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8. Alternative physics problems
The computational procedures for topology optimization were originally developed for the
design of elastic structures, but its theoretical inspiration came to a large extend from work
carried out for plates and for scalar problems such as conduction problems (heat or
electricity). The application of numerical methods for topology optimization for these
problems is with today’s knowledge rather straightforward, and the computations are
typically less time consuming due to the simpler FE analysis models. We note here that all
the theoretical considerations required for the elasticity case (mesh dependence, the role of
composites, etc.) have parallels for the scalar situation; actually much more theoretical
insight has been gained for this setting. In recent years, topology design methods have also
been expanded to for example electro-magnetic problems, coupled problems, fluid
problems, and wave propagation problems. Here and in later sections of this chapter we
illustrate some of these settings.



8.1 Multiphysics problems
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The phrase "multiphysics problems" covers optimization problems that require modelling in
several areas of physics. Apart from making the modelling more complicated due to coupling
effects, it also complicates the sensitivity analysis. However, with the help of the adjoint
method, it is always possible to perform the sensitivity analysis in an efficient way as long as
the objective function is a global description of the response.
We will demonstrate the sensitivity analysis for multiphysics problems on a simple weakly
coupled linear problem involving two fields (for example heat conduction and elasticity). The
FE-equations of the two systems are given by

where it is assumed that system 2 (the elastic problem) is weakly dependent on system 1 (the
thermal field) and that both system matrices depend on the design variables. This means that
we have to solve system 1 and insert the solution in the load vector of system 2. Physically, it
means that the temperature field gives rise to a thermal expansion that influences the elastic
field . The aim is to find the sensitivity of a component of the second response vector (a
displacement at a point) which can (as done previously) be written as
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Using the adjoint method, we proceed as follows. We start by adding two null terms to 
the original expression
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It is now seen that the complete analysis and associated sensitivity calculation requires
that one first solves system 1, then system 2, and then for the sensitivity analysis one
solves system 2 with a new (unit) load case and finally system 1 is solved with a
modified load that depends on λ1. This scheme immediately applies also to systems that
involve three weakly coupled fields.

8.2 Micro-Electro-Mechanical Systems (MEMS)
In the previous introduction, we discussed the advantages of compliant mechanism in
connection with MEMS applications. Modelling of MEMS typically involves simulations
in multiple physical domains, for example coupled electrostatics and elasticity or coupled
electric, thermal and elastic fields. The latter is required for the analysis and design of an
electrothermal micro actuator. Electrothermal actuation is based on Joule's (resistive)
heating and thereby thermal expansion and therefore requires modelling of three physical
fields, namely electric, thermal and elastic fields. Electrothermal actuation is attractive
for micro-systems due to its large displacement and force potential but the drawbacks are
that it requires a strong electric field and that the operating temperature may disturb its
environment.



A typical MEMS synthesis problem is to come up with a two-degree-of-freedom device
with zero cross-axis sensitivity for scanning purposes. A design problem for such an
application is sketched below. The synthesis problem here consists in finding a scanning
mechanism where the scanning head (output point) moves in the horizontal direction for
one electric input and in the vertical direction for another electrical input. The optimization
problem involves 16 "load cases", 8 constraints and 8000 design variables. The iteration
history is shown in (b), the two modes of actuation are shown in (c), and an actuator built in
Nickel (size 500µm by 400µm) which was fabricated and tested is shown in (d).
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Two degree-of-freedom electro thermo
mechanical actuator synthesis. a) design
problem with two electrical inputs, b) iteration
history, c) actuation modes and d) micro-
fabricated actuator



8.3 Stokes flow problems
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A new and very interesting application of the topology optimization method is optimization
for Stokes flow problems. The finite element equations for general Stokes flow in three
dimensions can be written as:

The key question is now how to optimize such kinds of problems using topology
optimization. For 2D problems, it is suggested to model the flow as a Couette flow, i.e. a
flow between plates with a distance of 2ρ. This means that the components of the flow
vector can be written as
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Re-deriving the finite element equations with these assumptions and dropping the hats,
one gets the following matrices to insert in the general FE equation which now is 2-
dimensional
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Topology optimization of Stokes flow problem. The minimum drag profiles for b) 80% and c)
90% fluid volume, respectively. The results are obtained using bi-linear 4-node elements for
modelling of the velocity field and 4-node constant pressure elements for the pressure field.
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Although this formulation was derived for two-dimensional problems, the idea generalizes
to three dimensions although the physical explanation in this case is lost.

The optimization problem is closely related to compliance minimization problems and 
may therefore be solved easily using an Optimality Criteria based algorithm.
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Minimization of flow resistance in a structures with two parallel inlets and outlets for
30% fluid volume. a) Design domain with aspect ratio 1:1 and solution b) . c) Design
domain with aspect ratio 3:2 and solution d) . The flow resistance of d) is 22% lower
than for a topology with two straight pipes as in b) due to the lower resistance of the
single wide channel.
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9. Optimal distribution of multiple material phases

Previously we discussed different ways to interpolate the stiffness of elements with
intermediate densities for solid void (one material and void) compliance minimization
problems. We concluded that the choice of interpolation scheme plays a role in being able
to interpret intermediate variables but otherwise, many different schemes have proven
equally useful in obtaining good topological solutions. When considering distribution of
multiple material phases in a design domain, the choice of interpolation function becomes
more critical. For stiffness interpolation there is again the risk of ending up with
intermediate design elements that cannot be represented by physical materials. Worse
however, there is a risk that the optimization algorithm will make use of these non-
physical properties to produce artificially good structures. An example of this could be a
non-physically high thermal expansion coefficient for an intermediate density element.

In the following, we first discuss alternative ways to write the stiffness interpolation for
one material and void structures. Then we discuss the extensions to two material
structures and finally to two material and void structures.
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9.1 One material structures
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9.2 Two material structures without void
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9.3 Two material structures with void
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9.4 Examples of multiphase design
An example of distribution of two material phases in an L-shaped design domain is
shown below. Depending On the stiffness of the second material it will act as core
material (b and c) or as a structural material (d and e) .

Optimal distribution of two material phases for compliance minimization of the L-shaped structure. Different ratios between the stiff (black)
and the soft phase (hatched). a) Optimal distribution of 25% volume fraction of only one phase. b-e) Optimal distributions of two materials with
each a volume fraction of 25%. Ratio between material stiffnesses: b) 0.01 , c) 0.2, d) 0.5 and e) 0.8. f) Optimal distribution of 50% volume
fraction of only one phase.



10. Material design
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The response of structures depends on the materials they are built from. If one can design
materials with tailored or extreme properties one may be able to design better structures.
This aspect is central also in topology design where the role of composites in the
homogenization approach and other optimization models operating with general material
tensors underlines such an aspect of local optimal use of material. In this section we will
deal with methods that apply the ideas of topology optimization, originally developed for
structural optimization problems, to the design of material design as well. The fundamental
idea is that any material is a structure if you look at it through a sufficiently strong
microscope.
Assuming that the material one considers is periodic, its
effective properties may be fully described by an analysis of
the smallest repetitive unit, the base cell. The design problem
then consists in assigning a material type to each point in the
base cell. In the discretized topology optimization setting this
corresponds to assigning a material type to each element used
to discretize the base cell. The material type may be selected
from two or more constituent phases of which one may be
void. For example, a porous honeycomb material may be
designed from a void and a solid material phase.
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The effective properties of a material are found by homogenization of the microstructure.
In our case the microstructure does not exist ab initio but we seek to come up with a
microstructure with prescribed or extreme homogenized properties. Therefore the material
design method has also been called the inverse homogenization method. Before we
proceed to define objective functions for material design, we briefly discuss how to find
the effective properties and the sensitivities thereof using the homogenization method.

10.1 Numerical homogenization and sensitivity analysis

If a structure is built from periodic materials it is often too cumbersome or even
impossible to model it taking every detail of the micro-structure into consideration.
Therefore, one substitutes the microstructure with some average or smeared out properties
that model the material behaviour seen on a global scale. The process of finding
representative or effective properties of microstructured materials is called
homogenization. The homogenized stiffness tensor is by integration over the base cell
area Y found as
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In practice, the equilibrium equations are solved as a finite element 
problem with three or six load cases
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10.2 Objective functions for material design
The goal of material design may be to synthesize a material with prescribed constitutive
properties or it may be to synthesize materials with extreme constitutive properties. An
example of the former could be the need for designing a material with a specific Young's
modulus and a specific isotropic thermal expansion coefficient. This material could be used
to neutralize thermal mismatch in a heat generating structure. An example of synthesis of an
extremal material could be to maximize the bulk modulus of a material for a given volume
fraction of solid material. This would result in a material with an extreme stiffness to weight
ratio. For now, we consider the design of materials composed of a solid and a void phase.
Therefore, the element stiffness may be interpolated by the SIMP interpolation as we did for
structural design problems.
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For a continuum modelof the unit cell, not every positive definite stiffness tensor is
realizable, and theoretical bounds on the material parameters for isotropic, square or
cubic symmetric composite material are known. This means that the problem
formulation may in some cases suffer from lack of any feasible designs. To
circumvent this and in order to be able to synthesize extreme materials, i.e. materials
with properties that reach the limits of the bounds, we write a new problem
formulation as
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The problem formulation has been used successfully in the design of material with extremal
elastic, thermoelastic, piezoelectric and other physical properties. As will be seen in the
following subsections, the results are very close to theoretical limits and have in fact in some
cases inspired the improvement of theoretical limits.
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10.3 Material design results

Extremal elastic properties A basic material design problem is to find a structure with
maximum bulk modulus for a given volume fraction. This is a highly non-unique
optimization problem. Four types of microstructures are now known to have extreme
bulk moduli, i.e. they have bulk moduli equal to the upper Hashin-Shtrikman bounds.

The four known classes of extremal isotropic microstructures. The 
isotropy requires special geometries of the different unit cells.
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Topology optimization results for the maximization of bulk modulus of two-dimensional
microstructures and a one-length-scale constraintare shown below. All four microstructures
have effective bulk moduli within a few percent of each other and the known analytical
bound. By control of starting guesses, objective functions , base cell geometry and/or
isotropy type, one may obtain one structure or another. The results below were obtained for
an initial filter radius of 10% of the base cell. The filter size was gradually decreased to zero
during the design process. The obtained structures may be denoted one-length-scale
microstructures and correspond to the known optimal so-called Vigdergauz structures. Note
that the bulk optimized microstructures are closed walled cells.

Four microstructures with extremal bulk moduli obtained by the inverse homogenization procedure. a) Isotropic
hexagonal microstructure (maximization of bulk modulus for rectangular base cell with isotropy constraint) , b)
isotropic triangular microstructure (maximization of product of bulk and shear modulus for rectangular base cell with
isotropy constraint), c) isotropic octagonal microstructure (maximization of bulk modulus with isotropy constraint) and
d) square symmetric microstructure (maximization of bulk modulus)
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Below shows two examples of maximization of bulk modulus of 3D structures. Again, the
two structures that were obtained without and with isotropy constraint have effective bulk
moduli extremely close to the theoretical Hashin-Shtrikman bounds.

Three optimized three-dimensional microstructures. Left: cubic symmetric maximum bulk
modulus microstructure. Center: Isotropic maximum bulk modulus microstructure. Right:
Isotopic negative Poisson's ratio material
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A realization of the SIMP model We have continually compared the SIMP and other
interpolation models with the Hashin-Shtrikman bounds for isotropic composites. These
bounds gives necessary conditions for the interpolation models. However, it is the material
design methodology of the inverse homogenization method that allows us to construct
concrete realizations of the SIMP model, as seen below. Note that, in itself, the inverse
homogenization is based on a SIMP interpolation in the unit cell, making the dog bite its tail.

Microstructures of material and void realizing the material properties
of the SIMP model with p = 3, for a base material with Poisson's ratio
v = 1/3. As stiffer material microstructures can be constructed from the
given densities, non-structural areas are seen at the cell centers

Microstructures of material and void realizing the material properties
of the SIMP model with p = 4 for a base material with Poisson's ratio v
= 0 (top row) and v = 0.5 (bottom row), respectively. As left figure,
non-structural areas are seen at the centers of the cells
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Negative Poisson's ratio materials An extremely interesting application of the material
design method is the search for negative Poisson's ratio materials. A number of such
structures have been suggested in the literature, but here we apply topology optimization
to obtain the behaviour we are looking for. If previous equation is formulated so as to
minimize the Poisson's ratio with a constraint on bulk modulus and isotropy, the inverse
homogenization method gives results as shown for 2D below.

Material microstructure with negative Poisson's ratio. a) one unit cell discretized by 60 by 
60 elements, b) repeated unit cell and c) micromachined test beam built at MIC, DTU, DK

The isotropic and negative Poisson's ratio
structure has been manufactured in micro-
scale. The 40 by 8 cell test beam was built
using surface micromachining with a unit-cell
size of 60 µm as shown in (c). The Poisson's
ratio of the test-beam was measured to -
0.9±0.1 in experiments; this compares
favourably to the theoretical value of -0.8.
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Optimizing the thermal expansion coefficient
For two-phase composites made from solid and
void, the effective thermal expansion coefficient
will always be the same as for the solid phase,
unless the material is disconnected. For two-
phase mixtures of two non-void materials, the
effective thermal expansion coefficient for any
square or cubic symmetric mixture of the
materials will always take values between the
maximum and the minimum thermal expansion
coefficients of the two phases. However, for
three-phase composites, it becomes more
interesting. According to theory, it is possible to
synthesize three-phase materials with effective
thermal expansion coefficients that exceed those
of the individual phases. In particular, it should
be possible to synthesize negative thermal
expansion materials from mixtures of two
positive expansion phases and a void phase. The
extreme thermal expansion is obtained at the cost
of a decrease in the effective bulk modulus. The
theoretical bounds on the range of attainable
combinations of thermal coefficients and bulk
modulus for a particular case are shown in (a).

Design of materials with extreme thermoelastic properties using
topology optimization. a) Thermal expansion coefficient-bulk
modulus graph for specific thermoelastic composite including
theoretical bounds and numerically obtained properties, b) , c)
and d) material microstructure with negative thermal expansion
coefficient (single base cell, 3 by 3 array and heated single cell).
When heated, the cell contracts resulting in an effective negative
thermal expansion coefficient
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For the design of extremal thermal expansion coefficients it is necessary to extend the
previous problem formulation to include an extra load case. This extra load case
corresponds to subjecting the base cell to a uniform temperature increase. The new problem
formulation may be written as



Here, the element thermal expansion coefficient is interpolated by the expression given.
The examples shown in the following are all based on the three phase SIMP interpolation
scheme. (a) shows a graph of the thermal expansion coefficients as a function of the bulk
moduli for some numerically obtained microstructures compared with the theoretical
bounds. The design problem consists in extremizing the thermoelastic properties of a
composite consisting of 25% of a material with thermal expansion coefficient 10
(normalized value) and 25% of a material with thermal expansion coefficient 1. A
resulting composite with a negative thermal expansion coefficient of -4.02 is shown in (b).
This shows that it is actually possible to design materials with negative thermal expansion
coefficients from constituent phases with positive thermal expansion coefficients. In (a)
one notes that the numerically obtained effective values are far away from the old bounds
but very close to the newer bounds. In fact, the substantial improvement of the new
bounds compared to the old bounds was inspired by the numerical results.
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A new class of extremal two-phase composites Existing bounds on the possible range of the bulk
and shear moduli of isotropic two-phase composites composed of isotropic constituents have
only been proven optimal (in the sense that there exist microstructures that attain them) for
certain cases. In order to investigate the optimality of these bounds in further detail, a study
based on the inverse homogenization was performed. The study resulted in numerically
obtained bounds for one-length-scale structures, proof of optimality of the bounds in a wider
range than previously known and a new class of extremal composites. Thus, use of the
topology design methodology has lead to new understanding in the area of theoretical
material science. This symbiosis is strongly present when one considers topology design with
composites where design has benefited immensely from work in material science.

Limiting the microstructural variation to one length-scale by fixing the value of the mesh-
independency filter, one-length-scale bounds on bulk and shear moduli of isotropic two-
phase composites shown in (a) below are obtained. These bounds shall not be taken formally
but more as bounds based on experience and trust in that the inverse homogenization
procedure produces reliable results.
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Design of extremal two-phase composites. a) Bound for one-length-scale composites and numerically obtained microstructures and allowing
finer variation in the microstructure results in a new microstructure with properties close to the Walpole point (maximum bulk modulus and
minimum shear modulus, b) two dimensional members of the new class of extremal microstructures consisting of solid convex polygonal
regions connected by laminated bars and c) three-dimensional members of the new class of extremal microstructures
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Studying the bounds based on the one-length-scale structures in (a), one notes that no
structures get close to the lower right corner of the bounds, also called the Walpole point
(i.e. maximum bulk modulus and minimum shear modulus corresponding to the lower
right corner of the bounds). Allowing finer variation in the microstructures by
decreasing the filter size, a sequence of designs with properties getting closer and closer
to the Walpole point (see a) may be obtained. Inspired by these numerically obtained
results, a parametrized hexagonal microstructure consisting of convex polygonal regions
of solid material phases connected by layers of equal proportions was investigated
analytically (b) . Surprisingly, it was possible to calculate the effective properties
exactly and the bulk modulus of the composite corresponded to the Hashin-Shtrikman
bounds. Even more surprising, exact solutions and proof of extremity could be obtained
for a whole class of similar microstructures in two and three dimensions (see b and c).
The investigation thus resulted in a new class of extremal isotropic microstructures
which constitutes an alternative to the three previously known classes, namely
Composite Spheres assemblages, Vigdergauz structures and rank-N layered materials.
One member of this class of materials (the hexagonal microstructure) has maximum
bulk modulus and lower shear modulus than any previously known composite. Although
no member of the new class of materials attains the Walpole point exactly, the Walpole
point can be considered attainable for all practical means and the Hashin-
Shtrikman/Cherkaev-Gibiansky bounds have been proven optimal for a wider range of
properties than was previously known.



A new class of extremal three-phase composites
Inspired by the two-phase results in the previous
subsection the same type study consisting of analytical
methods combined with numerical experiments may be
performed for three-phase materials. When considering
three material phases the equations become much more
complicated, and a large number of special cases must
be considered for the large number of possible material
combinations (e.g. bulk and shear moduli may be well-
ordered or not). Nevertheless, the existence of a new
class of three-phase composites with extremal bulk
moduli can be proved. The three phase microstructures
are closely related to the two-phase class from the
previous subsection. For example, the three-phase
structures converge to the two-phase structures when the
volume fraction of one phase approaches zero. For the
three-phase case, the new class of structures also
expands the ranges of previously known attainable
properties and optimality of bounds. (a) shows some
numerically obtained three-phase microstructures and
(b) shows schematics of members of the new class of
three-phase extremal microstructures. Note how layered
regions again play a significant role.
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Design of extremal three-phase composites. a) Numerically
obtained three-phase microstructures with extremal bulk
modulus, b) schematics of the new class of extremal
microstructures
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Piezoelectric sensors Another three-phase material design example is the design of hydrophones based on piezoelectric
sensing. A piezoelectric material responds with an electric output when strained. For a typical ceramic piezoelectric rod,
the electric field depends on the elongation of the rod. Simply said, this means that the electric output for a horizontal
compression will have the negative sign of a that for a longitudinal compression. For hydrophones which should detect
changes in hydrostatic pressures, this is a problem. Compression in all directions simultaneously will almost cancel the
electrical output. In order to circumvent this problem it has been suggested to embed piezoelectric rods in a matrix
material with tailored properties. A negative Poisson's ratio matrix material will for example convert transverse pressure to
a compression of the rod instead of extension, in turn causing a much larger output signal. The inverse homogenization
method may be used to identify the matrix microstructure that maximizes the electric output of hydrophones.
The problem corresponds to a three-phase material design problem
of distributing a piezoelectric, a polymer and a void phase in a
periodic base cell. However, for various reasons, the periodicity of
the matrix microstructure will often be much smaller than for the
embedded rods. Therefore one may model the problem partly by
effective medium theory and partly by numerical homogenization.
This means that the effective properties of the matrix material may
be found by numerical homogenization whereas the effective
properties of the mixture of the matrix material and the
piezoelectric rods may be found analytically. The effective
piezoelectric properties may thus be determined directly as
functions of the effective matrix properties Eijkl. The optimization
problem may then be solved by the extremal material design
formulation. (b) shows one base cell of the matrix material of a
hydrophone optimized for maximum piezoelectric charge
coefficient. One observes that this matrix material is a transversely
isotropic material with negative Poisson's ratio. The improvement
compared to a solid polymer matrix is a factor of 11. (c) shows a
base cell (5 mm cubed) manufactured using stereolithography.

Design of hydrophones using topology optimization.
a) Schematic of a 1-3 piezoelectric hydrophone, b)
one base cell of hydrophone matrix optimized for
piezoelectric charge coefficient and c) one base cell
manufactured using stereo-lithography



Thank you for your attention


	MAEG5160: Design for Additive Manufacturing�Lecture 11: Extensions and Applications – continue - 2
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	8.3 Stokes flow problems
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Thank you for your attention

