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2.4 Linear programming problems for single load problems

In the preceding section the minimum compliance truss topology problem was reformulated
as a non-smooth, convex problem in the displacements only. This can now be used as a
basis for generating a range of other equivalent problem statements.
The starting point is actually the bound formulation (4.25), which for the simpler case of no
self-weight becomes, up to a scaling,

i.e. a maximization of compliance, with constraints on the specific strain energies.
For the single load truss problem the element stiffness matrices are dyadic products and we
get for the specific energies



This special form implies that above can be written in LP-form as
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The member force formulations (4.8) and (4.9) are, as described earlier, the traditional
formulations for single load truss topology optimization. These are, of course, very
efficient formulations and could be solved using sparse, primal-dual interior point LP-
methods or the simplex algorithm. The force methods are at first glance problems in
plastic design, as kinematic compatibility is ignored, and their use in elastic design is
justified by the possibility of finding statically determinate solutions. The equivalence
between the force methods and the minimum compliance problem for the single load case
shows that any solution to the force LP-formulation leads to a minimum compliance
topology design, within the framework of elastic designs. Such designs are uniformly
stressed designs, as well as having a constant specific energy in all active bars. The
existence of basic solutions to the linear programming problem (4.9) implies that there
exist minimum mass truss topologies with a number of bars not exceeding the degrees of
freedom. If there exists such a basic solution with only non-zero forces (areas), this is a
statically determinate truss. Otherwise, the truss will have a unique force field for the
given load but will be kinematically indeterminate. In other words the truss may have
rigid body (mechanism) response to certain loads other than the load for which it is
designed; this may be the case even after nodes with no connected bars are removed.



For the sake of completeness of presentation, note that in the reinforcement
case without self-weight, the single load case problem can be reduced to a
quadratic optimization problem with linear constraints
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2.5 Reduction to problem statements in stresses only

In the following we will base our developments on the worst-case multiple load design
formulation (4.28). In order to simplify notation we will refrain from covering the problem
of reinforcement and the self-weight problem will also play a minor role in the following.
However, we begin with a general treatment that covers truss, variable thickness sheet and
sandwich plate design.

which is now jointly convex on the feasible set in both the multipliers λk and the
displacements. Here we have used the inf-operator to indicate the use of a decreasing
sequence of lower bounds on the multipliers λk. The presence of the infimum over the
multipliers indicates that it is a natural choice to use interior penalty methods for a
computational procedure for solving of this problem, as will be described later.
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We shall now show that by deriving the dual formulations of (4.33) one can for the truss
case generate what amounts to stress based min-max minimum compliance formulations.
The basis for this derivation is again, as in the earlier development, the dyadic structure
of the individual member stiffness matrices. Expressing the maximization over the bar
numbers (the inner problem) with a bounding variable and using auxiliary variables
ck

i=bi
Tuk (the member elongations), the equivalent convex dual problem can be derived to

have the form
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Finally, we will consider the elimination of the bar volumes from the problem (4.34), by
directly solving for these variables. This corresponds to the elimination of bar volumes in
the displacements (strain) based formulation as carried out. Expressing the maximization
over load cases by a maximization over a convex combination of weighting factors

we can derive the optimal values of the bar volumes as

Inserting it in the previous equation we obtain the following problem in the member forces only
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For the single load case we recover the traditional linear programming formulation
(4.9) in the disguised form

Rescaling the objective function and taking the square root of the objective
function results in (4.9). Note that we have again seen that the stress constraint
values for the plastic topology problem should be chosen as
Also, as (4.38) was obtained by direct duality without rescaling, one can see that
the optimal value II of the optimal compliance will relate to the optimal value ψ, of
the minimum mass plastic design problem as

Note that (4.38) is the natural formulation for the stress only reformulation of the
minimum compliance problem stated as a corresponding equilibrium problem for a
structure with a non-smooth, convex complementary energy.



2.6 Extension to contact problems
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The discussion above can be extended to problems involving unilateral contact, as we
shall briefly outline in the following. The most natural setting for unilateral contact
problems is a displacement based formulation. For an unilateral contact condition of the
form Cu<0, the minimum compliance problem for contact problems becomes

where only the inner equilibrium problem is altered. The problem of finding the stiffest
structure among all structures with constant contact pressure is also considered and in this
case the unilateral constraint should be of the scalar form lcCu<0, corresponding to a
total gap constraint lcd = 0, where d is an initial gap which is designed to achieve
constant pressure. This case is also covered by the statement (4.39), by proper choice of
C.



The introduction of design independent constraints in the inner problem of (4.39) does not
change the saddle point property of the problem. It does not make sense for contact
problems to assume that the stiffness matrix is positive definite for at least one design.
Instead, one has to assume that the applied force does not give raise to rigid body motions
and that the applied force is not entirely applied at the potential contact nodes. With this
assumption we have existence of solution and an equivalent displacements only problem in
the form
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This problem can be solved by equivalent means as (4.25): the extra linear constraints Cu ≤0
does not influence the efficiency. Consider now the worst-case multiple load problem in the
formulation which includes contact

Here we have related each load case to a potentially different contact condition. Computing
the dual of the equilibrium problem, we obtain the complementary energy formulation in the
form
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where the contact forces pk also enter as variables. As for the non-contact case we can
compute the optimal bar volumes and the resulting force-only formulation only change
by the addition of the contact forces in the equilibrium constraint. For the single load
case we get the disguised linear programming problem

For the displacement formulation one has, likewise, the LP formulation

taking the development "full circle" .
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We close this section by remarking that the minimum compliance problem with unilateral 
contact formulated as a

for positive definite stiffness matrices is actually a C1-smooth problem in the bar volumes. 
Here we consider that an initial non-zero gap d is given. The derivatives of the functional 
Φ(t) (it is minus one half of the compliance) are given as

Note, however, that the displacements are not differentiable as functions of bar volumes,
as the displacements are non-smooth at designs were there are active contact nodes with
zero contact forces. This feature means that most other design problems which involves
contact conditions are non-smooth problems. Nonetheless, directional derivatives can be
computed.
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The flexibility in choice of ground structure. Optimal design of a well-known
structure. Left hand picture shows the ground structure and the right hand picture the
optimal topology for a single downward load at the top of the structure. The example
shows that it is crucial to consider multiple load cases for realistic structures.
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3. Computational procedures and examples

The availability of efficient methods to solve large (sparse) LP problems makes it natural to solve the
single load truss topology design problem using the LP formulations. For problems with multiple loads
and/or bounded bar areas, for the reinforcement problem as well as for the FEM case, we cannot obtain a
linear programming formulation of the minimum compliance problem and we are forced to solve such
problems by other means. Problems of the form (4.1)-(4.5) and (4.11)-(4.13) generalize most easily to
more general design situations involving stress and displacement constraints but they are large scale and
non-convex. The optimality criterion method is a good and easily programmed option for solving this
problem in the minimum compliance setting, if suitable lower bounds on the bar volumes are imposed.
Problems (4.24)-(4.28) and (4.25), (4.29) are convex and have the size of the degrees of freedom of the
ground structure; the former are non-differentiable and unconstrained and the bound formulations are
differentiable, but at the cost of a high number of constraints. Below we shall present a specialized and
physically intuitive algorithm for solving problem (4.24); it can be easily implemented to take advantage
of the sparsity of the Matrices Ki, but is actually not efficient compared to other methods based on the
smooth formulations. Problem (4.24) has for some time been used as a "difficult" test case for general
purpose algorithms for min-max optimization or non-differentiable optimization. The most efficient
approach (when LP-codes cannot be applied) is to use modern penalty methods for problems (4.25),
(4.29) which can be solved by such general purpose algorithms. Alternatively, the SDP format (4.20)-
(4.22) can be used. In both cases sparsity and the fact that the number of variables is much lower than the
number of constraints should be utilized. It should be emphasized that the truss topology design problem
is a very challenging mathematical programming problem with structure and properties which are a test
for even the best of algorithms.
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3.1 An optimality criteria method

For the continuum problems treated earlier the optimality criteria method is an effective
and general mean for solving minimum compliance problems. Also for truss topology
design this is a simple computational procedure, but it is not as effective as other
approaches based on interior point or SDP techniques. However, it is physically intuitive
as the method assigns material to members proportionally to the specific energy of each
member in order to reach the situation of constant specific energy in the active bars.
Thus each iteration step consists of the following

The linearity of stiffness and volume in the bar areas implies that the optimality criteria
algorithm for the single load case can be viewed as a fully stressed design algorithm, and
it is as such a fix point algorithm. Also, the method can be viewed as an implementation
of a sequential quadratic programming technique. Also, the similarity to convex
approximation techniques as MMA has been outlined.
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The optimality criteria method involves assembly of the global stiffness matrix as well
as solving the equilibrium problem at each iteration step, and this part of the algorithm
is the most time consuming. Note, that for tmin ~ 0.0 the algorithm can utilize that the
volume is linear in the design variables, so that satisfying the volume constraint is just
a rescaling of variables. However, the algorithm does not take advantage of the fact
that also the stiffness matrix is linear in the design variables. Also for the single load
case truss topology problem (4.1) we have that the matrices Ki are dyadic products and
this is not used either.

3.2 A non-smooth descent method
One can also devise physically intuitive algorithms that work with the displacements as
the primary variables. The basis is then the equivalent problems (4.24)-(4.28). We will
here describe an "f-steepest descent" method for these non-smooth problems. The
algorithm is actually inefficient, but, as mentioned, it is physically intuitive, and it is
closely related to the optimality criteria algorithm. Even though the algorithm solves a
problem in the displacement variables u it also generates the bar volumes t from an
inner problem. This contrasts to the standard procedure in optimal structural design
where one solves for the design variables, with the displacements removed via the state
equation and adjoint equation. We describe the algorithm for the topology design
problem with external loads as well as loads due to self-weight. Thus the algorithm for
problem (4.24)



Lecture 18: Topology design of truss structures_2

consists of the following very intuitive steps:
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Here, ε is a relaxation on the activity set J which is crucial to guarantee the convergence of
the algorithm, and δ determines the accuracy of the solution (one works with decreasing
sequences of these parameters) . Each iteration loop of the algorithm consists of first
finding the set of almost active bars (Step 1) . The descent direction (Step 2) is then found
by first finding the bar volumes of these bars which minimizes the error in equilibrium for
the given estimate of displacement. The error is measured in a least squares sense and the
descent direction is proportional to the residual of the equilibrium for this best fit of bar
volumes. The algorithm can be implemented to take full advantage of sparsity, both in
storage and in computations. For example one notes that the full stiffness matrix is not
required. For a proof of the convergence of the algorithm.

An example of a complicated ground structure geometry, with 156 nodal points and 660
potential bars. The ground structure, supports and five loads are shown at the left. The
resulting topology for a weighted average, multiple load problem formulation is shown
right. The ground structure was generated by an interactive CAD-based programme
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3.3 SDP (Semi-Definite Programming) and interior point methods
Methods working with bar volumes It is the provision of a lower bound on the bar
volumes that allows for the use of the very effective optimality criterion method. A similar
efficiency can be obtained by considering the problem of taking the infimum of the
compliances for all truss structures with positive bar volumes

As shown earlier this problem is convex and this in combination with the inf-form makes it
ideally suited for interior point barrier methods as this will imply that the positivity
constraint on the bar volumes will be satisfied automatically. Problem (4.43) does not lend
itself to the use of sparse techniques, as the Hessian of the objective function Φ(t) is full.
However, the Hessian of the constraint
is sparse. Sparsity can thus be utilized if the problem (4.5) in both the displacement and
design variables is solved using an interior point method. Even though the latter problem is
not convex, finding a stationary solution provides also a stationary point for problem
(4.43), and thus a minimizer for this convex problem. This approach extends readily to all
the problem types described above. The use of an interior barrier method for problem
(4.43) involves the use of a suitable sequence of penalty parameters, which in effect
corresponds to imposing a constraint of the type
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for a suitable small lower bound value tmin. This can make it troublesome to identify
precisely which bars are active in the optimal topology. However, convergence of the
designs (and relevant displacements) as we take the limit tmin ->0 is guaranteed.

For the worst-case multiple load problem (4.4), formulated as a smooth problem using
a bound formulation with bounding variable α, a possible logarithmic barrier function
is of the form

where αmax is a suitable guaranteed upper bound on the optimal value of the problem.
We also note that the SDP variations of the topology design problem can be solved by
algorithms developed for such problems; such techniques have many common features
with the logarithmic barrier approach just outlined.



Lecture 18: Topology design of truss structures_2
Methods working with displacements Barrier function methods and especially the so-called"
Penalty /Barrier /Multiplier (PBM) Method" can also to great advantage be used for the
displacements only formulations of the form (4.24). In order to apply the PBM method to for
example the min-max multiple load truss topology design problem, the formulation (4.33) is
used in a form where the discrete maximization over bar numbers is removed by a bound
formulation

Note that (4.44) is a smooth convex optimization problem. It can be shown from the Karush-
Kuhn-Thcker conditions of problem (4.44) that the Lagrange multipliers for the constraints on
the specific energies are precisely the optimal volumes of the bars in the optimal topology.
Hence the optimal bar volumes are approximated directly at each iteration step of the PBM
method by the Lagrange multipliers for these constraints. Notice that a further reformulation is
handy, namely the formulation
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which is derived from previous equation by the transformation

For a truss with N degrees of freedom, m potential bars and M load cases, the single load
problem (4.29) has N variables and m constraints, while problem (4.45) has NM+M+1
variables and m non-linear constraints. The main computational effort in applying the
PBM method is the minimization of the unconstrained penalty/barrier function. This is
done using a Newton method, and it is interesting to note that the method does not require
an increase in the number of Newton steps as the problem size increases. Note that each
Newton step corresponds to solving a linear system of equations, which for the single
load case is comparable in size to the linear system solved for one full equilibrium
analysis step of the "Optimality Criteria Method" .

A detailed study of the design of a wheel with a 29 by 15 nodal lay-out with 
all 57770 possible non-overlapping connections.
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4. Extensions of truss topology design
4.1 Combined truss topology and geometry optimization

The topology design methods considered so far all employ the basic idea of a ground
structure or reference design domain to obtain problem statements that are sizing problems
for a fixed geometry. The choice of this reference geometry influences the result of the
topology optimization making it important to consider sensitivity analysis of the optimal
designs with respect to variation of the reference geometry, and even optimal design of this
reference geometry may be fruitful in some situations.
In the ground structure approach to topology design of trusses the positions of nodal points
are not used as design variables. This means that a high number of nodal points should be
used in the ground structure to obtain efficient topologies. A drawback of the method is that
the optimal topologies can be very sensitive to the layout of nodal points, at least if the
number of nodal points is relatively low. This makes it natural to consider an extension of the
ground structure approach and to include the optimization of the nodal point location for a
given number and connectivity of nodal points. With very efficient tools at hand for the
topology design with fixed nodal positions it seems natural to treat the variation of nodal
positions as an outer optimization in a two-level hierarchical formulation. As the optimal
value function of the topology compliance depends on the geometry variables in a non-
smooth way, this outer minimization requires non-smooth optimization techniques.
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An example of a 3-D topology and geometry
optimization for a beam carrying a single
load. In a) we show the ground structure of
nodal points and potential bars. Note that the
ground structure has non-equidistant nodal
point positions along the length axis of the
"beam" . In a) we see the optimal topology
for the fixed nodal lay-out of the ground
structure, in c) a combined geometry and
topology optimization with nodal positions
restricted to move along the length axis of
the 'beam". Finally, in d) the result of a
combined geometry and topology
optimization with totally free nodal
positions is shown. The (non-dimensional)
compliance values of the optimized designs
are 1.00, 0.945 and 0.911, respectively.
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For the combined topology and geometry problem for trusses we have as the simplest 
formulation

which is just problem (4.5) rewritten as a problem depending also on the nodal positions Xj, j =
1, ... , n. The nodal positions are restricted to lie within certain bounds that should be chosen to
make the resultant trusses realizable. As the member volumes are dependent on the nodal
positions we have here reverted to the cross-sectional areas of the individual bars as design
variables. Problem above can be solved as a unified problem considering the problem either as
a unified analysis and design problem or as a standard structural optimization problem that can
be solved through an adjoint method in the areas and nodal positions only (this requires the
application of small lower bounds on the cross sectional areas). An alternative solution
procedure is to apply a multilevel approach to the combined problem, treating the topology
problem as the inner problem. Because of the size of the topology problem, earlier work has
usually involved some form of heuristics to speed up the very significant amount of
computations involved. Here we consider combining the effective truss topology design
methods described earlier with appropriate tools from non-smooth analysis.
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For a fixed set of nodal positions we choose here the displacements only, form (4.24) of
the topology design problem (without self-weight) and thus write previously as a two-level
problem

The inner topology problem in the displacements u can effectively be solved (for fixed x)
by one of the computational methods described previously. The main part remaining is
then, of course, the minimization of the so-called master function

on the outer level. The number of variables (the nodal positions) in this outer problem will
usually be moderate. However, there are two decisive drawbacks. There is no reason for F
to be convex and F is not differentiable everywhere. Hence we cannot expect to find more
than a local minimum of F and we have to work with codes from non-smooth
optimization. These codes require that for each iterate x we can compute a so-called sub-
gradient as a substitute for the gradient. Using tools from non-smooth calculus it is easily
seen that this causes no difficulties for the above min-max function F.
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The two-level approach becomes especially attractive if we consider the single load
truss topology problem for which the member stiffness matrices are dyadic products.
Then F(x) reduces to a parametrized linear programming problem

The sub-gradient in this case is basically the derivative with respect to x of the
Lagrange function for this LP-problem. Hence we get a sub-gradient "for free" when
solving (4.30) for a given set of nodal positions x.

4.2 Truss design with buckling constraints

Here, we formulate a problem of optimum truss topology design including a
constraint on the global stability of the structure. We use here the so-called linear
buckling model as the model of stability. This means that we can express the stability
condition as the condition
where u solves the small-deflection equilibrium equation

and where G is the standard geometric matrix of the truss. Note that local buckling
constraints require a separate treatment.
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Now we can add this stability constraint to the compliance constrained minimum weight
truss topology problem to obtain a problem of the form

Here Φ is the given maximal value of the compliance. Note that we can always find a
feasible pair (t, u), as one can always make the truss stable and also stiff enough by adding
enough material to each member (in this sense compliance and stability are not competing
objectives). We have seen that one can use a linear matrix inequality to eliminate the
displacement vector from an equilibrium equation that is combined with a compliance
constraint. We also here rewrite above using this idea and arrive at new problem in the
variable t only:

where A is defined in (4.19) and where
This problem is, due to the buckling constraint, not a standard convex SDP. However, local
minima can still be found efficiently by a non-convex version of a PBM algorithm for SDP
problems.
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An example of what can be achieved with this formulation is illustrated in Figure below.
Here the initial design has ti = 1000/m, i = 1, ... , m, with a corresponding compliance of
0.177 and a critical force (0.397) that is smaller than one, meaning that the truss is
unstable. The standard truss optimization without stability constraint gives a design that is
twice as light as the previous one but absolutely unstable. Finally, by truss optimization
with stability constraint one can obtain a design that at a volume of 1179.6 is a bit heavier
than the first one. However, it is stable under the given load. To see fully the effect of the
stability constraint, we have for this example chosen the upper bound for the compliance
so that the compliance constraint is not active. For truss (and frame) models local
buckling of the individual members is also an important aspect to take into consideration.

The effect of a constraint on the global
buckling load, a) shows the initial truss with its
buckling mode in b). c) is the optimal truss
without stability constraint and, d) is the
optimal truss with a stability constraint.



4.3 Control of free vibrations

Lecture 18: Topology design of truss structures_2

The SDP approach from the previous section can easily be adapted to optimization of
trusses with constraints on the free vibration frequencies. Here we formulate the problem of
minimizing the weight (volume) of a truss subject to a compliance constraint and such that
the lowest eigenfrequency is bigger than or equal to a prescribed value. This latter condition
is written as

The condition above can be written as a matrix inequality

and, in parallel to previous problem, a minimum weight truss design problem with free
vibration constraints can be formulated as follows
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This problem includes only linear matrix inequalities (the mass matrix does not depend on
u) and is then much easier to solve than the stability problem. However, note that, in
contrast to the stability problem, we may now have problems with feasibility. When λ is
too big one may not be able to find any design t satisfying the vibration constraint; both of
the matrices A(t) and M(t) are positive semidefinite and their eigenvalues grow with the
same rate for increasing t. Note that the previous formulation avoids the technicalities of a
formulation that directly and explicitly involves the eigenvalues. The non-differentiability
of eigenvalues is circumvented by the application of interior point methods to the matrix-
inequality constraint.
As an example we consider again a slender truss fixed
on the left-hand side and subject to axial force on the
right-hand side; there is a non-structural mass 1.0 at the
column tip. The lowest eigenfrequency corresponding
to the truss shown in right Figure (a) is λmin = 5.0×10-5,
while λmin corresponding to the optimal truss without
vibration constraint is zero (the truss is a mechanism,
i.e. previous figure c). If we solve previous equation
with λmin = 5.0×10-5, the resulting truss weighs 0.5684
(see (b)). When we try to increase the minimum
eigenvalue, setting λ = 1.0×10-4, we get the truss shown
in (c) that weighs 0.8746.

Initial truss (a) and two optimal
trusses with respect to free
vibration constraint with λ =
5.0×10-5 (b) and λ = 1.0×10-4 (c)



Thank you for your attention
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