.0 8.0 12.0]; % X coordinate
y = [0.0 0.0 0.0]; % Y coordinate

% connectivity array
IEN = [1 2
 2 3];

% plot beam
plotbeam;

beamelem.m

% generate element stiffness matrix and element nodal body force vector
function [ke, fe] = beamelem(e)
include_flags;

IENe = IEN(:,e); % extract local connectivity information
xe = x(IENe); % extract x coordinates
J = (xe(nen) - xe(1))/2; % compute Jacobian
[w , gp] = gauss(ngp); % extract Gauss points and weights

ke = zeros(neqe,neqe); % initialize element stiffness matrix
fe = zeros(neqe,1); % initialize element nodal force vector

for i = 1:ngp
 N = NmatrixBeam(gp(i),xe); % shape functions matrix
 B = BmatrixBeam(gp(i),xe) *1/J^2; % derivative of shape functions
 Ae = [N(1) N(3)]*CArea(IENe); % calculate cross-sectional area at element gauss points
 Ee = E(e); % extract Young's modulus

 55

 be = body(e); % extract body forces
 ke = ke + w(i)*(B'*Ae*Ee*B); % calculate element stiffness matrix
 fe = fe + w(i)*N'*be; % calculate element nodal force vector
end
ke = J*ke;
fe = J*fe;

% check for point forces in this element
for i=1:np % loop over all point forces
 Pi = P(i); % extract point force
 xpi = xp(i); % extract the location of point force within an element
 if xe(1)<=xpi & xpi<xe(nen)
 fe = fe + Pi*[NmatrixBeam(((2*xpi-xe(1)-xe(nen))/(xe(nen) - xe(1))) ,xe)]';
 end
end

NmatrixBeam.m

% Shape functions in the natural coordinate s
 function N = NmatrixBeam(s,xe)
 L=xe(2)-xe(1);
 N(1)=1/4*(1-s)^2*(2+s);
 N(2)=L/8*(1-s)^2*(1+s);
 N(3)=1/4*(1+s)^2*(2-s);
 N(4)=L/8*(1+s)^2*(s-1);

BmatrixBeam.m

% Derivative of the shape functions in the natural coordinate s
function B = BmatrixBeam(s,xe)
 L=xe(2)-xe(1);
 B(1)=3/2*s;
 B(2)=L*(3/4*s-1/4);
 B(3)=-3/2*s;
 B(4)= L*(3/4*s+1/4);

SmatrixBeam.m

% Second derivative of the shape functions
function S = SmatrixBeam(s,xe)
 L=xe(2)-xe(1);
 S(1)=3/2;
 S(2)=3/4*L;
 S(3)=-3/2;
 S(4)= 3/4*L;

naturalBC.m

% compute and assemble nodal boundary force vector
function f = naturalBC(f);
include_flags;
for i = 1:neq
 if flags(i) == 1
 dof = ID(i);
 f(dof) = f(dof) + n_bc(dof);
 end
end

postprocessor.m

% postprocessing function
function postprocessor(d)

 56

include_flags;

% loop over elements to plot displacements, moments and shear forces
for e = 1:nel

de = d(LM(:,e)); % extract element nodal displacements
IENe = IEN(:,e); % extract element connectivity information
xe = x(IENe); % extract element coordinates
J = (xe(nen) - xe(1))/2; % Jacobian
[w , gp] = gauss(ngp); % extract Gauss points and weights

% compute displacements, moments and shear forces
xplot = linspace(xe(1),xe(nen),nplot); % equally distributed coordinate within an element
xplotgauss= (2*xplot-xe(1)-xe(nen))/(xe(nen) - xe(1));

 for i = 1:nplot
 xi = xplotgauss(i); % current coordinate
 N = NmatrixBeam(xi,xe); % shape functions
 B = BmatrixBeam(xi,xe)*1/J^2; % first derivative of shape functions
 S = SmatrixBeam(xi,xe)*1/J^3; % second derivative of shape functions
 Ee = E(e); % Young's modulus
 displacement(i) = N*de ; % displacement output
 moment(i) = Ee*B*de; % moment output
 shear(i) = Ee*S*de; % Shear force output
 end

% plot displacements, moment and shear forces
[x_plot,S_ex,M_ex,w_ex]=exact; % call exact beam solution

figure(2)
plot(xplot,displacement,'-.r'); hold on;
plot(x_plot,w_ex,'-k'); legend('FE','Exact Solution'); hold on;
ylabel('displacement'); title('Displacements: FE versus analytical beam solutions');

figure(3)
plot(xplot,moment,'-.r'); hold on;
plot(x_plot,M_ex,'-k'); legend('FE','Exact Solution'); hold on;
ylabel('moment'); xlabel('x'); title('Moments: FE versus analytical beam solutions');

figure(4)
plot(xplot,shear,'-.r'); hold on;
plot(x_plot,S_ex,'-k'); legend('FE','Exact Solution'); hold on;
ylabel('shear'); xlabel('x'); title('Shear: FE versus analytical beam solutions');

end

Functions which are identical to those in Chapter 5 are: assembly.m, solvedr.m, gauss.m

Problems –Linear Algebra
Problem 1-1
 Write a MATLAB program to generate a set of linear algebraic equations Ax=b where

A is an n n× matrix given by

2

0
ij

-1 if i j 1 or i j 1

A if i j

otherwise

= − = +


= =



 57

and compute
1−A . Then check how closely

1−
=B A A corresponds to I . Do this for

n 5,10,1000= and a larger value you choose. The accuracy of the computed product

can be compared to the correct results by computing a norm of the error given by

()
2

2
1 1

1 n n

ij ij

i j

err B I
n = =

= −∑∑

Repeat the above with the matrix A defined by

1
ijA

i j
=

+

Repeat the above with n 3,4,5,6,7...= . Stop when the error is greater than one, since

the solution is then meaningless.
The top equation is of the form we will see in finite element equations. They can be
accurately solved even for very large system for they are not susceptible to roundoff
error. They are known as well-conditioned. The second matrix is called a Hilbert matrix.
It is an example of an estremely ill-conditioned matrix.

Problem 1-2
Consider a system of linear equations

a) Write the system of equations in matrix notation Ax b= and solve for the unknown

x using MATLAB
b) Suppose we impose an additional constraint on the solution

()
1 2 1 0g x x x= + + - =x . Using MATLAB find a new vector

new
x so that it will

satisfy exactly the constraint equation ()newg x and will minimize the error

() () ()Tnew new new
err = - -x Ax b Ax b

Problem 1-3: Consider the following symmetrix matrices K :

 








−

−+

22

221

kk

kkk
 









k

k

0

0
















−

−+−

−

22

2211

11

0

0

kk

kkkk

kk

where 1 2, ,k k k are positive constants.

a) Check if the above three matrices are positive definite. Recall that if for any vector

0¹x we have 0T >x Kx then matrix K is called Symmetric Positive Definite

(SPD). If, on the other hand, 0T ³x Kx for any vector 0¹x then the matrix K is

symmetric semi-positive definite. Choose one of the semi-positive definite matrices

shown above and show that for any right hand side vector, f , the system of

equations =Kd f has no unique solution.
b) Verify your results by computing the eigenvalues for the above three matrices

 58

