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Lecture 17: Topology design of truss structures
Topology optimization of trusses in the form of grid-like continua is a classical subject in
structural design. The optimization of the geometry and topology of trusses can
conveniently be formulated with the so-called ground structure method. In this approach the
layout of a truss structure is found by allowing a certain set of connections between a fixed
set of nodal points as potential structural or vanishing members. For the truss topology
problem the geometry allows for using the continuously varying cross-sectional bar areas as
design variables, including the possibility of zero bar areas. This implies that the truss
topology problem can be viewed as a standard sizing problem. This sizing reformulation is
possible for the simple reason that the truss as a continuum geometrically is described as
one dimensional. Thus for both planar and space trusses there are extra dimensions in
physical space that can describe the extension of the truss as a true physical element of
space, simplifying the basic modelling for truss topology design as compared to topology
design of three dimensional continuum structures.
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Truss topology design problems were in early work formulated in terms of member
forces, ignoring kinematic compatibility to obtain a linear programming problem in
member areas and forces. The resulting topology and force field are then often employed
as a starting point for a more complicated design problem formulation. Alternatively,
when displacement formulations are used, then (small) non zero lower bounds on the
cross-sectional areas have been imposed in order to have a positive definite stiffness
matrix. This means that standard techniques for optimal structural design can be used.
Also, it allows for the use of optimality criteria methods for large scale design problems
involving compliance, stress, displacement and eigenvalue objectives. In the simultaneous
analysis and design approach, the design variables and state variables are not
distinguished, so the full problem is solved by one unified numerical optimization
procedure. However, unless specially developed numerical solution procedures are used,
only very small problems can be treated. The use of simulated annealing and genetic
algorithm techniques for the topology problems in their original formulation as discrete
selection problems, has also been pursued but also these fairly general approaches are
with the present technology restricted to fairly small scale problems.



In this lecture we will investigate various formulations of truss topology design and outline
some options for their numerical processing. We seek specifically to be able to handle
problems with a very large number of potential structural elements, using the ground
structure approach. For this reason we consider primarily the simplest possible optimal
design problem, namely the minimization of compliance (maximization of stiffness) for a
given total mass of the structure where a very detailed examination of the properties of the
problems is possible. The analysis is general enough to encompass multiple load problems
in the worst-case and weighted-average formulation, the case of self-weight loads and the
problem of determining the optimal topology of the reinforcement of a structure as for
example seen in fail-safe design. Also, variable thickness sheet, sandwich plate and free
material problems are covered by the developments. In direct analogy with the continuum
setting, these problems can be given in a number of equivalent problem statements, among
them problems in the nodal displacements only or in the member forces only. With these
reformulations at hand it is possible to devise very efficient algorithms that can handle
large scale problems. Also, as we have seen in earlier chapters, the formulations can be
obtained through duality principles and the resulting formulations in displacements or
stresses correspond to equilibrium problems for an optimally global strain energy and an
optimally global complementary energy, respectively.
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1. Problem formulation for minimum compliance truss design

1.1 The basic problem statements in displacements
In the ground structure approach for truss topology design a set of n chosen nodal points
(N degrees of freedom) and m possible connections are given, and one seeks to find the
optimal substructure of this structural universe. In some papers on the ground structure
approach, the ground structure is always assumed to be the set of all possible connections
between the chosen nodal points, but here we allow the ground structure to be any given
set of connections. This approach may lead to designs that are not the best ones for the
chosen set of nodal points, but the approach implicitly allows for restrictions on the
possible spectrum of possible member lengths as well as for the study of the optimal
subset of members of a given truss-layout.

Ground structures for transmitting a vertical force to a vertical line of supports. Truss ground
structures of variable complexity in a rectangular domain with a regular 5 by 3 nodal layout. In c) all
the connections between the nodal points are included.
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Problem 4.1 is well studied in the case of an imposed non-negative lower bound on the
volumes ti. In this case the stiffness matrix K(t) is positive definite for all feasible t and the
displacements can be removed from the problem. The resulting problem in bar volumes
turns out to be convex and existence of solutions is assured. Allowing for zero lower
bounds complicates the analysis, but it also provides valuable insight. The zero lower
bound on the variables ti thus means that bars of the ground structure can be removed and
the problem statement thus covers topology design. Problem 4.1 can result in an optimal
topology that is a mechanism; this mechanism is in equilibrium under the given load, and
infinitesimal bars can be added to obtain a stable structure. Also, if the optimal topology
has straight bars with inner nodal points, these nodal points should be ignored. The
resulting truss maintains the stiffness and the equilibrium of the original optimal topology.

The zero lower bound in problem 4.1 implies that the stiffness matrix is not necessarily
positive definite and the state vector U cannot be removed by solving K(t)u = f. Removing
u from the formulation is not very important for the size of the problem, as, typically, the
number m of bars is much greater than the number of degrees of freedom. In the complete
ground structure we connect all nodes, having m = n(n - 1)/2, while the degrees of freedom
are only of the order 2n or 3n (for planar and 3-D trusses). For the complete ground
structure we also have a fully populated stiffness matrix lacking any sparsity and
bandedness.
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If we introduce an extended displacement vector
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1.2 The basic problem statements in member forces

For the continuum formulations of topology design we formulated a stress based
minimum compliance problem using the minimum complementary energy
principle. Writing here for the single load truss problem we have the problem
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The traditional formulation of truss topology design in terms of member forces is for
single load , plastic design. This problem is normally stated as a minimum weight design
problem, for all trusses that satisfy static equilibrium within certain constraints on the
stresses in the individual bars. With the same stress constraint value for both tension and
compression, the formulation is in the form of a linear programming problem

Notice that in problem above the stress constraints are written in terms of member forces.
This turns out to be important in order to give a consistent formulation. For some truss
problems, the stress in a number of members will converge to a finite non-zero level as
the member areas converge to zero, but the member forces will converge to zero. This
fact should be observed for any truss design problem involving stress constraints.
Problem above is a formulation purely in terms of statics, with no kinematic compatibility
included in the formulation. However, a basic solution to this LP problem will
automatically satisfy kinematic compatibility, a rather puzzling fact. We note here that
(4.8) can be extended to cover cost of supports and to problems involving local stability
constraints (buckling etc.) while maintaining the basic properties.
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LP form = Linear Programming, Linear Optimization
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1.3 Problem statements including self-weight and reinforcement

The formulations given above lend themselves to natural extensions, such as to the problem
of finding the optimal topology of the reinforcement of a given structure and the optimal
topology problem with self-weight taken into consideration.

This problem can be solved by analogous means as can be used for the other topology
design problems formulated above. Note that a reinforcement formulation in connection
with a multiple load formulation with distinct sub-ground structures of a common ground
structure will allow for a very general fail-safe design formulation.
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For the important case of optimization where loads due to the weight of the structure are
taken into account, we employ the standard assumption that the weight of a bar is carried
equally by the joints at its ends, thus neglecting bending effects. With gi denoting the
specific nodal gravitational force vector due to the self-weight of bar number i, the problem
of finding the optimal topology with self-weight loads and external loads takes the form

Note that for the problem with self-weight, any feasible truss design for which the self-
weight load equilibrates the external load is an optimal design with compliance zero and
zero displacement field (compliance is non-negative in all cases). Thus to avoid trivial
situations, it is natural to assume that such designs are not possible:
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We complete this exposition of problem statements by stating the reinforcement
problem, with self-weight loads, and general stiffness matrices and loads, so
that all cases above are covered as special cases

Here a max-min formulation as in (4.6) can also be formulated, maintaining the 
concave-convex nature of the basic problem (4.6).

The effect of self-weight loads. Optimal truss topologies for transmitting a single vertical force to a vertical line of
supports. The figures show the variation for increasing specific self-weight loads, corresponding to increasing real
lengths of the structures. The self-weight is in b) increased by 2 times compared to the design a). These designs are
obtained for a 9 by 6 equidistant nodal lay-out in a rectangular domain of aspect ratio 1.6, and all 919 possible non-
overlapping connections. If all 1431 possible connections are used, the design b) is modified to the design c) .



2. Problem equivalence and globally optimized energy functionals
2.1 Conditions or optimality
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For the sake of completeness of the presentation and as one gains extra information in
the truss case, we will in this section derive the optimality conditions also for the
minimum compliance truss topology problem (in the formulation with self-weight). As
for the continuum problems treated earlier, these conditions constitute the basis for the
well-known computational scheme named the optimality criteria method; we will
describe this under a general discussion on computational procedures in a later section.
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It can be shown below that there does indeed exist a pair (u, t) which is a solution to the
reduced optimality conditions. This implies that there exists an optimal truss that has
bars with constant specific energies and the set J(u) is the set of these active bars. Note
that a pair (u, t) satisfying the necessary conditions for problem is automatically a
minimizer for the non-convex form of the minimum compliance problem.
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where we have invoked the extremum principle for equilibrium. Note that the existence of
solutions to the optimality conditions shows that there always exists an optimal solution
with no more active bars than the degrees of freedom (dimension of u) plus 1; this follows
from Caratheodory’s theorem on convex combinations. Finally we also remark that such a
design only has active bars that attain the maximum energy level, in accordance with what
we have seen for the continuum problems as well.

2.2 Reduction to problem statements in bar volumes only

It was noted earlier that the truss topology problem is an unusual structural optimization
problem, as the acceptance of zero bar volumes implies that the stiffness matrix of the
problem can be singular. Thus the standard gradient/ adjoint methods of structural
optimization which view the problems as optimization problems in the design variables
only cannot be invoked directly. However, if we accept to consider the topology
optimization problem as a limes inferior problem for a series of optimal design problems
with decreasing positive lower bounds on the design variables we can remove the
displacements from the formulation (this has consistently been the approach for the
continuum structures).
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The difference between multiple load and single load case problems. Optimal truss
topologies for transmitting three vertical forces to two fixed supports. The truss is
optimized with the loads treated as a single load (left) as well as three individual
load cases for a min-max, worst case design situation (right). The ground structures
consist of all 8744 possible non-overlapping connections between the nodal points
of a regular 13 by 13 mesh in a square domain. We do not show the uppermost rows
of nodes, as these are not part of the optimal structure
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Semidefinite programs

The structure of the minimum compliance truss problem also allows for yet another
formulation in the displacements only. These fall in a class of mathematical programming
problems named semidefinite programs, with the acronym SDP. If we rewrite problem in
terms of a bound variable Ф, which is the value of the compliance, we can write the
optimization problem as

Here the constraint on the potential energy is actually equivalent to a condition that the
symmetric matrix

is positive semidefinite, which we write as �A≥0. The matrix �A is linear in the variables ti and
the inequality �A≥0 is then referred to as a linear matrix inequality, an LMI. The linearity
implies that �A≥0 is a convex constraint, which is most directly seen by the definition: �A≥0 if
and only if �A is symmetric and uT �A u ≥ 0 for all u (this characterization can also be used to
show that the condition �A≥0 is equivalent to the condition 2fTu - uTKu ≤ Ф for all u.
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Our optimization problem can thus be rewritten as a convex problem in the variables t, Ф
only (this has now become a standard test problem in mathematical programming):

This reformulation may seem as adding to the complexity of the problem, as initially a
constraint like �A≥0 seems difficult to handle. However, this is not the case. Modern
interior point algorithms solve SDP's in polynomial time. As the single load case
problem is actually equivalent to an LP problem this feature is more interesting for the
multiple load case which does not have an equivalent LP format. For the worst case
situation we actually write the SDP form as:
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If we alternatively consider the compliance Ф as given and consider the minimum weight
design for an upper bound on compliance, an alternative SDP problem can be written as:

2.3 Reduction to problem statements in displacements only

We will now use the max-min formulation (4.6) of the truss topology design problem to derive
a globally optimal strain energy functional that describes the energy of the optimal truss. This
leads to an alternative, equivalent convex formulation of the problem for which a number of
computationally very efficient algorithm can be devised. The derivation is in concept and
results similar to the derivation for simultaneous design of structure and material as described,
but the dyadic nature of the stiffness matrix for trusses means that one can go somewhat
further, as will be shown in the coming sections.
We will for notational simplicity not cater for the reinforcement situation, so that the version of
problem (4.13) that we consider has the form
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and this problem is linear in the design variable and convex in the displacement variable. 
Thus the problem is concave-convex (with a convex and compact constraint set in t) and 
we can interchange the max and the min operators, to obtain
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This problem has a large number of constraints, but these can be efficiently handled via
interior point methods. For completeness let us state the equivalent problems for the
weighted average, multiple load truss case

One can think of the resulting displacements only problems shown above as equilibrium
problems for a structure with a non-smooth, convex strain energy. Philosophically speaking,
this strain energy is the strain energy for a "self-optimized" structure which automatically
adjusts its topology and sizing so as to minimize compliance for the applied load(s).
It is possible to show existence of solutions to the problems and to prove the equivalence
between problem statements. The solutions are not unique and it is quite well-known that
there are normally "many" solutions (actually subspaces of solutions). The equivalence of the
problems is understood in the sense that for a solution u to for example problem (4.24) and
the corresponding set J(u) of active bars, there exists a corresponding set of bar volumes t
satisfying the optimality condition

and these optimality conditions are precisely the optimality conditions for the min-max
problem (4.24).
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For the worst case multiple load problem it is possible to generate a displacements only 
formulation in the form

indicating that the inner problem in the displacements could be solved using the
methods that can be used for the single load case, with the outer problem solved using
algorithms for convex non-differentiable optimization problems.
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The difference (and similarity) between multiple load case treated in the weighted
average formulation (equal weights) (top) and treated in the worst case min-max
formulation (below). Optimal truss topologies for transmitting three vertical forces to
two fixed supports for a long slender rectangular ground structure of aspect ratio 16
(like a long span bridge), with 33 by 3 equidistant nodes and all 2818 possible non-
overlapping connections. In this figure, the vertical scale has been distorted in order to
being able to show the results



Thank you for your attention
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