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Different mechanical tests

e Tension

Tinius Olsen

* Compression

e Shearing
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Stress vs. Strain
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Normal stress
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Stress-Strain diagram
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Elasticity
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Unload ‘
is = Tangent modulus (at o)
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';‘E” Slope = mqocliulus g
- of elasticity P
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Modulus of Elasticity Shear Modulus
Material GPa 10 psi GPa 10 psi Paisson’s Ratio
Metal Alloys
Tungsten 407 59 160 232 0.28
Steel 207 30 83 12.0 0.30
Nickel 207 30 76 11.0 (.31
Titanium 107 15.5 45 6.5 0.34
Copper 110 16 46 6.7 0.34
Brass 97 14 37 54 0.34
Aluminum 64 10 25 36 0.33
Magnesium 45 6.5 17 2.5 0.35
Ceramic Materials
Aluminum oxide (AlO,) 393 57 - — 0.22
Silicon carbide (SiC) 345 S0 — - 0.17
Silicon nitride (Si;N ) 304 44 - - 0.30
Spinel (MgALO,) 260 38 - - —
Magnesium oxide (MgQ) 225 23 - - 0.18
Zirconia (ZrO,)" 205 30 - — 0.31
Mullite (3ALO,-2510,) 145 21 — — 0.24
Glass—ceramic (Pyroceram) 120 17 — — 0.25
Fuscd silica (Si0,) 73 11 - 0.17
Soda-lime glass o9 10 - — 0.23
Polymers"
Phenol-formaldehyde 2.70-4.83 0.40-0.70 — - -
Poly(vinyl chloride} (PVC) 241-4.14 0.35-0.60 - - 0.38
Poly(ethylene terephthalate) (PET) 276414 0.40-0.60 — - 0.33
Polystyrene (PS) 2.28-3.28 0.33-0.48 - - 0.33
Poly(methyl methacrylate) (PMMA) 2.24-3.24 0.33-047 - - 0.37-0.44
Polycarbonate (PC) 238 0.35 — — 0.36
Nylon 6.6 1.59-3.79 0.23-0.55 - - 0.39
Polypropylene (PP) 1.14-1.55 0.17-40.23 - — 0.40
Polyethylene —high density (HDPE) 1.08 0.16 - - (.46
Polytetrafluoroethylene (PTFE) 0.40-0.55 0L.058-0.080 — — .46
Paolyethylene —low density (LDPE) 0.17-0.28 0.025-0.041 — — 0330040

“Partially stabilized with 3 mol% Y,0..
"Modern Plastics Encyclopedia "06, McGraw-Hill, New York, 1995.
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Temperature-dependent modulus

Figure 6.8 Plot of Temperature (°F)
modulus of elasticity 400 0 400 800 1200 1600
versus temperature I I 70
for tungsten. steel.
and aluminum. a00 |- T 60
(Adapted from Tunm —
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Poisson’s Ratio
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Inelasticity

Elastic deformation can be time-dependent:

e With constant stress, the strain may further increase;
» After stress is removed, strain goes back to zero after a while;

* For polymers, such time-dependent behavior is significant: Viscoelasticity
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Viscoelasticity: Creep
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Viscoelasticity: Relaxation

Peak

‘ Loading .

4 Ramp Loading ‘ Stress Relaxation
E
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0 to Time 0 Time
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Spring dashpot for viscoelasticity

Conceptual model
b &
Viscoelastic Model S &
Spring Tt Time ' ‘. Time (
I‘T‘IOdE|S fa) b)
elasticity
Dashpot
models £ =
viscosity 7z Z
Time t

t, Time t, t, -

(c) (d)
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Viscoelasticity Model

OTotal — OpD — 0§
ETotal — ED + €5

% deTotal  dep . deg o 1 do
dt dd dt n E dt
%\j ETIJ_E}
E n

Maxwell model
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Viscoelasticity Model

ETotal — €S — €D

OTotal = 0§ + 0D

de(t)
dt

ViSCous

elastic

o(t) = Ee(t) +n

o= Ee +ne

Kelvin-Voigt model
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Viscoelasticity Model

I Otot = Om T Js,

Etot — Em — E9,

O Om = 0D = 05,
1%
% Em = €D + €g,
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Ideal case
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Creep experiment

Real experiment

stress Creep modulus
Tof- —

t t, | time
strain
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Data fittings

1
Zener model; E(t)= 1 1 1
()
E, E,+E, B

E,+E,
Selecting a group of material parameters: E,, E, and 7, to make the
prediction of the model close to experimental measurements

Good fitting!

E(t) M The corresponding values E,, E,
and T can be regarded as the
material parameters for your
material




% DEPARTMENT OF MECHANICAL AND
5 AUTOMATION ENGINEERING

By Xk %
hinese University of Hong Kong

[¢)

Rough estimations of material parameters in the model
1

| 1 [ r}
—— l—exp| ——
E, E|+E3]( T

When t=0, Ec(o)= E;+E,,
when t=00, Ec(o)= E,.
When t= 7, Ec(7) = (E,+ E,)/(1+(1-e?)(E,/ Ey));

: +
E, +E,

E.(1)=
(

E (1)

Ec(7)

Ec(o0) Exp. measurement
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Plastic deformation
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Strength

Strain
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Ductility, Resilience and Toughness

Brittle
Ductile

Stress

Strain



HHEFIXLKRE

The Chinese University of Hong Kong

DEPARTMENT OF MECHANICAL AND
AUTOMATION ENGINEERING

Ductility, Resilience and Toughness

Yield Strength Tensile Strength Dactility, %EL
e IeE——— [ 560 mm
Muterial MPua ksi MFa kesi (2in)]"
Metal Alloys”
Molybdenum 565 82 635 95 35
Titanium 45() 65 520 ] 25
Steel (1020) 180 26 380 35 25
Nickel 138 20 450 0 40
Iron 130 19 262 38 45
Brass (70 Cu-30 Zn) 73 11 300 + i3]
Copper 69 10 200 29 45
Aluminum 35 5 90 13 40
Ceramic Materials®
Zirconia (£rQ,)" = — s00-15000 115215 =
Silicon nitride (Si;N,) - - 250-1000  35-145 -
Aluminum oxide {AlLO:) — — 275-T00 40-1100 -
Silicon carbide (SiC) - - 100-820 15-120 -
Glass—ceramic { Pyroceram) — — 247 36 —
Mullite (3ALO;-28i10,) — — 183 21 —
Spinel (MgAlLOy) - - 110-245 16-36 -
Fused silica (5104) - - 110 16 —
Magnesium oxide (MgO)* - 105 15
Soda-lime glass - - 69 10 -
Polyvmers
Nylon 6,6 44.8-532.8 6.5-12 75.9-945  11.0-13.7 15300
Polycarbonate (PC) 62.1 9.0 62.8-72.4 9.1-10.5 110-150
Poly(ethylene terephthalate) (PET) 593 8.6 48.3-T2.4 7.0-10.5 30-300
Poly(methyl methacrylate) (PMMA) 53.8-73.1 T.8-10.6 483-724 70-105 20-55
Poly(vinyl chloride) (PVC) 40.7-44.8 5.9-6.5 40.7-51.7 3.9-735 40-80
Phenol-formaldehyde - - 34.5-62.1 5.0-9.0 1.5-2.0
Polystyrene (PS) 25.0-69.0 3.63-10.0 359-51.7 5275 1.2-2.5
Polypropylene (PP) 31.0-37.2 4.5-54 31.0-414  4.5-60 100-600
Palyethylene —high density (HDPE) 26.2-33.1 3848 221-31.0 3345 10-1200
Polytetrafluoroethylene (FTFE) 13.8-15.2 20-22 20.7-34.5 3.0-50 200400
Polyethylene —low density (LDPE) 9.0-14.5 13-2.1 83314 12455 100-650

“For polymers, percent elongation at break.,

“Property values are for metal alloys in an anncaled state.
“The tensile strength of ceramic mate
"Purlially stabilized with 3 mol% Y.,O.,
“Sintered and containing approximately 3% porosity.

s s taken as flexural strength (Section 7.10).
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Temperature-dependent mechanical properties

Stress (10 psi)
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Temperature-dependent mechanical properties
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Elastic recovery after plastic deformation
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Stress

True stress and true strain

True
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Engineering
n
O = K (8 T)
Strain
K
Material n MPa psi
Low-carbon steel (annealed) 0.21 600 87,000
4340 steel alloy (tempered at 315°C) 0.12 2650 385,000
304 stainless steel (annealed) 0.44 1400 205,000
Copper (annealed) 0.44 530 76,500
Naval brass (annealed) 0.21 585 85,000
2024 aluminum alloy (heat-treated —T3) 0.17 780 113,000
AZ-31B magnesium alloy (annealed) 0.16 450 66,000
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Hardness

apply known force measure size

of indent after
removing load

one indenter type-
10 mm sphere

- Smaller indents
D mean larger
hardness.
most brasses easy to machine cutting  nitrided
plastics Al alloys steels file hard tools steels diamond

| | S E— .

Increasing hardness
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Hardness
Shape of Indentation Formala for
Test Indenter Side View Top View Load Hardness Number*

Brinell 10- h P 2
rine mm sphere 0 HB P

D
of steel or _-I I‘_ g - zD|D - VD’ - &’
:3 df—

tungsten carbide

Vickers Diamond 136° d, d, P HV = 1.854Pid}
microhardness pyramid \</‘ > u

Knoop Diamond : b HK = 142 P/I*
microhardness pyramid _-’____ﬁl__ P

t
b =711 T- L AJ
bit = 4,00 ;
Rockwell and Diamond cone; 120° 60 kg
superficial o813~ N, 100 kg ¢ Rockwell
Rockwell diameter l ’ ) 150 kg

tungsten carbide
spheres 15kg
30 kg ¢ Superficial Rockwell

_Q_ a 45kg

“For the hardness formulas given, P (the applied load) is in kg and D, d, d,, and / are all in mm.
Source: Adapted from H. W. Hayden, W. G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. 11, Mechanical Behavior. Copyright © 1965 by John

Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.
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Variability of Material Properties

« Statistical treatments

- Typical value—take average value, X for some
parameter x:

Y J=Z1Xr'
n = number of measurements B n
x; = specific measured value
» Degree of scatter—use standard deviation, s ;
n 2|2
3(x, -x)
s=|22-

n-1
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Design/Safety Factors

» Because of design uncertainties allowances must
be made to protect against unanticipated failure

» For structural applications, to protect against possibility
of failure—use working stress, o, and a
factor of safety, N

yield strength
Oy /
N
\ Depending on application,

N is between 1.2 and 4

O =

w
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Design/Safety Factors

Example Problem: A cylindrical rod, to be constructed from
a steel that has a yield strength of 310 MPa, is to withstand
a load of 220,000 N without yielding. Assuming a value of 4
for N, specify a suitable bar diameter. T

<—d

O
o, =—
. N Steel rod:
220,000 N / oy =310 MPa
) 4
jr R
2 F=220.000 N

Solving for the rod diameter d yields
d=0.060 m =60 mm
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Fracture Phenomena

-1 fc

Figue 84 [a) Scanning elecuon rsctograph showing spherical dimples chasacterisic
of duchle fracture resuking from umazial tensile loads 3300< (b)) Scaming eleciron
fractogreph showing parebolx-shaped dimples characterste of ductile fracture
resubiing from shear loading. 3000 x. (¥rom R W. Hertzbere, Deformation and
Fracewe Medhanics of Engineering Materishs, 21d adition. Copy right © 1989 by John
Wiker & Sors, New York. Repninted by permission of John Wiley & Sons Iac.)

h

&

Figure 8.3 (a) Cup-and-cone fracture in aluminum. (b
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Brittle fracture in a mild steel.
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Microscopic process of fracturing

I 1 I Figure 8.2 Stages in the cup-and-cone
fracture. (a) Initial necking. (5) Small

cavity formation. (¢) Coalescence of
cavities to form a crack. (d) Crack
propagation. (¢) Final shear fracture at a
45° angle relative to the tensile direction.
(From K. M. Ralls. T. H. Courtney. and

J. Wulft, Introduction to Materials Science
‘ I l and Engineering, p. 468. Copyright © 1976
(a) (®) fe) by John Wiley & Sons, New York.

Reprinted by permission of John Wilev &
' Sons, Inc.)

Reed e

—Shea
Fibrous— ] :

(d) (e)

Fracture surface of tire cord wire loaded in
tension. Courtesy of F. Roehrig, CC
Technologies, Dublin, OH. Used with
permission.
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* Ductile fracture:
-- one piece
-- large deformation

 Brittle fracture:
-- many pieces
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Fracture Mechanics

Crack

1/2

a
o =20 | —
m (@)

Py
where
p¢ = radius of curvature
0, = applied stress
g,, = stress at crack tip

(el

Q
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Fracture Mechanics

Stress Concentration at
Crack Tip

mpE—=—=======

. 9 | |

K; = stress concentration  ; o
| I

factor L

| |

% | |

K = Fm | |
"o ]

@) | I

1 ¥
Pusi#ion along EX—X'
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Crack Propagation

« Stress concentration higher for sharp cracks—
propagate at lower stresses than cracks with blunt tips

« For ductile materials—plastic deformation at crack tip
when stress reaches yield strength—tip blunted—
lowers stress conc.

deformed

— —/g region

ductile
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Crack Propagation

* Avoid sharp corners!

O KtA
AAAAAA
</ —> 2.5
UmaX

A h
f, 2.0 iIncreasing w/h
fillet

radius 0, »

Adapted from Fig.

8.2W(c), Callister 6e.
(Fig. 8.2W(c)is from G.H.

™ 105 G ——>rlh

<«——sharper fillet radius
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Fracture toughness
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Fracture modes

fel

Tensile mode Sliding mode Tearing mode
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Kic (MPa-m?O0-5)
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Fracture Toughness Ranges

Metals/ Graph!tef Composites/
Allovs Ceramics/ Polymers fibers
y Semicond
100 =
— iC-C{H fibers)?
70 — [|Steels
60 —1 [+
50 — Ti alloys
40 —
Al alloys
30 = #Mg alloys
20 — i
Al/Al oxide(sf) <
Y203/ZrO 5(p)4
—_ Al oxid/SiC(w)3
7 —] e Si nitr/SiC(w)*>
6 —— ER Al oxid/ZrO>(p)4
|2 jeies Glass/SiC(w)b
5 — IAI oxide II oPET (w)
4 — Si nitride
I PP
A
3= ' PV
2 = *PC
[ <100> 6
— Si crystal PS *Glass
] <111>
0.7 = Glass -soda —
0.6 — Concrete * rolyester
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Design Against Fracture

« Crack growth condition:
Kic < Yo-Nra

--Scenario 1. Kjc and flaw --Scenario 2. Kicand stress
size a specified - dictates level specified - dictates
max. design (critical) stress. max. allowable flaw size.

K 1(K2\
()'C — ¢ ac —_ Ic
Y\ ra a\Yo
NG A
fracture fracture
no no
fracture fracture
> >
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End of swing
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Impact energy (1)
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Ductile-to-Brittle Transition

Temperature (°F)

-40 0 40 80 120 160 200 240 280
| | | | | | | | | Figure 8.16 Tamperature (°F)
Influence of carbon -200 0 200 400
content on the | il
Charps V-notch
energy-versus-
temperature — 200
— 100 behavior for steel. o
(Reprinted with
permission from
ASM International.
Metals Park, OH
440739989, USA.:
J. A. Reinbolt and
W.J. Harris, Jr.,
“Effect of Alloying
Elements on Notch
Toughness of
—20 Pearlitic Steels.” |
Transactions of ASM, _°_,_m
Vol. 43, 1951.)

100 —

B0 —

g

T
!
g

0.22

60—

Impact ene gy J)
|
I
o
mpact energy (rt-1by)

Shaar racture (%)

@
o

40—

8

K
o

20—

T T T T I O |
40 -20 0 20 40 60 &0 100 120 140

Temperature [°C)

Brittle Fracture Ductile Fracture
Steel at 80 K

Steel at 300 K
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Fatigue Test
o
i

Flexible Motor Revolution

Specimen coupling | couFter
; [0
Bearing Be%ring
housing housing
Load

(F)
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Fatigue Failure
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[¢)

Types of Fatigue Behavior

% (4]
3 case for 3 case for
?El unsafe steel (typ.) & unsafe Al (typ.)
= | :
@ RGN )
® S
1% safe = safe
Il 1
~ | | | N | | |
10° 10° 10" 10° 10° 10° 107 10°

N = Cycles to failure N = Cycles to failure
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Types of Fatigue Behavior

Region of slow
crack propagation

Direction of rotation Region of rapid failure
— . . Reproduced by permission from Metals Handbook: Fractography and Aflas
Reproduced with permission from D. J. Wulpi, Understanding How of Fractographs, Val. 9, 8th edition, H. E. Boyer (Editor), American Society for

Components Fail, American Society for Metals, Materials Park, OH, 1985. Metals, 1974,
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