FaEFTLRE

. ﬁ (_ The Chinese University of Hong Kong

MAEG5160: Design for Additive Manufacturing

Lecture O: Introduction to optimization

Prof SONG Xu
Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong.

Ingredients

e Objective function
e Variables
* Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

Different Kinds of Optimization

Unconstrained

Continons

Smmmrm
o ', . P
FiE - ¥
e

ﬁ-ﬂgmmmn
m_

Optimization

Figure from: Optimization Technology Center
http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/

Different Optimization Techniques

* Algorithms have very different flavor depending on
specific problem | n
* Closed form vs. numerical vs. discrete |
* Local vs. global minima
* Running times ranging from O(1) to NP-hard

* Today:

* Focus on continuous numerical methods

Optimization in 1-D

* Look for analogies to bracketing in root-finding
e What does it mean to bracket a minimum?

\ (e) /

[J
(xrighv f(xright))

[
(xmid' ﬂxmid))

Optimization in 1-D

* Once we have these properties, there is at least one

local minimum between X, and x,;

e Establishing bracket initially:

e Given Xx;

inirigh ICrement

Evaluate f(x;,...;), f(X;, ., Fincrement)
* If decreasing, step until find an increase
* Else, step in opposite direction until find an increase

* Grow increment at each step

* For maximization: substitute —f for f

Optimization in 1-D
* Strategy: evaluate function at some x,_,,

\ (xlleﬁ' f("//eft))

o
(xright' f(xright))

o
(Xaewe i) .
(xmid* ﬂxmid))

Optimization in 1-D

* Strategy: evaluate function at some x,_,,

* Here, new “bracket” pointsarex.__., X ., X

new? *mid’ “*right

> (xlleft' ﬂxlleft))

[
(Xright' ﬂxri‘ght))

o
(Xaewe i) .
(xmid* ﬂxmid))

Optimization in 1-D

* Strategy: evaluate function at some x,_,,

* Here, new “bracket” points are Xz, X,e,, X

new’ *mid

> (xlleft' ﬂxlleft))

[
(Xright' ﬂxri‘ght))

(X X)) ® (xmid* ﬂxmﬁd))

Optimization in 1-D

* Unlike with root-finding, can’t always guarantee
that interval will be reduced by a factor of 2

* Let’s find the optimal place for x, ,, relative to left
and right, that will guarantee same factor of
reduction regardless of outcome

Optimization in 1-D

/s N
o o o
\ J

~

e
if f(Xnew) < f(Xmid)
new interval = &
else

new interval = 1—¢?

Golden Section Search

* To assure same interval, want o = 1-¢?
* SO,

* This is the “golden ratio” = 0.618...

* So, interval decreases by 30% per iteration
* Linear convergence

Error Tolerance

 Around minimum, derivative =0, so
f(x+AX)=f(X)+1 f"(X)AX" +...

f (x+Ax)— f(x) =1 f"(x)Ax* = machine ¢

:>Ax~\E

* Rule of thumb: pointless to ask for more accuracy
than sqgrt(¢e)

* Can use double precision if you want a single-precision
result (and/or have single-precision data)

Faster 1-D Optimization

* Trade off super-linear convergence for
worse robustness

 Combine with Golden Section search for safety

e Usual bag of tricks:
* Fit parabola through 3 points, find minimum
 Compute derivatives as well as positions, fit cubic
* Use second derivatives: Newton

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method

* At each step:

* Requires 1%t and 2"9 derivatives
 Quadratic convergence

The second-order Taylor expansion of faround zj, is

flar +8) & flae) + ' (2e)t + %f”{wa}tg-

The next iterate g4 15 defined so as to minimize this guadratic approximation in £, and setting w41 = @ + t. If the second derivative is positive, the
quadratic approximation is a convex function of £, and its minimum can be found by setting the derivative to zero. Since

0= % (f{iﬂk) + ()t + %f”(ﬁk}fz) = f'(xx) + [(@)1,

the minimum is achieved for

F'(z)
Putting everything together, Newton's method performs the iteration
()
i)

Tpyl = T+ 1= o —

Multi-Dimensional Optimization

* Important in many areas
* Fitting a model to measured data
* Finding best design in some parameter space

* Hard in general

* Weird shapes: multiple extrema, saddles,
curved or elongated valleys, etc.

e Can’t bracket

* In general, easier than rootfinding
* Can always walk “downhill”

Newton’s Method in Multiple Dimensions

* Replace 15t derivative with gradient,
2"d derivative with Hessian

Newton’s Method in Multiple Dimensions

* Replace 1% derivative with gradient,
2"d derivative with Hessian

* SO,

)_(k+1 —)_(k —H _l(ik)Vf ()_(k)

* Tends to be extremely fragile unless function very
smooth and starting close to minimum

Important classification of methods

e Use function + gradient + Hessian (Newton)

e Use function + gradient (most/steepest descent
methods)

e Use function values only (Nelder-Mead, called also
“simplex”, or “amoeba” method)

Steepest Descent Methods

* What if you can’t / don’t want to
use 2"d derivative?

e “Quasi-Newton” methods estimate Hessian

 Alternative: walk along (negative of) gradient...

e Perform 1-D minimization along line passing through
current point in the direction of the gradient

* Once done, re-compute gradient, iterate

Problem With Steepest Descent

roblem With Steepest Descent

Conjugate Gradient Methods

* |dea: avoid “undoing”
minimization that’s already
been done

* Walk along direction

dk+l = =01 +IBkdk

* Polak and Ribiere formula:

~9,,(9c:—00)
gggk

I

Conjugate Gradient Methods

* Conjugate gradient implicitly obtains information
about Hessian

* For quadratic function in n dimensions, gets exact
solution in n steps (ignoring roundoff error)

* Works well in practice...

Value-Only Methods in Multi-Dimensions

* If can’t evaluate gradients, life is hard

e Can use approximate (numerically evaluated)
gradients:

f (x+5-e;)—f(x)
)

f (x+5-e,)—1(x)

5
f(x+5-65)—f (X)

Generic Optimization Strategies

* Uniform sampling:

* Cost rises exponentially with # of dimensions
* Simulated annealing:

e Search in random directions

e Start with large steps, gradually decrease
* “Annealing schedule” — how fast to cool?

Downhill Simplex Method
(Nelder-Mead)

» Keep track of n+1 points in n dimensions
 Vertices of a simplex (triangle in 2D
tetrahedron in 3D, etc.)

* At each iteration: simplex can move,
expand, or contract

e Sometimes known as amoeba method:
simplex “oozes” along the function

Downhill Simplex Method
(Nelder-Mead)

* Basic operation: reflection

‘ ________
_____ %
location probed by
/’* —o reflection step

worst point
(highest function value)

Downhill Simplex Method
(Nelder-Mead)

* If reflection resulted in best (lowest) value so far,
try an expansion

—

.2 location probed by
_-7 expansion step

-
— P

* Else, if reflection helped at all, keep it

Downhill Simplex Method
(Nelder-Mead)

* If reflection didn’t help (reflected point still worst)
try a contraction

location probed by
contration step

Downhill Simplex Method
(Nelder-Mead)

* If all else fails shrink the simplex around
the best point

Downhill Simplex Method
(Nelder-Mead)

* Method fairly efficient at each iteration
(typically 1-2 function evaluations)

e Can take /ots of iterations

 Somewhat flakey — sometimes needs restart after
simplex collapses on itself, etc.

* Benefits: simple to implement, doesn’t need
derivative, doesn’t care about function
smoothness, etc.

Rosenbrock’s Function

* Designed specifically for testing
optimization techniques

* Curved, narrow valley

f(x,y)=100(y —x*)* +(1—X)°

Constrained Optimization

* Equality constraints: optimize f(x)
subject to g,(x)=0

 Method of Lagrange multipliers: convert to a
higher-dimensional problem

* Minimize W.r.t.

f(x)+> 4(X)

Constrained Optimization

* Inequality constraints are harder...

* If objective function and constraints all linear, this is
“linear programming”

* Observation: minimum must lie at corner of region
formed by constraints

e Simplex method: move from vertex to vertex,
minimizing objective function

Constrained Optimization

* General “nonlinear programming” hard

* Algorithms for special cases (e.g. quadratic)

Global Optimization

* In general, can’t guarantee that you’ve found global
(rather than local) minimum

e Some heuristics:

* Multi-start: try local optimization from
several starting positions

* Very slow simulated annealing

e Use analytical methods (or graphing) to determine
behavior, guide methods to correct neighborhoods

Thank you for your attention

