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2.1 Introduction to Crystallography

• Crystals

A crystal is a solid substance in which atoms, molecules or groups of atoms are periodically 
and regularly arranged in three-dimensional space.

have a specific melting point

can produce diffraction

macroscopic homogeneity 

anisotropic properties

Crystals:

Quartz

Salt

Fluorite
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2.1 Introduction to Crystallography

• Bravais lattice

The abstract figure in which atoms are regularly arranged in three-dimensional space in a crystal is 
called a spatial lattice.

The repeating periodic vectors a, b, c in three directions are called basic vectors. The parallelepiped 
composed of basic vectors is called the unit cell.

A unit cell

The selection principle of the Bravais unit cell: best reflects the lattice symmetry; a, b, c equal as much 
as possible; α, β, γ should be right angles (90°) as much as possible.

Characteristics of the Bravais unit cell: geometric relationships and calculation formulas are the 
simplest.

Crystal structure Bravais lattice
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2.1 Introduction to Crystallography
According to the symmetry of the lattice, natural crystals can be divided into 7 crystal systems. Each 
crystal system has up to 4 types of lattice. If there are nodes only at the corners of the unit cell, this 
lattice is a simple array. Sometimes there are nodes on the surface or body of the unit cell, which is 
called complex lattice, which includes volume centered, based centered and face centered lattice. 
There are only 14 Bravais lattices in the 7 major crystal systems.
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2.1 Introduction to Crystallography

• Cubic crystal system

a = b = c，  =  =  = 90

Primitive
cubic

Body-centered
cubic

Face-centered
cubic
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2.1 Introduction to Crystallography

• Tetragonal crystal system

a = b  c，  =  =  = 90

Primitive
tetragonal

Body-centered
tetragonal
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2.1 Introduction to Crystallography

• Orthorhombic crystal system

a  b  c，  =  =  = 90

Primitive
orthorhombic

Body-centered
orthorhombic

Base-centered
orthorhombic

Face-centered
orthorhombic
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2.1 Introduction to Crystallography

• Trigonal crystal system

a=b=c，== 90 a=bc， = =90， =120

• Hexagonal crystal system

Trigonal Hexagonal



10

2.1 Introduction to Crystallography

• Monoclinic crystal system

a  b  c， = = 90  

• Triclinic crystal system

a  b  c，      90

Primitive
monoclinic

Base-centered
monoclinic

Triclinic
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2.1 Introduction to Crystallography

• Crystallographic index

1. Crystal orientation index

The crystal lattice is composed of lattice points arranged in a certain periodic pattern in space. The 
crystal lattice can be decomposed into parallel straight-line clusters of nodes in any direction, and the 
lattice points are distributed on these straight lines. The crystal direction index [u v w] is used to 
represent a cluster of straight lines, and its determination method is shown in Figure. If the 
coordinates of any two points on the straight line are known to be (X1 Y1 Z1) and (X2 Y2 Z2), then u, v, 
and w are the three smallest integers.

2 1 2 1 2 1( ) : ( ) : ( ) : :X X Y Y Z Z u w− − − =

Orientation index

X

Y

Z
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2.1 Introduction to Crystallography

• Crystallographic index

2. Indices of crystal plane (Miller index)

The lattice can be decomposed into arbitrarily oriented, parallel node plane clusters,
Planar clusters with different orientations have different characteristics. Indicated by the 
facet index (h k l) cluster plane, h k l is its three coordinates On-axis intercept reciprocal 
ratio.

2 2 2 1 1 1

1 1 1 1 1 1
: : : : : :h k l

m n p m n p
= =

Examples:
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2.1 Introduction to Crystallography

• Crystallographic index

2. Indices of crystal plane (Miller index)

Examples

(1 0 0) (1 1 0) (0 1 1)

(1 1 1) (1 1 1)
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2.1 Introduction to Crystallography

• Crystallographic index

3. Index of hexagonal crystal system

[  2  0]11

[11  0]2

When using three indices to represent the 
crystal planes and directions of the 
hexagonal crystal system, the disadvantage 
is that it cannot visually display the 
relationship between equivalent crystal 
planes and equivalent crystal orientations. 

e.g., (1 0 0), (0 1 0), (1 1 0) are equivalent plane.
[1 0 0], [0 1 0], [1 1 0] are equivalent direction.
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2.1 Introduction to Crystallography

• Crystallographic index

3. Index of hexagonal crystal system

[  2  0]11

[11  0]2

If the crystal plane is represented by three 
indices, it is (h k l), then the corresponding 
four-digit index is (h k i l), the top three of 
the four indices. Only two of the indices are 
independent. The relationship between 
them is: i = - ( h + k ) 

[1 0 0]     [0 1 0]     [1 1 0]

[2 1 1 0]  [1 2 1 0]  [1 1 2 0] 1 1 2 0

3 indices

4 indices

(1 0 0)     (0 1 0)     (1 1 0)

(1 0 1 0)  (0 1 1 0)  (1 1 0 0) {1 1 0 0}

3 indices

4 indices
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2.1 Introduction to Crystallography

• Crystallographic index

3. Index of hexagonal crystal system
Three indices [U V W]

Four indices [u v t w]
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2.1 Introduction to Crystallography

• Crystallographic index

222222

1

clbkah
dhkl

++
=

22222 )(

1

clakh
dhkl

++
=

222 lkh

a
dhkl

++
=

22222

3
4 )(

1

clakhkh
dhkl

+++
=

Calculation of interplanar distance (dhkl)

Orthorhombic crystal system

Tetragonal crystal system

Cubic crystal system

Hexagonal crystal system
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2.2 Bragg’s equation and related discussion

• The coherent scattered waves produced when X-rays meet tightly bound electrons in 
atoms strengthen each other in certain directions and weaken each other in certain 
directions. The total result of this scattered wave interference is called diffraction.

• Diffraction can be attributed to the two aspects: diffraction direction and diffraction 
intensity.

• Diffraction direction can be derived from the theory of Laue equation or Bragg’s 
equation.

• Bragg's law regards crystal diffraction as the reflection of X-rays by crystal plane clusters 
in a specific direction, which is very simple and convenient.
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2.2 Bragg’s equation and related discussion

• Derivation of Bragg's equation

1. At LL1, there is a beam of monochromatic parallel X-rays with the same phase (angle θ)
When the X-ray is illuminated on the atomic plane A-A, it reaches NN1 in the reflection 
direction, which is the same optical path;
2. The reflection line of LM that irradiates the A-A crystal plane is MN.
3. The incident ray L1M1 irradiates reflection line of adjacent crystal plane B-B is M2N2 g 
NN2.

If we calculate path difference (δ) after them reaching to NN2.

 = PM2+QM2 = 2dsin

dsin dsin
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2.2 Bragg’s equation and related discussion

• Derivation of Bragg's equation

If we calculate path difference (δ) after them reaching to NN2.

 = PM2+QM2 = 2dsin

If the wavelength of X-ray is λ, then the 
condition of scattered waves interfere 
constructively should be:

2dsin = n

This is Bragg's equation.

dsin dsin

M

M2

N

N2
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

2dsin = n

1. The angle between the incident ray (or reflection ray) and the crystal plane is called the 
glancing angle () or Bragg angle (); the angle between the incident ray and the 
diffraction ray (2) is called the diffraction angle; n is called the diffraction order.

2. Treating diffraction as reflection is the basis of Bragg‘s equation. The crystal plane 
diffraction of X-rays is different from the specular reflection of light. X-rays can only be 
reflected in the θ direction that satisfies the Bragg’s equation, so it is called selective 
reflection.

3. The Bragg’s equation simply and clearly points out the necessary conditions and 
diffraction directions to obtain X diffraction, and gives the relationship between d, θ, n
and λ.

2
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

Diffraction order (n) 

Incident ray

Reflection ray

If X-rays irradiate (1 0 0) of the crystal with 
second order reflection, then we have: 

2d100sin = 2

Assume that the middle of the (1 0 0) plane is 
inserted with the (2 0 0) plane. Then, you can 
treat Second order reflections of (1 0 0) as first 
order reflections of (2 0 0), then we have:

2d200sin = 

2(d100/2)sin = 

2 sin

2 sin

d

n

d

 

 

=

=

2 sin

2 sin

d

n

d

 

 

=

=or
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

Interference surface index

1. The n-order reflective surface n(h k l) of the crystal plane (h k l) is represented by the 
symbol (H K L) and is called a reflective surface or interference surface.

2. (h k l) is the actual crystal face in the crystal, (H K L) is just a virtual crystal face 
introduced to simplify the problem.

3. The interference surface index is called the interference index, H = nh, K = nk, L = nl. 
When n = 1, the interference surface index is the crystal plane index.

4. In X-ray structural analysis, the interplanar distance of the interference surface is 
generally used.
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

Glancing angle (θ)

1. The glancing angle (θ) is the angle between the incident ray (or reflected ray) and the 
crystal plane, it is generally used to characterize the diffraction direction.

2. When λ is fixed, crystal planes with the same d must be reflected in the same direction 
of θ. When a polycrystal is irradiated with monochromatic X-rays (λ is fixed), each 
crystal grain d has the same crystal plane, and its reflection direction (θ) is the same.

3. When λ is fixed, θ increases as the d decreases, indicating that the crystal planes with 
smaller spacing (d) correspond to larger glancing angles, otherwise the reflection lines 
cannot be strengthened.

2dsin = n
θ
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

Diffraction conditions

1. The limit range of glancing angle θ is 0~90°, but too large or too small will cause 
difficulties in diffraction observation.

2. When d is constant, n increases as λ becomes smaller. Therefore, using short-
wavelength X-ray irradiation, higher order reflection can be obtained.

3. Because d sin =  / 2, so d ≥ /2, it means that only the interference surfaces whose 
spacing (d) is greater than or equal to the half-wavelength of X-rays can participate in 
the reflection. When short-wavelength X-rays are used, the number of interference 
surfaces participating in the reflection will increase.

2dsin = n
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2.2 Bragg’s equation and related discussion

• Discussion of Bragg's equation

2dsin = n
Applications

1. The Bragg’s equation is the most important formula in X-ray diffraction analysis, which 
can explain the basic relationship of diffraction.

2. Irradiate the crystal with X-rays (known wavelength λ) and calculate the inter-plane 
spacing d by measuring the diffraction angle 2θ. This is X-ray structural analysis. (λ is 
know and calculate d). 

3. Use a crystal (known spacing d) to reflect the X-rays excited by the sample and calculate 
the wavelength λ of the X-rays through the measurement of the diffraction angle 2θ. 
This is X-ray spectroscopic analysis. (d is know and calculate λ)  = 2d sin

𝒅 =


2 sin
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

Incident ray (vector) Diffracted ray
(vector)

Incident ray (vector)

sin2=− kk

The difference between the unit vectors of the incident ray and the diffracted ray is 
perpendicular to the diffraction surface, and its absolute value is:

hkld


=− kk

2d sin = 

That is, the vector ghkl = k - k is 
perpendicular to the diffractive plane (h k l).

The absolute value is equal to the reciprocal 
of the interplanar spacing. 

ghkl

This result leads us to a vector space called reciprocal space.
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The definition and properties of reciprocal lattice

The space occupied by the crystal lattice (Bravais lattice) is usually called real space. The so-
called reciprocal lattice refers to another lattice corresponding to a certain real lattice in 
the reciprocal space (dimension is [L]-1).

Reciprocal lattice Real lattice

Fourier 
transformation

The reciprocal lattice is a crystallographic expression method established by Ewald in 1924.

The real lattice and the reciprocal lattice are the unity corresponding to each other in the 
real and reciprocal spaces, they are mutually reciprocal and coexist.

The reciprocal lattice reflects the periodic physical nature of the crystal lattice. It is the 
theoretical basis for analyzing crystal diffraction and an indispensable tool for diffraction 
analysis.
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The definition and properties of reciprocal lattice

Definition of reciprocal lattice

VVV

ba
c

ac
b

cb
a


=


=


=  ,,

)()()( bacbcbcba ===V

a, b, and c are unit vectors in real space, a*, b*, c* are unit vectors in reciprocal space: 

V is the volume of the regular lattice unit cell.
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The definition and properties of reciprocal lattice

Properties of reciprocal lattice

1). Reciprocal lattice basic vectors

0======  bcaccbabcaba

1===  ccbbaa

),cos(

1
,

),cos(

1
,

),cos(

1

ccc
c

bbb
b

aaa
a











 ===

Determine the directions of reciprocal basic vectors.

Determine the magnitudes of reciprocal basic vectors.
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The definition and properties of reciprocal lattice

Properties of reciprocal lattice

2). Reciprocal lattice vectors

In the reciprocal space, the vector pointing from the reciprocal origin O* to the coordinate 
h k l is called reciprocal vector, denoted as ghkl

 ++= cbag lkhhkl

The relationship between the reciprocal vector ghkl and the (h k l) crystal plane in the real 
lattice is

Real lattice Reciprocal lattice

hkl

hklhkl
d

ghkl
1

),( =⊥g

ghkl can be used to characterize the orientation and interplanar spacing of real lattice. 
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The definition and properties of reciprocal lattice

Properties of reciprocal lattice

3). Reciprocal sphere (reciprocal lattice for polycrystal)

Polycrystal is composed of numerous crystal grains with different orientations, and its 
reciprocal lattice is composed of a series of concentric spheres with different radius.

The reciprocal vectors of the {h k l} crystal planes of the same family of polycrystals are 
arbitrarily distributed in three-dimensional space, and the reciprocal array points of their 
endpoints will fall on the spherical surface with O* as the center and 1 /dhkl (ghkl) as the 
radius. We will discuss it later.

The reciprocal lattice of a single crystal is composed of lattice points regularly arranged in a 
three-dimensional space. It belongs to the same crystal system as the corresponding 
regular lattice.

single crystal Polycrystal
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The Ewald’s sphere

hklg
kk
=

−


This equation is the diffraction equation of reciprocal space.

1. It is easy to show that it is equivalent to Bragg's equation.
2. When diffraction occurs on the (h k l) plane, the   times of its reciprocal vector ghkl is 

equal to the difference k − k between the unit vectors of the incident ray and the 
diffracted ray.

Incident 
ray

Diffraction 
direction

The endpoint of the incident vector points 
to the reciprocal origin O*.

Take point C in the incident direction as 
the center of the sphere, make a sphere 
with a radius of 1/, and the sphere 
passes through O*, which is Ewald (or 
reflective sphere).
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Incident 
ray

Diffraction 
direction

1. The endpoint of the incident vector 
points to the reciprocal origin O*.

2. Take point C in the incident direction as 
the center of the sphere, make a sphere 
with a radius of 1/, and the sphere 
passes through O*, which is Ewald (or 
reflective sphere).

2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• The Ewald’s sphere

3. If a certain reciprocal point h k l is on the reflective sphere, the crystal plane will be 
diffracted, and the direction of the diffracted line is from the center of the reflecting 
sphere to the reciprocal point.

4. The Ewald diagram can illustrate whether the (h k l) crystal plane can diffract and the 
direction of the diffraction line. 

Ewald sphere
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2.3 Diffraction Equations in Reciprocal Spaces and Ewald's sphere

• Characteristics of crystal diffraction patterns

1). Single crystal diffraction pattern

Recorded with a photosensitive film placed perpendicular to the incident ray, the single 
crystal diffraction pattern consists of regularly arranged diffraction spots.

2). Polycrystal diffraction pattern
single crystal

diffraction patterns

Polycrystal 
diffraction pattern 

It is a series of concentric diffraction rings if it is 
recorded with a film perpendicular to the 
incident ray; it is a series of diffraction arcs if it 
is recorded with a strip film around the sample; 
it is a series of diffraction arcs if it is received by 
a counter tube scanning around the sample. 

Diffraction rings

Diffraction 
spectrum

Reflective sphere

Sample

Incident
ray

FilmDiffraction
ray

Reciprocal 
sphere
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2.4 X-ray diffraction (XRD) techniques

• Laue’s method

The Laue method is the earliest X-ray diffraction method. It uses continuous X-ray 
irradiation of a stationary single crystal and records the diffraction ray with a flat plate 
perpendicular to the incident ray to obtain Laue spots.

Single crystal
(stationary)

Continuous X-ray film

The wavelength range of the continuous 
spectrum is 0 ~ m, only if the wavelength 
satisfies the Bragg‘s equation, the crystal 
plane will diffract.

Mainly used for single crystal orientation 
determination and crystal symmetry 
research.
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2.4 X-ray diffraction (XRD) techniques

• Laue’s method

Crystal plane (belongs to same crystal band)
Laue's spots are elliptical shapes

Single
crystal

Film

X-ray

1. transmission method 2. transmission method

X-ray

Single
crystal

Film

Crystal plane (belongs to same crystal band)
Laue's spots are hyperbolic shapes



38

2.4 X-ray diffraction (XRD) techniques

• Rotating crystal method

Monochromatic
X-ray

Rotating
Single crystal

Film

The rotating crystal method uses 
monochromatic X-rays to irradiate a rotating 
single crystal, and uses a cylindrical film to 
record the diffraction pattern.

When the single crystal rotates, the angle 
between a certain crystal plane and the X-ray 
will change continuously. Under some 
specific positions, the Bragg’s conditions are 
satisfied, cause the film to produce 
diffraction spots and patterns.

Mainly used for single crystal orientation determination and crystal symmetry research.
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2.4 X-ray diffraction (XRD) techniques

• Rotating crystal method

Diffraction pattern (rotating crystal method)
Sodium chloride single crystal
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2.4 X-ray diffraction (XRD) techniques

• Powder method

Monochromatic
X-ray

Polycrystal

Film

It is the most commonly used method in diffraction analysis, and can use powder samples 
or block samples. Its diffraction pattern can provide a variety of information.

It can be used for crystal structure determination, 
qualitative and quantitative analysis of physical 
phases, accurate determination of lattice parameters, 
and determination of material internal stress, 
texture, grain size, etc.

Powder method is a general term for various 
polycrystalline X-ray analysis, The most practical 
method at present is the X-ray diffractometer.
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2.4 X-ray diffraction (XRD) techniques

• Powder method

(a)

(b)

(c)

(d)

Body-centered cubic 
(tungsten) 

Face-centered cubic 
(cobalt)

Trigonal
(Silicon)

Hexagonal 
(zinc)
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