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5. Geometrically non-linear problems

For compliance minimization problems displacements are typically small and the
problems may be modelled using linear finite element theory. For soft structures, slender
structures and mechanisms, however, it is imperative that the problems are modelled
using geometrically non-linear finite element analysis. This section discusses objective
functions and modelling issues related to stiffness optimization of structures undergoing
finite displacements. Later sections will discuss compliant mechanism design,
crashworthiness design and other design problems involving geometrical non-linearities.
Structures undergoing large displacements mayor may not be subject to large strains. In
this section, we assume that strains are small and hence material non-linearity can be
ignored.
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5.1 Problem formulation and objective functions

The general topology optimization problem for situations with geometrical non-linearities 
can in broad terms be written as

This topology optimization problem only differs from the standard topology optimization
problems in that the equilibrium r = 0 must be found using an iterative procedure. For the
linear analysis problems discussed previously, the equilibrium is found from the solution of
a linear system of (finite element) equations.
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In the following we use the (non-linear) Green-Lagrange strain measure to model the 
strain-displacement relations, that is
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5.2 Choice of objective function for stiffness optimization

The first goal we consider is to maximize the stiffness of a structure undergoing large
deformations. Several different objective functions may be considered in order to solve
this task and we will here deal with three possibilities, namely: minimization of end-
compliance, minimization of a weighted sum of end-compliances and minimization of
the complementary elastic work. These objective functions are discussed in the
following.

Defining end-compliance as the compliance of a structure in its equilibrium configuration, 
the objective function can be written as

Solving the adjoint system is computationally cheap because the factorized tangent
stiffness matrix already has been found during the equilibrium iterations and a solution
only requires one extra forward/ backward substitution.
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Multiple loading cases For multiple loading cases the objective function is simply a 
weighted sum of end-compliances

Minimization of complementary work The last objective we consider is the
minimization of the complementary elastic work. Using the trapezoidal method for
numerical integration, the complementary work of the external forces can be
calculated as
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5.3 Numerical problems and ways to resolve them

In the non-linear finite element analysis, we save computational time by reusing the displacement
solution from a previous topology iteration in the new Newton-Raphson equilibrium iteration. This
saves a considerable number of finite element iterations, especially when the topology changes get
smaller near convergence. The computational time highly depends on the size of the applied force. For
relatively small forces, obtaining the optimal solution takes 1.5 to 2 times the time to obtain a solution
using linear modelling. For larger loads where local buckling can be observed, the time in which the
optimal solution is found can be 5 to 10 times higher than for the linear case. When the finite element
analysis is based on the Green-Lagrange or other non-linear strain measures, large displacements may
cause the tangent stiffness matrix to become indefinite or even negative definite. This phenomena is
observed frequently during the topology optimization process and results in non-convergence of the
equilibrium iterations. Numerical experiments show that the problem occurs in low-density elements
with minimum or close to minimum stiffness. The problem is "artificial" since the elements with
minimum stiffness represent void and therefore their behaviour should not influence the structural
response. Since the problem is an artefact of the numerical model, different schemes may be devised
to circumvent the problem.
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Ignoring convergence in low density elements Usually, the Newton-Raphson iterative scheme is
stopped when the changes in nodal displacements get below a certain value. For the topology
optimization case, nonconvergence occurs when the displacements oscillate in nodes surrounded by
"void" (minimum density) elements. Since these nodes should have no structural importance one can
circumvent the problem by relaxing the convergence criterion for these nodes in the equilibrium
iterations, that is, those nodes surrounded by void elements are eliminated from the convergence
criterion. This solution to the problem is efficient and seldomly causes convergence problems. In the
few cases where the procedure does not converge after 20 iterations, the displacement vector is reset
to zero and the equilibrium iterations are restarted.

Element removal Another way to circumvent the problem is to remove elements with minimum
density from the design domain. Element removal may jeopardize convergence to the right minimum
since re-appearance of material in the removed elements is impossible. Examples show that the "re-
appearance" of material is crucial for the design process. Therefore one should include a criterion for
the "re-appearance" of elements. This can be based on the same type of filtering techniques that are
used to ensure mesh independency.

a) Original mesh, b) distortion of finite element
mesh causing ill convergence of Newton-Raphson
procedure and c) prevention of ill-convergence by
ignoring "low-density" nodes (indicated by circles)
in the convergence criterion.
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It is not typical that structures optimized for stiffness undergo large displacements.
Nonetheless it may happen for very slender structures or for structures built from very
soft materials such as Nylon.

5.4 Examples

Optimal topologies for maximum stiffness Results from minimizing the end
compliance of a cantilever beam for three different load magnitudes are shown in the
right column. The left column shows the topologies obtained using linear modelling
which are independent of the load magnitude. We notice that the topology obtained
for the large displacement modelling and the smallest load is equal to the topology
obtained with a small displacement modelling. We also see that the non-linear
topologies become less symmetric for larger loads. Finally, we notice that the
optimized topologies become increasingly degenerated for larger loads.

Optimized topologies for end-loaded cantilever
example. Left column: Optimized topology for
small displacement FE-modelling. Right
column: Optimized topologies for large
displacement FE-modelling
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Deformed configuration of the topology optimized for 144 kN
in previous case. Note that the right-most bar supporting the
load is un-bent in the deformed configuration

The deformed state of the structure optimized for the largest load is shown above. It is seen
that the bar in the right side of the structure (which supports the load) is vertical in the
deformed configuration. In this configuration the bar is un-bent. For any other load the bar
will bend, resulting in a bad compliance for the structure. This example therefore
demonstrates, that minimization of the end-compliance may result in degenerated structures
which only can support the load they are designed for. However, the problem is worse for
the non-linear case. Here the structure may not only collapse for a load having another
direction than the design load, but it may also collapse for a load which just in magnitude is
different from the design load.



One can partially circumvent the problem of degenerated topologies by applying a
minimization of a weighted sum of end-compliances. Figure below shows a design
optimized for two loadings, one pointing upwards and one pointing downwards. As
expected, the optimal topology is symmetric and in fact cannot be differentiated in
topology nor in compliance from the results obtained for small displacement theory. It
is interesting to note that the compliance of the symmetric structure is only 2.5%
lower than for the non-symmetric one.
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two-load case problem with two large loads acting in opposite vertical directions

Optimized topology for minimization of complementary elastic work
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In other situations the results are not so convincing, and one may obtain structures that still become
unstable due to buckling at a load which is not a design load; this depends very intricately on the
choice of loads. The most effective way to prevent this is to operate with the complementary elastic
work. In this way, we can make sure that the structure is stable for any load up to the maximum
design load. An example topology obtained for a load of 144 kN and 12 load steps is shown
previously and this is a structure seemingly without degeneracies.

A force-displacement diagram for the results
obtained for a) small displacement modelling, b)
end-compliance and c) complementary work
minimization is shown below. Notice that the
topology optimized for end-compliance has
minimum deflection at the design load as expected,
but for smaller loads, it has the maximum
deflection. The curves for the designs obtained with
linear modelling and with minimization of
complementary work are almost coinciding, with
the latter designs being slightly stiffer for most of
the interval. It is also interesting to note that the
topology obtained for linear modelling has a higher
maximum load than the two others. This means that
obtaining a slightly higher stiffness by using non-
linear modelling is achieved at the cost of a more
critical response to load perturbations.

Force-displacement diagram for the topologies optimized for
a) minimum compliance using small displacement finite
element analysis, b) minimum end compliance for large
displacement analysis and loading of 144 kN and c) minimum
complementary elastic work and end-loading of 144 kN
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Optimization of a structure with snap-through effect The examples above show that the inclusion
of large displacements in the topology optimization process does not significantly affect the
resulting topologies. Also, the force-displacement curves obtained for small displacement
optimization and complementary work minimization only differ by a few percent. However, in some
cases the difference can be extremely large as will be seen in this example.

Thus, for the design problem sketched below we obtain the solutions shown, using linear and non-
linear analysis, respectively. It is seen that the two topologies are totally different due to the buckling
effects. The topology obtained using linear modelling consists of two long beams under compression
and when using non-linear modelling the compressed beams buckle and the whole structure snaps
through. Using non-linear modelling in the design process, the resulting topology consists of two
longer beams in tension and two short beams in compression. Obviously, the topology in the
previous case is optimal also in the non-linear case if the force is applied in the upward direction
instead of in the downward direction. To obtain a structure that is stiff for loads in both directions,
the topology can be optimized using non-linear modelling and two load-cases, one acting upwards
and the other acting downwards. The resulting topology is shown in the final figure and is seen to be
a hybrid of the two single-load topologies.

Optimal topologies for the design problem on the left a) optimized topology for small
displacement finite element modelling and b) optimized topology for large displacement
modelling and c) optimized topology for large displacement modelling and two load-cases
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The non-linear responses for the three topologies are shown below. It is seen that the
topology which is optimized using linear modelling buckles just below the design load,
whereas the buckling load of the design optimized using non-linear modelling is well
above the design load. Moreover, the buckling load for the two-load structure is also seen
to be higher than the design load.

Force-displacement diagram for the optimized topologies in previous case found 
using linear, non-linear and two-load non-linear finite element modelling



6. Synthesis of compliant mechanisms
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Compliant mechanisms attain their mobility from
flexibility of their constituents as opposed to their
rigid body counterparts that attain their mobility
from hinges, bearings and sliders. The main
advantages of compliant mechanisms are that they
can be built using fewer parts, require fewer
assembly processes and need no lubrication. Special
care must be taken, however, in designing compliant
mechanisms in order to obtain sufficient mobility
and safety against failure due to fatigue. An
important application of compliant mechanisms lies
in Micro Electro-Mechanical Systems (MEMS)
which cannot be manufactured using typical
assembly processes and may not make use of hinges
and bearings since friction dominates at the small
(typically submilimeter) scale.
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One of the most important objectives in compliant mechanism synthesis (and rigid-body
mechanism synthesis for that sake) is to be able to control the ratios between output and
input displacements or output and input forces which are described by the geometrical
and mechanical advantages, respectively. It is also important to be able to synthesize
mechanisms with prescribed output paths for given inputs.

Topology optimization of compliant mechanisms can be performed based on continuum
as well as truss and frame discretizations. Each discretization has advantages and
disadvantages. The truss and frame formulations may have crossing members which
cannot be manufactured in microscale. On larger scales, however, overlaps are allowed
and may result in mechanisms with larger displacement ranges. Here we concentrate on
the continuum discretization but the basic procedures apply to truss and frame
discretizations as well.

Since it is extremely important to use large displacement theory in compliant
mechanism design, this section is based on geometrically non-linear modelling. The
simplified problem for linear analysis, which may be used as a first step into compliant
mechanism design is discussed at the end of this section.
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As an example of a compliant mechanism design problem we consider the displacement
inverter below. The goal of the topology optimization problem is to design a structure that
converts an input displacement on the left edge to a displacement in the opposite direction
on the right edge. In order to be able to transfer work from the input port to the output port,
the inversion must be performed in a structurally efficient way. Also, it must be possible to
control the displacement amplification of the mechanism. Finally, the modelling of the
input force and displacements should model physical actuators that may have limited
strokes, actuation and blocking forces. In the following, we discuss a formulation that
satisfies all of these requirements.

A basic compliant mechanism design problem: the displacement inverter. Left: the basic 
design problem and Right: spring and load model for the input actuator and workpiece.
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6.1 Problem setting



where r is the finite element residual for the analysis problem with the applied load fin.
This optimization problem is very similar to the minimization problem formulated for the
minimization of end-compliance.
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The simple compliant mechanism optimization problem is of the same form as the
compliance minimization problems discussed previously, in the sense that a simple
objective function is to be minimized within the limitation of a single linear constraint on
volume. Therefore, we may also use an optimality criteria approach to solve it. However,
the fixed-point type density update has to be modified since the sensitivity of the objective
function may take both positive and negative signs. A (heuristic) modification that results
in a fairly stable convergence is
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Whereas the damping coefficient η for linear compliance minimization problems was
chosen as 0.5 in order to ensure stable convergence, it sometimes has to be chosen a bit
lower to ensure stable convergence in compliant mechanism design problems. The best
convergence, however, is obtained using a mathematical programming algorithm like
MMA. The problem formulation for compliant mechanism synthesis described so far is
very simple and does not allow for multiple inputs or outputs or for a very detailed control
of the output ports. The following sections discuss extensions that cater for such aspects.

6.2 Output control

Control of output direction. It is here assumed that the structure is symmetric and
therefore the output displacement is a horizontal movement. In other cases where the
output displacement does not coincide with a line of symmetry or if an inclined output
displacement is specified, the problem formulation does not ensure an output
displacement along the desired direction. It only ensures that the component of the
output displacement along the desired direction is maximized. This effect is clearly seen
in the example below where the output displacement is maximized in the negative
horizontal direction. However, the vertical displacement of the resulting topology is
actually bigger than the horizontal displacement.
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Example with (b) and without (c) cross-sensitivity constraint
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That the constraint manages to control the output displacement as desired is shown in (c).
This topology is obtained with ε=0.01, that is, a maximum cross-sensitivity between the two
perpendicular output directions of 1 %. The added constraint results in a mechanism with an
entirely different topology that ensures that the output point moves horizontally. It is
interesting to note that the extra constraint only penalizes the horizontal output by 2%
compared to the mechanism in (b) that has an extremely high cross-sensitivity.

Multiple outputs below shows an example design of a gripping mechanism. Here the problem
is formulated so that the vertical displacements of the outer "jaws" is maximized, resulting in
jaws that open like a pair of scissors. In some cases one may require a parallel movement of
the jaws. This can be obtained by reformulating the objective function to a min-max problem

Example with parallel and non-parallel output
displacements. a) Design domain, b) the use of
one output point results in a non-parallel opening
of the 'jaws’, while c) the max-min formulation
results in a parallel movement of the jaws.
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6.3 Path generating mechanisms
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With the extended optimization formulation which requires the output point to pass
through a number of precession points, it is possible to synthesize mechanisms like the
ones shown below. Here, the same input displacement can be converted to a straight
horizontal output, a straight slanted output and an arch following output, respectively. It is
not possible to synthesize such path-generating mechanisms using linear (small
displacement) modelling.

Path generating mechanisms with linear inputs. a) Design problem where the output is required to follow a straight horizontal path, b) a
straight slanted path and c) an arch. d) Plots of the output paths of the synthesized mechanisms. Path-generating mechanisms cannot be
synthesized using linear modelling



Extensions and Applications – continue
6.4 Linear modelling

A linear version of the compliant mechanism design problem discussed above may be
used as an exercise and introduction to compliant mechanism design. However, one must
be aware of the severe limitations that such modelling imposes. The linear optimization
problem may be written as

If the load vector f is design independent the sensitivities can be found as

Presenter
Presentation Notes
Good to consider this as homework for appendix 5.1.5
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6.5 Linear vs. non-linear modelling

The mechanism designs obtained using linear analysis
typically behave differently when modelled using large
displacement analysis. In the best of situations one
merely has inaccurate results but in the worst cases the
results are useless as large displacement mechanisms.
Therefore, the use of geometrically non-linear finite
element modelling is absolutely essential for
mechanism synthesis. The inverter example below
illustrates this. The goal in this synthesis problem is to
maximize the work performed on a spring in the
negative horizontal direction for an input force in the
positive horizontal direction. The mechanism obtained
for linear modelling is shown in (a). When modelled
using small displacement theory it deflects as shown in
(c). When modelled using large displacement theory it
deflects as seen in (d). We see that linear theory ignores
the locking of the two right-most bars when they reach
the vertical position. The mechanism topology obtained
using non-linear modelling (b) does not have this
problem (f) and its output displacement is, in the large
displacement setting, therefore more than two times
higher than for the linearly optimized mechanism in (a).

Inverter synthesis. a) Optimized topology using linear modelling, b)
optimized topology using non-linear modelling, c) and d) deflection
of a) using linear and non-linear modelling, respectively and e) and f)
deflection of b) using linear and non-linear modelling, respectively
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6.6 Design of thermal actuators
In the applications of compliant mechanism design discussed so far the input load was
design independent. However, when designing for example thermally dependent structures
or thermal actuators the applied load depends on the design. Example design problems are
optimization of thermal circuit breakers or minimization of displacements and stresses due
to thermal mismatch. Here the temperature field is considered as uniform and the loads
arise due to a uniform change in the temperature. The main difference in the design
problem as compared to above is that the sensitivity analysis has to take the dependent
loads into account. We will here just write the sensitivity expression for the linear case,
were we have



Extensions and Applications – continue

Design of compliant thermal actuators with actuation caused by a uniform
rise in temperature (linear modelling) . Top row: Optimized topologies for
output spring stiffnesses of 2000, 200 and 20 N/m, respectively. Bottom
row: Displacements patterns of the optimized actuators.
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6.7 Computational issues

Mechanism design should, as we have seen, preferably be carried out within the framework
of large displacement, non-linear analysis. Compared to stiffness optimization, the problems
with excessive distortions of low density elements and ill-convergence of equilibrium
iterations are even more pronounced for mechanism design. The methods of ignoring
convergence in low density elements or entirely removing low density elements must
therefore be implemented.

One-node connected hinges In the examples of compliant mechanism design shown so far,
one notices that the resulting mechanisms are not truly compliant but rather tend to have
what amounts to almost moment-free one-node connected hinges. This is especially the case
for examples with large output displacements, i.e., small transfer of forces. In reality the
stress in a sharp hinge would approach infinity and the structure would break, so techniques
to avoid them are required. Like the checkerboard problem, one-node connected hinges are
caused by bad computational modelling that the optimization procedure exploits. In the
numerical model, the hinge is modelled by an artificially stiff corner to corner connection of
two Q4 elements. Moreover, the stress variations are very badly modelled. The use of higher
order elements only partly alleviates the problem, and local stress constraint should probably
be added to the formulation . This is computationally prohibitive, so instead other methods
have been devised.



Extensions and Applications – continue
Only some of the checkerboard and mesh-independency schemes described previously
prevent the non-physical one-node connected hinges. For example, the filter method which
has been applied in all the examples shown so far is based on a weighted averaging of
neighbouring sensitivities. This means that if the gain (sensitivity) in building a hinge is
big enough, it will dominate the average and cause hinges to appear. Also, the perimeter
constraint will not prevent the hinge since only a global constraint is imposed on the
design. The local gradient control will partially eliminate the problem but will result in
"grey" (intermediate density) hinges.

Hinge prevention by the No-Hinge constraint Hinge prevention by MOLE constraint
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The MOLE constraint as well as the checkerboard (No-Hinge) constraint described
previously were developed precisely with the hinge problem in mind and they do actually
prevents hinges. The former method furthermore imposes a minimum width of the hinge. An
alternative, but somewhat questionable, solution is to perform a postprocessing of the
resulting topology and substitute the one-node connected hinges with long slender compliant
hinges. The post-processing may be based on a contour plot of the topology as seen below.

Post-processing of topology optimization results for the inverter
problem. a) Optimized inverter topology obtained using
conventional element based densities and c) optimized inverter
topology obtained using the nodal based approach. b) and d) are
200 by 100 element structures based on an automatic (one level)
contour plot of a) and c) , respectively. The originals have output
displacements of -1.18 and -1.11, respectively. The contour based
structures have output displacements of -1.09 and -1.12,
respectively. Hinge stresses in the nodal based structure (d) are
approximately 80% lower than for (b). Full circles indicate highly
stressed hinges and dashed circles indicate better compliant and
lowly stressed hinges.
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7. Design of supports
Hitherto, we have only considered optimum structural design by material distribution.
However, the positions and amounts of supports in a structure also play a major role in
structural optimization, and substantial gains from introducing design of supports is
obtained for especially compliant mechanism design. If one can place supports anywhere
in the design domain, the optimum position of supports in a compliance minimization
problem would be directly under the load, causing zero compliance. Therefore, a
judicious choice of the possible location of the supports and their cost is in place.
The support design formulation consists in assigning rigid or no supports to each
element in a support design domain which may be a subset of the normal (material)
design domain. As in material distribution problems we convert this integer type
problem into a continuous problem by introducing an element support design variable.

The model of the variable support of an element in the FE mesh is sketched below. All
the nodes of the element are supported by variable stiffness springs and for high spring
stiffnesses this corresponds to fixing the element (as also used in the penalization
approach for imposing prescribed boundary conditions). We may then introduce a
diagonal element support stiffness matrix

Each node is supported by a horizontal and a vertical spring. 
Thus a 4-node element is supported by 8 springs
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Examples of design of supports combined with compliance minimization. a) Design domain with possible support areas at the all edges except the
top edge. b) Optimized topology for equal support cost in the design domain (c=1.12 *10-4 ) c) Optimized topology for support cost varying
linearly from 1.0 at the top edge to 10.0 at the bottom edge (c=2.38 *10-4 ) d) Optimized topology for support cost varying linearly from 1.0 at the
top edge to 20.0 at the bottom edge (c=3.79 *10-4 )
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For compliance minimization (the linear case) , the optimization problem can now be written as

Here, the sensitivity of the compliance with respect to the support design variable is simply

As an example of compliance minimization including costs of supports, we consider the
design of the bridge structure sketched in (a). Gradually making the cost of supports more
expensive at the bottom of the design domain results in bridge structures with three
columns (b), two columns (c) and no columns (d). Correspondingly, the compliances of
the three structures increase.
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An example of the possible gains in using variable supports in compliant mechanism design
is shown below. The goal is to design a gripping mechanism that maximizes the gripping
motion for a given input actuation. A limited amount of support may be located in the top
and bottom parts of the design domain. (b) shows the optimized gripper obtained with fixed
supports at the left edge and (c) shows the optimized gripper including support design. The
output displacement of the latter is 77% higher than for the former, demonstrating the
importance of including support design in mechanism synthesis problems.

Design of a micro-gripper including design of supports. b) Optimized topology without support design (uout=10.8µm) and c) Optimized 
topology including support design (uout=19.1µm). The gain in output displacement is 77%



Thank you for your attention
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