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4. Design with a free parametrization of material

The goal of this section is to formulate a structural optimization problem in a form that
encompasses the design of structural material in a broad sense, while also encompassing
the provision of predicting the structural topologies and shapes associated with the
optimum distribution of the optimized materials. This is accomplished by representing as
design variables the material properties in the most general form possible for a (locally)
linear elastic continuum namely as the unrestricted set of positive semi-definite constitutive
tensors.

In the modelling of the optimization problem the parameters which describe the structure
are, as in the preceding sections divided into two sets: the parameters defining the local
material tensor and those that describe the specific cost of the material. In parallel with the
developments for layered materials, it can be shown that the minimum compliance
optimization of a structure with respect to these two sets of parameters can be performed
independently. Furthermore, the optimization with respect to the local material tensor
parameters can be performed analytically. This derivation is fairly simple for both the
single load case and the multiple load problem and for any dimension of the spatial
domain. Thus the more general problem statement is considerably simpler as compared to
the homogenization topology problem.
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The very general framework of optimizing directly on a free parametrization of the
material tensor results in developments which provide an attainable global lower bound
on the performance of any structure designed for the same loads, boundary conditions
and ground structure. At the same time, it provides an attainable global upper variational
bound on the effective moduli of any elastic material, within the cost measures defined.
Also, the considerable simplifications that can be demonstrated indicate that the broader
form of a material design problem, as described and analyzed in this section, constitutes
effective means for studying the global structural optimization problem involving sizing,
shape, topology and material selection.
The results that we can obtain within the assumption of a locally unconstrained
configuration of material are informative towards gaining insight into the nature of
efficient local structures. This is useful for theoretical as well as practical purposes. As
an example of the latter, recent work has thus employed the framework of free material
design to generate procedures for tape-lay-up in composites. Also, the original
theoretical work on the subject laid the seeds for the very successful use of topology
design methodology for design of materials. Here one tries, for practical reasons, to
understand how to match a particular local microstructure to the specific form of a
elasticity tensor, for example the ones predicted here.
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4.1 Problem formulation for a free parametrization of design

Modelling considerations
In the homogenization method, the total volume of material, defined at the micro level, provides a
natural cost function for the optimization problem. There is not at first glance a natural cost function for
the general material design formulation we consider here, where we allow for all possible positive semi-
definite constitutive tensors. Instead, we use certain invariants of the stiffness tensor as the measure of
cost, thus ensuring that the optimal design solutions are independent of the choice of reference frame.
For physical reasons, the possible stiffness tensors in the design formulation are restricted to the set of
positive semi-definite, symmetric tensors. Also, suitable cost functions must have the property of frame
indifference. Since the goal is to optimize the local material properties as well as the global structural
response, we choose to consider cost in terms of invariants of the constitutive tensor itself. Specifically,
we choose for the developments in the following two invariants as examples of local cost:

i.e., respectively, the trace and the Frobenius norm of the 4-tensor E. Note that these measures are
homogeneous of degree one. Thus comparing to the conventional 2D problem for the design of material
distribution in a sheet (where total cost is proportional to the volume of material), the above "cost
measures" correspond in their role to the sheet thickness. More general considerations are also possible,
combining several invariants of the tensor to provide for generalized cost measures which can be varied
to cater for specific design goals, for example governed by available fiber composites.
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Problem statement
The problem we consider is the multiple load minimum compliance problem generalized to
the situation where the material properties themselves appear in the role of design variables.
This means that we consider a design parametrization (a definition of Ead) in the form
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with M load cases. Here we have, provided a separation between the properties of the tensor
E that can be optimized locally (at each point in the structure) and those that must be
treated as a distributed parameter problem over the full domain.
In the max-min problems above we have introduced an upper bound on the resource
densities in order to ensure that the problem is well posed. A possible non-zero lower bound
is also catered for. Note that the resource constraints are convex for both case A and B.
In the developments to follow, we show that an analytical optimization actually can reduce
the number of free design variables from 6 in dimension two and 21 in dimension three to
only one in both dimensions (in any dimension that is).

Splitting the problem into a series of sub-problems
we can rearrange problem (3.29) and split it into two coupled optimization subproblems (
the local anisotropy problem, and the material distribution problem). The interchange of
the min and max for the inner problems of (3.29) here gives an equivalent problem as
(3.29) satisfies the conditions for existence of a saddle point: the objective function is



4.2 The solution to the optimum local anisotropy problems
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In this section we study the solution to the local anisotropy optimization problem. 
To this end we define the positive semi-definite, symmetric 4-tensor

and write the optimization of the energy

The Frobenius norm case.
For the norm resource measure, problem above corresponds to finding the tensor
E of given norm that has the largest standard inner product with the given tensor
A. The optimal stiffness tensor is thus proportional to A and because of the
resource constraint it is (uniquely) given as



Lecture 15: Design with anisotropic materials_3

The corresponding extremal energy functional is

We have denoted the optimum energy density function per unit amount of resource ρ. Here
and elsewhere we embellish with an upper inverted “hat” quantities per unit amount of
resource. Note that the optimized material properties represented by Eijpq do not possess any
specific symmetry properties and the material is thus generally anisotropic for all but very
special cases. The optimized material tensor can have zero eigenvalues, and this happens
always if the number of load cases that we consider is one or two in dimension 2 or one to
five in dimension 3. For more than this number of load cases, the material will generically
be stable, with zero eigenvalues only appearing if the strain fields are linearly dependent.
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The trace case. 
For the trace resource measure, problem corresponds to solving a linear programming 
problem, with objective given by the tensor A.
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The single load case
For the case of a single load case (M=1), the optimal energy in the trace and 
norm case reduce to the same expression, namely
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Note again that the optimized material is indeed orthotropic, and that the material
stiffness tensor has two zero eigenvalues. Thus, the extremization of the strain energy
density results in a material which is at the utmost limit of feasibility for satisfying the
positivity constraint, and the material can only carry strain fields which are direct
scalings of the given strain field for which the optimization was undertaken. This
underlines the true optimal nature of the material. Such behaviour of extremized
materials was also seen in the homogenization method for topology design with one
given material; in that case the optimized material has one zero eigenvalue
corresponding to vanishing shear stiffness.
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This reduced problem is exactly equivalent to the variable-thickness design problem
for a sheet made of an isotropic zero-Poisson-ratio material, with the density ρ playing
the role of the thickness of the sheet.
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Let us briefly for the single load case consider the stress based formulation for the 
design parametrization used here. This problem can be stated as

where we take the infimum with respect to all positive definite stiffness tensors, in
order to give meaning to Interchanging the equilibrium minimization with
the local minimization of complementary energy and using that we from a
spectral decomposition can derive that

for both of our resource measures, we see that the stress based case has a reduced 
formulation

as expected in light of the form of the displacements based formulation above



4.3 Analysis of the reduced problems

Lecture 15: Design with anisotropic materials_3

The equilibrium problem for the optimized energy
The solution to the local anisotropy problems has shown that the equilibrium problem with
the optimized strain energy functions for both cases we consider can be written as

This is a coupled, non-linear problem for all the load cases at once, the coupling arising
through the optimized strain energy functional.
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The optimization problem in resource density 
The reduced optimization problem is as described earlier
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An extension to contact problems
It is clear from the analysis above that all steps can be performed without restriction for
problems that include design independent, convex displacement constraints in the
equilibrium statement. Thus design problems including unilateral contact can be treated
by a similar analysis.
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where the inner problem is the minimum potential energy principle expressed for a
contact problem. For both resource measures this problem can be reduced to the
forms seen earlier, the only change being the addition of the contact condition on the
admissible displacements. Also, the optimal materials are given by the same
expressions.
Materials with piecewise linear elastic behaviour 
The general framework of free material optimization can also be extended to cover the
design of a structure and associated material properties for a system composed of a
generic form of nonlinear softening material. Here the optimal distribution of material
properties depends on the magnitude of load, in contrast to the case with linear
material. The relevant mechanics is now represented in terms of a generalized
complementary energy principle and the design objective is likewise based on
complementary energy. Net material properties of the softening medium reflect a
superposition of properties associated with each of a number of material constituents,
and the collection of these properties, expressed through the stiffness tensors for each
of these constituents, provides the problem with a set of design parameters. It is the
availability of an extremum problem formulation for the analysis part of the problem
that makes it possible to treat the design of nonlinear materials conveniently. The
formulation used amounts to a generalized form of the complementary energy
principle, and is stated here in stresses alone. With the superposition of M softening
components and one purely elastic basis component to make up the total stress, the
analysis problem has the form:
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4.4 Numerical implementation and examples
Computational procedure for the single load case
For the single load case, both the trace and Frobenius norm resource measures lead to the
same reduced problem of what amounts to a variable thickness sheet problem for a sheet
made of a zero-Poisson-ratio material. In this case we have a design problem that shares
important features with minimum compliance problems for trusses, and the problem can
be efficiently solved using one of the algorithms on truss topology optimization. This is
based on the format of the problem formulation, which in discretized FE form can be
rewritten as a smooth and convex optimization problem in displacements only (with the
notation of):

This format is well-suited for solution by the so-called PBM interior point. Note that above
only involves the displacement variables (and two auxiliary variables), that it is a linear
optimization problem with quadratic constraints, and that the Lagrange multipliers for the
constraints determines the values of the density ρ



Computational procedure for the general case
The presence of multiple load cases introduces significant complications if the reduced
energy expressions are applied. These complications arise because the locally optimal
material couples deformations associated with the different load cases in a complex way
that, as we have already seen, involves non-linear, non-smooth energy functionals which
depend on all the load cases simultaneously. This stands in sharp contrast with the solution
of the problem of design for a single load case. Early numerical work for the multiple load
scenario employed an iterative secant method for solving the inner non-linear equilibrium
problem and an optimality criteria method for the density optimization. This can be applied
for the Frobenius norm case, but experience has shown that the complicated non-
smoothness for the trace resource case prevents the use of this approach.
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An efficient alternative is to apply the formulation also in the multiple load case. Limiting
ourselves to the trace case, a reformulation in the spirit is also possible, but it now involves
constraints stating that certain matrices are positive definite; in the trace case the optimal
specific energy W is the largest eigenvalue of the tensor A and this can be expressed as



This also means that WA is bounded by a constant k if and only if
This can, as A is the sum of dyadic products, be rewritten as a condition that a certain
matrix, which is linear in the strains is positive semidefinite. Based on which it is
thus possible to write a FE discretized version of the problem as a semidefinite program
in the displacements only where also contact conditions are treated). The advantage of
this reformulation is that such problems can be solved very efficiently by modern
mathematical programming methods.
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4.5 Free material design and composite structures
The result of the free parametrization of material is in a sense the ultimately best
physically attainable material and it is natural to utilize the full information obtained in the
results in an attempt to design an attainable advanced material. This obviously depends on
the type of the advanced material available and on the manufacturing technology.

Realization by tape-lay-up
First we consider a procedure that relies on the free material optimization for design of
composite materials manufactured by the so-called tape-laying technology. In a post-
processing phase one can here generate curves which indicate how to lay the tapes and
how to organize the thickness of the tapes. This gives a good initial approximation for an
optimization procedure that also takes into consideration all the technological restrictions
of the tape-laying process.
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The post-processing uses that the optimal material for the single load free material design is
orthotropic and that the axes of orthotropy correspond point-wise to the orthogonal directions
of principal strains or stresses. This allows an interpretation where this governs the direction
of fibres in a (weak) resin material. To get an impression of the lay-out of these fibres and the
thickness, a graphical post-processing tool can be employed that plots the vector fields of
principal strain direction by means of smooth curves. The optimal load path is interpreted as
that of a fibre reinforced material, for example in the form of pre-pregs of Carbon Fibre
Reinforced Plastic (CFRP) tapes. Tape-laying is thus a way to bridge the gap between free
material design and the preliminary design phases for structures constructed from such tapes.

Tape-laying example. Top left is the stress directions from the free material optimization 
and a super-posed Michell solution. Top right shows the laying of the first tape. Bottom 

pictures show two tape layers obtained by postprocessing of the top left design.
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Realization by materials with microstructure
Alternatively, skeletal bar structures could be used to generate microstructures that mimic the
behaviour of the optimized material tensors, see figures below. These results are obtained
numerically by an inverse homogenization operation that works with unit cells constructed
from truss elements. The results substantiates the theoretical finding that any stiffness tensor
can be constructed from layered materials made from an infinitely strong phase and an
infinitely weak phase.

Minimum weight 2-D microstructures (upper row shows the unit cells, lower row is an assemblage of cells) for obtaining materials with
the indicated stiffness in the axis of the cell, corresponding the optimal material for a single strain field ε=(1,1,0) This is an isotropic
material with Poisson's ratio 1.0. The three designs all have the same weight and are obtained using a 4 by 4 equidistant nodal lay-out in a
square cell. All 120 possible connections between the nodal points are considered as potential members. Members not shown for the
optimum cell (and structure) are at the minimum gauge which is 105 times smaller than the maximum gauge. The different designs are
obtained by penalization of the lengths of the bars.
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Minimum weight microstructures in dimension 3 for obtaining materials which corresponds to the optimal
material for a single strain field ε = (1,1,1,0,0,0). The three designs all have the same weight and are obtained
using a 4 by 4 by 4 equidistant nodal lay-out in a cubic cell. All 2016 possible connection between the nodal
points are considered as potential members. Members not shown for the optimum cell (and structure) are at the
minimum gauge. The different designs are obtained by penalization of members with certain lengths. The
topologies in a) and b) have full cubic symmetry. The topology in c) has bars on the surface of the cell only and is
not cubic symmetric, even though the effective parameters are isotropic. Notice the similarity between the 3-D
microstructures and the 2-D microstructures shown in previous figure.



Thank you for your attention
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