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9.1 Overview

• Common electron diffraction patterns

The diffraction patterns of crystalline, quasi-crystalline and amorphous materials are 
shown in the figure.

a) b)

c) d)

a) Single crystal b) Polycrystal c) Quasicrystal d) Amorphous 4



9.1 Overview

• Characteristics of electron diffraction

Compared with X-ray diffraction, electron diffraction has the following characteristics:

• The wavelength of the electron wave  is very small, so the diffraction angle 2 is very 
small (about 10-2rad), the radius of the reflection sphere (1/) is very large, and the 
reflection sphere near the reciprocal origin O* is close to a plane.

• The thickness t of the transmission electron microscope sample is very small, resulting 
in a large reciprocal lattice point extension (1/t), so that crystal planes slightly deviating 
from the Bragg condition can also produce diffraction.

• When the crystal belt axis [uvw] is parallel to the incident beam, on the zero-level 
reciprocal surface that is tangent to the reflecting sphere, the array points near the 
reciprocal origin O* can intercept the reflecting sphere, thus producing diffraction, so a 
single The crystal diffraction pattern is a projection of a two-dimensional reciprocal 
plane.

• The scattering factor of atoms to electrons is about 4 orders of magnitude greater than 
the scattering factor of X-ray.
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9.2 Principles of electron diffraction

• Bragg's law

It is already known from the principle of X-ray diffraction that Bragg's law is a necessary 
condition for diffraction of crystal planes. It still applies to electron diffraction. The general 
form of Bragg's equation is:

2dsin = 

The accelerating voltage is 100 ~ 200 kV, the wavelength of the electron beam is on the 
order of 10-3nm, and the interplane spacing of common crystals is on the order of 10-1nm, 
then there is:

sin = / 2d  10-2

 =10-2rad  1

It shows that the diffraction angle of electron diffraction is very small, which is one of the 
main reasons why its diffraction pattern characteristics are different from X-ray diffraction.
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

1. Definition of reciprocal lattice basis vectors

Assume that the basic vectors of the positive 
lattice are a, b, and c, and define the 
corresponding basic vectors of the reciprocal 
lattice as a*, b*, c*, then we have:
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In the formula, V is the volume of the positive 
lattice unit cell, and we have:

)()()( bacbcbcba ===V

The basic vector of the reciprocal lattice is perpendicular to the 
plane determined by the two other basic vectors in the real lattice.

7



9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

2. Properties of reciprocal lattice

Basic vector

0====== 
bcaccbabcaba

1=== 
ccbbaa

The point product of basic vectors with the synonym name is 0, from which the direction of 
the basis vector of the reciprocal lattice can be determined; the product of basic vector 
points with the same name is 1, from which the size of the basis vector of the reciprocal 
lattice can be determined.
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

2. Properties of reciprocal lattice

Reciprocal vector: In the reciprocal space, the array point vector pointing from the 
reciprocal origin O* to the coordinate h k l is called the reciprocal vector, denoted as ghkl.

 ++= cbag lkhhkl

The geometric relationship between the reciprocal vector ghkl and the (h k l) crystal plane 
in the positive lattice is:

hkl

hklhkl
d

ghkl
1

),( =⊥g

The reciprocal vector ghkl can be used to characterize the characteristics (orientation and 
interplanar spacing) of the corresponding (h k l ) crystal plane in the positive lattice.
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

2. Properties of reciprocal lattice

For the cubic crystal system, we have
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For the cubic crystal system, the same 
exponential crystal orientation and the 
crystal plane are perpendicular to each 
other, that is, the crystal orientation [h k l] 
is the normal line of the crystal plane (h k l), 
[h k l] // ghkl
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram
1. With O as the center of the sphere, the 
crystal is placed at the center of the sphere O.

2. Construct a sphere with radius 1/λ.

3. Construct a sphere with radius 1/λ.

4. OO* is the direction of the incident electron 
beam.

5. OG is the assumed direction of the 
diffracted beam, intersecting the sphere at 
point G.

• At this time, O*G is connected. OD is the 
extension line of the crystal plane (h k l) and 
O*G intersects at point D.

• O*G and OD are perpendicular, and O*G=1/d; 
satisfy the Bragg diffraction condition.

2*1/*sin = 1/d

11



9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

Incident wave vector k (k = 1/)

k' is the diffraction wave vector, 
representing the (h k l) crystal plane 
diffraction beam direction.

k− k = ghkl

ghkl is the reciprocal vector of (h k l), which 
is parallel to the normal direction of (h k l).

The reciprocal vector ghkl represents the 
characteristics of the (h k l) crystal plane in 
real space, so it is also called ghkl as the 
diffraction crystal plane vector.
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

Θ

3D crystal plane 
(real space)

3D reciprocal space 
(vector) 

Reciprocal matrix point projection 
of two-dimensional reciprocal 
plane (point)

Ewald
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

If the reciprocal lattice point G corresponding 
to the (h k l) crystal plane falls on the 
reflecting sphere, (h k l) satisfies the Bragg 
condition.

The Ewald sphere diagram is the geometric 
expression of Bragg's law, which can intuitively 
determine whether the (h k l) crystal plane 
satisfies the Bragg condition.
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9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

The three vectors k’, k and ghkl in the Ewald 
sphere clearly describe the relative 
geometric relationship between the incident 
beam direction, the diffracted beam 
direction and the reciprocal vector of the 
diffraction crystal plane. The reciprocal 
vector ghkl represents the characteristics of 
the (h k l) crystal plane in positive space. 
Therefore, it is also called ghkl as the 
diffraction crystal plane vector.
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If the arrangement of each ghkl vector in reciprocal space 
can be recorded, the relative orientation of each 
diffraction crystal plane in real space can be calculated. 
This is one of the main problems to be solved in electron 
diffraction analysis.

9.2 Principles of electron diffraction

• Reciprocal lattice and Ewald diagram

3D real space

Crystal plane

3D reciprocal space

Vector
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9.2 Principles of electron diffraction

• Zone law

All crystal planes parallel to a certain crystal direction [u v w] in the real lattice form a 
crystal band. This crystal direction is called the crystal band axis, as shown in the figure.

(uvw)*
0

[uvw]

(h1k1l1)

(h1k1l1)

(h2k2l2)

(h2k2l2)(h3k3l3)

(h3k3l3)

000
g3 g2

g1

The reciprocal plane passing through the 
reciprocal origin O* (000) is called the zero-level 
reciprocal plane. Because r = [u v w] is 
perpendicular to the zero-level reciprocal plane (u 
v w)*0, so the reciprocal plane located on (u v 
w)*0 The vector ghkl is also perpendicular to r, so 
we have:

ghkl r = 0

hu + kv + lw = 0

The above equation is the zone law.
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9.2 Principles of electron diffraction

The Zone law gives the relationship between the crystal plane index (h k l) and the crystal 
band axis index [u v w]. The Zone law can solve the index of the intersection line (that is, 
the crystal band axis) of the two known crystal planes. For example, the index of the two 
known crystal planes is (h1 k1 l1) and (h2 k2 l2), the crystal band axis index [u v w] can be 
obtained, that is:

• Zone law

h1u + k1v + l1w = 0 

h2u + k2v + l2w = 0

u = k1 l2 − k2 l1

v = l1 h2− l2 h1

w = h1 k2− h2 k1
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9.2 Principles of electron diffraction

• Zero-layer reciprocal plane

The single crystal electron diffraction pattern is the projection of the zero-layer reciprocal 
plane, and the index of the reciprocal lattice point is the index of the corresponding 
diffraction spot.

[001]

000

g110

g210

g010

g100

a) b)

(001)*
0

Cubic Crystal [001] Crystal axis and Reciprocal 
Surfaces (001)*0 a) real space, b) reciprocal space

For cubic crystals, if the crystal 
zone axis index [001] is taken, the 
corresponding zero-layer 
reciprocal plane is (001)*0. 
According to the crystal zone law, 
crystal planes such as (100) and 
(110) belong to the [001] crystal. 
band, and then according to the 
relationship between ghkl and (h 
k l), (001)*0 can be drawn, as 
shown in the figure.
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9.2 Principles of electron diffraction

• Zero-layer reciprocal plane

The picture shows the two zero-level reciprocal planes of a body-centered cubic crystal. 
The lattice points on the (001)*0 reciprocal surface are arranged in a square shape, while 
the lattice points on the (011)*0 surface are arranged in a rectangular shape, indicating that 
the orientation of the crystal can be determined by using the pattern of diffraction spots.

a) (001)*0 ，b) (011)*
0
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9.2 Principles of electron diffraction

• Structure factors

Satisfying the Bragg equation is only a necessary condition for diffraction, but whether 
diffraction can occur also depends on the structure factor Fhkl of the crystal plane. Fhkl is the 
combined amplitude of the scattered waves of all atoms in the unit cell in the diffraction 
direction of the (h k l) crystal plane, also known as structural amplitude.

)]πi(2exp[
1

jjj

n

j

jhkl lzkyhxfF ++=
=

In the formula, fj is the atomic scattering factor of the j-th atom located at (xj, yj, zj) in the 
unit cell, and n is the number of atoms in the unit cell.

Because the diffraction intensity Ihkl is proportional to Fhkl 
2 , Fhkl reflects the diffraction 

ability of the crystal plane, that is, the larger the Fhkl, the stronger the diffraction ability; 
when Fhkl = 0, no diffraction will occur even if the Bragg condition is met, which is called 
this The phenomenon is extinction.

Fhkl 0 is called the sufficient condition for diffraction from the (h k l) crystal plane.
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9.2 Principles of electron diffraction

• Structure factors
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The extinction rules of several common crystal structures 
are as follows:

Simple cubic: When h, k, l are any integers, Fhkl 0, and 
there is no system extinction phenomenon.

Atomic coordinates (0,0,0)

Atomic coordinates (0,0,0), (1/2, 1/2,1/2)

Body-centered cubic: When h + k + l = odd number, Fhkl = 0, 
resulting in extinction, such as {100}, {111}, {210} and other 
crystal face families.
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9.2 Principles of electron diffraction

• Structure factors

)]πi(2exp[
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The extinction rules of several common crystal structures 
are as follows:

Atomic coordinates (0,0,0), (0, 1/2,1/2), (1/2,0,1/2), (1/2, 1/2,0)

Face-centered cubic: When h, k, l are not all odd (even) numbers, 
Fhkl = 0, resulting in extinction, such as {100}, {110}, {210} and 
other crystal face families.

Atomic coordinates (0,0,0), (1/3,2/3,1/2)

Hexagonal close-packed: h+2k = 3n, and when l = odd number, 
Fhkl = 0, resulting in extinction, such as {001}, {111}, {221} and 
other crystal face families.
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9.2 Principles of electron diffraction

• Discussion

1. In the crystal, the position of the atoms in the unit cell is represented by the fractional 
coordinates of the atom P in the unit cell and the origin O;

2. Vector OP = xa + yb + zc (a, b, c are unit vectors in the directions of the three crystal axes. 
In the crystal, the three crystal axes are specially specified according to the crystal system 
to which the crystal belongs. They are not rectangular coordinates, only cubic , tetragonal 
and orthorhombic crystal systems are similar to Cartesian coordinates);

3. Then x, y, z are the fractional coordinates of P. 0≤ x,y,z <1. After the fractional coordinate 
reaches 1, it belongs to the next unit cell, so the 8 vertices are only labeled 0,0,0 (unit cell 8 
vertices are exactly 1 atom).
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9.2 Principles of electron diffraction

• Structure factors

If Fhkl
2  is used as the weight of the reciprocal lattice point, then the reciprocal lattice 

points are no longer equal to each other. Since the crystal plane with Fhkl = 0 cannot 
produce diffraction, those lattice points can be removed from the reciprocal lattice, leaving 
only the lattice points with Fhkl  0. As shown in Figure, remove the lattice atoms (Fhkl = 0 ), 
and the reciprocal lattice of the face-centered cubic regular lattice is body-centered cubic.

a) b)

Face-centered cubic crystal (a) real lattice and (b) corresponding reciprocal lattice
25



9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion

Figure is the commonly used diffraction conditions for diffraction analysis and diffraction 
contrast analysis. Under these two conditions, only 1~2 reciprocal array points on (uvw)*0 
can accurately fall on the reflection sphere, because the Bragg condition is satisfied, and 
they can produce diffraction.

Why the diffraction pattern of single crystal is a projection of the zero-layer reciprocal 
plane lattice?

Because the size of the TEM sample is very small, the reciprocal lattice points expand and 
occupy a certain space. The amount of expansion is twice the reciprocal of the size of the 
crystal in that direction.

It is the expansion of the reciprocal array 
points that increases the chance of 
contact with the reflecting sphere, 
resulting in the array points near the 
reciprocal origin O* being able to intercept 
the reflecting sphere and diffract.
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9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion
The diffraction of electrons by 
crystals is the result of the 
superposition of elastic scattered 
waves of each atom. Treating the 
atoms in the crystal as discrete 
scattering centers is helpful to 
discuss the superposition of 
scattered waves.

Diffraction direction?

A diffracted beam is a wave and 
has an intensity distribution, not 
a geometric straight line.

Diffraction intensity distribution?

The spatial distribution of 
diffracted beam intensity is 
related to the shapes involved in 
diffraction. 27



9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion

For standard samples under transmission electron microscopy, the corresponding 
reciprocal array (point or shape) is shown in Figure.

Shapes of specimen

Shape of reciprocal lattice

Thin film Slender rod Particle Cube

Reciprocal 
rod

Reciprocal 
flake

Reciprocal 
sphere

Reciprocal 
star
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9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion

Ewald 
sphere

Amplitude 
Superposition
(high intensity)

Amplitude 
Superposition
(low intensity)

When does the superposition of 
high-intensity occur?

When does the superposition of 
low-intensity occur?

When is there no 
diffraction? 29



9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion

Reciprocal 
rod

As shown in Figure, since the reciprocal array point expands into a reciprocal rod and 
intercepts the reflecting sphere, the distance from the center of the array point to the 
reflecting sphere is represented by s, which is called the deviation vector.

• When the center of the reciprocal array point 
falls on the reflecting sphere, s = 0;

• If the center of the array point falls within the 
reflecting sphere, s＞0; conversely, if the center 
of the array point falls outside the reflecting 
sphere, s＜0.

• When s = 0, the diffraction intensity is the 
highest; as s increases, the diffraction intensity 
decreases; when s > 1/t, the reciprocal rod no 
longer intercepts the reflecting sphere.

The diffraction equation deviating from the Bragg condition is:

k− k = g + s
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9.2 Principles of electron diffraction

• Deviation vector and reciprocal lattice point expansion

The figure shows the reflection sphere pattern under three typical diffraction conditions. 
When analyzing the crystal structure and crystal orientation, select the diffraction 
conditions shown in Figure a; when analyzing diffraction contrast, select the diffraction 
conditions shown in Figure b or c.

a) s  0   b) s = 0   c) s  0
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9.2 Principles of electron diffraction

• Basic formula of electron diffraction

As shown in the figure, the sample is placed at the center O of the reflection sphere, and 
there is a fluorescent screen or film at a distance L below it. O is the transmission spot, 
and G is the diffraction spot. Since 2 is very small, ghkl and k are close to vertical, so we 
can get, △OO*G∽△OOG.

R / L = g / kThen we have:

Rd = L

R = L gOr:

that is:

In the formula, L is the camera length;  is the 
wavelength of the electron beam; d is the diffraction 
crystal plane spacing K=L is called the electron 
diffraction camera constant.
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9.2 Principles of electron diffraction

• Basic formula of electron diffraction

As shown in the figure, since ghkl and k are close to 
perpendicular, it is considered that R ∥ ghkl, and 
formula can be written as a vector form:

R = L g = K g

The formula shows that the diffraction spot vector R
is the proportional amplification of the corresponding 
crystal plane reciprocal vector g, so K is also called 
the magnification of electron diffraction.
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9.2 Principles of electron diffraction

• Basic formula of electron diffraction

R

If the reciprocal lattice points near the reciprocal 
origin all fall on the reflecting sphere, the 
corresponding crystal planes can produce 
diffraction, and the obtained diffraction pattern 
is the projection of the lattice point arrangement 
on the zero-layer reciprocal plane.

The diffraction spots can be directly regarded as the 
reciprocal lattice points of the corresponding 
diffraction crystal planes; the vector R of each spot is 
the corresponding reciprocal vector g.
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9.2 Principles of electron diffraction

• Basic formula of electron diffraction

When performing crystal structure determination or orientation analysis, it is often 
necessary to perform a series of tilts to obtain the electron diffraction patterns of several 
crystal bands in the same area of the sample. Figure shows several important low-index 
crystal band electron diffraction patterns of face-centered cubic crystals.

a) b) c) d)

Diffraction patterns of several low-index crystal bands in face-centered cubic crystals. 
a) [001]  b) [011]  c) [111]  d) [112]
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9.3 Electron diffraction in electron microscopy

• Effective camera constants

Specimen

Schematic of diffraction 
pattern formation

As shown in the figure, for electron diffraction in 
a transmission electron microscope, the focal 
length f0 of the objective lens plays the role of 
the camera length L, and the diffraction spot 
spacing r on the back focal surface of the 
objective lens is equivalent to the diffraction spot 
spacing R on the film, so r = f0  g .

After the diffraction pattern on the back focal 
surface of the objective lens is amplified by the 
intermediate lens and the projection lens, L= f0 

Mi Mp , R = r Mi Mp, and L is called the 
effective camera length, then we have:

R =  Lg

K= f0 Mi Mp , which is called the effective 
camera constant, and K will change as f0, Mi and 
Mp change. Under normal circumstances, there is 
no need to distinguish between L and L.
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9.3 Electron diffraction in electron microscopy

• Selected Area of Electron Diffraction

物镜

背焦面

中间镜

中间镜
像平面

物镜
像平面

样品Specimen

Objective
lens

Image plane
(objective lens)

selected area 
aperture

Intermediate
lens

Image plane
(Intermediate lens)

Back focal 
plane

After the incident electron beam passes through the 
sample, it forms a diffraction pattern on the back 
focal plane of the objective lens and forms an image 
on the image plane of the objective lens.

If an aperture is added to the image plane of the 
objective lens, it will only allow electrons within the 
range of AB to pass through, while blocking 
electrons outside the range of AB. The electrons 
that eventually reach the fluorescent screen to form 
diffraction patterns only come from the AB area of 
the sample. This aperture limits and selects the area 
of the sample that forms the final diffraction pattern.

Selected area electron diffraction can be used to obtain 
single crystal diffraction patterns in polycrystalline samples, 
which can achieve micro-area correspondence between 
morphology observation and crystal structure analysis.
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9.3 Electron diffraction in electron microscopy

• Selected Area of Electron Diffraction

The selected area of electron diffraction can be as small as 1 m or less, as shown in Figure. 
When the ZrO2-CeO2 ceramic parent phase and the new phase coexist within the selected 
area, a composite diffraction pattern of the two phases can be obtained; If the selection 
range only has the parent phase, only the diffraction pattern of the parent phase can be 
obtained.

母相 母相

新相

Parent 
phase

Parent 
phase

New 
phase

Electron Diffraction of ZrO2-CeO2 Ceramics

38



9.3 Electron diffraction in electron microscopy

• Magnetic rotating angle

When electrons pass through the electromagnetic lens, they make a spiral paraxial motion 
under the action of the magnetic field. When they reach the fluorescent screen, they will 
turn through a certain angle. 

During the imaging operation, if the magnetic rotation angle of the image relative to the 
sample is i . During the diffraction operation, the magnetic rotation angle of the 
diffraction pattern relative to the sample is d , then the magnetic rotation angle of the 
diffraction pattern relative to the image is  .  = i−d

200

000


N200g200

The method of calibrating the magnetic 
rotation angle uses known planar structural 
features, such as TiB crystal cylinders. The 
calibration method is shown in the figure.
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9.3 Electron diffraction in electron microscopy

• Magnetic rotating angle

200

000


N200g200

As shown in the figure, the spatial shape of the TiB 
crystal is a cylinder, the cross-section is fusiform, the 
(200) crystal plane is a cylinder, its normal direction 
in the image is N200, and the normal direction given 
by the diffraction pattern calibration result is g200, 
and the angle between N200 and g200 is the magnetic 
rotation angle  .

The magnetic rotation angle changes with changes in 
magnification and camera length. Table shows the 
magnetic rotation angle data of the CM12 
transmission electron microscope at typical 
magnifications and camera lengths.

10k 17k 22k 35k 45k 60k 100k 200k

(mm)

530 16.0 14.5 12.7 7.5 -71.5 -72.5 -79.0 -74.5

770 11.5 10.0 8.2 4.0 -76.0 -77.0 -74.5 -79.0

1100 21.0 19.5 17.7 13.5 -66.5 -67.5 -69.5 -69.5

Camera
lens

Magnification
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9.4 Calibration of single crystal electron diffraction patterns

• The purpose of calibrating electron diffraction patterns is to determine the lattice type, 
phase and orientation of the diffracted material by calibrating each diffraction spot 
index and crystal zone axis index.

• Geometric Characteristics of Single Crystal Electron Diffraction Patterns.

1. The single crystal electron diffraction pattern consists of regularly arranged spots, which 
are located on the grid points of a two-dimensional grid, as shown in the figure.

Geometric Characteristics of Single 
Crystal Electron Diffraction Patterns

2. The angle between any two diffraction spot 
vectors is equal to the angle between the 
corresponding two diffraction crystal planes

3. Take two diffraction spot vectors R1 and R2 in 
the pattern, and the remaining spot vectors R.

R = mR1 + nR2

The relationship between the corresponding spot 
indices is: (hkl) = (mh1+nh2 , mk1+nk2 , ml1+nl2)
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of known crystal structures

1. Checking method

1 ) Measure the spot spacing R1, R2, R3 …., and measure the angle between R1 and R2  .

2 ) Use the basic formula of electron diffraction to calculate the corresponding inter-plane 
spacing d1, d2, d3…. Rd = L

3 ) Check substance cards, determined by d value {h1k1l1}, {h2k2l2}, {h3k3l3}…..

4 ) Select (h1k1l1) in the {h1k1l1} crystal face family as the diffraction spot index 
corresponding to R1.

5 ) Select (h2k2l2) as the diffraction spot index corresponding to R2 in the {h2k2l2} crystal 
plane family, and use the angle formula between crystal planes to calculate the angle 
between (h1k1l1) and (h2k2l2). If it matches the measured value, it means that (h2k2l2) was 
selected correctly; otherwise, reselect and check until it matches.

6 ) According to the two calibrated spot indexes (h1k1l1) and (h2k2l2), use vector operations 
to calibrate the remaining diffraction spot indexes (hkl).

7 ) Use the Zone law to calculate the crystal band axis index [uvw].
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of known crystal structures

Diffraction pattern of martensite in steel as shown in calibration diagram

000
R1

R2

R3

1 ) Measurements of R1, R2, R3, and .

R1=R2=10.2mm， R3=14.4mm， = 90º

2 ) Calculate d (L = 2.05 mmnm).

d1 = d2 = L /R1 = 0.201 nm

d3 = L /R3 = 0.142 nm

3 ) Determine the corresponding crystal plane 
family index {hkl} based on the d value.
d1 = d2= 0.201 nm，which belongs to the {110} 

crystal plane family.
d3 = 0.142 nm，which belongs to the {200} crystal 
plane family.
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9.4 Determinations of single crystal electron diffraction patterns

[001]

000
R1

R2

R3

-110

020

000

110

4 ) The crystal plane corresponding to the R1 spot 
belongs to the {110} crystal plane family, and (110) is 
selected as its index.

• Calibration of diffraction patterns of known crystal structures

5 ) In the {110} crystal plane family, (-110) is selected as 
the index of the corresponding spot of R2. The 
calculated angle between (110) and (-110) is consistent 
with the measured value of 90º.

6 ) Calibrate other spot indexes: such as R3 = R1+R2, then 
(h3k3l3)=(h1+h2 k1+k2 l1+l2)=(020); other diffraction spot 
indexes can be calibrated according to this.

7 ) Use the Zone law to calculate the crystal band axis 
index [uvw] = [001]

u = k1l2 − k2l1= 0, v = l1h2 − l2h1=0, w = h1k2 − h2k1=1
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of known crystal structures

2. R2 ratio method

The R2 ratio method is more suitable for cubic polycrystalline diffraction pattern calibration.

1 ) Measure the diffraction spot spacing R1, R2, R3, R4 …., and 
arrange the R values in increasing order.

2 ) Calculate R2 Determine the lattice structure and crystal plane 
family index {hkl} according to the R2 ratio law.
For cubic crystals system:

N

a
d

N

a

lkh

a
d

2
2

222
, ==

++
=

The spot spacing R is inversely proportional to d, so R2 is directly 
proportional to N = h2 + k2 + l2, that is:

2 2 2

1 2 3 1 2 3: : : : : :R R R N N N=L L
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of known crystal structures

2. R2 ratio method

• Body centered cubic crystal

h + k + l = even-numbered crystal faces can produce diffraction. The values of N = h2 + k2 + 
l2 are: 2, 4, 6, 8, 10…., that is

N1:N2:N3:N4:N5: = 2:4:6:8:10: 

• Face centered cubic crystal

Diffraction can only occur when h, k, and l are all odd or all even. The values of N = h2 + k2

+ l2 are: 3, 4, 8, 11, 12….., that is

N1:N2:N3:N4:N5: = 3:4:8:11:12: 
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of known crystal structures

2. R2 ratio method

Calibration diagram of body-centered cubic (a) and face-centered cubic (b) 
polycrystal electron diffraction patterns
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of unknown crystal structures

1 ) Measure the spot spacing R1, R2, R3 …., and measure the angle between R1 and R2  .

2 ) Use the basic formula of electron diffraction to calculate the corresponding inter-plane 
spacing d1, d2, d3…. Rd = L

3 ) According to the comparison between the d value series and the d series in the possible 
phase card, the physical phase is first determined; after the physical phase is determined, it 
can be carried out after step 3 of the trial calibration method of diffraction pattern 
calibration of known crystal structures. In order to make the calibration results reliable, the 
distance between the measured spots should be as large as possible. Generally, at least 4 
spots should be selected for measurement.

In order to accurately identify the physical phase, other information such as the chemical 
composition and formation conditions of the diffracted material should be used to rule out 
impossible physical phases.
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9.4 Determinations of single crystal electron diffraction patterns

• Calibration of diffraction patterns of unknown crystal structures

3. Standard pattern comparison method

• For cubic crystals, the ratio of the interplanar spacing and the angle between the two 
crystal planes have nothing to do with the lattice constant. Therefore, for substances 
with different lattice constants, the arrangement patterns of spots in the diffraction 
patterns of the same crystal band are similar. Therefore, we can draw the standard 
diffraction patterns of some commonly used low-index crystal bands, and compare the 
diffraction patterns to be calibrated with the standard patterns for calibration.

• According to the characteristics of the diffraction pattern (such as the ratio of two sides 
R2 / R1 and the angle between the two sides  ), a characteristic quadrilateral table is 
made, and the look-up table method can also be used for calibration.

• In addition, a computer program can also be used to calibrate the diffraction pattern, 
which requires inputting the lattice type and lattice parameters of the object phase, the 
camera constants of the electron microscope, and the measurement data of the 
diffraction pattern R1， R2 ， .
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9.5 Complex electron diffraction patterns

• Super lattice spots

Taking the Cu3Au face-centered cubic solid solution as an example, when it is disordered, 
Au and Cu atoms randomly occupy positions in the unit cell; when ordered, Au occupies 
the vertex corners and Cu occupies the face-centered position, forming a superlattice 
structure, as shown in the figure.

a) b)
Au

Cu

The positions of various atoms in Cu3Au solid solution
a) Disordered solid solution b) Ordered solid solution

In the disordered state, when h, k, 
l are mixed with odds and evens, 
Fhkl = 0; while in the ordered 
state, when h, k, l are mixed oddly 
and evenly, Fhkl =  fAu− fCu 0, 
super lattice spots will appear. 
Superlattice spots appear at 
locations where reflection is 
prohibited in disordered solid 
solutions, and the intensity of 
superlattice spots is low.
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9.5 Complex electron diffraction patterns

• Super lattice spots

Electron diffraction pattern of Cu3Au solid solution [001] crystal band
a) Disordered solid solution b) Ordered solid solution
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The diffraction spots of the body-centered cubic and face-centered cubic [001] crystal 
bands are all squarely distributed, but the locations of the superlattice spots are different, 
as shown in the figure below.
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9.5 Complex electron diffraction patterns

• Super lattice spots

Electron diffraction pattern of cubic ordered solid solution [001] crystal bands
a) Body-centered cubic b) Face-centered cubic

Comparing Figures a and b, it can be seen that the superlattice spots of the Cu3Au ordered 
solid solution appear at the reflection position of the disordered solid solution extinction (h
k l is the mixed odd and even number).
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9.5 Complex electron diffraction patterns

• Twinning spots

(110)

Twin

Matrix

The atomic arrangement of the (110) 
plane of the face-centered cubic (111) 
twin is shown in the figure.

If the twin plane (111) is used as a mirror 
for the reflection operation, the lattice of 
the matrix and the twins will overlap each 
other, which is called a reflection twin.

If the twin plane normal line [111] is used 
as the axis to perform a 180°rotation, the 
lattice of the matrix and the twins will also 
coincide with each other, which is called a 
rotational twin.
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9.5 Complex electron diffraction patterns

• Twinning spots

The transformation formulas of body-centered and face-centered cubic twins are described 
into equations (1) and (2):
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In the formula (htktlt) is the index of the twin reciprocal lattice point (hkl) in the matrix 
lattice; pqr is the twin plane index, body-centered cubic {pqr}={112}, face-centered cubic 
{pqr}={111} 54



9.5 Complex electron diffraction patterns

• Twinning spots

11-1

11-1

000

00-2

00-2
111

111

220

220

22-2

22-2

[1-10]M [-110]T

As shown in the figure, according to the twin diffraction pattern and its calibration results, 
the reflection symmetry relationship between the matrix and the twin channel reciprocal 
lattice can be explained.

Face-centered cubic crystal (111) twin diffraction patterns and calibration results
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9.6 Thin film sample preparation method

• Fundamental requirements

Due to the limitation of electron penetration ability, a certain method needs to be used to 
prepare thin crystal samples suitable for transmission electron microscopy, usually called 
thin film samples. Film samples should meet the following basic requirements:

1) The thin film sample must maintain the same organizational structure as the bulk 
sample. That is, the microstructure of the sample cannot change during the preparation 
process.

2) The film sample should be “transparent” to the electron beam.

3) The film sample must have a certain strength and stiffness to prevent the sample from 
being deformed or damaged during the process of clamping and loading the sample stage.

4) There should be no corrosion or severe oxidation on the surface of the film sample. 
Otherwise, it will cause a decrease in image clarity or artifacts.
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9.6 Thin film sample preparation method

• Preparation process

1) Slicing: Cut thin slices with a thickness of about 0.2 ~ 0.3 mm from a large piece of 
material, and choose an appropriate cutting method according to the material, such as 
wire EDM (see picture), diamond disc saw, etc.; pay attention to the cutting parts and 
direction to make the analysis results of the sample representative.

2) Pre-thinning: The pre-thinning thickness is controlled at 
0.1 ~ 0.2 mm. It is mainly used to remove the surface 
damage layer caused by slicing. The methods include 
mechanical and chemical methods; the mechanical 
method is manual grinding without excessive force and 
sufficient cooling. Avoid changes in the tissue structure of 
the sample.

Specimen

Thin film

DC

Reciprocating motion

Molybdenum wire
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9.6 Thin film sample preparation method

• Preparation process

3) Final thinning: A sample with no corrosion and oxidation on the surface and transparent 
to the electron beam is obtained after final thinning. The methods are double-jet 
electrolytic polishing and ion thinning. For metal materials, efficient and simple double-jet 
electrolytic polishing is usually used. Ion thinning can be used for non-conductive materials, 
but this method is more time-consuming.

Sample

Light source

Electrolyte
Optical fiber

Photosensitive 
element

Ar ion bombardment
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9.7 Principle of thin crystal diffraction contrast imaging

As shown in the figure, there are two adjacent crystal grains in the single-phase 
polycrystalline film sample. Assume that the orientations of all crystal faces of the A crystal 
grain are far away from the Bragg condition; while only the (hkl) crystal face of the B crystal 
grain satisfies the Bragg condition. The diffraction intensity is Ihkl.

a) b)

Incident ray

Sample

Lens

Aperture

Back focal
plane

Incident ray

Sample

Lens

Image
plane

Aperture

Back focal
plane

Diffraction contrast imaging principle  
a) Bright-field imaging b) Center dark-field imaging
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9.7 Principle of thin crystal diffraction contrast imaging

• Bright-field imaging

Bright-field imaging

a)

Incident ray

Sample

Lens

Aperture

Back focal
plane

Image
plane

If the intensity of the incident electron beam is I0, the intensity of the transmitted beam on 
the lower surface of the A crystal grain is approximately equal to the incident beam 
intensity I0; while the intensity of the transmitted beam of the B crystal grain is (I0 - Ihkl). 
The transmitted beam and the diffracted beam are focused by the objective lens, 
respectively. Transmission spots (000) and diffraction spots (hkl) are formed on the back 
focal plane.

If the objective aperture is used to block the diffracted 
beam of the B grain, and only the transmitted beam is 
allowed to pass through the aperture for imaging, and the 
intensities of the imaging electron beams for the A and B 
grains on the image plane are IA and IB, then we have:

0AI I 0B hklI I I −

The intensity of the imaging electron beam is the 
brightness of the image, so grain A is bright and grain B is 
darker. 
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9.7 Principle of thin crystal diffraction contrast imaging

• Bright-field imaging

Bright-field imaging

a)

Incident ray

Sample

Lens

Aperture

Back focal
plane

Image
plane

If the objective aperture is used to block the diffracted beam of the B grain, and only the 
transmitted beam is allowed to pass through the aperture for imaging, and the intensities of 
the imaging electron beams for the A and B grains on the image plane are IA and IB, then we 
have:

0AI I 0B hklI I I −

The intensity of the imaging electron beam is the 
brightness of the image, so grain A is bright and grain B is 
darker. If the brightness of A grain is used as the 
background intensity and the contrast of B grain is:

0

A B hkl

B A

I I I I

I I I

 − 
=  

 

Image contrast is related to the diffraction intensity in 
different areas, so it is called diffraction contrast.
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9.7 Principle of thin crystal diffraction contrast imaging

• Center dark-field imaging

Incident ray

Sample

Lens

Aperture

Back focal
plane

Image
plane

The method that only allows the transmitted beam to pass through the objective aperture 
for imaging is called bright field imaging; if only the diffracted beam is allowed to pass 
through the objective aperture for imaging, it is called dark field imaging. During dark field 
imaging, the intensities of the electron beams imaging the A and B grains are respectively 
IA  0, IB  Ihkl, so the B grain is bright, while the brightness of the A grain is approximately 
zero. The diffraction images of A and B grain morphology are shown in Figure. It can be 
seen that the contrast of the dark field image is significantly higher than that of the bright 
field image, which is one of the characteristics of dark field imaging.
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9.7 Principle of thin crystal diffraction contrast imaging

• Bright-field imaging and Center dark-field imaging

A

B

a)

A

B

b)

Contrast image of aluminum alloy grain morphology 
a) bright field image b) central dark field image
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9.8 The theory of diffraction kinematics

Since atoms strongly scatter electrons, when the electron wave propagates in the sample, 
the amplitude and intensity will change periodically due to the interaction between the 
transmitted wave and the diffracted wave, as shown in Figure.

Incident 
wave

Diffraction 
wave

Transmission 
wave

When the deviation parameter s = 0, the electron waves propagate in the depth direction 
within the crystal. a) Interaction of transmitted waves and diffracted waves b) Amplitude 
changes c) Intensity changes. 64



9.8 The theory of diffraction kinematics

Atomic Plane Scattering Amplitudes

Unit area of AB plane, diffraction wave amplitude nFg, 
converted to CD plane, nFg / cosƟ. Fresnel wave 
division banding method, the scattering amplitude of 
each layer of lattice q = λnFg / cosƟ

Suppose the scattering amplitudes of each layer of 
lattice planes are superimposed. In that case, we can 
find out how many layers of atoms the electron beam 
has been scattered by in the depth direction of the 
crystal before the diffraction amplitude reaches the 
maximum, which is exactly half of the extinction 
distance.

Returning to the origin after m layers, the diameter is 
D = 1 and the circumference is π. On the other hand: 
mq=π，md=ζ；λnFg/ cosƟ/d= π/ζ.

g

g
nF

d






cosπ
=
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9.8 The theory of diffraction kinematics

When the deviation parameter s = 0, the periodic distance in which the diffraction wave 
intensity changes in the depth direction of the sample is called the extinction distance g.

g

g
nF

d






cosπ
=

In the formula, d is the interplanar spacing; n is the number of unit cells in the unit area on 
the atomic plane. 1/n is the area of a unit cell, so the volume of the unit cell Vc = d (1/n), 
substitute formula gives:

g

c
g

F

V






cosπ
=

In the formula, Vc is the unit cell volume; θ is the Bragg angle; Fg is the structure factor. The 
equation shows that the g value changes with the electron wavelength λ and Bragg angle 
θ.
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9.8 The theory of diffraction kinematics

The extinction distance g values of several crystals are shown in the table.

Crystal hkl 50kV 100kV 200kV 1000kV

Al

Fe

Zr

111

110

41

20

45

56

28

60

70

41

90

95

46

102

Extinction distance values of several crystals under different accelerating voltages

Crystal Z Lattice
hkl

110 111 200 211

Al

Ag

Au

Fe

13

47

79

26

fcc

fcc

fcc

bcc 28

56

24

18

68

27

20

40 50

The extinction distance value of several crystals under 100kV
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9.8 The theory of diffraction kinematics

• Contrast refers to the difference in intensity of each image point on the image plane, or 
the difference in brightness of each image point.

• In fact, the diffraction contrast is the difference in the intensity of the imaging electron 
beam at each image point on the image plane, which depends on the difference in the 
Bragg orientation of each point of the crystal film.

• The theory of diffraction kinematics is used to calculate the intensity of the diffracted 
beam and the transmitted beam at each point on the lower surface of the sample, that 
is, the intensity of the imaging electron beam at each image point on the image plane.

• The physical model of kinematics theory is relatively straightforward, and the derivation 
process of theoretical formulas is simple. Compared with the dynamic theory, kinetic 
theory is an approximate theory, and its application has certain limitations. 
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9.8 The theory of diffraction kinematics

• Basic assumptions and approximation methods

1) Basic assumptions

• The interaction between the transmitted and diffracted beams is not considered. This 
means that the intensity of the diffracted beam is always very small compared to the 
intensity of the transmitted beam. To satisfy this assumption, a larger deviation 
parameter s needs to be used during imaging.

• The absorption and multiple reflections of electron waves by crystal samples are not 
considered. This means that the electron wave is scattered no more than once during its 
passage through the sample. To meet this assumption, extremely thin samples must be 
used in the experiment.
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9.8 The theory of diffraction kinematics

• Basic assumptions and approximation methods

2) Approximation methods

000

hkl

Double beam diffraction pattern

Although the intensity of the diffraction beam 
used for imaging is very small, it is still high enough 
compared with the intensity of the diffraction 
beam of other crystal planes. It can be seen that 
the diffraction intensity of other crystal planes is 
zero. In the diffraction pattern, there are only 
transmission spots and one diffraction spot, as 
shown in the Figure.

In this case, the transmitted beam intensity IT and 
the diffracted beam intensity Ig approximately 
satisfy I0 = IT + Ig = 1. In the formula, I0 = 1 is the 
incident beam intensity, which is the two-beam 
approximation.
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9.8 The theory of diffraction kinematics

• Basic assumptions and approximation methods

2) Approximation methods

A

The diffracted beam intensity at a certain point 
A on the sample's lower surface is believed to 
come from the crystals' contribution in a cylinder. 
The method of selecting the cylinder is shown in 
the figure.

When calculating the diffraction intensity at 
point A, point A is taken as the center of the 
bottom surface of the cylinder. The cross-
sectional size is equivalent to the size of the unit 
cell. When the cylinder penetrates the sample 
along the direction of the incident beam, a 
cylinder is taken with this point as the center 
when calculating the diffraction intensity at 
another point. And the diffraction waves 
between adjacent cylinders do not interfere with 
each other. This processing method is the 
cylinder approximation. 71



9.8 The theory of diffraction kinematics

• The diffraction intensity of an ideal crystal

Incident
wave

Diffraction
wave

Incident
wave

Diffraction
wave

Transmission
wave

To calculate the diffraction intensity 
produced by cylinder OA in a crystal 
with thickness t, first calculate the 
diffraction wave amplitude g  at the 
lower surface of the cylinder.

Take a thickness element dz at the 
depth z in the cylinder, and the 
amplitude change of the diffraction 
wave caused by it is dg, as shown in 
the figure.

zΦ
g

g de
πi

d πi2 rK −=


Waves have amplitude and phase

Diffraction intensity of crystal column 
OA under kinematic conditions.
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9.8 The theory of diffraction kinematics

• The diffraction intensity of an ideal crystal

The diffraction amplitude g at the lower surface of the crystal is equal to the 
superposition of the diffraction wave amplitudes of all thickness elements from the upper 
surface to the lower surface, that is:

 −− ==
柱体柱体

zzΦ
gg

g de
πi

de
πi iπi2 



rK

In the formula,  = 2Kr is the phase angle of the scattered wave at r relative to the 
scattered wave on the upper surface of the crystal. When deviating from the Bragg 
condition, the diffraction vector

K= k− k = g + s

Since gr = integer, s//r//z, and r = z, the phase angle is expressed as:

 = 2Kr = 2 sr = 2sz
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9.8 The theory of diffraction kinematics

• The diffraction intensity of an ideal crystal

Therefore, the diffracted wave amplitude at point A on the lower surface of the sample is:

 −− ==
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That is, the diffraction intensity is the square of the amplitude, from which the ideal crystal 
diffraction intensity formula is obtained.
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The intensity of the transmitted wave can be approximately known:

2

2
2

)π(

)π(sinπ
1

s

ts
I

g

T 












−=


74



9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

1. Equal-thickness fringes

Equal-thickness extinction fringes are a 
common contrast phenomenon. They often 
appear in wedge-shaped areas with 
continuously changing thicknesses at the edge 
of holes or inclined grain boundaries. They 
are characterized by alternating light and dark 
stripe contrast.Equal-thickness stripes at inclined 

grain boundaries.
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9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

1. Equal-thickness fringes

When the deviation parameter s is a constant, equation is rewritten as:
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Ig changes periodically with the sample thickness t. See Figure. The change period tg is:

tg = 1/s

When t = n/s，Ig = 0；

When t = (2n+1)/2s，Ig has a maximum value.
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9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

1. Equal-thickness fringes

Using the results of the periodic change of Ig with t, the equal-thickness fringes appearing 
at the wedge-shaped edge of the sample can be qualitatively explained. As shown in Figure, 
the thickness t of the wedge edge changes continuously, and Ig on the lower surface of the 
sample changes periodically with t.

Top surface

Bottom surface

Bright-field
image

Dark-field
image

• At the edge, t = 0, Ig= 0, the corresponding position 
in the dark field image is dark stripes, and the bright 
field image is bright stripes.

• The diffraction intensity Ig at t = (2n+1)/2s is the 
maximum value. The corresponding position in the 
dark field image is bright stripes, and the bright 
field image is dark stripes. This cycle creates a 
contrast of light and dark stripes.
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9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

1. Equal thickness fringes

As shown in Figure, it can be seen that in the bright-field image or dark-field image, the 
thickness t of the same bright stripe (or dark stripe) corresponding to the sample position 
is the same, so it is called an equal-thickness stripe. The spacing of stripes is proportional 
to the change period of 1/s, so the thickness t of the sample can be estimated by using the 
number n of equally thick stripes, that is, t = n /s.

Top surface

Bottom surface

Bright-field
image

Dark-field
image
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9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

2. Equal-inclination fringes

Contrast characteristics of equal-
inclination fringes.

Equal-inclination fringes are also a common contrast phenomenon. Since the elastic 
bending of the sample causes the appearance of such fringes, it is also called bending 
extinction fringes. Its contrast characteristics are shown in the figure below.

The following uses the theory of contrast 
kinematics to qualitatively explain the generation 
mechanism of equal-inclination fringes. Rewrite 
equation as
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=9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

2. Equal-inclination fringes

The equation shows that when t is a constant, Ig also changes with s, and the change is 
shown in Figure below.
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Change of diffraction intensity Ig with deviation parameter s.

When s = 1/t, 2/t, 3/t,

Ig= 0.

When s = 3/2t, 5/2t, 7/2t, 

Ig has extreme value.

When s = 0, Ig has the maximum value.
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=9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

2. Equal-inclination fringes

Dark-field
image

As shown in Figure, the diffraction crystal plane is deflected to both sides due to the elastic 
bending of the sample. Assume that the diffraction crystal plane at O is exactly in the Bragg 
orientation,   = B  (s = 0); the signs of s on both sides of the O point are opposite, and  s 

continues to increase as the distance from the O point increases.

According to Figure, the change of Ig with s can be 
seen that at the sample position of s = 0, the 
diffraction intensity is maximum, and bright 
stripes appear here in the dark field image; on 
both sides, Ig = 0 and Ig takes an extreme value at 
different positions, dark and light stripes will 
appear one after another. 81



9.8 The theory of diffraction kinematics

• Application of basic equations of diffraction kinematics of ideal crystals

2. Equal-inclination fringes

• From the above analysis, it can be seen that the same bright stripe (or dark stripe) 
corresponds to the position of the sample. Since the inclination angle of the diffraction 
crystal plane relative to the incident beam is the same (the s is the same), such stripes 
are called equal-inclination stripes.

• If the sample is elastically bent into a spherical surface, intersecting equal-inclination 
stripes will appear. When the sample is tilted, the position of the sample corresponding 
to s = 0 will change. The position of equal-inclination fringes will also change accordingly, 
which is one of the characteristics.

• Because the degree of elastic bending of the sample in the observed area is very small, 
the degree of deviation  s  of the diffraction crystal plane is small, and the peak value 
of Ig decreases rapidly as  s  increases, so generally, only s = 0 can be observed. 
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9.8 The theory of diffraction kinematics

• Diffraction intensity of non-ideal crystals

Before
distortion

After
distortion

The existence of crystal defects in non-ideal crystals will 
distort the crystal column, which can be expressed by the 
displacement vector R.

The displacement vector of the undistorted crystal column is r, 
and the displacement vector of the distorted crystal column is r’.

r = r + R

  = 2 K  r  = 2(g + s)(r + R) 

Because s R = 0, then we have:
  = 2sz + 2 gR =  + 
 = 2 gR called additional phase angle
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9.8 The theory of diffraction kinematics

• Diffraction intensity of non-ideal crystals

In the equation, e-i = e-2i gR is called the additional phase factor. An additional phase 
factor is introduced in the expression of the diffraction wave amplitude of a non-ideal 
crystal, which may cause the amplitude of the diffraction wave at the defect location to be 
different from that of the crystal at the non-defect location. Defects lead to display contrast.
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• If the additional phase angle caused by the defect is an integer multiple of 2, the 
additional phase factor is 1 and does not affect the diffraction intensity. At this time, the 
defect does not show diffraction contrast.

• If the additional phase angle caused by the defect is not an integer multiple of 2, the 
additional phase factor is not equal to 1, and the existence of the defect contributes to 
the diffraction intensity. At this time, the defect will contrast differently from that 
without the defect.
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9.9 Introduction to diffraction dynamics

• The kinematics theory is established on the premise of two basic assumptions. There 
are still some shortcomings, and it cannot explain some contrast phenomena perfectly.

• According to the kinematic theory, the variation period of the diffraction beam intensity 
of the sample is (1/s), and the spacing of equal-thickness extinction fringes is 
proportional to 1/s. When s→0, the stripe spacing will tend to infinity.

• This is not the actual situation. Even when s = 0, the fringe spacing is still a finite value. 
At this time, it is proportional to the extinction distance g.

• The above situation shows that the kinematic theory is not applicable in some cases, or 
the experimental conditions do not meet the requirements of the basic assumptions of 
the kinematic theory.

• The fundamental difference between dynamics and kinematics theory is that dynamics 
theory considers the interaction of transmission beams and diffracted beams; it still 
uses two processing methods: double-beam approximation and cylinder approximation.
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9.9 Introduction to diffraction dynamics

• The shortcomings and scope of application of kinematics theory

The diffraction intensity formula derived from the kinematic theory is:

2

2

2

g

2

)π(

)π(sin)π(

ts

tst
I g


=

When s = 0, Ig has the maximum value.

2

max 












=

g

g

t
I





When t >g/ , the Igmax > 1 , Ig will exceed the incident beam intensity (I0=1).
It's wrong. To satisfy the kinematic assumptions, the thickness of the sample should:

t << g /

That is, kinematic theory is applicable to extremely thin samples.

When s = constant, t = (2n+1)/2s, Ig have a maximum values:  max 2

1

( )
g

g

I
s

=

If |sg|  1, Igmax > 1, false results for exceeding the incident beam intensity can also occur. 
Therefore, kinematic theory requires | sg | >>1, so | s | >> 1/g . That is, the kinematic 
theory is suitable for larger deviation parameters.
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9.9 Introduction to diffraction dynamics

• The kinetic equations of crystals

As shown in the figure, k is the incident wave vector. Assume that the transmitted wave 
and the diffracted wave pass through the thickness element dz in the cylinder, and the 
amplitude changes d0 and dg caused are:
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In the formula, 0 is a parameter similar to g .

The formula shows that the diffracted wave 
contributes to the change in the amplitude of the 
transmitted wave and the change in the 
amplitude of the diffracted wave is also 
contributed by the transmitted wave, which is 
the result of the interaction of the two waves, 
the transmitted wave and the diffracted wave.87



9.9 Introduction to diffraction dynamics

• The kinetic equations of crystals

By substituting the equations and using boundary conditions, the amplitudes of the 
transmitted and diffracted waves at the lower surface of the sample can be obtained.


























 +

+
=













 +

+
−












 +
=

g

g

gg

ti
Φ

tit
Φ



















2

2

2

2

2

0

1π
sin

1

1π
sin

1

1π
cos

The formula  = sg indicates the degree to which the diffraction crystal plane deviates 
from the Bragg condition, and the effective deviation parameter seff is introduced.
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9.9 Introduction to diffraction dynamics

• The kinetic equations of crystals

The complete crystal diffraction intensity formula under dynamic conditions can be obtained.
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The formula has the same form as the diffraction intensity formula derived from kinematic 
theory.
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1) When s = 0, Ig = sin2( t /g)≤1, which will not exceed the incident beam intensity.

2) When s = 0, the change period of Ig in the depth direction of the sample is g, and the 
spacing between equal-thickness stripes is a finite value.

3) When s >>1/g , seff  s, the kinematic results can be obtained from the dynamic 
diffraction intensity formula. The kinematic theory is an approximation of the dynamic 
theory under specific conditions.
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9.8 The theory of diffraction kinematics

• Diffraction intensity of non-ideal crystals

In the equation, e-i = e-2i gR is called the additional phase factor. An additional phase 
factor is introduced in the expression of the diffraction wave amplitude of a non-ideal 
crystal, which may cause the amplitude of the diffraction wave at the defect location to be 
different from that of the crystal at the non-defect location. Defects lead to display contrast.
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• If the additional phase angle caused by the defect is an integer multiple of 2, the 
additional phase factor is 1 and does not affect the diffraction intensity. At this time, the 
defect does not show diffraction contrast.

• If the additional phase angle caused by the defect is not an integer multiple of 2, the 
additional phase factor is not equal to 1, and the existence of the defect contributes to 
the diffraction intensity. At this time, the defect will contrast differently from that 
without the defect.
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9.10 Crystal defect analysis

As mentioned before, when the additional phase angle ( = 2 gR) caused by defects is an 
integer multiple of 2, the additional phase factor e-i = e-2i gR equals 1 and does not 
affect the diffraction intensity. , at this time, the defect does not show diffraction contrast 
and is called invisible.

gR = N (Integrator)

When the defect type is certain (R is certain), the defects may show different contrasts due 
to the selection of different operating reflection g for imaging; when the operating 
reflection g used for imaging is selected, different types of defects (different R) may also 
appear. 

In particular, when gR = 0, R ⊥ g, the displacement vector R is within the diffraction 
crystal plane (hkl) corresponding to g, and the existence of defects does not affect the 
orientation and spacing of the crystal plane, nor does it affect its diffraction intensity. The 
defect does not show contrast.
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9.10 Crystal defect analysis

• Stacking fault

Stacking faults often exist in face-centered cubic or close-packed hexagonal crystals with 
low stacking fault energy. The stacking order of the close-packed faces has a problem, 
called stacking faults. 

The orientation of the crystals on the upper and lower parts of the stacking fault is the 
same, but there is a relative constant displacement R, see Figure. In a face-centered cubic 
crystal, the stacking fault plane is {111}, and the displacement vector is 

or . The additional phase angle  = 2 gR they cause can only be 0 or 
2/3 within the main value range.

111
3

1
1 =R

112
6

2
2 =R

When  = 0, stacking faults do not 
show contrast.

When  = 2/3, the contrast 
between stacking faults and the area 
without stacking faults is different.
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9.10 Crystal defect analysis

• Stacking fault

1. Stacking faults parallel to the film surface

As shown in Figure a, the stacking fault plane CD is parallel to the film surface. If the 
additional phase angle  caused by it is 2/3 or -2/3, the stacking fault will show contrast.

2. Stacking faults inclined to the film surface

As shown in Figure b, the stacking fault plane TB is inclined to the film surface. When the 
additional phase angle  caused by it is 2/3 or -2/3, the stacking fault will show contrast, 
and its contrast characteristics are: Alternating light and dark stripes.
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9.10 Crystal defect analysis

• Stacking fault

For stacking faults that are inclined to the film surface, the contrast characteristics of the 
bright and dark field images are the contrast of bright and dark stripes parallel to the 
intersection of the stacking fault plane and the film surface. The contrast of the outer 
stripes in the bright field image is the same, while the contrast of the outer stripes in the 
dark field image is opposite, as shown in the figure below.

a) b)

Bright-field Dark-field
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9.10 Crystal defect analysis

• Stacking fault

When the stacking fault density in the crystal is high, the electron beam will pass through 
multiple stacking fault planes when propagating in the sample. At this time, its contrast 
depends on the sum of the additional phase angles caused by these stacking faults. The 
morphological characteristics are shown in the figure.

b)a)

Morphology of high-density stacking faults in alloys
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9.10 Crystal defect analysis

• Dislocation

The displacement vector R of the screw dislocation is parallel to the Brinell vector b, that is,

R = ( /2) b

In the formula,  is the helix angle. For screw dislocation, gR= (/2)gb. It can be seen 
that gR generally cannot be a non-zero integer, so when gb = 0, the dislocation is not 
visible.

For edge or mixed dislocations, only residual 
contrast exists. When gb = 0 is satisfied and 
can be regarded as invisible. 
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9.10 Crystal defect analysis

• Dislocation

The Brinell vector b of the dislocation can be determined using the invisibility criterion. The 
principle of the method is as follows:

When the dislocation line is invisible, it meets the invisible criterion of g b = 0 . At this 
time, b ⊥ g, b is located in the diffraction crystal plane (hkl) corresponding to g.

If two operations of reflection imaging are selected respectively to make the dislocation 
lines invisible, then it satisfies:

g1b = 0 

g2b = 0

It shows that b is parallel to the intersection line of the crystal planes (h1k1l1) and (h2k2l2) 
corresponding to g1 and g2. The simultaneous equation can calculate the direction of the 
dislocation Brinell vector b.
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9.10 Crystal defect analysis

• Dislocation

When gb0, the dislocation line shows contrast. The following takes ductile dislocation as 
an example to illustrate the generation and characteristics of contrast, see Figure. The half-
atom plane inserted at the dislocation line D is (hkl). Due to local distortion, the (hkl) 
orientations on both sides are deflected in the opposite direction, and an additional 
deviation parameter s is introduced. On the left side of the dislocation line s  0, on the 
right side of the dislocation line s  0, as shown in Figure a.

The generation and characteristics of edge dislocation contrast

Actual 
Dislocation

Dislocation
Image

98



9.10 Crystal defect analysis

• Dislocation

Because a certain position near the dislocation line satisfies the Bragg condition and 
obtains the highest diffraction intensity, the dislocation image appears as dark lines in the 
bright field image, and the dislocation image appears as bright lines in the dark field image, 
as shown in the figure.

b)a)

Bright-field Dark-field
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9.10 Crystal defect analysis

• Dislocation

Figure a shows the dislocation cells formed due to dislocation entanglement during the 
metal deformation process.
Figure b shows dislocation plugging caused by dislocation glide hindered by grain 
boundaries.

b)a)
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9.10 Crystal defect analysis

• Second-phase particles

When the second phase particles and the matrix 
remain coherent or semi-coherent and have a degree 
of mismatch, the matrix near the phase interface will 
produce lattice distortion, see Figure.

Lattice distortion

Without distortion

This distortion can also be described by the 
displacement vector R of the defect, which will produce 
a contrast similar to crystal defects.

Strain contrast is relatively complex, and its 
characteristics depend on the shape of the second-
phase particles and the intensity distribution of the 
strain field.
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9.10 Crystal defect analysis

• Second-phase particles

无衬度线No contrast

As shown in the figure, the strain contrast 
of spherical particles is butterfly-shaped, 
and there is always a non-contrast line in 
the middle. The direction of the non-
contrast line is perpendicular to the 
operating reflection g, which means that 
the displacement vector R at the 
corresponding position is perpendicular 
to the operating reflection g, so Satisfies 
gR=0 without showing contrast. If the 
direction of the operating reflection g is 
changed, the direction of the no-contrast 
line will also change and always remain 
perpendicular to the operating reflection 
g. This is the main feature of the strain 
contrast of spherical particles.
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9.10 Crystal defect analysis

• Second-phase particles

1) Orientation contrast: The contrast caused by 
the difference in the degree of Bragg 
conditions between the second phase and the 
matrix, resulting in the difference in diffraction 
beam intensity, is called orientation contrast. 
Orientation contrast is characterized by a 
second phase that appears uniformly bright or 
dark. The crystal structure of this second phase 
is usually quite different from the matrix, and 
its diffraction spots will appear. The diffraction 
beam of the second phase forms a dark field 
image to show the morphology of the second 
phase. This is a commonly used analysis 
technique. 
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9.10 Crystal defect analysis

• Second-phase particles

1) Orientation contrast         
As shown in Figure, the dark field image obtained using three diffraction beams of 
phases with different orientations shows the shape, size, and distribution of  phases with 
different orientations.

1

2 3

Diffraction Dark-field image

Dark-field imageDark-field image
104



9.10 Crystal defect analysis

• Second-phase particles

When there is a difference in the structure factors of the second phase and the matrix, it 
will also lead to a difference in the intensity of the diffraction beam. The second phase 
shows a contrast different from the matrix, called structure factor contrast. The second 
phase shows the contrast of the structure factor—the same crystal structure as the matrix, 
such as G.P. regions and fine-ordered domains.

2) structure factor contrast

The picture is the diffraction contrast image of the 
G.P. zone in aluminum alloy. The fine particles 
dispersed in the photo are the G.P. zone, and the 
source of contrast is the structure factor contrast.
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