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5. Plate design with composite materials
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5.1 The homogenization approach for Kirchhoff plates
In analogy with the topology design problem treated so far, a relaxation of the Kirchhoff
plate design problem6 requires that one considers plates with infinitely many, infinitely thin
integral stiffeners. This can be in the form of a rank-2 structure of stiffeners of height

on a solid plate of variable thickness h, i.e. a planar rank-2 layering of the weak tensor
and the strong tensor

For the relaxed design problem we thus need to state the homogenization formulas for
Kirchhoff plates, more specifically the effective material parameters for rib-stiffened
plates. With these formulas at hand, the computational procedure for computing optimal
designs is completely analogous to the procedure described previously. The optimality
criteria for the densities are equivalent to those derived previously as well, with strains
and stresses interpreted as curvatures and moments. However, extra care is required for
use of the result on optimal rotations.
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In order to exemplify the difference to the plane stress situation, consider a constant
thickness, perforated plate with an orthogonal rank-2 system of stiffeners. The effective
bending stiffness is then

where the primary layering of density µ is in the 2-direction and the secondary layer has
density γ. This material law satisfies that , meaning that
the analysis of the minimum compliance plate problem is more tricky than the plane
stress case. As an example, there may be regions in a plate where an optimal, orthogonal
rank-2 layering is not aligned with the principal curvatures. We will not treat the plate
problem in further detail, as this is a major subject.



We do mention, however, that the optimal design of plates takes an extra twist when the
analysis modelling is taken into account. The design problem and its associated relaxation
can be viewed as a purely mathematical question of achieving well-posedness, but as any
plate model is an approximate model, it is natural to question the validity of the relaxation in
relation to the modelling restrictions / assumptions made to achieve the plate model under
consideration. Thus the use of thin, high stiffeners in a Kirchhoff plate model is in fact a
violation of the assumptions under which this model can be derived from 3-D elasticity. This
means that the developments above should be seen in the framework of achieving
regularization strictly within the Kirchhoff plate framework, ignoring eventual modelling
restrictions. The modelling problem should by no means be dismissed but lies outside the
scope of this presentation. The reader is referred to the literature for further information on
this problem as well as to studies of optimal thickness design of Mindlin plates within the
framework of the homogenization modelling.
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Cross-section of the upper half of a rib-stiffened plate with one field of stiffeners running along the normal of the cutting plane.
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5.2 Minimum compliance design of laminated plates
This section is concerned with the optimal design of the lay-up of laminated plates for maximum
stiffness. We consider optimization with respect to the ply thicknesses, fiber orientations and the
stacking sequence of the laminates, keeping the ply material properties and the shape of the plate
fixed. Instead of working directly with this mix of integer and real design parameters we employ a
design parametrization through the so-called lamination parameters. These represent the effective,
integrated properties of the laminate and are given as moments relative to the plate mid-plane of the
trigonometric functions entering in the frame rotation formulas for stiffness matrices. In this way the
properties related to the stiffness of the laminates are emphasized in the optimization model, while
the realization of the optimal effective properties is postponed for subsequent post-processing.
The developments below are strongly related to the free material design and to the homogenization
approach discussed earlier, and also here we can carry out an analytical derivation of the optimal
local properties of material. Moreover, we choose to extend the design space to include "chattering“
designs, thereby allowing infinitely many small variations of the fiber orientation in each point
through the thickness for each design domain of the plate. This corresponds to the introduction of
periodic composites for topology design and the use of rib reinforced plates in plate design.

Plate design of a clamped Kirchhoff plate subject
to uniform transverse load. Left: Optimal thickness
design (ill-posed). Right: Optimal distribution of
material with two fields of stiffeners. The design
data is hmin/hmax = 5.0 and hmax/hunif = 2.84. In
both illustrations only the variation over the
minimum gauge hmin is shown.
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Parametrization by lamination parameters
Before defining the lamination parameters we first need to express the constitutive
relations for a single ply of material in convenient form. Thus the elasticity tensor will
for convenience be written as a matrix

The index indicates that the constitutive parameters are given in the coordinate system
X. In another coordinate system x rotated the angle φ positive anti-clockwise relative
to the X-system, Ex is most easily expressed using the material parameters E1-7. To
ease the formulations later on, the constitutive matrix Ex is written in terms of five
symmetric matrices containing the material parameters as:
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where the material parameters E1-7 are expressed as

If the material is orthotropic in the X-system E6 = E7 = 0 and in the case of an 
isotropic material E2 = E3 = 0 as well.
We consider a laminate of the fixed thickness h made from several plies. Here
the orientation of the i'th ply with respect to a suitable, fixed frame of
reference is specified by φi and zi gives the location (dimensionless) of the
interface between ply i and i+1, see below. All the plies consist of the same
anisotropic material.

Sketch of a laminate with the global coordinate systems x and x’, a material system X and orientations of the plies shown.
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The lamination parameters in a global coordinate-system x are defined as the weighted
trigonometric integrals over the thickness (compare with the definition of the moments used
for parametrization of the stiffness rank-N layered materials):

Generalized lamination parameters
In the following we will consider lamination parameters arising from any arbitrary variations
of the ply angles through the thickness of the plate, including limits of rapidly varying
oscillations. We thus extend the definition of the lamination parameters to
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where P is the vector

The set of lamination parameters D constitutes a convex and compact set in R12 and
this property is expressed in the representation given by equations; convexity, for
example, follows from the possible use of a chattering design with a density of two
laminate angles (see also below).
The advantage of expressing laminate plate design in terms of the lamination
parameters is that one obtains a reduction in the number of variables to twelve (per
point or per design area), irrespective of the number of plies. Moreover, one avoids a
troublesome optimization over periodic functions of the rotation angles, as well as
working with a discrete number of plies. In the sense of topology design of choosing
between plies, the lamination parameters thus constitute the basis for an
interpolation model. Also, the convexity of the set of lamination parameters together
with the linear dependence of the stiffnesses on these parameters also leads to further
simplifications as seen also for the free material optimization problem.
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Minimum compliance of laminated plates
The problem of minimizing the compliance of a laminated plate can now be analyzed along
the lines used previously for free material design and for layered media. The design
variables are the lamination parameters varying from point to point throughout the plate
and we will base the developments on the multiple load case. As the stiffness matrices A,
Band D are all linear in the lamination parameters, the strain energy is linear (and thus
concave) in the lamination parameters. As seen for the free material case the problem thus
satisfies the conditions for existence of a saddle point and we can perform our analysis by
solving the local anisotropy problem together with the equilibrium problem. Here there is
no material distribution problem, unless one chooses also to consider a variable thickness h
as a design variable.

The local anisotropy problem for laminates 
The local anisotropy problem of finding the pointwise best use of material is for laminates 
of the form
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Here the displacement field at equilibrium uk for the load case k enters via the strain
energy density Wk (wk is the weight factor for this load case). We note here that the
objective function of problem is linear and that the constraint set is convex and compact.
There thus exists a solution among the extreme points of the convex set D.
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The pure membrane case

Let us now consider the situation of designing the lay-up for a situation of only in-plane loading, 
i.e. the pure membrane case. In that setting the strain energy density of the plate reduces to

Thus the optimization over the variables Pi gives the same result at any cross-sectional position
z of the plate. Together with the fact that the stacking sequence is of no consequence for the
membrane stiffness and the fact that any element can be constructed as a convex combination
of at most three points on the curve, this implies that the optimal
plate can be constructed from at most three plies. This holds for the single as well as the
multiple load case. In the single load case this can be reduced to at most two plies, as will be
shown below.
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So that it reduces to
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The analysis above is consistent with the result on the optimal rotation of an orthotropic
material derived by different means. It was remarked there that this problem does not
have existence of solutions in general and that some type of additional microstructure is
necessary. Here we use lamination parameters, and find that just two plies are required as
part of the optimal solution that we know exists. This simpler situation is possible as we
work with effective material parameters given directly as a summation of stiffness via the
out-of-plane stacking of the different plies.

Optimal three ply laminate for 
a plate with three independent 

single loads applied.
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6. Optimal topology design with a damage related criterion
Here we discuss an attempt at introducing damage related criteria in topology design of
continuum structures. We use an interpretation of continuum damage models, where a
variational statement is adopted to replace the standard internal variable representation. The
model is represented in the form of an optimal remodeling problem, where a damaged
material of reduced stiffness is distributed in a healthy structure so as to maximize the
compliance, i.e., to minimize overall stiffness, for a given set of damage loads. Thus the
treatment of the damage model is in itself a study of optimal structural design. Evolution
would be described as a timeseries of such static remodeling models, but we accept here the
limitation of only considering the onset of damage.

6.1 A damage model of maximizing compliance
The damage model takes the form of a design problem involving the layout of a structure
made from two materials, a stiff material and a flexible, damaged material. The structure we
consider is made of a linearly elastic material with elasticity tensor E+. Under the action of
the damage loads the material is damaged in some parts of the structure, leaving there a
more compliant material with elasticity tensor E-.
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By more flexible, it is meant here simply that we in terms of tensors have that E+ - E- > 0,
i.e., for any strains, the specific strain energy of the flexible material is strictly less than that
of the stiffer material. When damage occurs, energy is released, and we denote by K the
energy release per unit volume. Interpreting the distribution of damage as a material
distribution design problem, we impose that for a certain load, the damage is distributed so
that the compliance of the structure is maximized, making the structure as flexible as
possible among all distributions of damage.

The damage problem is thus formulated as a "design" problem as
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Here, we will not go into details on the relation between current model and other
types of models used in continuum damage mechanics. However, the close
relationship is evident if one solves in current model for the minimization over
stiffness tensors. One then obtains a minimum potential energy principle for the
damaged structure in the form

Optimal reinforcement of a frame. Left: The frame and loads,
etc., with the standard minimum compliance solution. Mid: the
solution of the design problem with damage taken into
consideration, Right: the corresponding distribution of damage
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Relaxed problem statement
Just as for the minimum compliance topology design problem, the damage models
above are not well-posed and we have to relax the problem by introducing composite
mixtures of the two phases in a development that is completely parallel to that for the
minimum compliance problem. Thus rank-2 materials also provide for a realization of
the most flexible composites, and the corresponding "optimal" energy can be derived.
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The first and second regimes of the strain energy correspond to the use of an optimal
rank 1 material consisting of one system of layers of the two materials, at one
microscale. The third regime corresponds to an orthogonal rank-2 layering, consisting of
two systems of layerings, at two scales. The inner layering consists of the stiff and
damaged material, the outer layering of this material layered with the damaged material.
Thus in the rank-2 structure the stiff material is surrounded by flexible material,
shielding this material in order to weaken the material as much as possible (for the fixed
volume fraction). The functional above constitutes the relaxed form for the problem,
Here we can go one step further and compute the final relaxed specific strain energy for
the damaged structure, i.e., the relaxed form of the energy.
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6.2 Design problems

In the topology design problem that we consider, the design is parametrized by the SIMP
model. This is assumed for both the healthy as well as the damaged phase. The minimum
potential energy principles governing a fully healthy structure and a damaged structure are
thus written as
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Implementation
The topology design problems can be solved along the lines described previously (all
objectives and constraints are compliance values, simplifying derivative calculations).
The extent of damage υ(x) associated with the damage loads is determined by solving a
non-linear finite element problem so the process is iterative in the displacements. At
each iteration step, the given displacements and associated strains are used to find,
within each finite element, υ and the details of the local orthotropy and orientation of
the rank-2 material that is consistent with the extremal energy expression. The update of
the displacements then consists of a linear finite element analysis with this material
data. A similar scheme was described for the stress-based minimum compliance
problem.

Minimum compliance design. Left: In the absence of damage loads, Mid: With a constraint 
on the effect of damage loads, and Right: the distribution of damage in this optimal design



Thank you for your attention
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