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Lecture 13: Design with anisotropic materials

In previous lectures, we have concentrated on the generation of optimal topologies based on the use of
isotropic materials within the framework of "classical' black-white (or 0-1) structures. Early
developments in topology optimization were build around the employment of composite materials as an
interpolation of void and full material. This was founded on theoretical work that had lead to the
understanding that the issue of existence of solutions can be resolved by extending the design space to
include relaxed designs, here in the form of composites.

When introducing composites as part of the solution method in topology design one has to deal with a
number of aspects of materials science and specifically methods for computing the effective material
parameters of composites. Thus homogenization is an intrinsic part of topology design together with the
area of material science which is concerned with bounds on the properties of composites. The latter
deals with the limits on the possible effective material behaviour and directly gives information on the
optimal use of local material properties.

What is thus named the homogenization approach for topology design constitutes the basis for many
studies in topology design. One can here distinguish between the use of the methodology mainly as a
tool for interpolation of properties and studies where existence of solutions is a central aspect. One will
find that many of the developments previously have a counterpart based on the homogenization method
as an interpolation tool. On the other hand, the complete theoretical insight of the existence issue has
presently only been gained for problems involving compliance and fundamental frequency optimization.
Design with composite materials is, of course, an important area in its own right. This involves such
issues as the optimal choice of orientation of an orthotropic material and especially the optimal layup of
laminates. Moreover, one can choose to work with a completely free parametrization of the stiffness
tensor in order to find the optimal design where any material can be used. The homogenization method
and such aspects of the optimal use of material in a broad sense is the topic of this lecture.



Lecture 13: Design with anisotropic materials

Z"dfrder 3" order

£ Octahedron of & Octahedron of D Octet of E Octet of
Octahedra Octets Octahedra Octets

tated
microstructure

A structure made of materials with micro structure. Notice how the micro structure is rotated by a rotation of the unit cells

1. The homogenization approach
1.1 Parametrization of design

We have already noted that the original 0-1 problem statement of topology design lacks
existence of solutions in the continuum setting (the distributed problem). We have hitherto
used a restriction method to assure existence of solutions. On the other hand, existence
studies shows that nonconvergent, minimizing sequences of admissible designs with finer
and finer geometrical details that can be found for the original "0-1" problem and that these
limits should be interpreted as designs where composites made from the original material
(and void) are integral parts of the optimal structure.
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If we decide to work with an extension of the design space, the key to assuring the
existence of solutions to our basic shape optimization problem with unknown topology
Is thus the introduction of composite materials constructed from the given isotropic
material. The design variable is then the continuous density of the base material in these
composites. We immediately note that such a relaxation of the problem in itself provides
an interpolation for use in computations, as the composites allows for a density of
material, i.e., a definition of "grey". Introducing a composite material consisting of an
infinite number of infinitely small holes periodically distributed through the base
material, the topology problem is consequently transformed to the form of a sizing
problem where the sizing variable is the material density o. As in SIMP, the on-off
nature of the problem is avoided through the introduction of this density, with o = 0
corresponding to a void, p =1 to material and 0< p <1 to the porous composite with
voids at a micro level. We thus in this situation have a set of admissible E_, stiffness
tensors given in the form:

Geometric variables p,~,... € L™(Q), angle § € L™(Q) ,

Eijr(z) = Egji (p(z),v(x), . .., 0(x)),
density of material p(x) = p(p(z), y(z),...)

/ (@) A<V 0< p(x) <1, 2 €0,
0
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where E;;(x) are the effective material parameters for the composite. These quantities
can be obtained analytically or numerically through a suitable micro mechanical
modelling. The composite material will, in general, be anisotropic (or orthotropic) so
the angle of rotation (0) of the directions of orthotropy enters as a design variable, via
well-known transformation formulas for frame rotations. Observe that the density of
material p is, in itself, a function of a number of design variables which describe the
geometry of the holes at the micro level and it is these variables that should be
optimized. This means that one typically will have more than one design variable per
spatial point (or mesh element).

Note that for any material consisting of a given linearly elastic material with
microscopic inclusions of void, intermediate values of the density of the base material
will provide the structure with strictly less than proportional stiffness. In an optimal
structure one could then expect to find p-values of 0 and 1 in large areas. On the
contrary, the optimal application of the microstructures (see later) usually results in a
very efficient use of intermediate densities of material and the resulting designs have
large areas of "grey". One central aspect of this optimal employment of composites is
the possibility to adapt to the directions of strain/stress - in a manner of speech,
Isotropic materials "waste" material also on non-loaded directions.
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In the initial studies of the homogenization approach, composites consisting of square or
rectangular holes in periodically repeated square cells were used for planar problems, and
these still play a central role in many applications. Later so-called ranked laminates (layers)
have also become popular, both because analytical expressions of their effective properties
can be given and because existence of solutions to the minimum compliance problem for
both single and multiple load cases in this case can be formally proved (without any
additional constraints on the design space).

&

A 3-dimensional cell of a rank-3 layering, with orthogonal layerings at
three different scales. This microstructure is useful for single load problems in 3 dimensions.
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1.2 The homogenization formulas

The "homogenization approach™ to topology design of continuum structures as described above
relies on the ability to model a material with microstructure, thus allowing for the description
of a structure by a density of material. Here one takes an approach where the porous material
with microstructure is constructed from a basic unit cell, consisting at a macroscopic level of
material and void. The composite, porous medium then consists of infinitely many of such
cells, now infinitely small, and repeated periodically through the medium. At this limit, we can
also have continuously varying density of material through the structure. The resulting medium
can be described by effective, macroscopic material properties which depend on the geometry
of the basic cell, and these properties can be computed by invoking the formulas of
homogenization theory.

The computation of these effective properties play a key role for the topology optimization.
Also, the formulas are central for comparing the different choices of cell structure and they
form the basis for the topology design of the materials themselves, where the formulas have
already been presented. However, the formulas of homogenization will again be briefly
presented here for the case of dimension 2. Suppose that a periodic micro structure is assumed
in the neighbourhood of an arbitrary point x of a given linearly elastic structure. The length of
periodicity is represented by a parameter 6 which is very small and the elasticity tensor Ey, is

given in the form
E}jn(2) = Eiju(s, 5)
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where y = Ejjp(z,y) is Y-periodic, with cell Y =[Y1r, Yir] X [Yor, You]
of periodicity. Here x is the macroscopic variation of material parameters,
while x/8 gives the microscopic, periodic variations. Now, suppose that the
structure is subjected to a macroscopic body force and a macroscopic surface
traction. The resulting displacement field u’(z) can then be expanded as

u®(z) = uo(z) + duy (z, E) R :

where the leading term ug(z) is a macroscopic deformation field that is in-
dependent of the microscopic variable y. It turns out that this effective dis-
placement field is the macroscopic deformation field that arises due to the
applied forces when the stiffness of the structure is assumed given by the
effective stiffness tensor

Oxk!

zjki |Yif [ 1._1.';:4! L, y EﬁJPQ(r y) yq ]dy (32)

Here x*! is a microscopic displacement field that is given as the Y-periodic
solution of the cell-problem (in weak form):

Oxp | D 0p;
Eiing(z,y y = f Eiiri(z,y)=dy forall p € Uy , (3.3
/ ! @) 5 ] sdy= [ Eyule.) 3.3)

where Uy denotes the set of all Y-periodic virtual displacement fields.
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With 4’1 = (1,0), ¥'* = (2,0), y** = (0,1) and y**> = (0,y>), the
variational form for the definition of the effective properties is:

1

t;k!(m) IIIII] mﬂY( ij R yﬂ - ':19) ’

while the form of the equations (3.2) and (3.3) in compact notation is

1 ] T
Effy(x) = |Ylax(y“xﬂy -x*),

ay(y¥ —x¥,0) =0 forall p € Uy .

From Equations (3.2) and (3.3) we see that the effective moduli for plane problems can
be computed by solving three analysis problems for the unit cell Y. For most geometries
this has to be done numerically using finite element methods or, as can be
advantageous, by use of boundary element methods or spectral methods. For use in a
design context the homogenization process should be implemented as an easy-to-use
pre-processor. Equations (3.2) and (3.3) hold for mixtures of linearly, elastic materials
and for materials with voids. Figure below shows the variation of the effective moduli
for a material consisting of square cells with square holes.
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The dependence of the effective material properties of a periodic composite with square
holes in square cells on the size of hole and the angle of rotation of the cell. a): The
effective properties in a frame aligned with the directions of the sides of the cell.
Dependence on material density p. The dependence on cell rotation (seen from a fixed
frame), b) for a small sized hole with density of material in the cell of 0.91 and c) for a
large sized hole with density of material 0.36.
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It is important here to underline that the use of homogenized material coefficients is
consistent with a basic property of the minimum compliance problem. To this end, consider a
minimizing sequence of designs in the set of 0-1 designs and assume that this sequence of
designs consists of micro cells given by a scaling parameter 6>0. In the limit of § = 0, the
sequence of designs has a response governed by the homogenized coefficients. It is a
fundamental property of the homogenization process that the displacements ) of the
sequence of designs will converge weakly to the displacement U (x) of the homogenized
design. As the compliance functional is a weakly continuous functional of the displacements
this implies the convergence of the compliance values. We can thus conclude that inclusion
of homogenized materials in the design formulation does not provide for a jump in
performance, but rather provides (some) closure of the design space. Moreover, at the same
time we achieve a design description by continuous variables, and can avoid the recourse to
any additional interpolation scheme.

We remark that layered materials have analytical expressions for the effective moduli and
this is a distinct advantage for optimization. For other types of micro voids the effective
moduli have to be computed numerically for a number of dimensions of the voids in the unit
cell, and for other values of densities the effective moduli can be interpolated using for
example Legendre polynomials or splines; this gives an easy method for computing design
derivatives as well. Note that the interpolation only needs to be carried out for different
values of Poisson's ratio, as Young's modulus enters as a scaling factor.
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Layered material We now consider a layered material (cf., scale 2 of Fig. 3.2
rotated 90°) with layers directed along the ya-direction and repeated peri-
odically along the y;-axis. The unit cell is [0,1] x R, and it is clear that the
unit cell fields x*' are independent of the variable y,. Also note that in Equa-

tion (3.2), the term involving the cell deformation field x** is of the form

Ayt - : . . .
Eiipg (m?y)E%L, so an explicit expression for x*' is not needed. Using period-
q

icity and appropriate test functions and assuming that the direction of the
layering coalesces with the directions of orthotropy of the materials involved,
the only non-zero elements Fj111, Eaz2, Ei212(= E1221 = Eai21 = Eoniz),
Ej122(= FE2911) of the tensor Ejjr; can be calculated as shown in Appendix
5.4. Specifically, for a layering of two isotropic materials with the same Pois-
son ratio v, with different Young's moduli E* and E~ and with layer thick-
nesses v and (1 — ), respectively, the layering formulas (in plane stress)
reduce to the following simple expressions:
H H 2 H 1 —v H _
Efin = Iy Eyey = Iz + 0714, Eioe = —2——1'1, Ejjos = v,
1 ETE~

I = L=AEt 4+ (1-y)E" .
: 1—-viyE-+(1-—+v)E* 3=7 (1=9)

Composite
material

Scale2:
Rank-1 material

Figure 3.2
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It has been noted earlier that layered materials (so-called rank-N layered
materials) play an important role as a class of composites for use in the
homogenization approach. Such materials are created by successive layering
of one material with composites already constructed. For example, the con-
struction of a rank-2 layering is as follows. First, a (first order) layering of
the strong and the weak material (void in the following) is constructed (see
scale 2 of Fig. 3.2). This resulting composite material is then used as one
of two components in a new layered material, with layers of the isotropic,
strong material and of the composite just constructed; the layers of this com-
posite material are placed at an angle to the direction of the new layering.
The effective material properties of the resulting material can be computed
by recursive use of the effective material parameters for a layering and the
moduli are computed as the material is constructed, bottom up. The rank-N
construction is analogous, and just includes more steps. For a rank-2 layering
of material and void, with perpendicular layerings and with primary layer-
ings of density p in the 2-direction and the secondary layer of density + in
direction 1 (as in Fig. 3.2), the resulting material properties are:

_ vE
P (=) + (1 - p)’
E:gzz = HE"'#ZFEEEU: Egl? =0,

H _ H
Eji90 = wE ),
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where E is Young’s modulus and v is Poisson’s ratio of the base material.
Also,the total density of the strong material in the unit cells of this rank-2
layered material is

p=p+1—py=p+vy-py.

The importance of the layered materials not only hinges on the analytical formulas for the
effective material parameters. Of equal significance, studies on bounds on the effective
material properties of composite mixtures made of two isotropic materials have shown that
for elasticity the stiffest (or softest) material for a single load or multiple load problem can
be obtained by a layered medium, with layering at several microscales. For single load
problems the stiffest material consists of orthogonal layers, with no more than 2 layers for
dimension 2 and no more than 3 layers for dimension 3. For multiple load problems the
stiffest material (for the weighted average formulation) consists of layers that are not
necessarily orthogonal, up to 3 for dimension 2 and up to 6 for dimension 3. The rank-2
materials are not the only composites which in 2-D achieves the upper bound on stiffness
of a mixture of two materials. The layered materials are thus not special in the sense of
being uniquely optimal, but they are special in the sense that their effective material
properties can be expressed analytically.
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Parametrization by moments
The formulas presented above become very cumbersome if one employs rank-N
layerings with many non-perpendicular layers. In this case it is more convenient to
work with the so-called moment formulation for the effective material properties.
It turns out that the full range of effective material properties for all

rank-N layerings in 2-D can be described by just 5 parameters (see Appendix

5.4). These are the bulk density p of material together with four moments

(my,msy, my, my) that are parameters of the form

my = ZE_::L iy c.()s{Eﬁr), my = 32y i c08(407) with Zpr =1.
mz = Z::t pasin(2607), mq = Z =1Hr 5111(43"

In terms of these moments and the density p, the effective compliance tensor
can for example be written as (in plane stress and for layerings of material
and void)

cH — o+ 4 “p—EﬂJ [D]'l

where the entries of the tensor D are
Dy = %{34‘ ma —4’-’111} . Dagos = %(31— msy +4m1} y
D122 = Daayy = 5(1 —ma) ,
Di112 = Diia1 = Dainy = g(ms —my) |
D92y = Dagay = Darzo = Doz = §(ms +ma) |

Di212 = Dy231 = Dayy2 = Daya1 = (1 —mga) .
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When considering all possible layer combinations as well as layer directions,
the tensor C¥ will be parametrized by (mi,ms,m3, m4) belonging to the
convex set M given as

2m?(1 — m3) 4 2m3(1 4+ m2)+
+(-m.§ + mﬁ] —4dmymgzmyg < 1

JM:{mER4

m?+m2 <1, -1<mq <1, }

This convex set also encompasses the material tensors of rank-2 and rank-3 layerings.
However, compared to a rank-3 layering described by 2 relative densities and 3
directions of layerings, by introduction of the moments (m1 m2, m3, m4) there is one
less variable to worry about. If optimization is carried out using these moments one may
wish to recover a composite from the optimal moments - it turns out that for any given
set of moments, a composite with at most three layers can be can be constructed
analytically. For 3-D a parametrization in terms of moments can also be given. Here one
has to work with 15 moments and a characterization of the set of moments in terms of
matrix-inequalities.
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1.3 Implementation of the homogenization approach

The homogenization approach to design of a structure with composites can be implemented using
the same flow of computations as for the material distribution method with isotropic materials.
However, two additional aspects have to be considered. First, a database of material properties as
functions of the design variables should be generated, with one set of data for each allowed value of
Poisson ratio. For layered materials no database is required, only a suitable subroutine. Second, the
optimization routine should also cater for angles of rotations of the unit cells. Finally, the
implementation should be able to remove checkerboard patterns as these also appear in this setting.

The homogenization approach has been used as the basis for many design studies. Compared to use
of for example SIMP, the homogenization approach requires additional design variables to describe
the structure. On the other hand, one always works with microstructures of a given type, giving a
direct physical understanding and in many cases a formal framework for computing the behaviour
for intermediate densities when more involved physical situations are involved.

Optimal design using a rank-2 material strain energy density with
penalties on intermediate densities and on perimeter. a) shows the
density distribution for the unpenalized case. In b) intermediate
densities are penalized. In c¢) and d) intermediate densities and
perimeter are penalized, with d) being a fine mesh variant of c)

Optimal design using a rank-2 material. Left: The optimal design using
an element wise constant density function and a 8-node displacement
model. Right: The unstable checkerboard solution obtained when using
a 4-node displacement model
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In many cases the homogenization approach is actually used as a basis for computing black
and white designs, and the extended design space that encompasses composites is not
employed to obtain information about the optimal micro-scale use of material as well. Also,
to obtain such “classical” designs, explicit penalties on the density is typically needed to
steer the design to a 0-1 format; in some circumstances neglecting the rotation angle of the
cells in the composite constitutes a sufficient penalization that results in such designs. For
compliance design it is also known that the use of such sub-optimal microstructures
consisting of square holes in square cells give rise to rather well defined designs consisting
almost entirely of areas with material or no material and very little area with intermediate
density of material, i.e. very little composite material. This favours the use of this micro
geometry for obtaining 0-1 designs and the success of the material distribution method in
applications would probably never have come about if such sub-optimal microstructures
had not been used in the initial numerical studies of the method (this was before the
optimality of the layered materials had been proven).

On the other hand, one of the main interest in using composites in the design formulation is
to see how this can influence the effectiveness of a structure, and ultimately, to understand
what constitutes the best structure. That composites have a big part to play in such design
studies can be seen when computing minimum compliance designs with layered materials
where the result usually consists of large areas of intermediate densities ("grey* areas of
composite).
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1.4 Conditions of optimality for compliance optimization - rotations and densities

In the following we shall derive the necessary conditions of optimality for the minimum
compliance design problem that employs composite materials in the parametrization of
design. For this design formulation there are now two distinct types of design variables.
First, the composite material is an anisotropic (normally orthotropic) material for which the
angle of rotation of the unit cell is an important unconstrained design variable, and second,
the sizes describing the unit cells constitute a different type of variables which are globally
constrained through the volume constraint. For the latter, the derivation of the conditions of
optimality follows directly from the developments, so we will here concentrate on the
problem for the directions of orthotropy.

Optimal rotation of orthotropic materials

The composites with cell symmetry described in the preceding sections are orthotropic, and
the angle of rotation of the material axes of this material will influence the value of the
compliance of the structure. It turns out that the optimal rotation can be found analytically
and this is of great importance for computations and it is interesting in its own right. Thus
the optimal rotation of an orthotropic material is not only of importance for the present
setting, but is equally significant in the design of composite structures, laminates, etc. For
this reason we will here derive the conditions of optimality for material rotations in plane
stress/strain problems (i.e. 2-D).
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Assume an orthotropic material as given. Then in the frame of reference given by the
material axes of this material we have a stress-strain relation

aij = Eijricu

with Ejy11, E2220, E1122, Ej212 being the only non-zero components of the
stiffness tensor E;jp. We assume that Eyyyy > Egzzz , and assume that a
given set E:‘; k=1,....M, of strain fields for a number of load cases are
specified. With compliance design in mind, we see from the formulations
(1.6) and (1.34) of the minimum compliance problem that our interest is to

maximize the weighted sum of a number of strain energy densities:

M
1 2 2 2
W=§ E wk [Emlﬁfl + Eapg255, + 2By 1026t 65, +4Elzlefz] .
k=1

We now express the strains in terms of the principal strains £}, £§;, where
we choose |ek| > |e¥;| for convenience:

1 .
eh =3 [{E? +efp) + [E? —&51) ms?w*‘] :
1 !
Egz =3 [{EJF + Eff";} - {E}- - Efr} (‘-052?#5‘&] p
1 - i,
Efp == §(E’f — £y) sin 20 |

Here ¢ is the angle of rotation of the material frame relative to the frame of
the k'th principal strains. We are interested in the angle @ of rotation of the
material relative to a chosen frame of reference which maximizes the function
W. Each angle ¥* is thus written as ¢* = 8 — o¥, where o is the angle of
rotation of the k’'th strain field

C1111
€2211
€3311
2311
€a111
€1211

C1122
Caa22
C3322
Ca302
Ca122
Ciaaz

C1133 €23 €l Ciu2 Cn Cr Ci Cuy
Ca233  Co2o03  Cao31 Cannz Ciz Cyn Cp Cy
casas Csses csam; camz | _ | Cis Cs Gy Oy
Cz333  Ca323  Co331 Casi2 Cuy Cu Cy Cyu
C312z €323 Caal Cannz Ciz Cy Oy Cy
Ciaaz Ci223 Ci231  Ci1212 Cis Cyp Cis Cy
Y A E,
gk
&
Tl
i v
.-"/
;:\ X
=

The definition of angles of rotation of
material and principal strain axes

Cis
6‘25
Chs
045
Css
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Inserting the expressions for the strains expressed in terms of the refer-
ence principal strains into the equation for W and differentiating, we get the
condition of stationarity as:

M
>k [4*sin2(6 ~ a*) + B*sin2(6 — a*) cos2(6 - a¥)] = 0,

=1
2 2
A* = {E"f - E?f J(Er1 — Eaaze) ,
B* = (e} — e;)*(Baeza + Buny — 2B11z — 4E1212) -
Stationarity is thus achieved if the following fourth order polynomial in sin 20
is zero:
P(sin 260) =a, sin 20 + agsin® 20 4 aysin® © + a, sin 20 + ap ,

a4 =23 + 23 , 03 = 22124 — 22320

4
.z 2 2 2 _ 3 2
ﬂ1—31+32—23—24 ,ul—zgzg—ﬂzlz.j,, ﬂn=1-—zl .

M M
2 = ka_f-lk sin20F | 2, = Zw"‘fl" cos 2a* |

k=1 k=1
M M
23 =2 Z w* B sinda® | z, = 2 Zwkﬁk cosda® |
k=1 k=1

The energy W is periodic so there exist at least two real roots of P. Also, as
the order of P is four, the roots of P can be given analytically. The actual
minimizer of the compliance is found by evaluating W for the four or eight
stationary rotations. This feature is of great importance for the numerical im-
plementation of the homogenization approach for optimal topology design,
as the iterative optimization of a periodic function with several local min-
ima and maxima is very likely to give the wrong result. Also, the analytical
derivation of the optimal angles saves considerably in computational time.
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For the single load case we can express directly the stationary angle 1
(using the principal strain axes as the reference system):

EE;-FE“
ﬁt‘f —E.rf’
a = (Enn — Faaae) 20, F=(Fa + Eiinn — 2E1122 — 4E1012) .

sin2iy =0, or cos2y = —y, withy = and

Inserting these values in the second variation of W with respect to
(Pedersen 1989), it can be seen that the maximizing ¢ (i.e. the compliance
minimizer) depends on the sign of the parameter 3. The parameter 7 is a
measure of the shear stiffness of the orthotropic material. For low shear stiff-
ness, that is, 3 > 0, the globally minimal compliance is achieved for ¥/ = 0,

i.e. the intuitive result that the numerically largest principal strain is aligned
with the stiffer material axis; also, from the stress-strain relation, we see that
in this case these axes are aligned with the axes of principal stresses. The
materials used in topology design (as described in Sect. 3.1.1) are weak in
shear , i.e., @ > 0. For certain (engineering) laminates with ply-angle +¢,
22,5% < ¢ < 45°, we can have the situation of high shear stiffness, i.e. 3 <0
(Pedersen 1989). In this case, cos 2y = — is the global minimum for com-
pliance as long as —1 < « < 0 ( 7 has the sign of 3 ), and for v < -1, ¢ =0
is again the global minimum. Note that a similar analysis can be carried out
based on given stresses (here the complementary energy should be minimized,
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For three dimensional elasticity we have three angles of rotations possible for the
axes of orthotropy (e.g. using Euler angles) and the expressions above for first
variations with respect to angles become much more complicated. For the materials
used for design, it is possible to show stationarity of the alignment of material axes,
principal strain axes and principal stress axes. The full answer to the 3-D cases is
still open.

For the materials involving multi-layered media (the rank-N laminates or layerings)
the result on the optimal rotation follows by alternative means from the studies on
optimal bounds on effective moduli of materials. For these materials it is thus
proven that for the single load case, the optimal rotation of the material is consistent
with an alignment of the layerings with the principal stresses/strains and this holds
in dimension two and three.

We remark here that the problem of optimal design of the spatially varying angle of
rotation of a fixed orthotropic material is not, in itself, well-posed in general.
Relaxation is needed for this case also, as the introduction of for example layered
materials consisting of the orthotropic material at various rotations extends the
range of available materials.
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Optimality conditions for density The conditions of optimality for the
density parameters describing the stiffness of a composite can be derived
exactly along the lines of Sect. 1.2.1. For the problems at hand we note
that the tensor Ejjn now depends on geometric quantities which define the
microstructure. For a square, 1 by 1, micro cell with a rectangular hole of
dimension (1—p) times (1—+) the density of material is given as p = p+y—py
and the constraints on the design variables pu,« are

/ﬂmw-m«)(z)dﬂ:v’, 0<uz)<1,0<A(z)<1.

This relation also holds for the rank-2 layered material with layers of density
p and 7. For the present setting the optimality criterion update derived in
Sect. 1.2.1 then has the format:

( Hli’-’l.x{[l —Cpk, ﬂ}lfl‘-"f{B?{ < ma‘x{(l - C]#K;D} y
pui Bl if max{(1 = Q)pusc,0} < pg B < min{(1+ Qpk, 1},
| min{(1 + Qpre, 1}if min{(1 + Qpr,1} < pr By ,

%

HE+1 =

[ max{(1 - {)vk,0}if yx E}; < max{(1 - ()yx,0},
Yi+1 = { Yr B if max{(1 — {)vk,0} < v B <min{(1 + )k, 1},
| min{(1+ Q)vie, 1}if min{ (1 + Oy, 1} < v B}

Here ug, vk denotes the variables at iteration step K , and B, K are

M
OF;;
Bk = [Ag(1 = k)] Zwk_a;_ﬂ(#Ki’]’H)Eij(u?(}EPy(uff) .
k=1
h{ aEI ;
Ex =[Ag(1 - pg)] ™! ;wkﬁé%ﬂ(#m’m}ﬁﬁ (whe)epg (uk) -

Also here, A is a Lagrange multiplier that should be adjusted in an inner
iteration loop in order to satisfy the active volume constraint.

Composi
material

Lo

Scale2:
Rank-1 material

Scalel:
Rank-2 material

N

v



Lecture 14: Design with anisotropic materials_2

A hierarchical solution procedure for anisotropic material

The problem separation described above naturally leads one to consider a different
computational implementation as compared to the procedure described previously. Such an
implementation can for example work with problem in the displacements and density only.
We accordingly consider the solution as given, either through an analytical or a
computational procedure. Then it has exactly the format of the compliance problem dealt
with the SIMP model, that is, the compliance is a function of the density and is given by the
solution of a minimum potential energy problem. This problem can then be solved for
example by an optimality criterion method or by MMA. Here one needs sensitivity
information of the compliance, i.e., derivative information for the equilibrium problem,
which is given by the derivative of the optimized strain energy W with respect to the density.
For an analytically derived optimal strain energy functional this derivative is straightforward
to obtain, while for a computationally derived optimal strain energy functional this
derivative is given simply as the Lagrange multiplier for the volume constraint of problem,
l.e., the derivative is given directly from the computation of the optimal energy. The
equilibrium problem is in general a non-linear problem, so the equilibrium problem requires
an inner iteration loop at this point, but computational experience has shown that, as the
optimization over the bulk density is in itself iterative, only one (or a few) equilibrium
iterations need to be used for each design update.
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One of the advantages of the computational program just described is that the main
flow of the procedure is independent of the modelling of the material used for the
description of design. This latter information is added as an external module. This
feature makes it possible to generate flexible procedures, where the material model
can be changed easily.

T

Initial guess

(Initial design)

o

Analysis (Finite elements):

Updating spatial Optimization of material
properties for given
strains/stress and density

distribution of material

nia

Converged ?

yes

7 plotresulls  A—

Optimal design using a hierarchical approach. The resulting
structure is here a low volume solution to the problem



Thank you for your attention
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