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2. Optimized energy functionals

The introduction of composite materials as part of the design formulation signifies that the
goal of the optimization is both to determine the optimal spatial distribution of material as
well as the optimal local use of this material. If we allow the material variables to vary from
point to point it seems reasonable to accentuate this local optimal choice of microstructure,
and this perspective gives the inspiration for some alternative formulations of optimization
problems involving composites.

2.1 Combining local optimization of material properties and spatial optimization of material
distribution

In the following, we will consider the material distribution method for general anisotropic
materials where an extra set of local variables (for example cell rotation and some geometric
parameters) define the material tensor E of the problem. In turn the local variables also
determine the pointwise density p of material (the bulk density), or rather, the density p
determines the volume of material available for the pointwise (local) construction of E.
Within this framework we can then write the minimum compliance design problems as

1
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The basic idea is then to interchange the optimization over the design of the
microstructure and the optimization over stresses or displacement. This interchange
gives valuable insight in problem structure and provides us with a basis for
constructing some alternative solution procedures and computational schemes.

The interchange of min-min in the stress formulation results in an equivalent
problem as the constraint sets for the two operators in the inf-inf problem are given
entirely in terms of the variable over which each individual infimum is sought.
Introduction of, for example, stress constraints at the outer design level of problem
would destroy this feature. For the displacement formulation the interchange will in
general not result in an equivalent problem. Nonetheless, as we have that

supinf ¢(z,y) < inf sup ¢(z,y)
T u y &I

for any function of two parameters, the interchange will provide us with an upper
bound on the optimal objective and thus a lower bound for the compliance of the
optimal structure. In situations where the problem satisfies conditions for the
existence of a saddle value (saddle point), the interchange will result in an equivalent
problem also for the strain case - this holds if we work in the framework of layered
materials, for a free parametrization of the tensor E and for laminated plates.
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The interchange of equilibrium analysis and optimization of local material properties
results in a reformulated displacement based problem

max min {f W(p,eij(u))d — I{u}}
Q

p[:}, oef), uell

Jq pdQ<V
where W (p, £) denotes the pointwise optimal strain energy density expression
given by
— 1
Wi(p,e) = max {'Z‘Eijk!'f:’jfk!}

mit:rnstrructure
of density p(x)

Here we have used that the optimization of microstructure is pointwise, so
that one can move this extremization under the integration over the domain.
In the stress based case we have a problem form

min min M(p,oi; dﬂ}
plz), z€LL, divcrj—f:ﬂ {’/5_; j)
Jpﬂ pdQ2<V o n =t
with an optimized complementary energy density
— . 1
(p,0:;) = min Ecijkigijakl .

microstructure
of density p(x)
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For the optimization problems of above, we have two coupled optimization problems, which we
label the local anisotropy and the material distribution optimization problems, respectively. The
material distribution problems are the "master" problems (the outer problems) of this hierarchical
formulation and they deal with the spatial distribution of resource/material (a global problem). The
local anisotropy problems are the inner “slave™ problems address the question of optimal choice of
material (a local problem).

The local anisotropy problems correspond to finding the pointwise stiffest material for a given fixed
strain or fixed stress field and a given density of material. This is a standard problem setting in the
theory of variational bounds on effective moduli of anisotropic materials. It is of great importance in
its own right and has been the subject of intense studies in material science.

The equilibrium problem seeks kinematically admissible equilibrium displacements for the locally
optimum energy functional, for a given distribution of resource p, while the equilibrium problem
seeks statically admissible equilibrium stress fields which minimize the locally optimum energy
functional, again for a given distribution of resource p. It should be noted that, since the locally
optimum energies depend on the displacement and stress fields in a complex fashion via the
optimization problems, the inner equilibrium statements of the problems are in fact constitutively
non-linear and non-smooth elasticity problems, except in very special cases. However, as we shall
see in the coming sections, there are important cases of material modelling where these equilibrium
problems become problems in linear elasticity or where the non-smoothness is isolated to
unimportant strain/stress values. For the strain based problem, it is worth remarking that the
equilibrium problem remains a convex problem after the optimization over local material properties.
The optimal strain energy density W (p, €) is derived as a maximization of convex functions in the
strains and is thus in itself convex in these variables.
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2.2 A hierarchical solution procedure

The problem separation described above naturally leads one to consider a different
computational implementation as compared to the procedure described previously. Such an
implementation can for example work with problem in the displacements and density only.
We accordingly consider the solution as given, either through an analytical or a
computational procedure. Then it has exactly the format of the compliance problem dealt
with the SIMP model, that is, the compliance is a function of the density and is given by the
solution of a minimum potential energy problem. This problem can then be solved for
example by an optimality criterion method or by MMA. Here one needs sensitivity
information of the compliance, i.e., derivative information for the equilibrium problem,
which is given by the derivative of the optimized strain energy W with respect to the density.
For an analytically derived optimal strain energy functional this derivative is straightforward
to obtain, while for a computationally derived optimal strain energy functional this
derivative is given simply as the Lagrange multiplier for the volume constraint of problem,
l.e., the derivative is given directly from the computation of the optimal energy. The
equilibrium problem is in general a non-linear problem, so the equilibrium problem requires
an inner iteration loop at this point, but computational experience has shown that, as the
optimization over the bulk density is in itself iterative, only one (or a few) equilibrium
iterations need to be used for each design update.
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One of the advantages of the computational program just described is that the main
flow of the procedure is independent of the modelling of the material used for the
description of design. This latter information is added as an external module. This
feature makes it possible to generate flexible procedures, where the material model
can be changed easily.
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In many implementations the non-linear analysis iterations are avoided. Thus linear
analysis is applied for the equilibrium problem with fixed material parameters and
problem is used to generate the parameters of the optimal stiffness tensor for each
displacement iteration. The direct coupling between the material parameters and the
displacements is therefore ignored in the implementation of the linear equilibrium
analysis. This computational procedure is especially attractive for multiple load
problems where the use of the linear analysis also circumvents the coupling between
the displacements for the different loads that is introduced.

The procedure described here has been implemented for a broad variety of models. It
is particularly well suited for the parametrization by moments of the effective
parameters for rank-N layered materials needed for multiple load cases. Here the
inner problem becomes a convex problem that can be solved efficiently by
computational means. In other situations, as we shall see in the following sections,
this inner problem can actually be solved analytically. One can go one step further
and solve the inner anisotropy problem by the material design method. In this
situation one uses only microstructures which involve one length-scale, and the
microstructure is designed by a topology design method. The computations involved
in this approach are quite massive: the number of local topology design problems
equals the number of finite elements in the mesh defining the material distribution p.
However, all these local problems are independent and can be solved simultaneously
using parallel processing methodologies.
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Additional problem reduction

In the development above we could have performed one further interchange for the
stress cases, namely the interchange of the optimization over density and the
extremum form of the equilibrium problem. Such an interchange results in the

problem R R B
min {H[J}} . Ie) = dmi_rt_ U‘ ]l{p,cru-]dﬂ]
dived /20 pz)xeq, 0

Jo 22V
We have written problem in a form which underlines that this reduced problem
should be interpreted as an equilibrium only problems for a globally optimized
complementary energy expression. The optimized energy is non-smooth and
couples all degrees of freedom through the volume constraint. This latter
complication can be circumvented by considering the volume constraint of the
original problem in the form of a penalization and not a constraint. With this
interpretation problem becomes

min ﬁA(a)} , Ha(c) = min [I(p,0i;) + Ap] A2

. _ density
AL p(e), 20

where A is now a fixed penalty factor. For a computational procedure for
problem above one could solve the inner problem by analytical or computational
means and implement a non-smooth optimization method for solving the
equilibrium problem. As outlined above, based on linear analysis, both the
material properties and the density are updated based on the algebraic solution of
the optimization of the complementary energy.
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ﬁ The MBB beam. The optimal distribution of material and
i associated microstructures obtained from a hierarchical
approach. The local material anisotropy problem has here
been solved numerically, using topology design of the unit
cell of a composite. The cell is not rotated - the necessary
rotation arises from the material design

3. Optimized energy functionals for the homogenization modelling

In the following we will compute the optimal strain and complementary energies for rank-2
layered materials in 2-D, corresponding to the local anisotropy optimization problem for
single load minimum compliance design. That is, we will develop the solution to problems
for the class of composites that are rank-2 layered materials.

We use here the parametrization of the stiffness of the rank-2 material by the two layer-
thicknesses p and y. If the primary layerings of density p are placed in the 2-direction of our
reference frame, the effective material properties in plane stress are

vE
Eﬁll - ﬂ’}{l-yz)+(l—ﬂ) EEEE =”HE1H111_3
Ej = pE+ W’V Eff,, B33 =0.

when the weak material is void, i.e. E~ — 0. It is straightforward to verify

that such a material is weak in shear, i.e. that the material parameters satisfy
H A H H

Efin + E3hy — 2B119y — 4B{315, > 0
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3.1 The stress based problem of optimal layered materials

The results on optimal rotation of orthotropic materials shows that for the
minimum compliance problem with a material which is weak in shear, the axes
of orthotropy should be aligned with the axes of principal stresses oy, oy .
This gives a complementary energy of the form

1
2| D

1 u
II= _C'jk;ﬂ'ijgki =

H 2 H 2 H
9 [E1111”H+Ezzzzﬂf—QEuzzﬂfﬂu] ;

with |D| = EH  ER,, — (Ef.,)?. Here, we have the well-known relations
between principal stresses and stresses in an arbitrary frame:

1
ay = B (Uu + 092 + \/(Ull — 092)% + 40’%3) y

1

o = 3 (5"11 + 022 — \/{0‘11 — 022)° +4cr%2) :

We see that the alignment of axes is consistent with the fact that Ef,, =0
for the layered material; the vanishing shear stiffness for the layered material
plays no role as the material automatically rotates to a frame of zero shear.

Note that the material law described by the energy expression above rep-
resents a non-linear material, by virtue of the optimal rotation and the fact
that Eff,, # Eil,,. Here and in the following we use the term “material
law” to describe the characteristics of the optimized energy expressions. This
should not be interpreted as properties of the layered materials in a phys-
ical sense, but expresses the peculiarity of the energy of a structure which
automatically assigns the real material in accordance with the applied load
(stress/strain field).
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We now fix the density p and express < in terms of g from the relation
p = @+ v — py. Stationarity of the energy with respect to the layer density
i can now be found by standard but fairly lengthy calculations. We find the
stationary layer density p and corresponding layer density + given as

= P[G'Hl o= L
lorr] + (1= p)los|’ lor| + |ori]

These values turn out to represent minimizing values if the value of u sat-
isfy the constraints 0 < g < p. This implies that the stresses should satisfy
ororr # 0 and for such values of stress the optimal layering is a true rank-2
layering. If oyo;; = 0 we have a region with an unidirectional, single layer-
ing or a solid region corresponding to p = 0, v = por p = p,v = 0. The
numerical values of stresses in the formula above indicate that there for the
rank-2 regions are two distinct types of layerings depending on the sign of the
quantity ororr. We denote the two types of stationary layerings as mode I
(erorr < 0) and mode II (ayo7; > 0) materials, and the rank-1 materials as
mode IIT materials. Note that the expressions above were derived under the
assumption that the direction of the outer layer of the rank-2 layering (cor-
responding to u) is aligned with oy, and that no restrictions where imposed
on the relative sizes of oy and o7 . The analysis shows that the optimization
over layer densities automatically assures that the axis of maximal stiffness
is aligned with the axis of the largest stress, in accordance with the result
on optimal rotations. Also note that a second, equally optimal layering can
be obtained by aligning the outer layerings with the stress g ; the formulas
above now hold with o7 and ;5 interchanged. The effective complementary
energy for both optimal microstructures is given by the expressions
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— 1

Mode I : [:m{d?-ﬁr?f~—2{1—p+pu)e:r;rru] :

_ 1 _
Mode II : I:EE;[J?+rrff+2{]~—p—py)cr;cr”] .
Mode Il : = 2L if oy =0, T=2LL i =0
yvode : —QEPI arr=4u, -—ng1 oy =4u.

The material properties of the now optimized microstructure are completely
given in terms of the density and the principal stresses. Noting that

2 2 _ 2 2 2 __ 2
gy + 0y =0, + 05 +2ﬂ"]2 sy T101p = 011022 — 019 ,

we observe the surprising fact that the optimized energy
corresponds to a material law which for the regions with two
layerings is linearly elastic and quasi isotropic. For the single
layering regions the material law is non-linear. Note that the
isotropy of the optimized material law is natural in view of the
rotation of the rank-2 material. The linearity and isotropy of this
extremal material law can be understood in a broader context from
the so-called translation method for obtaining optimal bounds on
effective moduli of composite materials.
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The expression above is the solution to the problem for the single load case we consider.
For the stress based problem a further reduction to a design-free problem is possible. To
this end we should optimize with respect to the density of material as well. Taking the
volume constraint into account for the inner problem, we minimize with respect to the
bulk density p the expression f+Ap, where A >0 is a Lagrange multiplier for the volume
constraint. By fairly straightforward algebraic manipulations, we get the following
optimality condition for the bulk density p:

_ lorl +lou]

VZAE

in all modes

In (3.22) the absolute value operators indicate that we have different expres-
sions for mode-I and mode-II. The corresponding densities v and p are

o11] ol

W= VAE —jo |~ VAE'

and the optimal distribution of the bulk density should satisfy the volume
constraint

|Uf|+i0u| } .
Q= N=v.
/’Od fmm{ VIAE
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This constraint determines the value of the Lagrange multiplier A for any relevant volume
constraint. Thus the volume constraint implies that we can consider A as a function of the
principal stresses. Taking this feature into consideration, the optimal complementary energy
density can be expressed in terms of stresses only, and we have reduced the stress based design
problem to a design independent non-linear, non-smooth elasticity problem of the form.

min {f ﬁ(a}d!!}
divosf=0 LJQ

a-n=t

3.2 The strain based problem of optimal layered materials

formulation is much more complicated than for the stress case and for simpli-

fication of presentation in this case, it turns out to be convenient to impose ‘i l -

the choice |ef| > |eyy| for the principal strain directions. The steps of the

analysis are all analogous to the procedure for the stress case, but the al- Optimal design using an optimized rank-2 material

gebraic manipulations now become very involved, and the use of symbolic  strain energy density. Optimized designs computed

manipulations is recommended. using element wise constant density function and a
The optimal density p and corresponding density v are again given by  8-node displacement model. Center: the optimal

different expressions, depending on the relative values of the principal strains ~ density distribution, and Right: the associated

e1, 11 as well as the size of the bulk density p. We again denote the different ~ Principal stress distribution for a volume fraction

expressions as Mode-I, Mode-II and Mode-III regions (there is a one-to-one of 20%. Note that grey area is not limited to

i . biaxial response. The bicycle wheel like design has
correspondence with the stress energy modes). The optimal values are : : . :
an area with radial uniaxial stress as well as a rim

of circumferential uniaxial stress

The algebra involved in optimizing the microstructure for the strain based [
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§= £r(1+vp—plters er 4 £
Mode I : ver+(2—p—v4upler; f I 11 <p<l1,
{'f = e (1=v)er

_ e1+eri(vptp—1)
1= (1+v)(=r+err)

0= er(vp+p—1)+eir £r — €
Mode 1I : { ”EIHE—”"—W?’E”} if L cpet,

Ert+err
(1 - U)E_f ’

Mode I11 : {“zﬂ} if 0<p< LS o 0<p<

(1+ v)er

The effective strain energy corresponding to either optimal layering is given
by the expressions

I: Wip,e) = 2(1—v}{§—p+vpj [E? +err+2(1-p+ pu)E;EH] )

I : W(p, E) = 2(1—|—y](‘§|—p—ppl [Ei + E%f o 2{1 —P _ﬂu)EIEH] g
— Ec? | — Ee?,
UL Wipe) = 5ot if ferl 2 lentl, Wipe) = 2L Jey| < fens]

In the Mode-III regions with single layers, the material law is non-linear and,
as for the stress based analysis, the rank-2 layered regions of Modes I and
IT correspond to a linearly elastic material law which has the same stiffness
matrix as the optimal material obtained in the stress case. This is consistent
with a duality principle for the optimized strain and complementary energies

dh;%i}:ﬂ{fgﬁ{p’ a)dﬂ} = TS}:{I(u) - LW('{}, E(u})dﬂ} ’

that holds when the bulk density p is kept fixed
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The optimization of the strain energy with respect to layer directions
as well as layer densities results in an optimized strain energy W which is
convex in the density p; this is readily checked by examining the second
derivative of the energy for the different modes. This excludes the possibility
of interchanging min and the max in the reduced problem

max  min {/ W(p,e(u))dQ — I(*u.}}
0

density p wel/
[y pd2=V

and this is thus the final reduced form of the strain based formulation

3.3 The limiting case of Michell’s structural continua

The lay-out theory of Michell frames and its extensions to
flexural systems is the classical approach to topology and
lay-out design of structures. It has been illustrated earlier
that the material distribution method predicts structures that
resemble truss-type lay-outs and Michell continua type
layouts, when constrained to small volumes of available
material. We show here that this limiting process can be
formalized through an asymptotic expansion of the problem  discrete optimum trusses
under rescaling of the geometric and load data.
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A Michell frame is a continuum in dimension two consisting of two mutually
orthogonal fields of tension/compression only members that are directed along the
principal strain. The total amount of material used is described by two independent
densities of material, constrained to satisfy some volume constraint. The problem is
a continuum analogue to the single-load truss optimal design problem, and there
are a number of equivalent stress or strain based problem statements. The frame is
described by a specific strain energy of the form

W= [ac} +6el)

where a, 7 and 3, £y are the densities and corresponding principal strains
in the two directions of the continua, and the optimization problem is the
one of minimizing compliance for a given volume of material, or equivalently,
maximizing of compliance for given constraints on the strains in each bar, cf.,
Hemp (1973), Bendsge, Ben-Tal & Zowe (1994). Lay-out theory for grid-type
structures in general, as treated by Prager and Rozvany, deals with problems
with a wider scope of objectives and constraints, but with basically the same
energy definition as above.
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The Michell frame is usually understood as a limiting case for low densities
of material, where the interaction of thin members in a planar frame can be
ignored. Thus, we are concerned with the limiting situation where the layers
in a layered material become “thin” relative to the cell size of the problem.
This can be modelled by letting the density of material tend to zero in an
asymptotic expansion. Taking the limit of zero density of material requires a
complementary rescaling of the loads and tractions to make the energy limit
well posed. We thus introduce a scaling parameter £ which reduces the layer
densities by rescaling the dimensions of the microstructure relative to the
unit cell The rescaled densities are

p=Enu, 4= p=£E&p.

We now use the rescaled densities together with an expansion of the stresses
and strains in the expressions for the optimized energies described above,
using only the terms of zero order in £ and requiring that the energies remain
finite in the limit of £ — 0. For the stress based case the stress expansion
reads

6ij= ...+& %0 +§ lo ! + o0 + Eoy + €20} +

For the energy to remain finite in the limit, the expansion in stresses must
be of order greater than or equal to 1. The zero-order part of the optimized
complementary energy II (see Sect. 3.3.1) then becomes (for all modes)

[ = 2E ——(lor| + lou])?
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rescaled layers,

[
1 -

| matenal volume
| reduced |

[ loads rescaled so
| energy is preserved
£

The rescaling of the layerings that leads to the Michell frame limit

corresponding to a rescaling of stress given by £o;; . This is expected from
equilibrium considerations for the unit cell.

The rescaling at the limit of £ — 0 implies that the upper constraint on
bulk density p is not active. Thus the optimization over p under the volume
constraint results in the stress based problem (3.17) reducing to the form

min | [ ol +lonlin}
dive+f=0 \/{1

m-n=t
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This is the classical Michell problem formulated in stresses. Here the specific
reference to the volume constraint is not present, as the Lagrange multiplier
for this constraint only enters as a scaling parameter which has no influence
on the form of the optimal solution. The problem corresponds to a lay-out
problem, where the cost of carrying the principal stresses is minimized over
all statically admissible stress fields. This corresponds directly to the classical
stress-based truss optimization problem stated as

min ) — (¢ +4q)
qTt.a” i—1 7
st.:B(qt —q7)=f, ¢ >0,¢7 >0,i=1,...,m,

which is a problem in plastic design. Here, ¢;", g; are the truss bar member
forces in compression and tension, respectively, B is the compatibility matrix,
[; the lengths of the bars and 7; the yield limit for bar number i . This problem
is equivalent to the problem of fixed volume, minimum compliance design of
an elastic truss structure with Young’s moduli E; = % and a volume equal

to the optimal volume for the plastic problem, thus taking the development

- =8000

W.o=0as W =05 % =075 Sl =1

000

%, =025 °4 =.05 °% =075
The shape of single inclusions of void in a cell of a homogenlzed, periodic medium m|n|m|zmg complementary energy (Vigdergauz-
like structures for v=1/3 and a density p = 0.5) . Results for a range of principal stress ratios of a macroscopic stress field
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3.4 Comparing optimal energies

A key question for understanding the nature of the results that can be obtained from
optimization of material distribution is a comparison of the stiffness parameters of various
microstructures at hand. For compliance design the local anisotropy problems give the
relevant measures to consider, i.e., one works in terms of strain or complementary energies.
It is known from work in the theoretical materials science that the optimal complementary
energy for rank-2 layered materials constitutes the attainable lower bound on the
complementary energy of any composite constructed from void and an isotropic, linearly
elastic material with Young's modulus E and Poisson's ratio v. This means that any elasticity
tensor Ey, related to the given material satisfies that

585 101 + 01 — 2L = p+ pv)ogor] if aror <0,

g 1-1

[E;';-m] 1o > { ﬁ [0} + 0%+ 2(1 — p— pv)ogory) if o101 >0,

for any stress tensor o with principal stresses o, o,. We have seen that this upper bound on
the stiffness of a composite can also be expressed in terms of strain energy. As we have
seen, the bound can be attained by a rank-2 layering that have two length scales. For
stresses with ¢,0,>0, single scale, single inclusion microstructures which attain the bounds
have been presented before. For illustration, previous figure shows a range of single
inclusion Vigdergauz-like microstructures for a range of positive as well as negative
values of o,/ 0, ; these structures have been computed by the inverse homogenization
methodology. Note, however, that for (0,0, <0 no single scale periodic composite can
obtain the bounds, and any composite obtaining the bound (in 2-D) must be degenerate.
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Comparison of the optimal (minimal) complementary energy as a function of the ratio of the
principal stresses, for a density p» = 0.5, and for various types of microstructures and
interpolation schemes (material and void mixtures). The Vigdergauz-like structures are
shown in previous figure.
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For their use in optimal topology design it is useful to compare energies attainable by
other microstructures and interpolation schemes with the bound. Previous figure thus
shows (for p=0.5) a comparison of the optimal bound, achievable by the ranked layered
materials, with the range of minimal complementary energieswhich can be obtained by
the SIMP interpolation, by microstructures with square holes, by microstructures with
rectangular holes, and by the Vigdergauz microstructures. What is noticeable is how
close the various energies are for stress fields close to pure dilation, while shearing
stress fields demonstrates a considerable difference. In the Ilatter case, the
microstructural based models are considerably stiffer than the SIMP model. Moreover,
the microstructure with square holes is notably less stiff for uni-axial stresses compared
to the other microstructures, since the imposed symmetry of this microstructure here
hinders an efficient use of material. The plots of the complementary energy explains
many features of computational experience with the various interpolation schemes. For
compliance optimization, the complementary energy should be minimized. As ranked
laminates are efficient also at intermediate densities, optimal design with this material
model leads to designs with typically rather large areas of intermediate density. This is
also the case when using the microstructures with rectangular holes and the Vigdergauz
microstructures. Thus if such materials are used for obtaining black-and-white designs,
some other form of penalization of intermediate density has to be introduced, as
discussed earlier. On the other hand, the SIMP model and the microstructure with square
holes usually lead to designs with very little "grey", as intermediate values of density
tend to give poor performance in comparison with cost.
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The multiload case

For the local anisotropy problems for multiple loads, one works with a weighted average of
strain or complementary energies. Also here the optimal bound (i.e., the lowest average
complementary energy) can be found by using rank-N layered materials. One can here
benefit by working with the moment-based parametrization of stiffness by moments. As
above, it Is instructive for this situation also to compare this optimal energy with
computational results (inverse homogenization) that approximate the energy bounds by use
of single scale microstructures. The example below considers four load cases. The same
weight factor is used for each pair of load cases, where the first pair gives tension and the
second pair gives shear. The weighting factors on the energies are written as w, = A and w,
= (1-») where A varies from zero to one, where zero corresponds to the tension load
situations and A equal to one corresponds to shear.

i L‘
p=0.5 3 [, ;l | — i
1 ===Bound = = _ L= : 1-% + 1y A T i

Compitidd " e®®™" Foceweass Do B I

- =
4---
B -
T T T T T T T T T 1
0 0.2 04 0. .8 I

A p=05,A=02  p=0.5,A=0.5  p=0.5,A=08

Energy

Comparison of the complementary energy of optimized base cells for a multiload situation
with p=0.5 (see text). The single scale composites are obtained with square base cells
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3.5 Optimal energies and the checkerboard problem

Previously we showed by example that a checkerboard of material in a uniform grid of
square Q4 elements has a stiffness which is comparable to the stiffness of a p=1/2 variable
thickness sheet. Let us here formalize this in light of the energy considerations carried out
so far. For example, consider the optimal design of a planar, infinite and periodic medium
with an average density of material equal to 1/2 and subject to an average, macroscopic

strain £. The minimization of compliance then corresponds to the problem:

max min _ W¥{p,u) .
posp>=05 u, periodic

with 7(E, p,u) = / ppE?_J-H (& = e(u));; (€ — (u))y, dR2
1

where we use a SIMP interpolation. Assuming now that the displacement is restricted to the
space of Q4 discretizations for a square mesh we first note that if p is distributed in a 0-1
checkerboard pattern in this mesh, then

1
- 0 =
min lpp,u) = 5 B uijer

wEQd, periodic 2

This can also be understood as follows: the Q4-homogenized properties of a
checkerboard pattern is %E”. By Q4-homogenized we mean the homogenized
properties that one obtains if the displacement fields are restricted to Q4
discretizations at the level of the checkerboard.
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For the above design problem we also have:

i U(p,u) < E}ipi€ijErdQ
ueQ4, periodic (‘ﬂ’ ) < Qpp ijkl=ij

1

= ijklé,;jfj;g/!;ppdﬂ < EEEjHEiigH :
Thus the checkerboard pattern is an optimal design, for the model with Q4-displacements.
This is unphysical for several reasons. First, the true homogenized material parameters for a
checkerboard of material and void is actually zero. Second, the stiffest material that can be
constructed is the rank-2 layered composite, which has a strain energy W. Comparing, we

obtain that

— 1 -
Wi(p=05¢) < EHE,-HEI- ki

where equality only holds if the principal strains satisfy E:% = —v (with the
convention |£;| > |£;7]). This means that a Q4-checkerboard grossly overes-
timates the stiffness, to the extend that it is “stiffer” than the stiffest lay-out
of material (the stiffness corresponds to the Voigt bound, which cannot be
realized by a composite).



Thank you for your attention
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