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11. Wave propagation problems
An interesting new application of the topology optimization method is the design of structures and
materials subject to wave propagation. The waves may be elastic, acoustic or electromagnetic, and
the phenomenon to be exploited is that for some frequency bands it is possible to construct periodic
structures or materials that hinder propagation. This is called a band gap.

The phenomenon of band gaps in structures subject to periodic loads is illustrated in (a) and (b). Here
a two dimensional square domain is subjected to a periodic loading at the left edge and it has
absorbing boundary conditions along all four edges. The frequency of excitation of the structure in (a)
is lower than for (b). It is seen that waves propagate through the structures from left to right and that
the absorbing boundary conditions damp the waves at the top and bottom. These are perfectly
normal situations and could model surface waves on water, acoustic waves through air, out-of plane
waves in an elastic structure, polarized electromagnetic waves, etc. Now, if we introduce a periodic
distribution of inclusions with different propagation speeds than in the original structures, the
situation changes. For the structure subjected to the lower excitation frequency (c) , there is still
propagation although the waves have different shapes. However, for the structure subjected to a
higher excitation frequency (d) there seems to be no propagation at all. This illustrates the band gap
phenomenon. A band gap material is defined as a material that does not allow wave propagation for
certain frequency ranges. For elastic and acoustic waves the materials are called phononic band gap
materials, for electromagnetic wave propagation the materials are called photonic band gap materials
and the same principle on the atomic scale lies behind semiconductors. The length scale of the
periodic structure in band gap materials is typically close to the wavelengths of the forbidden
frequencies.
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Scalar wave propagation in 2D domains with
absorbing boundary conditions and forced
vibrations at the left edge. a) Wave
propagation through homogeneous structure,
b) wave propagation with higher frequency
through homogeneous structure, c) wave
propagation through structure with periodic
inclusions, d) (no) wave propagation with
higher frequency through periodic structure,
e) wave propagation through periodic
structure with defect and f) wave guiding at
higher frequency through a periodic structure
with defect .
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Band gap materials may be used for many purposes, for example for waveguides. The idea is
illustrated in (e) and (f). If we introduce a defect in the periodic structures from (c) and (d),
waves with frequencies outside the band gap may still propagate through the whole structure
(e) but waves with frequencies within the band gap may now only propagate through the
defect, resulting in a wave guide as seen in (f). It is seen that it is actually possible to guide
waves around a corner. This is especially interesting for light waves since it may allow for the
manufacturing and design of so-called photonics based microchips which have much higher
clock frequencies than conventional microchips based on electrical conduction.

Apart from semiconductors and wave guides, band gap materials may be used to generate
frequency filters with control of pass or stop bands, as beam splitters, as sound or vibration
protection devices, as perfect mirrors and in many other applications.



11.1 Modelling of wave propagation
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Left: The irreducible Brillouin zone indicating the wave vectors to be searched for the general 2D case (grey area). For square symmetry, the
wave equation only has to be calculated for k-vector values along the curve r - X - M - r . Right: Sketch of band structure indicating lowest
four eigenvalues for wave vectors along the line r - X - M - r in the irreducible Brillouin zone.
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which is a standard eigenvalue problem. Since K is a Hermitian matrix and M is real,
symmetric and positive definite, the eigenvalues of (2.50) will all be real and positive. If one
solves for the first few eigenvalues of (2.50) for a number of k, the results can be plotted as a
band diagram as sketched in (right). From the curves one may read the propagation modes for
given frequencies.

Left: single cell, middle: 3 by 3 arrays of cells and right : band structure of a) pure epoxy, b) pure duralumin and c) duralumin cylinders (radius
30% of cell size) in epoxy. Hatched areas denote band gaps. The horizontal axes denote values of the wave vector k on the boundary of the
irreducible Brillouin zone. The band diagrams are based on the solution of 15 eigenvalue problems with varying k.
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Real band diagrams for out-of-plane polarized waves are shown in (a) and (b) for pure
epoxy and duralumin, respectively. It is seen that for these homogeneous materials there
exist eigenmodes for any frequency, i.e. there are no band gaps. (c) shows the band
structure of duralumin cylinders (radius equal to 30% of cell size) in an epoxy matrix. It is
seen that there are ranges of frequencies with no corresponding eigenmodes. This means
that no modes will propagate for these frequencies. There is a large band gap between the
first and the second band (from 31 kHz to 43 kHz corresponding to a relative gap size of ∆f
/ fo = 0.32) and a small gap (∆ f / fo = 0.11) between the second and the third band. This
means that no elastic waves with frequencies within the band gaps may propagate through
the structure. The band gap zones are indicated with hatched regions in the diagram. We
may now consider two kinds of optimization problems. Either we optimize the material
problem or we optimize the structural problem.

11.2 Optimization of band gap materials

An obvious goal for the optimization of band gap materials is to maximize the relative
band gap size. In this way the range of prohibited frequencies will be wider and more
signals may be sent through a waveguide based on defects in the band gap material. The
design problem is a two material problem. We want to distribute two non-void phases in
the design domain (base cell). For reasons that will become clear later, we here choose a
linear material interpolation between the phases, i.e. the wave shear modulus and mass
density are interpolated as
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This is a "dirty" objective function in the sense that it is a max-min problem with varying critical points
(the k-vector(s) for the critical frequencies may change during the optimization) and it may have several
multiple eigenvalues. Interestingly, however, there is no need for a volume fraction constraint in the
problem since neither a pure phase one structure produces a band gap (a) and nor does a pure phase two
structure (b). Somewhere in between there must be a volume fraction that results in the biggest band
gap. Another interesting observation is that due to the missing volume constraint, the usual SIMP
interpolation becomes useless in ensuring black-and-white designs. However, this is not a big problem
since by experience, the optimized designs tend to be mostly black and white anyway. Finally, the
mesh-independent filtering techniques works badly due to the missing volume constraint. Therefore, the
regularized penalty function method is used to ensure black-and-white and mesh-independent designs
for this design problem.
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The optimization problem may then now be written as

and may be rewritten in the more convenient bound formulation

where the two first constraints take the M most critical values into account. This 
problem may efficiently be solved using MMA.
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Results from optimizing the epoxy /duraluminum structures from previous case are
shown below. The first example maximizes the relative band gap size between the first
and the second band. The result is an almost square inclusion of a duraluminum in the
epoxy matrix. The relative band gap size has increased from 0.32 for the circular
inclusion in previous (c) to 0.65 for the square inclusion structure in below (a). The
second example maximizes the relative band gap size between the second and the third
band. In this case, the resulting structure consists of diamond and circular inclusion of
duraluminum inclusions in the epoxy matrix. The relative size of the second band gap
has increased from 0.11 for the circular inclusion in previous (c) to 0.61 for the structure
in (b) below.

Maximization of relative band gap size between a) first and second band and b) second and third band.
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11.3 Optimization of band gap structures
The material design problem in the previous sub-section assumed infinite periodicity of the
material. This means that the influence of boundaries as well as the influence of defects in
the periodic structure can not be modelled. In order to model finite domains we use the
wave equation and the objective function here may be to minimize the magnitude of the
wave at the boundaries (hinder wave propagation) or to maximize the wave at certain
points in the structure (wave-guiding). The optimization problem looks very much like the
one defined for structures subjected to forced vibrations. Here, however, the input point and
the point to be damped are not coincident. The difference may be seen as the difference in
optimizing for minimum compliance and in optimizing compliant mechanisms.

An optimization problem solving the problem of minimizing the wave magnitude at a
point, a line or an area of a structure subjected to forced vibrations with frequency can be
written as
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Damping of wave propagation in a quadratic plate. a) Design domain and 
boundary conditions, b) optimized structure and c) the wave field
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The problem formulation may also be used to design wave guides as shown in below.
Here, all edges have absorbing boundary conditions. The centerpart of the left edge is
subjected to forced vibrations and the objective function is to maximize the wave
magnitude at the center of the lower edge. The resulting structure is intriguing.
Apparently, the wave is bent by a wave guide based on curved Bragg gratings. It is seen
from the wave picture (c) that the mode at the output port is almost as strong as at the
input port.

Optimization of wave guidance in a quadratic plate. a) Design domain and boundary 
conditions, b) optimized structure and c) the wave field
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12 Various other applications (without mathematical details)
12.1 Material design for maximum buckling load

Previously we discussed a new class of materials with extremal elastic
properties. This material class makes use of infinitely fine laminations of
the constituent material phases - so-called rank-l laminates. Such
materials are from a practical point of view not very useful since they
have very low critical buckling loads when the softer phase has close to
zero stiffness. Therefore, it makes sense to optimize material structures
for buckling load rather than for normal linear loads. As we also
discussed under bone-remodelling, a buckling load criterion may very
well be the reason for why bone structure is a stiffness sub-optimal open-
walled cell structure. In order to eliminate lamination type structures in
the periodic cell, one may introduce a local buckling load constraint on
the cell problem, just as we did for structural buckling problems in.
However, there is no guaranty that a cell periodic buckling mode is the
most critical one, and therefore we should include also non-cell periodic
buckling modes when we search for the most critical buckling load. This
can be done by Floquet-Bloch wave analysis for wave propagation
problems. Below shows a buckling load diagram for varying wave-
vectors k and some of the associated buckling modes for a specific
square microstructure. It is seen that the most critical buckling mode is
the shear mode which has a buckling load that is less than a third of the
cell periodic mode. This demonstrates the importance of using Floquet-
Bloch wave theory for modelling the problem.

Modelling of non-local buckling 
using Floquet-Bloch wave theory
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Figure below shows another example of a critical load diagram for square microstructures.
The material structures are subject to uniaxial horizontal loading and we allow a total volume
fraction of 0.52 to be filled with stiff material. In the first case (Fig. 2.55a), the outer square
frame is fixed to be solid and the rest of the material is evenly distributed in the interior of the
cell. This results in a non-dimensionalized buckling load of 0.029. Now we maximize the
minimum buckling load over all wave vectors along the lines r - X - M - r in the Brillouin
zone. The optimized topology and its associated buckling diagram is shown in (a). The
buckling load for the optimized material structure is 0.061 - an increase of more than a factor
of two.

Maximization of microstructural buckling load. a) Initial design with buckling load 0.029 and b) topology optimized 
design with buckling load 0.061
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12.2 Bio-mechanical simulations

Models for bone remodelling and optimal design have mutually provided inspiration for new
developments in either area for a collection of papers dealing with such aspects. It thus turns out that
there is a close similarity between the optimality criteria algorithm and schemes for bone remodelling.
Also, in many isotropic remodelling algorithms, the relationship between density and the elasticity
modulus of cancellous bone is modelled exactly like in the SIMP model. Furthermore, when orthotropy
is taken into account, Wolff's law for bone predicts that stresses and material axes are aligned, exactly as
for minimum compliance design. Even though it is commonly agreed that the bone does not attain, from
a structural optimization point of view, a stable optimal configuration with respect to any given static
loads, the similarity between the two types of modelling has suggested that optimal remodelling will
provide a framework for simulating the adaptation of bone structure that is subject to external loading.
We will not elaborate further on this here, but refer to the vast literature on the subject.

Bone remodelling simulation for multiple loads. Femur 
longitudinal cuts. Two sets of results depending on cost 

of bone creation Bone remodelling with tapered hip prosthesis, contact 
conditions, for multiload case and with bone ingrowth modelling
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12.3 Applications in the automotive industry

Since the introduction of the idea of treating structural topology optimization as a material
distribution problem this subject has evolved substantially and it has changed the design
process in the automotive industry by providing better structures, not only in the early stages
of the process, but also as a technique to improve component designs in subsequent phases.
Structural topology optimization is an important tool for structural designers in the automotive
industry. In the first half of the 20th century, new structural designs were obtained using much
of the experience of the designer. However, with the introduction of structural optimization in
the early 1960s, plus the advances in topology optimization in the 1990s, design processes
have changed dramatically in the industry. Nowadays, computers help to create new
topological designs in a matter of minutes using commercially available structural topology
optimization software. The applications of such tools in the design cycle have had a
tremendous impact on the final product and in the design process as well. There are many
types of structural problems that can be encountered in the automotive industry, from simple
linear static problems like a bracket design, to non-linear transient problems like designing for
crashworthiness.
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12.3.1 Stiffness maximization of vehicle structures
The structural body of a vehicle is required to provide a stiffness in bending and torsional directions
beyond some lower limits prescribed by the design team based on previous experiences and/or
competitive vehicles. Maximization of the stiffness is equivalent to minimization of the mean
compliance of the structure under a given load. This type of problem can be solved not only for
components, but also for vehicle structural skeletons (body structures). In its multiload format, more
than 80% of structural topology design optimization problems in industry can be addressed by solving
compliance minimization problems. Here one often seeks the Pareto curve by solving several
optimization problems for different sets of weights. This is a very common situation in automobile
design, where two or more responses go through a trade-off analysis to determine the final design. Figure
below shows a compliance optimized body structure (also known as "the body in white") of a sedan
vehicle. The finite element meshes used for such structures can easily reach 200,000 or more finite
elements. The design objective is to maximize the torsional and bending stiffness. These two stiffnesses
are important for static loading, for ride and handling and also from the vibrational point of view.

A compliance optimized body structure of a sedan vehicle. Dark areas indicate where more material improves the 
performance in torsional and bending stiffness simultaneously.



12.3.2 Noise, vibration and harshness (NVH) 
NVH is a vehicle response that passengers feel and judge continuously when the car is running.
Vibrations from 20 Hz up to 5000 Hz must be minimized in a vehicle design to reduce
discomfort on passengers. There are three main sources of vibrations: power train (engine and
transmission), wind, and road-tire interaction. Each one of them has its own frequency range
and are resolved in different ways. Power train vibrations are well defined in terms of their
frequency spectrum since they come at known rpm values. In such cases, the optimization
problem has the design objective of preventing structural natural frequencies to coincide with
the power train frequencies. Wind vibration and noise are caused by vibratory pressure of the
wind on windshield, window glasses and other external panels. These vibrations are usually
reduced by changes in the contour and finish of the vehicle external surfaces. Vibrations corning
from road-tire interaction (harshness) are more difficult to treat because the range of frequencies
is very wide and sometimes it is impossible to provide a structure with low vibration for the
entire range. There are two main approaches to deal with structural vibration problems. If the
frequency spectrum of loads is very well defined with distinguishable frequencies, the
manipulation of the natural frequency spectrum is the better approach. Moving up or down
natural frequencies can be achieved using topology optimization techniques. However, if the
frequency spectrum of loads is very dense, with almost white noise characteristics, the
reduction of the magnitude of vibrations is the better approach. This can be done when the
simulation is performed as a forced frequency vibration problem, rather than a free (eigenvalue)
vibration problem. The former approach works on the cause of the problem, while the latter
works on the symptoms.
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12.3.3 Design for stress reduction - durability
Durability is the term used to describe the fatigue
phenomena in the automotive industry. The goal is
to build a vehicle with a useful life span of several
hundred thousands kilometers without experiencing
any fatigue problems. The main difficulty lies in the
prediction of life (number of loading cycles) for the
random loads acting during the life time of the
vehicle. Even more difficult is to compute sensitivity
coefficients of life with respect to changes in the
thickness of panels or changes in curvature. In
addition, there has always been a controversy about
including local constraints in topology optimization
problems. One side of the argument is that topology
is a global property of the structure and should not
be subject to point-wise constraints. On the other
hand, local topology features (such as holes) are
often dominated by local structural behavior (e.g.,
stresses). Nevertheless, there has been several
attempts to include local stresses into the problem
formulation.
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12.3.4 Topology of embossed ribs in structural shells
One technique used to increase local stiffness of structural shells is the addition of
embossed ribs (also knows as beading). These are stamped indentations with given length,
depth and separation to provide directional rigidity to the shell. The difference between
doing the standard topology optimization and embossed rib optimization is that the goal is
not to look for isotropic material layout, but for a layout and orientation of a fixed
orthotropic stiffness property. More specifically, when the design variable is close to zero,
the local stiffness property (membrane and bending components) must be of an isotropic
material plate of given thickness; and when the design variable is close to one, the local
stiffness properties must be that of an orthotropic ribbed plate. In order to achieve this a
new model is needed to simulate the structural behavior of embossed ribs based on
orthotropic plate modelling. Since the local stiffness properties then depend on the amount
and location of the embossed ribs and also depend on their orientation, the optimization
problem is posed with two design variables, namely local rib-amount and orientation.
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12.3.5 Crashworthiness
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One of the most complicated optimization problem we can
think of is the optimization of transport vehicles for
crashworthiness. First, the modelling is extremely
complicated, involving geometric and material non-linearities,
contact and very complex geometries. Second, especially for
automotive structures, the load conditions are unknown since a
crash between two cars or a crash of a single car against a
wall, a tree or a roll-over may happen in infinitely many ways.
Third, the sensitivity analysis for path-dependent and dynamic
problems is rather involved. These complications may be the
reason why not much work has been done in applying
topology optimization methods to crash worthiness design
problems. Further problems that are expected in the
applications of topology optimization methods to crash
worthiness problems is how to model the response for
intermediate density materials and internal contact. Ford
Motor Company has built up an in-house software for
crashworthiness design based on the RADIOSS software for
modelling. The topology optimization can be categorized as a
re-enforcement optimization problem and is performed based
on heuristic criteria without sensitivity analysis.

BMW i8 soft-top attachment component 
is 3D printed with aluminum
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A short description of recent work on topology optimization of frame structures for
crashworthiness is given in the following. The work considers simplified planar models
ignoring contact between elements. However, the sensitivity analysis is derived analytically
which makes the algorithm very efficient. The modelling is based on plastic beam elements
and an implicit dynamic Newmark time-stepping algorithm for obtaining the transient
response. The formulation of the optimization problem must accommodate conflicting
criteria such as a maximum acceleration constraint to avoid driver and passenger injuries
due to too high g-forces (e.g. whip-lash) and a maximum deformation constraint to avoid
passenger and driver injuries due to penetration of the passenger cabin. These requirements
are best met by a structure with constant high acceleration (for example just below the head
injury criteria (HIC) acceleration) throughout the crash. Therefore the optimization problem
is formulated as a min-max problem where the error in obtaining the prescribed acceleration
in M design points is minimized. This optimization problem may be written as
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Sketch of the design domain for crashworthiness design of a car. The 
front part of the car is modelled by 272 plastic beam elements (c).

Topology optimized frame structure. Response curve and snapshots of the 
deformations. The goal was to obtain a constant acceleration throughout the crash.



Thank you for your attention
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