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2. Optimized energy functionals

The introduction of composite materials as part of the design formulation signifies that the
goal of the optimization is both to determine the optimal spatial distribution of material as
well as the optimal local use of this material. If we allow the material variables to vary from
point to point it seems reasonable to accentuate this local optimal choice of microstructure,
and this perspective gives the inspiration for some alternative formulations of optimization
problems involving composites.
2.1 Combining local optimization of material properties and spatial optimization of material 
distribution

In the following, we will consider the material distribution method for general anisotropic
materials where an extra set of local variables (for example cell rotation and some geometric
parameters) define the material tensor E of the problem. In turn the local variables also
determine the pointwise density ρ of material (the bulk density), or rather, the density ρ
determines the volume of material available for the pointwise (local) construction of E.
Within this framework we can then write the minimum compliance design problems as
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The basic idea is then to interchange the optimization over the design of the
microstructure and the optimization over stresses or displacement. This interchange
gives valuable insight in problem structure and provides us with a basis for
constructing some alternative solution procedures and computational schemes.

The interchange of min-min in the stress formulation results in an equivalent
problem as the constraint sets for the two operators in the inf-inf problem are given
entirely in terms of the variable over which each individual infimum is sought.
Introduction of, for example, stress constraints at the outer design level of problem
would destroy this feature. For the displacement formulation the interchange will in
general not result in an equivalent problem. Nonetheless, as we have that

for any function of two parameters, the interchange will provide us with an upper
bound on the optimal objective and thus a lower bound for the compliance of the
optimal structure. In situations where the problem satisfies conditions for the
existence of a saddle value (saddle point), the interchange will result in an equivalent
problem also for the strain case - this holds if we work in the framework of layered
materials, for a free parametrization of the tensor E and for laminated plates.
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The interchange of equilibrium analysis and optimization of local material properties 
results in a reformulated displacement based problem
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For the optimization problems of above, we have two coupled optimization problems, which we
label the local anisotropy and the material distribution optimization problems, respectively. The
material distribution problems are the "master" problems (the outer problems) of this hierarchical
formulation and they deal with the spatial distribution of resource/material (a global problem). The
local anisotropy problems are the inner "slave" problems address the question of optimal choice of
material (a local problem).
The local anisotropy problems correspond to finding the pointwise stiffest material for a given fixed
strain or fixed stress field and a given density of material. This is a standard problem setting in the
theory of variational bounds on effective moduli of anisotropic materials. It is of great importance in
its own right and has been the subject of intense studies in material science.
The equilibrium problem seeks kinematically admissible equilibrium displacements for the locally
optimum energy functional, for a given distribution of resource ρ, while the equilibrium problem
seeks statically admissible equilibrium stress fields which minimize the locally optimum energy
functional, again for a given distribution of resource ρ. It should be noted that, since the locally
optimum energies depend on the displacement and stress fields in a complex fashion via the
optimization problems, the inner equilibrium statements of the problems are in fact constitutively
non-linear and non-smooth elasticity problems, except in very special cases. However, as we shall
see in the coming sections, there are important cases of material modelling where these equilibrium
problems become problems in linear elasticity or where the non-smoothness is isolated to
unimportant strain/stress values. For the strain based problem, it is worth remarking that the
equilibrium problem remains a convex problem after the optimization over local material properties.
The optimal strain energy density W (ρ, ε) is derived as a maximization of convex functions in the
strains and is thus in itself convex in these variables.
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2.2 A hierarchical solution procedure

The problem separation described above naturally leads one to consider a different
computational implementation as compared to the procedure described previously. Such an
implementation can for example work with problem in the displacements and density only.
We accordingly consider the solution as given, either through an analytical or a
computational procedure. Then it has exactly the format of the compliance problem dealt
with the SIMP model, that is, the compliance is a function of the density and is given by the
solution of a minimum potential energy problem. This problem can then be solved for
example by an optimality criterion method or by MMA. Here one needs sensitivity
information of the compliance, i.e., derivative information for the equilibrium problem,
which is given by the derivative of the optimized strain energy W with respect to the density.
For an analytically derived optimal strain energy functional this derivative is straightforward
to obtain, while for a computationally derived optimal strain energy functional this
derivative is given simply as the Lagrange multiplier for the volume constraint of problem,
i.e., the derivative is given directly from the computation of the optimal energy. The
equilibrium problem is in general a non-linear problem, so the equilibrium problem requires
an inner iteration loop at this point, but computational experience has shown that, as the
optimization over the bulk density is in itself iterative, only one (or a few) equilibrium
iterations need to be used for each design update.
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One of the advantages of the computational program just described is that the main
flow of the procedure is independent of the modelling of the material used for the
description of design. This latter information is added as an external module. This
feature makes it possible to generate flexible procedures, where the material model
can be changed easily.

Optimal design using a hierarchical approach. The resulting 
structure is here a low volume solution to the problem



In many implementations the non-linear analysis iterations are avoided. Thus linear
analysis is applied for the equilibrium problem with fixed material parameters and
problem is used to generate the parameters of the optimal stiffness tensor for each
displacement iteration. The direct coupling between the material parameters and the
displacements is therefore ignored in the implementation of the linear equilibrium
analysis. This computational procedure is especially attractive for multiple load
problems where the use of the linear analysis also circumvents the coupling between
the displacements for the different loads that is introduced.
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The procedure described here has been implemented for a broad variety of models. It
is particularly well suited for the parametrization by moments of the effective
parameters for rank-N layered materials needed for multiple load cases. Here the
inner problem becomes a convex problem that can be solved efficiently by
computational means. In other situations, as we shall see in the following sections,
this inner problem can actually be solved analytically. One can go one step further
and solve the inner anisotropy problem by the material design method. In this
situation one uses only microstructures which involve one length-scale, and the
microstructure is designed by a topology design method. The computations involved
in this approach are quite massive: the number of local topology design problems
equals the number of finite elements in the mesh defining the material distribution ρ.
However, all these local problems are independent and can be solved simultaneously
using parallel processing methodologies.
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Additional problem reduction
In the development above we could have performed one further interchange for the
stress case3 , namely the interchange of the optimization over density and the
extremum form of the equilibrium problem. Such an interchange results in the
problem

We have written problem in a form which underlines that this reduced problem
should be interpreted as an equilibrium only problems for a globally optimized
complementary energy expression. The optimized energy is non-smooth and
couples all degrees of freedom through the volume constraint. This latter
complication can be circumvented by considering the volume constraint of the
original problem in the form of a penalization and not a constraint. With this
interpretation problem becomes

where A is now a fixed penalty factor. For a computational procedure for
problem above one could solve the inner problem by analytical or computational
means and implement a non-smooth optimization method for solving the
equilibrium problem. As outlined above, based on linear analysis, both the
material properties and the density are updated based on the algebraic solution of
the optimization of the complementary energy.
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3. Optimized energy functionals for the homogenization modelling
In the following we will compute the optimal strain and complementary energies for rank-2
layered materials in 2-D, corresponding to the local anisotropy optimization problem for
single load minimum compliance design. That is, we will develop the solution to problems
for the class of composites that are rank-2 layered materials.

We use here the parametrization of the stiffness of the rank-2 material by the two layer-
thicknesses µ and γ. If the primary layerings of density µ are placed in the 2-direction of our
reference frame, the effective material properties in plane stress are

The MBB beam. The optimal distribution of material and
associated microstructures obtained from a hierarchical
approach. The local material anisotropy problem has here
been solved numerically, using topology design of the unit
cell of a composite. The cell is not rotated - the necessary
rotation arises from the material design
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3.1 The stress based problem of optimal layered materials
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we observe the surprising fact that the optimized energy
corresponds to a material law which for the regions with two
layerings is linearly elastic and quasi isotropic. For the single
layering regions the material law is non-linear. Note that the
isotropy of the optimized material law is natural in view of the
rotation of the rank-2 material. The linearity and isotropy of this
extremal material law can be understood in a broader context from
the so-called translation method for obtaining optimal bounds on
effective moduli of composite materials.
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The expression above is the solution to the problem for the single load case we consider.
For the stress based problem a further reduction to a design-free problem is possible. To
this end we should optimize with respect to the density of material as well. Taking the
volume constraint into account for the inner problem, we minimize with respect to the
bulk density ρ the expression , where Λ ≥ 0 is a Lagrange multiplier for the volume
constraint. By fairly straightforward algebraic manipulations, we get the following
optimality condition for the bulk density ρ:
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This constraint determines the value of the Lagrange multiplier A for any relevant volume
constraint. Thus the volume constraint implies that we can consider Λ as a function of the
principal stresses. Taking this feature into consideration, the optimal complementary energy
density can be expressed in terms of stresses only, and we have reduced the stress based design
problem to a design independent non-linear, non-smooth elasticity problem of the form.

3.2 The strain based problem of optimal layered materials

Optimal design using an optimized rank-2 material
strain energy density. Optimized designs computed
using element wise constant density function and a
8-node displacement model. Center: the optimal
density distribution, and Right: the associated
principal stress distribution for a volume fraction
of 20%. Note that grey area is not limited to
biaxial response. The bicycle wheel like design has
an area with radial uniaxial stress as well as a rim
of circumferential uniaxial stress
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and this is thus the final reduced form of the strain based formulation

3.3 The limiting case of Michell's structural continua
The lay-out theory of Michell frames and its extensions to
flexural systems is the classical approach to topology and
lay-out design of structures. It has been illustrated earlier
that the material distribution method predicts structures that
resemble truss-type lay-outs and Michell continua type
layouts, when constrained to small volumes of available
material. We show here that this limiting process can be
formalized through an asymptotic expansion of the problem
under rescaling of the geometric and load data.

discrete optimum trusses
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A Michell frame is a continuum in dimension two consisting of two mutually
orthogonal fields of tension/compression only members that are directed along the
principal strain. The total amount of material used is described by two independent
densities of material, constrained to satisfy some volume constraint. The problem is
a continuum analogue to the single-load truss optimal design problem, and there
are a number of equivalent stress or strain based problem statements. The frame is
described by a specific strain energy of the form



Lecture 14: Design with anisotropic materials_2



Lecture 14: Design with anisotropic materials_2

The rescaling of the layerings that leads to the Michell frame limit
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The shape of single inclusions of void in a cell of a homogenized, periodic medium minimizing complementary energy (Vigdergauz-
like structures for v=1/3 and a density p = 0.5) . Results for a range of principal stress ratios of a macroscopic stress field
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3.4 Comparing optimal energies

A key question for understanding the nature of the results that can be obtained from
optimization of material distribution is a comparison of the stiffness parameters of various
microstructures at hand. For compliance design the local anisotropy problems give the
relevant measures to consider, i.e., one works in terms of strain or complementary energies.
It is known from work in the theoretical materials science that the optimal complementary
energy for rank-2 layered materials constitutes the attainable lower bound on the
complementary energy of any composite constructed from void and an isotropic, linearly
elastic material with Young's modulus E and Poisson's ratio v. This means that any elasticity
tensor Eijkl related to the given material satisfies that

for any stress tensor σ with principal stresses σI, σII. We have seen that this upper bound on
the stiffness of a composite can also be expressed in terms of strain energy. As we have
seen, the bound can be attained by a rank-2 layering that have two length scales. For
stresses with σIσII≥0, single scale, single inclusion microstructures which attain the bounds
have been presented before. For illustration, previous figure shows a range of single
inclusion Vigdergauz-like microstructures for a range of positive as well as negative
values of σI/ σII ; these structures have been computed by the inverse homogenization
methodology. Note, however, that for (σIσII ≤0 no single scale periodic composite can
obtain the bounds, and any composite obtaining the bound (in 2-D) must be degenerate.
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Comparison of the optimal (minimal) complementary energy as a function of the ratio of the
principal stresses, for a density ρ = 0.5, and for various types of microstructures and
interpolation schemes (material and void mixtures). The Vigdergauz-like structures are
shown in previous figure.
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For their use in optimal topology design it is useful to compare energies attainable by
other microstructures and interpolation schemes with the bound. Previous figure thus
shows (for p=0.5) a comparison of the optimal bound, achievable by the ranked layered
materials, with the range of minimal complementary energieswhich can be obtained by
the SIMP interpolation, by microstructures with square holes, by microstructures with
rectangular holes, and by the Vigdergauz microstructures. What is noticeable is how
close the various energies are for stress fields close to pure dilation, while shearing
stress fields demonstrates a considerable difference. In the latter case, the
microstructural based models are considerably stiffer than the SIMP model. Moreover,
the microstructure with square holes is notably less stiff for uni-axial stresses compared
to the other microstructures, since the imposed symmetry of this microstructure here
hinders an efficient use of material. The plots of the complementary energy explains
many features of computational experience with the various interpolation schemes. For
compliance optimization, the complementary energy should be minimized. As ranked
laminates are efficient also at intermediate densities, optimal design with this material
model leads to designs with typically rather large areas of intermediate density. This is
also the case when using the microstructures with rectangular holes and the Vigdergauz
microstructures. Thus if such materials are used for obtaining black-and-white designs,
some other form of penalization of intermediate density has to be introduced, as
discussed earlier. On the other hand, the SIMP model and the microstructure with square
holes usually lead to designs with very little "grey", as intermediate values of density
tend to give poor performance in comparison with cost.
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The multiload case
For the local anisotropy problems for multiple loads, one works with a weighted average of
strain or complementary energies. Also here the optimal bound (i.e., the lowest average
complementary energy) can be found by using rank-N layered materials. One can here
benefit by working with the moment-based parametrization of stiffness by moments. As
above, it is instructive for this situation also to compare this optimal energy with
computational results (inverse homogenization) that approximate the energy bounds by use
of single scale microstructures. The example below considers four load cases. The same
weight factor is used for each pair of load cases, where the first pair gives tension and the
second pair gives shear. The weighting factors on the energies are written as w1 = λ and w2

= (1-λ) where λ varies from zero to one, where zero corresponds to the tension load
situations and λ equal to one corresponds to shear.

Comparison of the complementary energy of optimized base cells for a multiload situation 
with ρ=0.5 (see text). The single scale composites are obtained with square base cells



3.5 Optimal energies and the checkerboard problem
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Previously we showed by example that a checkerboard of material in a uniform grid of
square Q4 elements has a stiffness which is comparable to the stiffness of a ρ=1/2 variable
thickness sheet. Let us here formalize this in light of the energy considerations carried out
so far. For example, consider the optimal design of a planar, infinite and periodic medium
with an average density of material equal to 1/2 and subject to an average, macroscopic
strain ε. The minimization of compliance then corresponds to the problem:

where we use a SIMP interpolation. Assuming now that the displacement is restricted to the
space of Q4 discretizations for a square mesh we first note that if p is distributed in a 0-1
checkerboard pattern in this mesh, then
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For the above design problem we also have:

Thus the checkerboard pattern is an optimal design, for the model with Q4-displacements.
This is unphysical for several reasons. First, the true homogenized material parameters for a
checkerboard of material and void is actually zero. Second, the stiffest material that can be
constructed is the rank-2 layered composite, which has a strain energy W. Comparing, we
obtain that



Thank you for your attention
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