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Chapter 12 includes a general introduction to MATLAB functions, selected topics in 
linear algebra with MATLAB, and a collection of finite element programs for: trusses 
(Chapter 2), general one-dimensional problems (Chapter 5), heat conduction in 2D 
(Chapter 8) and elasticity in 2D (Chapter 9). This Chapter is published electronic format 
only for several reasons: 
 

1. the data structure of the finite element program will be periodically updated to 
reflect emerging finite element technologies and MATLAB syntax changes; 

2. to allow the course instructors to use their own MALAB or other finite element 
codes.  

3. to create a forum where students and instructors would exchange ideas and place 
alternative finite element program data structures. The forum is hosted at 

                                       http://1coursefem.blogspot.com/  
 
 

12.1 Using MATLAB for FEM1  

12.1.1 The MATLAB Windows 

Upon opening MATLAB you should see three windows: the workspace window, the 
command window, and the command history window as shown in Figure 12.1. If you do 
not see these three windows, or see more than three windows you can change the layout 
by clicking on the following menu selections: View → desktop layout → default. 

                                                 
1 May not be covered in the class. Recommended as independent reading. 

Finite Element Programming with 
MATLAB 
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Figure 12.1: Matlab Windows 

12.1.2 The Command Window  

If you click in the command window a cursor will appear for you to type and enter various 
commands.  The cursor is indicated by two greater than symbols (>>). 

12.1.3 Entering Expressions  

After clicking in the command window you can enter commands you wish MATLAB to execute.  
Try entering the following: 8+4.  You will see that MATLAB will then return: ans = 12. 
  

12.1.4 Creating Variables  

Just as commands are entered in MATLAB, variables are created as well. The general 
format for entering variables is: variable = expression.  For example, enter y = 1 in the 
command window.  MATLAB returns: y = 1.  A variable y has been created and assigned 
a value of 1.  This variable can be used instead of the number 1 in future math operations.  
For example: typing y*y at the command prompt returns: ans = 1.  MATLAB is case 
sensitive, so y=1, and Y=5 will create two separate variables. 
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12.1.5 Functions  

MATLAB has many standard mathematical functions such as sine (sin(x)) and cosine 
(cos(x)) etc.  It also has software packages, called toolboxes, with specialized functions 
for specific topics.  

12.1.6 Getting Help and Finding Functions  

The ability to find and implement MATLAB’s functions and tools is the most important 
skill a beginner needs to develop.  MATLAB contains many functions besides those 
described below that may be useful.  
There are two different ways obtain help:  

• Click on the little question mark icon at the top of the screen.  This will open up the 
help window that has several tabs useful for finding information.   

• Type “help” in the command line: MATLAB returns a list of topics for which it has 
functions.  At the bottom of the list it tells you how to get more information about a 
topic. As an example, if you type “help sqrt” and MATLAB will return a list of 
functions available for the square root.  

12.1.7 Matrix Algebra with MATLAB 

MATLAB is an interactive software system for numerical computations and graphics. As 
the name suggests, MATLAB is especially designed for matrix computations. In addition, 
it has a variety of graphical and visualization capabilities, and can be extended through 
programs written in its own programming language. Here, we introduce only some basic 
procedures so that you can perform essential matrix operations and basic programming 
needed for understanding and development of the finite element program. 

12.1.8 Definition of matrices  

A matrix is an mxn array of numbers or variables arranged in m rows and n columns; such 
a matrix is said to have dimension mxn as shown below 
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Bold letters will denote matrices or vectors.  The elements of a matrix a are denoted 
by

ija , where i is the row number and j is the column number.  Note that in both 

describing the dimension of the matrix and in the subscripts identifying the row and 
column number, the row number is always placed first. 

An example of a 3x3 matrix is: 
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The above matrix a is is an example of a square matrix since the number of rows and 
columns are equal.  

The following commands show how to enter matrices in MATLAB (>> is the 
MATLAB prompt; it may be different with different computers or different versions of 
MATLAB.) 

 

>> a = [1 2 3; 4 5 6; 7 8 0]

a =

     1     2     3

     4     5     6

     7     8     0

 

Notice that rows of a matrix are separated by semicolons, while the entries on a row are 
separated by spaces (or commas). The order of matrix a can be determined from  
 

( )size a  
 
The transpose of any matrix is obtained by interchanging rows and columns.  So for 
example, the transpose of a is: 
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In MATLAB the transpose of a matrix is denoted by an apostrophe (‘).  

 If  T =a a , the matrix a  is symmetric.   
 

A matrix is called a column matrix or a vector if n=1, e.g. 
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In MATLAB, single subscript matrices are considered row matrices, or row vectors. 
Therefore, a column vector in MATLAB is defined by  

>> b = [1  2  3]'

b =

     1

     2

     3

 

 
Note the transpose that is used to define b as a column matrix. The components of the 
vector b are 1 2 3, ,b b b .  The transpose of b is a row vector 
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[ ]321 bbbbT
=  

or in MATLAB 
 

>> b  = [1  2  3]

b =

     1     2     3

 

 
 

A matrix is called a diagonal matrix if only the diagonal components are nonzero, 
i.e., 0,ija i j= ¹ . For example, the matrix below is a diagonal matrix:  

1 0 0

0 5 0

0 0 6

a

 
 

=  
  

  

 
A diagonal matrix in MATLAB is constructed by first defining a row vector b = [1 5 6], 
and then placing this row vector on the diagonal 
 

 

>> b = [1 5 6];

>> a = diag (b)

a =

     1     0     0

     0     5     0

     0     0     6

 

 
A diagonal matrix where all diagonal components are equal to one is called an identity or 

unit matrix and is denoted by I.  For example, 2 2´ identity matrix is given by 
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The MATLAB expression for an order n unit matrix is 
 
 ( )eye n  
 
Thus, the MATLAB expression (2)I eye=  gives the above matrix.  
 
A matrix in which all components are zero is called a zero matrix and is denoted by 0. In 
MATLAB, B = zeros (m, n) creates m n´  matrix B of zeros. A random m n´  matrix can 
be created by rand (m,n).  
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In finite element method, matrices are often sparse, i.e., they contain many zeros. 
MATLAB has the ability to store and manipulate sparse matrices, which greatly increases 
its usefulness for realistic problems. The command sparse (m, n) stores an m n´ zero 
matrix in a sparse format, in which only the nonzero entries and their locations are sorted. 
The nonzero entries can then be entered one-by-one or in a loop. 
 

 

>> a = sparse (3,2)

a =

   A ll zero sparse: 3-by-2

>> a(1,2)=1;

>> a(3,1)=4;

>> a(3,2)=-1;

>> a      

a =

   (3,1)        4

   (1,2)        1

   (3,2)       -1

 

 
Notice that the display in any MATLAB statement can be suppressed by ending the line 
with a semicolon. 
 
The inverse of a square matrix is defined by 
 
 1 1- -= =a a aa I  
 
if the matrix a is not singular. The MATLAB expression for the inverse is ( )inv a . Linear 
algebraic equations can also be solved by using backslash operator as shown in Section 
1.3.10, which avoids computations of the inverse and is therefore faster.  
 The matrix a is nonsingular if its determinant, denoted by ( )det a , is not equal to 
zero. A determinant of a 2x2 matrix is defined by  
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 The MATLAB expression for the determinant is  
 
 det ( )a  
 
For example, 
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>> a = [1 3; 4 2];

>> det (a)

ans =

   -10

 

12.1.9 Operation with matrices 

Addition and Subtraction 
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An example of matrix addition in MATLAB is given below:  
 

 

>> a = [1 2 3;4 5 6;7 8 9]; 

>> a = [1 1 1;2 2 2;3 3 3];

>> c = [1 2;3 4;5 6];

>> a+b

ans =

     2     3     4

     6     7     8

    10    11    12

>> a+c

??? Error using ==> +

Matrix dimensions must agree

 

Multiplication 

 
1. Multiplication of a matrix by a scalar 
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2. Scalar product of two column vectors 
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In MATLAB the scalar product as defined above is given by either *a b¢or ( , )dot a b .  
 

The length of a vector a is denoted by |a| and is given by 
 

2 2 2
1 2 na a a= + + +La  

 
The length of a vector is also called its norm. 

 
 

3. Product of two matrices 

 
The product of two matrices a ( )m k´ and b ( )k n´ is defined as    
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Alternatively we can write the above as 
 

 
1

n

ij ik kj

k

c a b
=

= å  

 
Note the the i,j entry of c is the scalar product of row i of a and column j of b. 
  
The product of two matrices a and b c is defined only if the number of columns in 
a equals the number of rows in a.  In other words, if a is an ( )m k´  matrix, then 

b must be an ( )k n´  matrix, where k is arbitrary.  The product c will then have 

the same number of rows as a and the same number of columns as b, i.e. it will be 
an m n´  matrix.  
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An important fact to remember is that matrix multiplication is not commutative, 
i.e. ¹ab ba  except in unusual circumstances. 
 
The MATLAB expression for matrix multiplication is 
 

 *c a b=  
 
Consider the same matrices a and c as before. An example of matrix 
multiplication with MATLAB is: 
 

 

>> a*c

ans =

    22    28

    49    64

    76   100

>> c*c

??? Error using ==> *

Inner matrix dimensions must agree.

 

 

4.   Other matrix operations 

a) Transpose of product: ( )T T T=ab b a  

b) Product with identity matrix: =aI a  
c) Product with zero matrix: =a0 0  
 

12.1.10 Solution of system of linear equations 

Consider the following system of n equations with n unknowns, 
kd , 1, 2, , :k n= L  

 
 
We can rewrite this system of equations in matrix notation as follows: 
 

=Kd f  
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where 
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The symbolic solution of the above system of equation can be found by multiplying both 
sides with inverse of K, which yields 
 
 1-=d K f  
 
MATLAB expression for solving the system of equations is 
 
 \d K f=  
or 
 ( )*d inv K f=  

 
An example of solution of system of equations with MATLAB is given below: 
 

 

>> A  = rand (3,3)

A  =

    0.2190    0.6793    0.5194

    0.0470    0.9347    0.8310

    0.6789    0.3835    0.0346

>> b = rand (3,1)

b =

    0.0535

    0.5297

    0.6711

>> x = A \ b

x =

 -159.3380

  314.8625

 -344.5078
 

 
As mentioned before, the backslash provides a faster way to solve equations and should 
always be used for large systems. The reason for this is that the backslash uses 
elimination to solve with one right hand side, whereas determining the inverse of an nxn 
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matrix  involves solving the system with n right hand sides. Therefore, the backslash 
should always be used for solving large system of equations. 

12.1.11 Strings in MATLAB 

MATLAB variables can also be defined as string variables. A string character is a text 
surrounded by single quotes. For example: 

>> str='hello world'

str =

hello world

 

It is also possible to create a list of strings by creating a matrix in which each row is a 
separate string. As with all standard matrices, the rows must be of the same length. Thus:  

>> str_ mat = ['string A ' ; 'string B']

str_ mat =

string A

string B

 

 
Strings are used for defining file names, plot titles, and data formats. Special built-in 
string manipulation functions are available in MATLAB that allow you to work with 
strings. In the MATALB codes provided in the book we make use of strings to compare 
functions. For example the function strcmpi compares two strings  
  

>> str = 'print output';

>> strcmpi(str,'PR INT  OUT PUT ')

ans =

     1

 

A true statment results in 1 and a false statement in 0. To get a list of all the built-in 
MATLAB functions type 

>> help strfun  

 
Another function used in the codes is fprintf. This function allows the user to print to the 
screen (or to a file) strings and numeric information in a tabulated fasion. For example 
 

>>fprintf(1,'T he number of nodes in the mesh is %d \ n',10)

T he number of nodes in the mesh is 10 
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The first argument to the function tells MATLAB to print the message to the screen. The 
second argument is a string, where %d defines a decimal character with the value of 10 
and the \n defines a new line.  To get a complete description type 

>> help fprintf  

 

12.1.11 Programming with MATLAB 

MATLAB is very convenient for writing simple finite element programs. It provides the 
standard constructs, such as loops and conditionals; these constructs can be used 
interactively to reduce the tedium of repetitive tasks, or collected in programs stored in 
''m-files'' (nothing more than a text file with extension ``.m''). 
 

12.1.11.1 Conditional and Loops 

MATLAB has a standard if-elseif-else conditional. 
The general form An example 

if expression1 
   statements1 
elseif expression2 
   statements2 
… 
… 
… 
else 
   statements 
end 

>> t = 0.76; 
>> if t > 0.75 
      s = 0; 
   elseif t < 0.25 
      s = 1; 
   else 
      s = 1-2*(t-0.25); 
   end 
>> s 
s = 
     0 

 
MATLAB provides two types of loops, a for-loop (comparable to a Fortran do-loop or a 
C for-loop) and a while-loop. A for-loop repeats the statements in the loop as the loop 
index takes on the values in a given row vector; the while-loop repeats as long as the 
given expression  is true (nonzero): 
 
The general form Examples 

for index = start:increment:end 
    statements 
end 

>> for i=1:1:3 
      disp(i^2) 
   end 
     1 
     4 
     9 

while expression 
    statements 
end 

>> x=1; 
>> while 1+x > 1 
      x = x/2; 
   end 
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>> x 
x = 
   1.1102e-16 

12.1.11.2 Functions 

Functions allow the user to create new MATLAB commands. A function is defined in an 
m-file that begins with a line of the following form:  
 

function [output1,output2,...] = cmd_name(input1,input2,...)  

 
The rest of the m-file consists of ordinary MATLAB commands computing the values of 
the outputs and performing other desired actions. Below is a simple example of a 
function that computes the quadratic function 2( ) 3 1f x x x= - - . The following 
commands should be stored in the file fcn.m (the name of the function within MATLAB 
is the name of the m-file, without the extension)  
 

 

function y = fcn( x )

y=x^ 2-3*x-1;

T hen type command:

>> fcn(0.1)

ans =

   -1.2900

 

 

12.1.12 Basic graphics 

MATLAB is an excellent tool for visualizing and plotting results. To plot a graph the user 
specifies the x coordinate vector and y coordinate vector using the following syntax 

>> x=[0:0.01:1];

>> y=x.^ 2;

>> plot(x,y);

 

The above will generate  
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Figure 12.2 Typical outpout of plot(x,y) function 

 
Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s is a 
character string consisting of elements from any combination of the following 3 columns: 
  
b     blue             .     point                -     solid 
g     green           o     circle               :     dotted 
r     red              x     x-mark               -.    dashdot  
c     cyan            +     plus                 --    dashed    
m     magenta         *     star               (none)  no line 
y     yellow          s     square 
k     black           d     diamond 
                                  
 
To add a title, x and y labels, or a grid, the user should use the following MATLAB 
functions. Note that the arguments to the functions are strings  
 

>> title('circle');

>> xlabel('x');

>> ylabel('y');

>> grid

 

 
In the MATLAB Finite Element code provided in the book, we also use two specialized 
plots. The first plot is the patch function. This function is used to visualize 2D polygons 
with colors. The colors are interpolated from nodes of the polygon to create a colored 
surface. The following example generates a filled square. The colors along the x axis are 
the same while the colors along the y axis are interpolated between the values [0,1].   
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>> x = [0 1 1 0];

>> y = [0 0 1 1];

>> c = [0 0 1 1];

>> patch(x,y,c)

 

 
 

 
Figure 12.3 Typical outpout of patch(x,y,c) function 

 
We will use the patch function to visualize temperatures, stresses and other variables 
obtained at the finite element solutions.   Another specialized plot function is the quiver. 
This function is used to visualize gradients of functions as an arrow plot. The following 
example demonstrates the use of quiver function for plotting the gradients to the function 
y=x

2 
 

>> x=0:0.1:1; y=x.^ 2;

>> cx=ones(1,11); cy=2*x;

>> plot(x,y); hold on

>> quiver(x,y,cx,cy)
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Figure 12.4 Typical outpout of quiver(x,y,cx,cy) function 

 
The hold on command is used to hold the current plot and all axis properties so that 
subsequent graphing commands will executed on the existing graph.  
Using the text function, the user can add to a plot a text message. For example 

text(1,1,'flux')  
 The first and second arguments define the position of the text on the plot, while the 
string gives the text.  
 

12.1.13 Remarks 

a) In practice the number of equations n can be very large. PCs can today solve 
thousands of equations in a matter of minutes if they are sparse (as they are in 
FEM analysis-you will learn about this later) but sometimes millions of 
equations are needed, as for an aircraft carrier or a full model of an aircraft; 
parallel computers are then needed. 

b) Efficient solution techniques that take advantage of the sparsity and other 
advantageous properties of FEM equations are essential for treating even 
moderately large systems. The issue of how to efficiently solve large systems 
will not be considered in this course. 

c) In this course, we will see that 
• The matrix corresponding to the system of equations arising from 

FEM (denoted as K) is non-singular (often called regular), i.e., 
1-K exists if the correct boundary conditions are prescribed and the 

elements are properly formulated.  Furthermore, for good models it is 
usually well-conditioned, which means it is not very sensitive to 
roundoff errors.   
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• K is symmetric, i.e. T =K K . 
• K is positive definite, i.e., 0  T > "x Kx x (meaning for any value of x) 

Alternatively, K is said to be positive definite if all the eigenvalues are 
strictly positive. The eigenvalue problem consists of finding nonzero 
eigenvectors y and the corresponding eigenvalues l satisfying 
 

 l=Ky y  
 
The MATLAB expression for the eigenvalues problem is: 
 

>> K=[2 -2;-2 4];

>> [y, lamda]=eig(K)

y =

    0.8507   -0.5257

   -0.5257    0.8507

lamda =

    0.7639         0

         0    5.2361

 

 

12.2 Finite element programming with MATLAB for trusses 

In Chapter 2 the basic structure of the finite element method for truss structures 
has been illustrated.  In this section we present a simple finite element program using 
MATLAB programming language.  Since MATLAB manipulates matrices and vectors 
with relative ease the reader can focus on fundamentals ideas rather than on algorithmic 
details. 

The code is written to very closely follow the formulation given in this chapter.  
In order to better understand how the program works Figure 2.8 and Example Problem 
2.2 in Chapter 2 have been included as examples solved by the program.  Going through 
the code along with this guide and the example problems is an effective method to 
comprehend the program.   

 
The main routines in the finite element code are: 
1. Preprocessing including input data and assembling the proper arrays, vectors, 

and matrices. 
2. Calculation of element stiffness matrices and force vectors 
3. Direct assembly of matrices and vectors 
4. Partition and solution 
5. Postprocessing for secondary variables 
 

Explanation for various MATLAB routines (stored in *.m files) are described as 
comments within each subroutine.  
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12.2.1 Notations and definitions 

12.2.1.1 User provided 

nsd: number of space dimension (1 for 1D problems) 
ndof: number of degrees-of-freedom per node  
nnp: number of nodal points  
nel:  number of elements 
nen: number of element nodes (2 in this case) 
nd: number of prescribed (known) displacements  
CArea: cross-sectional area  
  Area = CArea(element number) 
E:  Young’s Modulus 
  Young = E(element number) 
leng: element length  
  Length = leng(element number) 
phi: angle from x ¢axis to x axis for each element specified in degrees.  Remember, 

x ¢ is 
 always from local node 1 to 2 
  phi = phi(element number)   
IEN: connectivity information matrix 
  global node number = IEN (local node number, element number) 
d_bar: prescribed displacement vector - d  in Eq. Error! Reference source not found..   

f_hat: given force vector - f̂  in Eq. Error! Reference source not found..   
 
plot_truss: string for output control: [‘yes’] to plot truss elements 
plot_nod: string for output control: [‘yes’] to plot truss global node numbers 
plot_stress: string for output control: [‘yes’] to plot stresses  
 

12.1.1.2 Calculated or derived by program 

neq: total number of equations 
K: global stiffness matrix 
d: global displacement vector is stored as: 
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f: global force vector (excluding the reactions) is stored as: 
              

                      for 1-D problems                for 2-D problems 
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e: element number 
ke: element stiffness matrix 
de: element nodal displacement vector: 
 

             for 1-D problems        for 2-D problems 
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LM:  gather matrix 
  The gather matrix is used to extract the element and local degrees-of-freedom. It 

has the following structure: 
 
 global degree-of-freedom=LM (local degree-of-freedom, element number)  
    
   When ndof = 1 (see example in Figure 2.8) IEN and LM are defined as follows: 
 

             IEN
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When ndof = 2 (example Problem 2.2), IEN and LM are defined as: 
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In both examples, columns indicate the elements and rows indicate global degrees-of-

freedom. 
 

K_E:    partition of the global stiffness matrix K based on Eq. 
Error! Reference source not found. 

K_EF:  partition of the global stiffness matrix K based on Eq. 
Error! Reference source not found. 

K_F:           partition of the global stiffness matrix K based on Eq. 
Error! Reference source not found. 

d_F:                unknown (free) part of the global displacement vector d based on Eq. 
Error! Reference source not found. 
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d_E:                prescribed (essential) part of the global displacement vector d based on 
Eq. Error! Reference source not found. 

f_E:           reaction force (unknown) vector based on Eq. 
Error! Reference source not found. 

stress:          stress  for each element 
 
Remark: In this chapter nodes where the displacements are prescribed have to be 
numbered first. 
 

12.21.2 MATLAB Finite element code for trusses 

truss.m 

%%%%%%%%%%%%%%%%%%%%%% 
% 2D Truss (Chapter 2)                             % 
% Haim Waisman, Rensselaer                  % 
%%%%%%%%%%%%%%%%%%%%%%  
clear all; 
close all;  
  
% include global variables 
include_flags;   
  
% Preprocessor Phase  
 [K,f,d] = preprocessor; 
 
% Calculation and assembly of element matrices 
for e = 1:nel 
    ke = trusselem(e); 
    K = assembly(K,e,ke); 
end 

 
% Solution Phase 
 [d,f_E] = solvedr(K,f,d); 
  
% Postprocessor Phase  
postprocessor(d) 

include_flags.m 

% file to include global variables 
global nsd ndof nnp nel nen neq nd 
global CArea E leng phi 
global plot_truss plot_nod plot_stress 
global LM IEN x y stress 
 

preprocessor.m 

% preprocessing– read input data and set up mesh information 
function  [K,f,d] = preprocessor; 
include_flags; 
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% input file to include all variables  
input_file_example2_2; 
%input_file_example2_8; 

  
% generate LM array  
for e = 1:nel 
    for j = 1:nen 
        for m = 1:ndof 
            ind = (j-1)*ndof + m; 
            LM(ind,e) = ndof*IEN(j,e) - ndof + m; 
        end 
    end 
end 

  

input_file_example2_2.m 

% Input Data for Example 2.2  
nsd  = 2; % Number of space dimensions  
ndof  = 2;      % Number of degrees-of-freedom per node 
nnp  = 3;     % Number of nodal points 
nel  = 2;      % Number of elements 
nen  = 2;      % Number of element nodes 
  
neq  = ndof*nnp; % Number of equations 
  
f  = zeros(neq,1);  % Initialize force vector 
d  = zeros(neq,1);  % Initialize displacement matrix 
K  = zeros(neq);     % Initialize stiffness matrix 
  
% Element properties 
CArea  = [1       1   ];    % Elements area   
leng   = [1    sqrt(2)];    % Elements length 
phi    = [90      45  ];    % Angle 
E      = [1       1   ];    % Young’s Modulus  
  
% prescribed displacements 
% displacement     d1x    d1y    d2x    d2y 
d           = [0      0      0      0]'; 
nd  = 4;  % Number of prescribed displacement degrees-of-freedom 
  
% prescribed forces 
f(5) = 10; % Force at node 3 in the x-direction 
f(6) = 0;       % Force at node 3 in the y-direction 
  
% output plots 
plot_truss  = 'yes'; 
plot_nod = 'yes'; 
 
% mesh Generation 
truss_mesh_2_2; 
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truss_mesh_2_2.m 

% geometry and connectivity for example 2.2 
function  truss_mesh_2_2 
include_flags; 
  
% Nodal coordinates   (origin placed at node 2)  
x =  [1.0  0.0  1.0  ];     % x coordinate   
y =  [0.0  0.0  1.0  ];     % y coordinate 
  
% connectivity array 
IEN =  [1    2     
            3    3];     
 
% plot truss 
plottruss; 

 

input_file_example2_8.m 

% Input Data from Chapter 2 Figure 2.8 
nsd = 1;     % Number of spatial dimensions  
ndof = 1;     % Number of degrees-of-freedom per node 
nnp = 3;     % Total number of global nodes 
nel = 2;     % Total number of elements 
nen = 2;     % Number of nodes in each element 
  
neq = ndof*nnp; % Number of equations 
  
f = zeros(neq,1); % Initialize force vector 
d = zeros(neq,1); % Initialize displacement vector 
K = zeros(neq);  % Initialize stiffness matrix 
  
% Element properties  
CArea = [.5       1];    % Elements cross-sectional area   
leng  = [2        2];    % Elements length 
E         = [1        1];    % Young’s Modulus 

 
% prescribed displacements 
d(1) = 0; 
nd = 1;          % Number of prescribed displacement degrees of freedom 
  
% prescribed forces 
f(3) = 10;       % force at node 3 in the x-direction 
  
% output controls 
plot_truss  = 'yes'; 
plot_nod    = 'yes'; 

  
% mesh generation 
truss_mesh_2_8; 
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truss_mesh_2_8.m 

% geometry and connectivity for example problem in Figure 2.8 
function  truss_mesh_2_8; 
include_flags; 
   
% Node coordinates   (origin placed at node 1)  
x =  [0.0  1.0  2.0  ];     % x coordinate   
y =  [0.0  0.0  0.0  ];     % y coordinate 
  
% connectivity array 
IEN =  [1    2     
            2    3];    
   
% plot truss 
plottruss; 

  
  

Plottruss.m 
% function to plot the elements, global node numbers and print mesh parameters 
function plottruss; 
include_flags; 
  
% check if  truss plot is requested 
if strcmpi(plot_truss,'yes')==1;   
    for i = 1:nel 
        XX = [x(IEN(1,i)) x(IEN(2,i)) x(IEN(1,i)) ]; 
        YY = [y(IEN(1,i)) y(IEN(2,i)) y(IEN(1,i)) ]; 
        line(XX,YY);hold on; 
  
        % check if node numbering is requested 
        if strcmpi(plot_nod,'yes')==1;    
            text(XX(1),YY(1),sprintf('%0.5g',IEN(1,i))); 
            text(XX(2),YY(2),sprintf('%0.5g',IEN(2,i))); 
        end 
    end 
    title('Truss Plot'); 
end 
  
% print mesh parameters 
fprintf(1,'\tTruss Params \n'); 
fprintf(1,'No. of Elements  %d \n',nel); 
fprintf(1,'No. of Nodes     %d \n',nnp); 
fprintf(1,'No. of Equations %d \n\n',neq); 

  
  

trusselem.m 
% generate the element stiffness matrix  for each element 
function ke = trusselem(e) 
include_flags; 
   
const = CArea(e)*E(e)/leng(e);    % constant coefficient within the truss element 
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if ndof == 1 
    ke = const * [1   -1 ;        % 1-D stiffness    
                        -1    1];           
elseif ndof == 2 
    p = phi(e)*pi/180;       % Converts degrees to radians 
    
    s   = sin(p);        c  = cos(p); 
    s2  = s^2;           c2 = c^2; 
     
    ke = const*[c2      c*s    -c2     -c*s;       % 2-D stiffness 
                  c*s      s2     -c*s    -s2; 
                     -c2      -c*s     c2      c*s; 
                     -c*s     -s2      c*s     s2]; 
            
end 

 
 

assembly.m 
% assemble element stiffness matrix 
function K = assembly(K,e,ke) 
include_flags; 
  
for loop1 = 1:nen*ndof 
    i = LM(loop1,e); 
    for loop2 =  1:nen*ndof 
        j = LM(loop2,e); 
        K(i,j) = K(i,j) + ke(loop1,loop2); 
    end 
end 
  

 
 

solvedr.m 
% partition and solve the system of equations 
function [d,f_E] = solvedr(K,f,d) 
include_flags; 
  
% partition the matrix K, vectors f and d 
K_E = K(1:nd,1:nd);                             % Extract K_E matrix  
K_F = K(nd+1:neq,nd+1:neq);                   % Extract K_E matrix 
K_EF    = K(1:nd,nd+1:neq);                           % Extract K_EF matrix 
f_F   = f(nd+1:neq);                                    % Extract f_F vector 
d_E   = d(1:nd);                                           % Extract d_E vector 
  
% solve for d_F 
d_F =K_F\( f_F - K_EF'* d_E); 
  
% reconstruct the global displacement d 
d = [d_E              
       d_F];                 
  
% compute the reaction r 
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f_E = K_E*d_E+K_EF*d_F; 
  
% write to the workspace 
solution_vector_d = d 
reactions_vector  = f_E 

 
 

postprocessor.m 
% postprocessing function  
function postprocesser(d) 
include_flags; 
  
% prints the element numbers and  corresponding stresses 
    fprintf(1,'element\t\t\tstress\n'); 
    % compute stress vector  
    for e=1:nel    
        de  = d(LM(:,e));     % displacement at the current element 
        const  = E(e)/leng(e);   % constant parameter within the element  
         
        if ndof == 1     % For 1-D truss element 
            stress(e) = const*([-1 1]*de); 
        end 
        if ndof == 2     % For 2-D truss element 
            p = phi(e)*pi/180;                             % Converts degrees to radians 
            c = cos(p);    s = sin(p);           
            stress(e) = const*[-c -s c s]*de;              % compute stresses 
        end 
  
        fprintf(1,'%d\t\t\t%f\n',e,stress(e)); 
    end 

 

12.3 Shape functions and Gauss quadrature with MATLAB 

 In Chapter 2 the basic finite element programming structure was introduced for 
one- and two-dimensional analysis of truss structures.  In this section we give the 
functions for the construction of element shape functions in one-dimension and their 
derivatives.   The shape functions are defined in the physical coordinate system. 
 

12.3.1 Notations and definitions 

xe: element nodal x-coordinates 
xt: x coordinate at which the functions are evaluated 
N: array of shape functions 
B: array of derivatives of the shape functions 
gp: array of position of Gauss points in the parent element domain - [ ]ngpxLxx 21  

W:         array of weights - [ ]ngpWLWW 21  
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12.3.2 MATLAB code for shape functions and derivatives 

Nmatrix1D.m 

% shape functions computed in the physical coordinate - xt 
 function N = Nmatrix1D(xt,xe) 
include_flags; 
  
    if nen == 2         % linear shape functions        
        N(1) = (xt-xe(2))/(xe(1)-xe(2)); 
        N(2) = (xt-xe(1))/(xe(2)-xe(1)); 
    elseif nen == 3     % quadratic shape functions 
        N(1)=(xt-xe(2))*(xt-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3))); 
        N(2)=(xt-xe(1))*(xt-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3))); 
        N(3)=(xt-xe(1))*(xt-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2))); 
    end 
 

 

Bmatrix1D.m 

% derivative of the shape functions computed in the physical coordinate - xt  
 function B = Bmatrix1D(xt,xe) 
include_flags; 
  
    if nen == 2       % derivative of linear shape functions (constant) 
        B =  1/(xe(1)-xe(2))*[-1 1]; 
    elseif nen == 3   % derivative of quadratic shape functions 
        B(1)=(2*xt-xe(2)-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3))); 
        B(2)=(2*xt-xe(1)-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3))); 
        B(3)=(2*xt-xe(1)-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2))); 
    end 

 

12.3.3 MATLAB code for Gauss quadrature  

gauss.m 

% get gauss points in the parent element domain [-1, 1] and the corresponding weights 
function [w,gp] = gauss(ngp) 
  
    if ngp == 1 
        gp = 0; 
        w  = 2; 
    elseif ngp == 2 
        gp = [-0.57735027, 0.57735027]; 
        w  = [1,           1]; 
    elseif ngp == 3 
        gp = [-0.7745966692,  0.7745966692,  0.0]; 
        w  = [0.5555555556,   0.5555555556,  0.8888888889]; 
    end 
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12.4  Finite element programming in 1D with MATLAB 

  In Section 12.2 the basic finite element programming structure was introduced 
for one- and two- dimensional analysis of truss structures.  In 12.3, the program functions 
for the calculation of the element shape functions, their derivatives and Gauss quadrature 
in one-dimension were introduced.  In this section we introduce a more general finite 
element program structure for one-dimensional problems that in principle is similar to 
that in multidimensions to be developed in Sections 12.5 and 12.6 for heat conduction 
and elasticity problems, respectively.  
 In Chapter 2 we discussed various methodologies for imposing boundary 
conditions.  In the partition-based approach, the so-called E-nodes (where displacements 
are prescribed) are numbered first.  In general, however, node and element numberings 
are initially defined by mesh generators and subsequently renumbered to maximize 
efficiency of solving a system of linear equations. In our implementation we tag nodes 
located on the natural boundary or essential boundary. Nodes on a natural boundary are 
assigned flag=1, while nodes on an essential boundary are tagged as flag=2. 
Subsequently, nodes are renumbered by the program so that E-nodes are numbered first. 
This is accomplished by constructing the ID and LM arrays in the function 
setup_ID_LM. With some minor modifications the program for the one-dimensional 
elasticity problems can be modified to analyze heat conduction problems.  
 
Explanation for various MATLAB routines is given as comments within each function.  
 
Only the nomenclature and definitions which have been modified from the previous 
chapters are included below.  Much of the code is either identical or very similar to the 
code developed in Section 12.2. An input file for the Example 5.2 in Chapter 5 modeled 
with two quadratic elements is given below. Additional input files for one quadratic 
element mesh and four quadratic elements mesh are provided in the disk. 
 

12.4.1 Notations and definitions 

User provided 

nd: number of nodes on the essential boundary (E-nodes) 
ngp: number of Gauss points 
body: vector of values of body forces – defined at the  nodes and then interpolated using 
shape functions 
E:      vector of nodal values of Young’s modulus  
CArea:  vector of nodal values of cross-sectional area  

flags: Flag array denoting essential and natural boundary conditions 
 
     flags(Initial global node number) = flag value 

                Flag values are:  1 – natural boundary;  2 – essential boundary  
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x: vector of nodal x-coordinates 
y: vector of nodal y-coordinates (used for the plots only)  
e_bc: vector of essential boundary conditions (displacements or temperatures) 
n_bc: vector of natural boundary conditions (tractions or boundary fluxes) 
P: vector of point forces (point sources in heat conduction) 
xp: vector of the x-coordinates where the point forces are applied 

np: number of point forces (point sources in heat conduction) 
nplot: number of points used to plot displacements and stresses (temperatures and fluxes 
in heat conduction)  
IEN:    location matrix 
            The location matrix relates initial global node number and element local node  
             numbers. Subsequently nodes are renumbered (see setup_ID_LM.m) so that 
             E-nodes are numbered first. IEN matrix has the following structure: 
 

     (   ,   )Initial global node number IEN local node number element number=  
 

Calculated by FE program: 

ID: Destination array 
 

      (    )R eordered global node number ID Initial global node number=  

 

LM: Location matrix 
 

       (   ,   )R eordered global node number LM Local node number element number=  
 

Note that LM matrix is related to IEN matrix by 
 

( , ) ( ( , ))LM I e ID IEN I e=  

12.4.2 MATLAB Finite element code for one-dimensional problems 

bar1D.m 

%%%%%%%%%%%%%%%%%% 
% 1D FEM Program (Chapter 5)    % 
% Haim Waisman, Rensselaer      % 
%%%%%%%%%%%%%%%%%% 
clear all; 
close all;  
  
% include global variables 
include_flags;   
  
% Preprocessing 
 [K,f,d] = preprocessor; 
  
% Element matrix computations and assembly  
for e = 1:nel 
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    [ke,fe] = barelem(e); 
    [K, f]  = assembly(K,f,e,ke,fe); 
end 
  
% Add nodal boundary force vector 
f  = NaturalBC(f); 
  
% Partition and solution  
[d,f_E] = solvedr(K,f,d); 
  
% Postprocessing 
postprocessor(d); 
  
% plot the exact solution 
ExactSolution;  

  
 

include_flags.m 
% Include global variables 
global nsd ndof nnp nel nen neq nd CArea E  
global flags ID IEN LM body x y 
global xp P ngp xplot n_bc e_bc np 
global plot_bar plot_nod nplot 

 

 

preprocessor.m 
% preprocessing– reads input data and sets up mesh information 
function  [K,f,d] = preprocessor; 
include_flags; 
  
% input file to include all variables  
input_file5_2_2ele; 
%input_file5_2_1ele; 
%input_file5_2_4ele; 
  
% generate LM and ID arrays   
d = setup_ID_LM(d); 

 

input_file5_2_2ele.m 

% Input Data for Example 5.2 (2 elements) 
  
nsd = 1;   % number of space dimensions  
ndof  = 1;      % number of degrees-of-freedom per node 
nnp  = 5;      % number of nodal points 
nel  = 2;      % number of elements 
nen  = 3;      % number of element nodes 
  
neq = ndof*nnp;  % number of equations 
  
f  = zeros(neq,1);  % initialize nodal force vector 
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d  = zeros(neq,1);  % initialize nodal displacement vector 
K  = zeros(neq); % initialize stiffness matrix 
  
flags  = zeros(neq,1); % initialize flag vector 
e_bc  = zeros(neq,1);  % initialize vector of essential boundary condition 
n_bc  = zeros(neq,1);  % initialize vector of natural boundary condition 
  
% element and material data (given at the element nodes) 
E       =  8*ones(nnp,1);                  % nodal values Young's modulus 
body    =  8*ones(nnp,1);                  % nodal values body forces 
CArea   =  [4     7    10    11    12]';     % nodal values of cross-sectional area  
  
% gauss integration 
ngp      = 2;         % number of gauss points 
  
% essential boundary conditions 
flags(1) = 2;      % flags to mark nodes located on the essential boundary 
e_bc(1) = 0;      % value of essential B.C 
nd       = 1;       % number of nodes on the essential boundary 
  
% natural boundary conditions 
flags(5) = 1;       % flags to mark nodes located on the natural boundary 
n_bc(5) = 0;       % value of natural B.C 
   
% point forces 
P         = 24;    % array of point forces   
xp        = 5;       % array of  coordinates where point forces are applied 
np        = 1;       % number of point forces 
  
% output plots 
plot_bar   = 'yes'; 
plot_nod     = 'yes'; 
nplot    = nnp*10;    % number of points in the element to plot displacements and stresses 
  
 % mesh generation 
bar_mesh5_2_2ele; 

  

bar_mesh5_2_2ele.m 

function  bar_mesh5_2_2ele 
include_flags; 
  
% Node:  1    2    3    4    5       
x   =  [2.0  3.5  5.0  5.5  6.0  ];        % x coordinate   
y   =  2*x;                                        % y is used only for the bar plot  
  
% connectivity array 
IEN  =  [ 1    3 
             2    4 
               3    5]; 
plotbar; 
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setup_ID_LM.m 

% setup ID and LM arrays 
function  d = setup_ID_LM(d); 
include_flags; 
  
count = 0; count1 = 0;    
for i = 1:neq 
    if flags(i) == 2                % check if essential boundary    
        count   = count + 1;     
        ID(i)   = count;           % number first the nodes on essential boundary  
        d(count)= e_bc(i);      % store the reordered values of essential B.C 
    else 
        count1 = count1 + 1; 
        ID(i) = nd + count1;     
    end 
end 
   
for i = 1:nel 
    for j = 1:nen 
        LM(j,i)=ID(IEN(j,i));   % create the LM matrix  
    end 
end 

 

barelem.m 

% generate element stiffness matrix and element nodal body force vector 
function [ke, fe] = barelem(e); 
include_flags; 
  
IENe     = IEN(:,e);                % extract local connectivity information 
xe         = x(IENe);                 % extract element x coordinates  
J          = (xe(nen) - xe(1))/2;     % compute Jacobian  
[w , gp]  = gauss(ngp);              % extract Gauss points and weights  
  
ke  = zeros(nen,nen);         % initialize element stiffness matrix 
fe  = zeros(nen,1);             % initialize element nodal force vector 
  
for i = 1:ngp   
  xt    = 0.5*(xe(1)+xe(nen))+J*gp(i);    % Compute Gauss points in physical coordinates 
  
  N     = Nmatrix1D(xt,xe);       % shape functions matrix  
  B     = Bmatrix1D(xt,xe);      % derivative of shape functions matrix 
  
  Ae    = N*CArea(IENe);     % cross-sectional area at element gauss points  
  Ee    = N*E(IENe);      % Young's modulus at element gauss points 
  be    = N*body(IENe);            % body forces at element gauss points   
  ke = ke + w(i)*(B'*Ae*Ee*B);           % compute element stiffness matrix 
  fe  = fe  + w(i)*N'*be;                  % compute element nodal body force vector 
end 
ke  = J*ke;                               
fe  = J*fe; 
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% check for point forces in this element 
for i=1:np              % loop over all point forces 
    Pi   = P(i);            % extract point force 
    xpi  = xp(i);           % extract the location of point force within an element 
    if xe(1)<=xpi &  xpi<xe(nen)              
        fe  = fe + Pi*[Nmatrix1D(xpi,xe)]';     % add to the nodal force vector 
    end 
end 

  
 

assembly.m 

% assemble element stiffness matrix and nodal force vector  
function [K,f] = assembly(K,f,e,ke,fe) 
include_flags; 
  
for loop1 = 1:nen 
    i = LM(loop1,e); 
    f(i) =  f(i) + fe(loop1);   % assemble nodal force vector 
    for loop2 = 1:nen 
        j = LM(loop2,e); 
        K(i,j) = K(i,j) + ke(loop1,loop2);  % assemble stiffness matrix 
    end 
end 

  

naturalBC.m 

% compute and assemble nodal boundary force vector  
function f = naturalBC(f); 
include_flags; 
  
for i = 1:nnp 
    if flags(i) == 1 
        node     = ID(i);  
        f(node) = f(node) + CArea(node)*n_bc(node); 
    end 
end 

 

postprocessor.m 

% postprocessing  
function postprocessor(d) 
include_flags; 
  
    fprintf(1,'\n         Print stresses at the Gauss points \n') 
    fprintf(1,'Element\t\t x(gauss1) \t\t x(gauss2) \t\t stress(gauss1) \t\t stress(gauss2)\n') 
    fprintf(1,'--------------------------------------------------------------------------------- \n') 
  
    % loop over elements to compute the stresses 
    for e = 1:nel     
    % compute stresses and displacements for the current element     
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        disp_and_stress(e,d);              
    end 

    

12.5 MATLAB finite element program for heat conduction in 2D 

In Section 12.2 the basic finite element program structure was introduced for one- and 
two- dimensional analysis of truss structures.  In Section 12.3 a more general finite 
element program structure for one-dimensional problems was developed.  In this section 
we describe a finite element program for scalar field problems in two-dimensions 
focusing on heat conduction. You will notice that the program structure is very similar to 
that introduced for one-dimensional problems.  A brief description of various functions is 
provided below. 
 
Main program:  heat2D.m 

The main program is given in heat2D.m file. The finite element program structure 
consists of the following steps: 

- preprocessing 
- evaluation of element conductance matrices, element nodal source vectors and 

their assembly 
- adding the contribution from point sources and nodal boundary flux vector  
- solution of the algebraic system of equations 
- postprocessing 

heat2d.m 

%%%%%%%%%%%%%%%%%%%%% 
% Heat conduction in 2D (Chapter 8)      % 
% Haim Waisman, Rensselaer                % 
%%%%%%%%%%%%%%%%%%%% % 
clear all; 
close all;  
  
% Include global variables 
include_flags; 
  
% Preprocessing  
[K,f,d] = preprocessor; 
 
% Evaluate element conductance matrix, nodal source vector and assemble 
for e = 1:nel 
    [ke, fe] = heat2Delem(e);  
    [K,f] = assembly(K,f,e,ke,fe); 
end 
  
%  Compute and assemble nodal boundary flux vector and point sources  
f = src_and_flux(f); 
  
% Solution  
 [d,f_E] = solvedr(K,f,d); 
  
% Postprocessing 
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postprocessor(d); 

 
 

Preprocessing:  preprocessor.m 

In the preprocessing phase, the input file (input_file), which defines material properties, 
mesh data, vector and matrices initializations, essential and natural conditions, point 
sources, the required output, is defined by the user.  In the implementation provided here, 
fluxes are prescribed along element edges and are defined by nodal values interpolated 
using shape functions. The n_bc array is used for the fluxes data structure. For the heat 
conduction problem given in Example 8.1 with 16 quadrilateral elements (see Figure 
8.9), the n_bc array is defined as follows: 
 
 

21 22 23 24

22 23 24 25
_

20.0 20.0 20.0 20.0

20.0 20.0 20.0 20.0

n bc

 
 
 =
 
 
 

 

 
The number of columns corresponds to the number of edges (specified by nbe) on the 
natural boundary; the first and second rows indicate the first and the second node 
numbers that define the element edge; the third and fourth rows correspond to the 
respective nodal flux values. Note that a discontinuity in fluxes at the element boundaries 
could be prescribed.  The input files for the 1-element and 64-element meshes are given 
on the website. 
 
In the preprocessing phase, the finite mesh is generated and the working arrays IEN, ID 
and LM are defined. The mesh generation function mesh2d utilizes MATLAB’s built-in 
function linspace (see Chapter 1) for bisection of lines.   
 

preprocessor.m 

function  [K,f,d] = preprocessor; 
include_flags; 
  
% read input file  
%input_file_1ele; 
input_file_16ele; 
%input_file_64ele; 
  
% generate ID and LM arrays  
d = setup_ID_LM(d); 

  

input_file_16ele.m 

% Input file for Example  8.1 (16-element mesh) 
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% material properties 
k   = 5;          % thermal conductivity 
D   = k*eye(2);   % conductivity matrix 
  
% mesh specifications 
nsd   = 2;           % number of space dimensions 
nnp   = 25;           % number of nodes 
nel   = 16;           % number of elements 
nen   = 4;           % number of element nodes  
ndof  = 1;           % number of degrees-of-freedom per node 
neq   = nnp*ndof;    % number of equations 
  
f  = zeros(neq,1);       % initialize nodal flux vector 
d  = zeros(neq,1);       % initialize nodal temperature vector 
K  = zeros(neq);         % initialize conductance matrix 
  
flags  = zeros(neq,1);   % array to set B.C flags  
e_bc   = zeros(neq,1);   % essential B.C array 
n_bc   = zeros(neq,1);   % natural B.C array 
P     = zeros(neq,1);           % initialize point source vector defined at a node  
s      = 6*ones(nen,nel);   % heat source defined over the nodes 
  
ngp    = 2;                           % number of Gauss points in each direction 
  
% essential B.C. 
flags(1:5) = 2;  e_bc(1:5)      = 0.0; 
flags(6:5:21)  = 2;        e_bc(6:5:21)   = 0.0; 
nd  = 9;        % number of nodes on essential boundary 
  
 % what to plot 
compute_flux  = 'yes'; 
plot_mesh     = 'yes'; 
plot_nod      = 'yes'; 
plot_temp     = 'yes'; 
plot_flux     = 'yes'; 
   
% natural B.C  - defined on edges positioned on the natural boundary 
n_bc     = [  21     22    23    24   % node1 
                   22     23    24    25           % node2 
                   20     20    20    20         % flux value at node 1  
                   20     20    20    20 ];       % flux value at node 2  
nbe = 4;             % number of edges on the natural boundary 
  
% mesh generation 
 mesh2d;  

  

  mesh2d.m 

function mesh2d; 
include_flags; 
  
lp  = sqrt(nnp);              % number of nodes in x and y direction 
x0  = linspace(0,2,lp);       % equal bisection of the x nodes 
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y0  = 0.5*x0/2;               % y coordinates of the bottom edge   
x  = [];     
for i = 1:lp                 
        x  = [x x0];                  % define x coordinates 
       y1 = linspace(y0(i),1,lp);   % bisection of y coordinates starting from a new location    
        y(i:lp:lp*(lp-1)+i)  = y1;    % define y coordinates 
end 
  
% generate connectivity array IEN 
rowcount = 0; 
for elementcount = 1:nel 
     IEN(1,elementcount)  = elementcount + rowcount; 
     IEN(2,elementcount)  = elementcount + 1 + rowcount; 
     IEN(3,elementcount)  = elementcount + (lp + 1) + rowcount; 
     IEN(4,elementcount)  = elementcount + (lp) + rowcount; 
     If mod(elementcount,lp-1) == 0 
          rowcount  = rowcount + 1; 
     end 
end 
  
% plot mesh and natural boundary  
plotmesh; 

plotmesh.m 

function plotmesh; 
include_flags; 
  
if strcmpi(plot_mesh,'yes')==1;   
% plot natural BC 
for i=1:nbe 
     
        node1 = n_bc(1,i);          % first node 
        node2 = n_bc(2,i);          % second node 
        x1 = x(node1); y1=y(node1);     % coordinates of the first node 
        x2 = x(node2); y2=y(node2);     % coordinates of the second node 
  
        plot([x1 x2],[y1 y2],'r','LineWidth',4); hold on 
end 
 
legend('natural B.C. (flux)'); 
  
for i = 1:nel 
        XX = [x(IEN(1,i)) x(IEN(2,i)) x(IEN(3,i)) x(IEN(4,i)) x(IEN(1,i))]; 
        YY = [y(IEN(1,i)) y(IEN(2,i)) y(IEN(3,i)) y(IEN(4,i)) y(IEN(1,i))]; 
        plot(XX,YY);hold on; 
  
        if strcmpi(plot_nod,'yes')==1;    
            text(XX(1),YY(1),sprintf('%0.5g',IEN(1,i))); 
            text(XX(2),YY(2),sprintf('%0.5g',IEN(2,i))); 
            text(XX(3),YY(3),sprintf('%0.5g',IEN(3,i))); 
            text(XX(4),YY(4),sprintf('%0.5g',IEN(4,i))); 
        end 
    end 
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end 
  
fprintf(1,'  Mesh Params \n'); 
fprintf(1,'No. of Elements  %d \n',nel); 
fprintf(1,'No. of Nodes     %d \n',nnp); 
fprintf(1,'No. of Equations %d \n\n',neq); 

  

 include_flags.m 

% file to include global variables 
global ndof nnp nel nen nsd neq ngp nee neq 
global nd e_bc s P D 
global LM ID IEN flags n_bc  
global x y nbe 
global compute_flux plot_mesh plot_temp plot_flux plot_nod 

 
Element conductance matrix and nodal source flux vector:  heat2Delem.m 

This function is used for the integration of the quadrilateral element conductance matrix 
and nodal source vector using Gauss quadrature. The integration is carried over the parent 
element domain. The shape functions are computed in Nmatheat2D and their derivatives 
along with the Jacobian matrix and its determinant are computed in Bmatheat2D. The 
source is obtained by interpolation from nodal values. 

heat2Delem.m 

% Quadrilateral element conductance matrix and nodal source vector 
function [ke, fe] = heat2Delem(e) 
include_flags; 
  
ke   = zeros(nen,nen);     % initialize element conductance matrix 
fe   = zeros(nen,1);       % initialize element nodal source vector 
  
% get coordinates of element nodes  
je  = IEN(:,e);   
C   = [x(je); y(je)]';  
  
[w,gp]  = gauss(ngp);     % get Gauss points and weights 
  
% compute element conductance matrix and nodal source vector  
for i=1:ngp 
   for j=1:ngp 
       eta = gp(i);             
       psi = gp(j); 
  
       N    = NmatHeat2D(eta,psi);        % shape functions matrix   
       [B, detJ]      = BmatHeat2D(eta,psi,C);      % derivative of the shape functions 
  
       ke  = ke + w(i)*w(j)*B'*D*B*detJ;    % element conductance matrix 
       se  = N*s(:,e);                       % compute s(x) 
       fe  = fe + w(i)*w(j)*N'*se*detJ;     % element nodal source vector  
  
   end        
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end 

  

NmatHeat2D.m 

% Shape function  
function N = NmatHeat2D(eta,psi) 
        
N = 0.25 * [(1-psi)*(1-eta) (1+psi)*(1-eta) (1+psi)*(1+eta) (1-psi)*(1+eta)]; 
  

BmatHeat2D.m 

% B matrix function 
  
function [B, detJ] = BmatHeat2D(eta,psi,C) 
         
% calculate the Grad(N) matrix 
GN     = 0.25 * [eta-1   1-eta    1+eta   -eta-1; 
                           psi-1   -psi-1   1+psi    1-psi]; 
  
J      = GN*C;        % Get the Jacobian matrix  
detJ   = det(J);      % Jacobian     
B      = J\GN;        % compute the B matrix 

    
 
Point sources and nodal boundary flux function:  src_and_flux.m 

This function adds the contribution of point sources P (prescribed at nodes only) and the 
boundary flux vector to the global flux vector. The ID array is used to relate the initial 
and reordered node numbering. To calculate the nodal boundary flux vector, the function 
loops over all boundary edges nbe and performs one-dimensional integration using Gauss 
quadrature. The integration is performed by transforming the boundary edge to the parent 
domain. The boundary flux vector is then assembled to the global nodal flux vector using 
the ID array. Note that fG  has a minus sign based on 
Error! Reference source not found.. 

src_and_flux.m 

% - Compute and assemble nodal boundary flux vector and point sources 
function f = src_and_flux(f); 
include_flags; 
  
% assemble point sources to the global flux vector  
f(ID)  = f(ID) + P(ID); 
  
% compute nodal boundary flux vector 
for i = 1:nbe 
     
        fq       = [0 0]';              % initialize the nodal source vector  
        node1    = n_bc(1,i);         % first node 
        node2    = n_bc(2,i);         % second node 
        n_bce    = n_bc(3:4,i);         % flux values at an edge 
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        x1  = x(node1);  y1 = y(node1);   % coordinates of the first node 
        x2  = x(node2);  y2 = y(node2);   % coordinates of the second node 
     
        leng  = sqrt((x2-x1)^2 + (y2-y1)^2);   % length of an edge 
        J     = leng/2;                         % 1D Jacobian  
        [w,gp]  = gauss(ngp);                % get Gauss points and weights 
        
        for i=1:ngp                     % integrate along the edge 
                
            psi  = gp(i);                
            N    = 0.5*[1-psi  1+psi];       % 1D shape functions in the parent domain 
            flux  = N * n_bce;              % interpolate flux using shape functions 
            fq       = fq + w(i)*N' *flux*J;      % nodal flux   
        end 
        fq  = -fq;      % define nodal flux vectors as negative  

         
        % assemble the nodal flux vector 
        f(ID(node1)) = f(ID(node1)) + fq(1) ;   
        f(ID(node2)) = f(ID(node2)) + fq(2); 
                
end      
                

 
The postprocessing:  postprocessor.m 

The postprocessing is the final phase of the finite element method.  The results are plotted 
in Figures 8.10-8.12 in Chapter 8.  
 
 

postprocess.m 

% plot temperature and flux 
function postprocess(d); 
include_flags 
  
% plot the temperature field 
if strcmpi(plot_temp,'yes') == 1;   
   d1  = d(ID); 
   figure(2);  
   for e = 1:nel 
       XX  = [x(IEN(1,e))  x(IEN(2,e))  x(IEN(3,e))  x(IEN(4,e))  x(IEN(1,e))]; 
       YY  = [y(IEN(1,e))  y(IEN(2,e))  y(IEN(3,e))  y(IEN(4,e))  y(IEN(1,e))]; 
       dd  = [d1(IEN(1,e)) d1(IEN(2,e)) d1(IEN(3,e)) d1(IEN(4,e)) d1(IEN(1,e))]; 
       patch(XX,YY,dd);hold on;   
   end 
title('Temperature distribution'); xlabel('X'); ylabel('Y'); colorbar; 
end 
  
%compute flux vector at Gauss points 
if strcmpi(compute_flux,'yes')==1;   
    fprintf(1,'\n                     Heat Flux at Gauss Points \n') 
    fprintf(1,'----------------------------------------------------------------------------- \n') 
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    for e = 1:nel 
    fprintf(1,'Element  %d \n',e) 
    fprintf(1,'-------------\n')        
        get_flux(d,e); 
    end 
end 

                 

get_flux.m 

function get_flux(d,e); 
include_flags; 
  
de  = d(LM(:,e));    % extract temperature at element nodes 
  
% get coordinates of element nodes  
je  = IEN(:,e);   
C   = [x(je); y(je)]';  
  
[w,gp]  = gauss(ngp);   % get Gauss points and weights 
  
% compute flux vector  
ind = 1; 
for i=1:ngp 
   for j=1:ngp 
       eta = gp(i);  psi = gp(j);   
       
       N              = NmatHeat2D(eta,psi); 
       [B, detJ]     = BmatHeat2D(eta,psi,C); 
  
       X(ind,:)  =  N*C;         % Gauss points in physical coordinates  
       q(:,ind)  =  -D*B*de;       % compute flux vector 
       ind      = ind + 1; 
   end 
end 
q_x = q(1,:); 
q_y = q(2,:); 
  
%          #x-coord     y-coord    q_x(eta,psi)  q_y(eta,psi) 
flux_e1  = [X(:,1)       X(:,2)        q_x'              q_y']; 
fprintf(1,'\t\t\tx-coord\t\t\t\ty-coord\t\t\t\tq_x\t\t\t\t\tq_y\n'); 
fprintf(1,'\t\t\t%f\t\t\t%f\t\t\t%f\t\t\t%f\n',flux_e1'); 
  
if strcmpi(plot_flux,'yes')==1 & strcmpi(plot_mesh,'yes') ==1;   
    figure(1);  
    quiver(X(:,1),X(:,2),q_x',q_y','k'); 
    plot(X(:,1),X(:,2),'rx'); 
    title('Heat Flux'); 
    xlabel('X'); 
    ylabel('Y'); 
end 

  
Functions, which are identical to those in Chapter 5:  
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setup_ID_LM.m,  assembly.m,  solvedr.m 
 
        
disp_and_stress.m 
% compute stresses and displacements 
function disp_and_stress(e,d) 
include_flags; 
   
de         = d(LM(:,e));               % extract element nodal displacements 
IENe     = IEN(:,e);                % extract element connectivity information 
xe         = x(IENe);                 % extract element coordinates 
J   = (xe(nen) - xe(1))/2;     % Jacobian  
[w , gp] = gauss(ngp);              % Gauss points and weights  
     
    % compute stresses at Gauss points 
for i = 1:ngp   
        xt  = 0.5*(xe(1)+xe(nen))+J*gp(i);    % location of Gauss point in the physical coordinates 
        gauss_pt(i) = xt;                      % store Gauss point information   
         
        N  = Nmatrix1D(xt,xe);      % extract shape functions  
        B  = Bmatrix1D(xt,xe);         % extract derivative of shape functions  
  
       Ee = N*E(IENe);                  % Young's modulus at element Gauss points    
       stress_gauss(i)  = Ee*B*de; % stresses at Gauss points 
end 
  
% print stresses at element Gauss points    
fprintf(1,'%d\t\t\t%f\t\t\t%f\t\t\t%f\t\t\t%f\n',e,gauss_pt(1),gauss_pt(2),stress_gauss(1),stress_gauss
(2)); 
     
% compute displacements and stresses  
xplot  = linspace(xe(1),xe(nen),nplot);      % equally distributed coordinate within an element                   

 
for i = 1:nplot 
      xi    = xplot(i);                        % x coordinate   
      N    = Nmatrix1D(xi,xe);    % shape function value 
      B    = Bmatrix1D(xi,xe);         % derivative of shape functions    
       
      Ee   = N*E(IENe);                  % Young's modulus   
      displacement(i) = N*de;         % displacement output 
      stress(i)        = Ee*B*de;         % stress output 
    end 
     
% plot displacements and stress  
figure(2) 
subplot(2,1,1);  
plot(xplot,displacement); legend('sdf'); hold on; 
ylabel('displacement');  title('FE analysis of 1D bar'); 
     
subplot(2,1,2); plot(xplot,stress); hold on; 
ylabel('stress'); xlabel('x');    
legend('FE');     
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ExactSolution.m  

%  plot the exact stress 
function ExactSolution 
include_flags; 
  
% divide the problem domain into two regions 
xa = 2:0.01:5;  
xb = 5:0.01:6; 
  
subplot(2,1,1); 
% exact displacement for xa 
c1 = 72;  c2 = 1 - (c1/16)*log(2); 
u1 = -.5*xa + (c1/16)*log(xa) + c2; 
% exact displacement for xb 
c3 = 48;  c4 = log(5)/16*(c1-c3) + c2; 
u2 = -.5*xb + (c3/16)*log(xb) + c4; 
% plot displacement 
h = plot([xa xb],[u1 u2], '--r' );       
legend(h,'exact'); 
  
subplot(2,1,2); 
% exact stresses for xa 
ya = (36-4*xa)./xa;    
% exact stress for xb 
yb = (24-4*xb)./xb;    
% plot stresses 
plot([xa xb],[ya yb], '--r' );       

 
Functions provided in Chapter 4: Nmatrix1D.m, Bmatrix1D.m, gauss.m 
Functions provided in Chapter 2: solvedr.m 
 

12.6 2D Elasticity FE Program with MATLAB 

In this chapter, we introduce the finite element program for the two-dimensional linear 
elasticity problems. Only 4-node quadrilateral element is implemented. In Problems 9-6 
and 9-7 in Chapter 9, students are assigned to implement the 3-node and 6-node 
triangular elements.  
 
Main file:  elasticity2D.m 

The main program is given in elasticity2D.m file. The FE program structure consists of 
the following steps: 

- preprocessing 
- evaluation of element stiffness matrices and element body force vectors and 

assembly  
- assembly of point forces (point forces defined at nodes only) 
- evaluation and assembly of nodal boundary force vector 
- solution of the algebraic system of equations 
- postprocessing  
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elasticity2D.m 

%%%%%%%%%%%%%%%%% 
% 2D Elasticity (Chapter 9)         % 
% Haim Waisman                  % 
%%%%%%%%%%%%%%%% % 
clear all; 
close all;  
  
% include global variables 
include_flags; 
  
% Preprocessing (same as in Chapter 8)   
[K,f,d] = preprocessor; 
  
% Element computations and assembly  
for e = 1:nel 
    [ke, fe] = elast2Delem(e);  
    [K,f] = assembly(K,f,e,ke,fe);      % (same as in Chapter 8) 
end 
  
% Compute and assemble point forces and boundary force vector 
f = point_and_trac(f); 
  
% Solution (same as in Chapter 8) 
 [d,r] = solvedr(K,f,d); 
  
% Postprocessing (same as in Chapter 8) 
postprocessor(d); 

 

Input file:  input_file.m 

The data for natural B.C. is given in  n_bc array. For example, for the 16-element mesh in 
Example 9.3 in Chapter 9, the n_bc array is given as  
 

21 22 23 24

22 23 24 25

0.0 0.0 0.0 0.0
_

20.0 20.0 20.0 20.0

0.0 0.0 0.0 0.0

20.0 20.0 20.0 20.0

n bc

 
 
 
 

=  
− − − − 
 
 
− − − −  

 

 
The number of columns indicates the number of edges that lie on the natural boundary 
(specified by nbe). The first and second rows indicate the first and the second node that 
define of an element edge. The third and fourth rows correspond to the appropriate 
traction values in x and y directions at the first node, respectively, whereas rows fifth and 
sixth correspond to tractions in x and y directions specified at the second node. Input files 
for the 1 and 64 element meshes are given on the program website. 
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Input_file_16ele.m 

% Input Data for Example 9.3 (16-element mesh) 
  
% material properties 
E = 30e6;         % Young’s modulus  
ne  = 0.3;          % Poisson’s ratio   
D   = E/(1-ne^2) * [  1     ne         0           % Hooke’s  law – Plane stress 
                     ne     1         0   
                     0       0     (1-ne)/2]; 
  
% mesh specifications 
nsd   = 2;          % number of space dimensions 
nnp   = 25;          % number of nodal nodes 
nel   = 16;          % number of elements 
nen   = 4;          % number of element nodes  
ndof  = 2;          % degrees-of-freedom per node 
neq   = nnp*ndof;   % number of equations 
  
f  = zeros(neq,1); % initialize nodal force vector 
d  = zeros(neq,1);  % initialize nodal displacement matrix 
K  = zeros(neq);     % initialize stiffness matrix 
  
counter    = zeros(nnp,1);   % counter of nodes for the stress plots 
nodestress  = zeros(nnp,3);   % nodal stress values for plotting [sxx syy sxy] 
 
flags  = zeros(neq,1);  % an array to set B.C flags  
e_bc   = zeros(neq,1);  % essential B.C array 
n_bc   = zeros(neq,1);  % natural B.C array 
  
P      = zeros(neq,1);        % point forces applied at nodes 
b      = zeros(nen*ndof,nel);    % body force values defined at nodes 
  
ngp     = 2;             % number of gauss points in each direction 
nd      = 10;           % number of dofs on essential boundary (x and y) 
 
% essential B.C. 
ind1  = 1:10:(21-1)*ndof+1;     % all x dofs along the line y=0 
ind2  = 2:10:(21-1)*ndof+2;     % all y dofs along the line x=0  
flags(ind1)  = 2;        e_bc(ind1)   = 0.0; 
flags(ind2)  = 2;        e_bc(ind2)   = 0.0; 
  
% plots 
compute_stress = 'yes'; 
plot_mesh       = 'yes';    % (same as in Chapter 8) 
plot_nod        = 'yes';      
plot_disp       = 'yes'; 
plot_stress     = 'yes'; 
plot_stress_xx  = 'yes'; 
plot_mises      = 'yes'; 
fact            = 9.221e3;       % factor for scaled displacements plot 
  
% natural B.C  - defined on edges  
n_bc    = [  21       22     23       24  % node1 
                  22       23     24       25          % node2 
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                    0         0      0         0     %  traction value given at node1 in x  
                 -20      -20    -20     -20         %  traction value given at node1 in y  
                    0         0      0         0            %  traction value given at node2 in x 
                 -20      -20    -20      -20];       %  traction value given at node2 in y  
nbe = 4;                                                    %  number of edges on natural boundary 
  
% mesh generation 
 mesh2d; 
  

include_flags.m 

% file to include global variables 
global  ndof nnp nel nen nsd neq ngp nee neq 
global  nd e_bc P b D 
global  LM ID IEN flags n_bc  
global  x y nbe counter nodestress 
global  compute_stress plot_mesh plot_disp plot_nod  
global  plot_stress_xx plot_mises fact 

 

Node Renumbering:  setup_ID_LM.m 

The generation of the ID array is similar to that in heat conduction problem with the 
exception that nd defines the number of degrees-of-freedom on the essential boundary. 
The LM array is a pointer to the renumbered degrees-of-freedom. For this purpose, we 
treat every node as a block consisting of two degrees-of-freedom. We define a pointer, 
denoted as blk to the beginning of each block and loop over all degrees-of-freedom ndof 
in that block.   

setup_ID_LM.m 

function  d=setup_ID_LM(d); 
include_flags; 
  
count = 0; count1 = 0;    
for i = 1:neq 
    if flags(i) == 2                % check if a node on essential boundary  
        count   = count + 1;     
        ID(i)   = count;            % arrange essential B.C nodes first 
        d(count)= e_bc(i);      % store essential B.C in reordered form (d_bar) 
    else 
        count1 = count1 + 1; 
        ID(i) = nd + count1;    
    end 
end 
  
for i = 1:nel 
    n = 1; 
    for j = 1:nen 
        blk     = ndof*(IEN(j,i)-1);     
        for k = 1:ndof   
            LM(n,i) = ID( blk + k  );   % create the LM matrix 
            n = n + 1; 
        end 
    end 
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end 

 

 

Element stiffness and forces function:  elast2Delem.m 

The elast2Delem function for numerical integration of the element stiffness matrix and 
element nodal body force vector remains the same as for heat conduction code except for   
the shape functions NmatElast2D and their derivatives BmatElast2D.  

elast2Delem.m 

function [ke, fe] = elast2Delem(e) 
include_flags; 
  
ke   = zeros(nen*ndof,nen*ndof);      % initialize element stiffness matrix 
fe   = zeros(nen*ndof,1);             % initialize element body force vector 
  
% get coordinates of element nodes  
je  = IEN(:,e);   
C   = [x(je); y(je)]'; 
  
[w,gp]  = gauss(ngp);      % get gauss points and weights 
  
% compute element stiffness and nodal force vector 
for i=1:ngp 
   for j=1:ngp 
       eta = gp(i);             
       psi = gp(j); 
       N              = NmatElast2D(eta,psi);        % shape functions   
       [B, detJ]     = BmatElast2D(eta,psi,C);      % derivative of the shape functions 
       ke   = ke + w(i)*w(j)*B'*D*B*detJ;    % element stiffness matrix 
       be   = N*b(:,e);                       % interpolate body forces using shape functions 
       fe = fe + w(i)*w(j)*N'*be*detJ;      % element body force vector  
  
   end        
end 

NmatElas2D.m 

% Shape functions for 2D elasticity defined in parent element coordinate system 
function N = NmatElast2D(eta,psi) 
        
N1  = 0.25*(1-psi)*(1-eta); 
N2  = 0.25*(1+psi)*(1-eta); 
N3  = 0.25*(1+psi)*(1+eta); 
N4  = 0.25*(1-psi)*(1+eta); 
  
N   =         [N1   0    N2    0    N3   0     N4   0;         % shape functions 
         0    N1   0     N2   0    N3    0   N4]; 

 

BmatElas2D.m 

% B matrix function for 2D elasticity  
function [B, detJ] = BmatElast2D(eta,psi,C) 
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      % Calculate the Grad(N) matrix 
        GN = 0.25 * [eta-1  1-eta   1+eta   -eta-1; 
                           psi-1  -psi-1  1+psi    1-psi]; 
        J    = GN*C;        % Get the Jacobian matrix  
         
        detJ  = det(J);     % compute Jacobian 
       
        BB     = J\GN;       % compute derivatives of the shape function in physical coordinates 
        B1x     = BB(1,1); 
        B2x     = BB(1,2); 
        B3x     = BB(1,3); 
        B4x     = BB(1,4); 
        B1y     = BB(2,1); 
        B2y     = BB(2,2); 
        B3y     = BB(2,3); 
        B4y     = BB(2,4); 
         
        B  = [ B1x      0       B2x     0       B3x      0       B4x      0  ; 
            0       B1y     0       B2y      0       B3y     0        B4y;  
                B1y     B1x    B2y    B2x     B3y    B3x    B4y     B4x];    

 
 
Point forces and nodal boundary force vector function:  point_and_trac.m 

The function loops over nbe edges on the essential and performs a one-dimensional 
integration using Gauss quadrature. The integration is performed by transforming the 
boundary edge to the parent coordinate system [0,1]x Ì . The nodal boundary force 
vector is then assembled to the global force vector using ID array. Similarly, point forces 
defined at the nodes are assembled into the global nodal force vector using the ID array. 

point_and_trac.m 

% Compute and assemble point forces and boundary force vector 
function f = point_and_trac(f); 
include_flags; 
  
% Assemble point forces  
f(ID)  = f(ID) + P(ID); 
       
% Calculate the nodal boundary force vector  
for i = 1:nbe 
     
        ft       = [0 0 0 0]';         % initialize the nodal boundary vector  
        node1    = n_bc(1,i);         % first node 
        node2    = n_bc(2,i);         % second node 
        n_bce    = n_bc(3:6,i);       % traction values 

                         
        x1 = x(node1);  y1=y(node1);    % coordinate of the first node 
        x2 = x(node2);  y2=y(node2);    % coordinate of the second node 
        leng  = sqrt((x2-x1)^2 + (y2-y1)^2);   % edge length 
        J     = leng/2;                         % 1D Jacobian  
        [w,gp]  = gauss(ngp);                  % get gauss points and weights 
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        for i=1:ngp                            % perform1D numerical integration   
                
            psi  = gp(i);                
            N    = 0.5*[1-psi    0      1+psi      0;       % 1D shape functions in the parent edge 
                           0     1-psi      0      1+psi];   % for interpolating tractions in x and y          
            T    = N * n_bce; 
            ft    = ft + w(i)*N' *T *J;        % compute traction  
        end 
  
        % Assemble nodal boundary force vector 
        ind1  = ndof*(node1-1)+1;        % dof corresponding to the first node 
        ind2  = ndof*(node2-1)+1;        % dof corresponding to the second node 
        f(ID(ind1))    = f(ID(ind1))   + ft(1) ;   
        f(ID(ind1+1))  = f(ID(ind1+1)) + ft(2) ;   
        f(ID(ind2))    = f(ID(ind2))   + ft(3) ; 
        f(ID(ind2+1)) = f(ID(ind2+1)) + ft(4); 
                 
end     
  

 
 
Postprocessing:  postprocessor.m 

The postprocessing function first calls displacements function to plot the deformed 
configuration based on the nodal displacements. The user sets a scaling factor in the input 
file to scale the deformation as shown in  Figure 9.13 in Chapter 9. 
 
 
 
To obtain the fringe or contour plots of stresses, stresses are computed at element nodes 
and then averaged over elements connected to the node. Alternatively, stresses can be 
computed at the Gauss points where they are most accurate and then interpolated to the 
nodes. The user is often interested not only in the individual stress components, but in 
some overall stress value such as Von-Mises stress. In case of plane stress, the von Mises 

stress is given by 2 2
1 2 1 22Yσ σ σ σ σ= + − , where σ1 and σ2 are principal stresses given 

by 
2

2
1,2 2 2

x y x y

xy

σ σ σ σ
σ τ

+ − 
= ± + 

 
. Figure 9.14 in Chapter 9 plots the 

xxs stress 

contours for the 64-element mesh. 

postprocessor.m 

% deformation and stress ouput 
function postprocess(d); 
include_flags 
  
% plot the deformed mesh 
displacements(d); 
  
% Compute strains and stresses at gauss points 
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s = zeros(neq,1); 
if strcmpi(compute_stress,'yes')==1;   
    fprintf(1,'\n                     Stress at Gauss Points \n') 
    fprintf(1,'----------------------------------------------------------------------------- \n') 
    for e=1:nel 
    fprintf(1,'Element  %d \n',e) 
    fprintf(1,'-------------\n')        
        get_stress(d,e); 
        nodal_stress(d,e); 
    end 
    stress_contours; 
end 
  

  

displacement.m 

% scale and plot the deformed configuration  
function displacements(d); 
include_flags; 
  
  
if strcmpi(plot_disp,'yes')==1;     
displacement  = d(ID)*fact; % scale displacements 
  
% Compute deformed coordinates  
 j = 1; 
 for i = 1:ndof:nnp*ndof 
     xnew(j) = x(j) + displacement(i); 
     ynew(j) = y(j) + displacement(i+1); 
     j = j + 1; 
 end 
% Plot deformed configuration over the initial configuration 
 for e = 1:nel 
    XXnew = [xnew(IEN(1,e)) xnew(IEN(2,e)) xnew(IEN(3,e)) xnew(IEN(4,e)) xnew(IEN(1,e))]; 
    YYnew = [ynew(IEN(1,e)) ynew(IEN(2,e)) ynew(IEN(3,e)) ynew(IEN(4,e)) ynew(IEN(1,e))]; 
    plot(XXnew,YYnew,'k');hold on; 
 end 
title('Initial and deformed structure'); xlabel('X'); ylabel('Y'); 
end 

  

get_stress.m 

% Compute strains and stresses at the gauss points 
function get_stress(d,e); 
include_flags; 
  
de  = d(LM(:,e));    % element nodal displacements 
  
% get coordinates of element nodes  
je  = IEN(:,e);   
C   = [x(je); y(je)]';  
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[w,gp]  = gauss(ngp);   % get gauss points and weights 
  
% compute strains and stress at gauss points  
ind = 1; 
for i=1:ngp 
   for j=1:ngp 
       eta = gp(i);  psi = gp(j); 
 
       N              = NmatElast2D(eta,psi); 
       [B, detJ]     = BmatElast2D(eta,psi,C); 
  
       Na             = [N(1,1) N(1,3) N(1,5) N(1,7)]; 
       X(ind,:)  =  Na*C;                   % gauss points in the physical coordinates  
       strain(:,ind) = B*de; 
       stress(:,ind) = D*strain(:,ind);       % compute the stress [s_xx  s_yy  s_xy];         
       ind      = ind + 1; 
   end 
end 
e_xx = strain(1,:);   e_yy = strain(2,:);   e_xy = strain(3,:);     % strains at gauss points 
s_xx = stress(1,:);   s_yy = stress(2,:);   s_xy = stress(3,:);     % stress at gauss points 
  
%        Print           x-coord     y-coord    sigma_xx   sigma_yy    sigma_xy 
stress_gauss    = [X(:,1)        X(:,2)          s_xx'         s_yy'           s_xy'  ]; 
fprintf(1,'\tx-coord\t\t\ty-coord\t\t\ts_xx\t\t\ts_yy\t\t\ts_xy\n'); 
fprintf(1,'\t%f\t\t%f\t\t%f\t\t%f\t\t%f\n',stress_gauss'); 

  

nodal_stress.m 

% compute the average nodal stress values 
function nodal_stress(d,e); 
include_flags; 
  
de   = d(LM(:,e));    % displacement at the current element nodes 
  
% get coordinates of element nodes  
je   = IEN(:,e);  
C    = [x(je); y(je)]';  
  
psi_val = [-1 1 1 -1];  % psi values at the nodes 
eta_val = [-1 -1 1 1];  % eta values at the nodes 
  
% Compute strains and stress at the element nodes 
ind = 1; 
for i=1:nen      
      eta = eta_val(i);   
      psi = psi_val(i); 
   
       [B, detJ]     = BmatElast2D(eta,psi,C); 
       strain(:,ind) = B*de; 
       stress(:,ind)= D*strain(:,ind);       % compute the stress [s_xx  s_yy  s_xy];         
       ind       = ind + 1; 
end 
e_xx = strain(1,:);   e_yy = strain(2,:);   e_xy = strain(3,:);     % strains at gauss points 
s_xx = stress(1,:);   s_yy = stress(2,:);   s_xy = stress(3,:);     % stress at gauss points 
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counter(je)   = counter(je) + ones(nen,1);    % count tnumber of elements connected to the node      
nodestress(je,:) = [s_xx'    s_yy'    s_xy' ];    % accumulate stresses at the node 

  

Stress_contours.m 

function stress_contours; 
include_flags; 
  
if strcmpi(plot_stress_xx,'yes')==1;   
   figure(2);  
   for e=1:nel 
       XX = [x(IEN(1,e))  x(IEN(2,e))  x(IEN(3,e))  x(IEN(4,e))  x(IEN(1,e))]; 
       YY = [y(IEN(1,e))  y(IEN(2,e))  y(IEN(3,e))  y(IEN(4,e))  y(IEN(1,e))]; 
  
       sxx = nodestress(IEN(:,e),1)./counter(IEN(:,e)); 
       dd  = [sxx'   sxx(1)]; 
       patch(XX,YY,dd);hold on;   
   end 
   title('\sigma_x_x contours'); xlabel('X'); ylabel('Y'); colorbar 
end 
  
if strcmpi(plot_mises,'yes')==1;   
   for e=1:nel 
       XX = [x(IEN(1,e))  x(IEN(2,e))  x(IEN(3,e))  x(IEN(4,e))  x(IEN(1,e))]; 
       YY = [y(IEN(1,e))  y(IEN(2,e))  y(IEN(3,e))  y(IEN(4,e))  y(IEN(1,e))]; 
  
       sxx = nodestress(IEN(:,e),1)./counter(IEN(:,e)); 
       syy = nodestress(IEN(:,e),2)./counter(IEN(:,e)); 
       sxy = nodestress(IEN(:,e),3)./counter(IEN(:,e)); 
              
       S1 = 0.5*(sxx+syy) + sqrt( (0.5*(sxx-syy)).^2 + sxy.^2);  % first  principal stress 
       S2 = 0.5*(sxx+syy) - sqrt( (0.5*(sxx-syy)).^2 + sxy.^2); % second  principal stress 
       mises = sqrt( S1.^2 + S2.^2 - S1.*S2 );       % plane-stress case 
       
       dd = [mises' mises(1)]; 
         
       figure(3);  
       patch(XX,YY,dd);hold on;   
  
   end 
   title('Von Mises \sigma contours'); xlabel('X'); ylabel('Y'); colorbar 
end 

  
Functions, which are identical to those in Chapter 8:  
preprocessor.m,    mesh2d.m,     plotmesh.m,     assembly.m,    solvedr.m 
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12.6 MATLAB finite element program for beams in 2D 

In this section we describe a finite element program for beams in two-dimensions. The 
program structure is very similar to that introduced for one-dimensional problems in 
Section 12.3 with a main differences being two degrees-of freedom per node.  A brief 
description of various functions is provided below.  
 
beam.m 

The main program is given in beam.m file. It can be seen that it is almost identical to that 
in Section 12.3. 
%%%%%%%%%%%%%%%%%%%%%% 
% Beam (Chapter 10)                                 % 
% Suleiman M. BaniHani, Rensselaer        % 
% Rensselaer Polytechnic Institute             % 
%%%%%%%%%%%%%%%%%%%%%% 
 
clear all; 
close all;  
  
% include global variables 
include_flags;   
 
% Preprocessing  
 [K,f,d] = preprocessor; 
 
% Element matrix computations and assembly 
for e = 1:nel 
    [ke,fe] = beamelem(e); 
    [K, f]  = assembly(K,f,e,ke,fe); 
end 
% Add nodal boundary force vector 
f = NaturalBC(f); 
 
% Partition and solution 
 [d,f_E] = solvedr(K,f,d); 
  
% Postprocessing  
postprocessor(d) 

 

include_flags.m 
% Include global variables 
global nsd ndof nnp nel nen neq nd ngp 
global CArea E leng phi xp P 
global plot_beam plot_nod plot_stress 
global LM IEN x y stress body 
global flags ID xplot n_bc e_bc np nplot neqe 

 
preprocessor.m 
The preprocessor function reads input file and generates ID and LM arrays. The structure of ID 
array is identical to that for the scalar field problems (see for instance program in Chapter 5); The 
LM relates elements (columns) to equation numbers after renumbering. The LM array for 

Example Problem  10.1 is 

1 3

2 4

3 5

4 6

LM =

 
 
 
 
 
 

.  
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% reads input data and sets up mesh information 
function  [K,f,d] = preprocessor; 
include_flags; 
 
% input file to include all variables  
  input_file_example10_1; 
 
% Generate LM array  
count = 0; count1 = 0; 
for i = 1:neq 
      if flags(i) == 2                    % check if essential boundary 
         count = count + 1; 
         ID(i) = count;                  % number first the degrees-of-freedom on essential boundary 
         d(count)= e_bc(i);           % store the reordered values of essential B.C 
     else 
          count1 = count1 + 1; 
         ID(i) = nd + count1; 
     end 
end 
for e = 1:nel 
     for j = 1:nen 
         for m = 1:ndof 
             ind = (j-1)*ndof + m; 
             LM(ind,e) = ID(ndof*IEN(j,e) - ndof + m) ;   % create the LM matrix 
         end 
     end 
end 

 

input_file_example10_1.m 
The cross-sectional area is prescribed at the nodes and interpolated using linear shape functions. 
The Young’s modulus and body forces are assumed to be constant within one element; they are 
prescribed for each element. Essential and natural boundary conditions are prescribed for each 
degree of freedom on essential and natural boundary, respectively. 

% Input Data for Example 10.1 
nsd = 2;                   % Number of spatial dimensions  
ndof       =2;                   % Number of degrees-of-freedom per node 
nnp = 3;                   % Total number of global nodes 
nel = 2;                   % Total number of elements 
nen = 2;                   % Number of nodes in each element 
neq = ndof*nnp;       % Number of equations 
neqe     = ndof*nen;       % Number of equations for each element 
 
f = zeros(neq,1); % Initialize force vector 
d = zeros(neq,1); % Initialize displacement vector 
K = zeros(neq);  % Initialize stiffness matrix 
 
flags = zeros(neq,1);     % initialize flag vector 
e_bc = zeros(neq,1);     % initialize vector of essential boundary condition 
n_bc = zeros(neq,1);     % initialize vector of natural boundary condition 
 
% Element properties  
CArea = [1     1 1]';     % Elements cross-sectional area   
leng      = [8      4 ];       % Elements length 
body     =  [-1     0 ]';     % body forces 
E          = [1e4   1e4]';   % Young’s Modulus 
 
% gauss integration 
ngp    = 2;                     % number of gauss points 
 
% essential boundary conditions 
% odd numbers for displacements; even for numbers for rotations 
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flags(1) = 2;   % flags to mark degrees-of-freedom located on the essential boundary 
flags(2) = 2;   % flags to mark degrees-of-freedom located on the essential boundary 
e_bc(1) = 0;   % value of prescribed displacement 
e_bc(2) = 0;   % value of prescribed rotation 
nd = 2;           % number of degrees-of-freedom on the essential boundary 
  
% natural boundary conditions 
% odd numbers for shear forces; even numbers for moments 
flags(5) = 1;    % flags to mark degrees-of-freedom located on the natural boundary 
n_bc(5) = -20; % value of force 
flags(6) = 1;    % flags to mark degrees-of-freedom located on the natural boundary 
n_bc(6) = 20;  % value of moment 
 
% Applied point forces  
P       = [-10 5]';        % array of point forces           
xp      = [4 8]'  ;         % array of coordinates where point forces are applied 
np      =  2      ;         % number of point forces 
 
% output controls 
plot_beam  = 'yes'; 
plot_nod    = 'yes'; 
  
% mesh generation 
beam_mesh_10_1; 
% number of points for plot 
nplot=300; 

 
beam_mesh_10_1.m 
function  beam_mesh_10_1 
include_flags; 
 
% Node:  1    2    3   (origin placed at node 2)  
x   =  [0.0  8.0  12.0  ];     % X coordinate   
y   =  [0.0  0.0  0.0   ];      % Y coordinate 
 
% connectivity array 
IEN =  [1    2         
        2    3];      
 
% plot beam 
plotbeam; 

beamelem.m 

% generate element stiffness matrix and element nodal body force vector 
function [ke, fe] = beamelem(e) 
include_flags; 
 
IENe      = IEN(:,e);                      % extract local connectivity information 
xe          = x(IENe);                       % extract x coordinates 
J            = (xe(nen) - xe(1))/2;      % compute Jacobian  
[w , gp]  = gauss(ngp);                 % extract Gauss points and weights  
 
ke = zeros(neqe,neqe);               % initialize element stiffness matrix 
fe = zeros(neqe,1);                      % initialize element nodal force vector 
 
for i = 1:ngp   
    N    = NmatrixBeam(gp(i),xe);              % shape functions matrix  
    B    = BmatrixBeam(gp(i),xe) *1/J^2;   % derivative of shape functions  
    Ae   = [N(1) N(3)]*CArea(IENe);          % calculate cross-sectional area at element gauss points    
    Ee   = E(e);                                           % extract Young's modulus 
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    be   = body(e);                                      % extract body forces   
    ke = ke + w(i)*(B'*Ae*Ee*B);                % calculate element stiffness matrix 
    fe = fe + w(i)*N'*be;                              % calculate element nodal force vector 
end 
ke = J*ke;                             
fe = J*fe; 
 
% check for point forces in this element 
for i=1:np                % loop over all point forces 
    Pi  = P(i);             % extract point force 
    xpi = xp(i);           % extract the location of point force within an element 
      if xe(1)<=xpi &  xpi<xe(nen) 
           fe = fe + Pi*[NmatrixBeam( ( (2*xpi-xe(1)-xe(nen))/(xe(nen) - xe(1)) ) ,xe)]';      
     end 
end 

NmatrixBeam.m 

% Shape functions in the natural coordinate s 
 function N = NmatrixBeam(s,xe) 
     L=xe(2)-xe(1); 
     N(1)=1/4*(1-s)^2*(2+s); 
     N(2)=L/8*(1-s)^2*(1+s); 
     N(3)=1/4*(1+s)^2*(2-s); 
     N(4)=L/8*(1+s)^2*(s-1);      

BmatrixBeam.m 

% Derivative of the shape functions in the natural coordinate s 
function B = BmatrixBeam(s,xe) 
     L=xe(2)-xe(1); 
     B(1)=3/2*s; 
     B(2)=L*(3/4*s-1/4); 
     B(3)=-3/2*s; 
     B(4)= L*(3/4*s+1/4); 

SmatrixBeam.m 

% Second derivative of the shape functions  
function S = SmatrixBeam(s,xe) 
     L=xe(2)-xe(1); 
     S(1)=3/2; 
     S(2)=3/4*L; 
     S(3)=-3/2; 
     S(4)= 3/4*L; 

naturalBC.m 

% compute and assemble nodal boundary force vector 
function f = naturalBC(f); 
include_flags; 
for i = 1:neq 
    if flags(i) == 1 
        dof = ID(i); 
        f(dof) = f(dof) + n_bc(dof); 
    end 
end 

postprocessor.m 

% postprocessing function  
function postprocessor(d) 
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include_flags; 
 
% loop over elements to plot displacements, moments and shear forces 
for e = 1:nel   
     
de         = d(LM(:,e));               % extract element nodal displacements 
IENe     = IEN(:,e);                % extract element connectivity information 
xe         = x(IENe);                 % extract element coordinates 
J   = (xe(nen) - xe(1))/2;     % Jacobian  
[w , gp] = gauss(ngp);              % extract Gauss points and weights  
     
% compute displacements, moments and shear forces  
xplot  = linspace(xe(1),xe(nen),nplot);      % equally distributed coordinate within an element                   
xplotgauss= (2*xplot-xe(1)-xe(nen))/(xe(nen) - xe(1)); 
 
   for i = 1:nplot 
          xi    = xplotgauss(i);                          % current coordinate   
          N    = NmatrixBeam(xi,xe);              % shape functions  
          B    = BmatrixBeam(xi,xe)*1/J^2;      % first derivative of shape functions  
          S    = SmatrixBeam(xi,xe)*1/J^3;       % second derivative of shape functions 
          Ee   = E(e);                                        % Young's modulus   
          displacement(i)     = N*de ;                 % displacement output 
          moment(i)        = Ee*B*de;         % moment output 
          shear(i)                 = Ee*S*de;             % Shear force output 
    end 
     
% plot displacements, moment and shear forces 
[x_plot,S_ex,M_ex,w_ex]=exact; % call exact beam solution  
 
figure(2) 
plot(xplot,displacement,'-.r'); hold on; 
plot(x_plot,w_ex,'-k'); legend('FE','Exact Solution'); hold on; 
ylabel('displacement');  title('Displacements: FE versus analytical beam solutions'); 
     
figure(3) 
plot(xplot,moment,'-.r'); hold on; 
plot(x_plot,M_ex,'-k'); legend('FE','Exact Solution'); hold on; 
ylabel('moment'); xlabel('x'); title('Moments: FE versus analytical beam solutions'); 
 
figure(4) 
plot(xplot,shear,'-.r'); hold on; 
plot(x_plot,S_ex,'-k'); legend('FE','Exact Solution'); hold on; 
ylabel('shear'); xlabel('x');   title('Shear: FE versus analytical beam solutions'); 
     
end 

Functions which are identical to those in Chapter 5 are: assembly.m,  solvedr.m, gauss.m 

 

Problems –Linear Algebra 
Problem 1-1 
 Write a MATLAB program to generate a set of linear algebraic equations Ax=b where 

A  is an n n×  matrix given by 

 

2

0
ij

-1 if i j 1 or i j 1

A if i j

otherwise

= − = +


= =


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and compute 
1−A .  Then check how closely 

1−
=B A A  corresponds to I .  Do this for 

n 5,10,1000=  and a larger value you choose.  The accuracy of the computed product 

can be compared to the correct results by computing a norm of the error given by 
 

( )
2

2
1 1

1 n n

ij ij

i j

err B I
n = =

= −∑∑  

 

Repeat the above with the matrix A  defined by 

1
ijA

i j
=

+
 

Repeat the above with n 3,4,5,6,7...= .  Stop when the error is greater than one, since 

the solution is then meaningless. 
The top equation is of the form we will see in finite element equations.  They can be 
accurately solved even for very large system for they are not susceptible to roundoff 
error.  They are known as well-conditioned.  The second matrix is called a Hilbert matrix.  
It is an example of an estremely ill-conditioned matrix. 

 
Problem 1-2 
Consider a system of linear equations 

  
a) Write the system of equations in matrix notation Ax b= and solve for the unknown 

x using MATLAB 
b) Suppose we impose an additional constraint on the solution 

( )
1 2 1 0g x x x= + + - =x . Using MATLAB find a new vector 

new
x so that it will 

satisfy exactly the constraint equation ( )newg x  and will minimize the error 

( ) ( ) ( )Tnew new new
err = - -x Ax b Ax b  

 
 

Problem 1-3: Consider the following symmetrix matrices K : 

 








−

−+

22

221

kk

kkk
          









k

k

0

0           
















−

−+−

−

22

2211

11

0

0

kk

kkkk

kk

 

 

where 1 2, ,k k k  are positive constants.  

 
a) Check if the above three matrices are positive definite. Recall that if for any vector 

0¹x  we have 0T >x Kx then matrix K  is called Symmetric Positive Definite 

(SPD). If, on the other hand, 0T ³x Kx for any vector 0¹x  then the matrix K  is 

symmetric semi-positive definite. Choose one of the semi-positive definite matrices 

shown above and show that for any right hand side vector, f , the system of 

equations =Kd f  has no unique solution. 
b) Verify your results by computing the eigenvalues for the above three matrices 
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