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Lecture 19: Topology Optimization for AM

This Lecture provides a synopsis of algorithmic TO methods without detailed math,
including Bidirectional Evolutionary Structural Optimization (BESO), Solid-Isotropic
Material with Penalization (SIMP), ground-structures, and Level-Set Methods (LSM). By
summarizing these methods, practical DFAM tools are developed and their associated
challenges identified; in particular, the challenges inherent in the specific TO method,
and those that occur when TO methods are integrated with AM manufacturability
constraints.

Two fundamental philosophies exist for TO integrated DFAM: namely, methods that
modify TO outcomes to satisfy AM manufacturability requirements, and methods that
retain the TO structure, and add features as required. Both philosophies are presented in
detail and summarized in the context of their applicability to commercial AM design, and
with reference to emerging AM technologies and methods. A brief case study is
presented with a focus on commercial best practice for AM topology optimization for a
high-value non-stationary aerospace component using topology and parametric
optimization.
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1. Topology optimization methods

1.1 Basic TO methods

In practical terms, TO refers to the identification of efficient distributions of material for a given
engineering function. This function is typically structural - although it may refer to heat transfer, fluid
flow, or any measurable physical outcome - and is referred to as an objective function, O. This objective
must be satisfied subject to specific design constraints and within a specified physical domain, referred to
as the design space, Q. This design space defines the allowable external volume of the solid material, and
includes any internal voids required for interaction with other systems, as well as fasteners and assembly
hardware. The material distribution must avoid defined failure modes or undesirable states, specified as
constraints. The challenge of topology optimization has been an active research problem for over a
century, and numerous distinct solution strategies have been proposed. This review focusses on proposed
TO methodologies that have found strong industrial application, as well as those showing promise for
commercial and research DFAM activities, specifically Michell truss, ground structures, discrete (voxel)
methods, and level-set methods. m

Generalized representation of TO problem (A), whereby a distribution of |
material is sought to optimize some objective function, O, (typically e 4 2
minimizing compliance) while avoiding identified constraints (often ) ) ®) A
deflection) within an allowable design space, £. The problem is typically
discretized with a voxel field (B), however this discretization fundamentally
alters the associated structural response.
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1.2 The Michell truss

The contributions of Michell in the early 1900s represent a seminal founding work in the
field of TO. Michell proposed that a deflection-limited planar structure of minimal mass
could be generated by aligning truss structural elements along vectors of principal strain.
Michell proposed solutions to planar structures: more recently these outcomes have been
extended to accommodate asymmetry and L-shape geometry. The Michell truss method
has been extended to 3D structures and has been applied as a DFAM tool to accommodate
AM manufacturability requirements nowadays.
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(B). Cantilever beam (D). L-shaped cantilever beam

Solution forms for the Michell truss TO strategy, including simply supported and
cantilever beam as well as solutions with irregular design space (red dashed line).
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1.3 Ground structure

Ground-structure methods rely on a predetermined truss structure assembly in two-or
three dimensions. This predetermined truss is often based on a self-tessellated unit-cell of
connection elements, as well as permutations of node interactions. External loading is
then applied, and the local strain of connection elements is assessed by numerical
methods. Unit-connectors that inefficiently contribute to the associated objective function
are iteratively deleted from the structure until only high efficiency elements remain.
Ground structures are technically robust and have provided a reference by which to
compare the convergence of other TO methods; however, the number of truss
permutations associated with non-trivial design domains can result in relatively low
computational efficiency.

(A). Initial ground structure (B). Optimized structure

Representative solution for two-dimensional ground structure strategy indicating (A) ground structure
with multiple connective elements (identified by unique line markings) and, (B) optimized structure
based on a subset of these connective elements.
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1.4 Level-set methods

Level-set methods represent the structural
boundary between solid and void by some explicit
mathematical expression. Various methods exist for
defining this expression. One such method is to
represent the sensitivity of material removal from
the design domain in a closed-form function. By
intersecting a plane with this sensitivity function, a
level-set representation of the optimal geometry is
obtained. Level-set methods enable significant
advantages by allowing a mathematical definition
of structure boundary and have been
demonstrated for 3D geometry and for numerous
physical phenomena. Despite the opportunities
inherent with the level-set TO strategy, it has
received relatively sparse attention from the
research community and extensions of this method
to AM applications represents a strategic
opportunity for DFAM researchers.

Compliance snsitivity
T R

Volume fraction, V* = 0.90

Volume fraction, V*=0.70

Compliance sensitivity
e B £ B - B

Volume fraction, V*=0.50

Level-set TO strategy applied to 2D cantilever
beam for various volume fractions, V*.
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1.5 Discrete (voxel) methods

Commercially applied TO strategies are
typically based on a discrete representation
of a continuum of interest. Although any
geometric discretization may be acceptable,
discretization to square or cubic geometries
is common - hence the reference to these
strategies as voxel methods. The continuum
design domain is typically discretized by n,,
n,, n.voxels in 3D space, resulting in a total
of N unique voxels. Numerical methods are
then applied to this voxel array to assess the
state of stress and strain at individual voxels
as well as to assess the associated
performance measures, typically structure
mass and deflection. Of the available voxel
TO methods, BESO and SIMP dominate the
literature.

N=nnn,
forn= n=n=n,N= n N=n

total number of voxels, N

1,000,000 4

125,000

1,000+

10 50 100 n

Voxel discretization of continuum design domain.
This discretization is subject to the curse of
dimensionality, implying that the total number of
voxels, N, increases exponentially with n.
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1.6 Bidirectional evolutionary structural optimization (BESO) methods

The Bidirectional Evolutionary Structural Optimization (BESO)
method of topology optimization progresses by an initial application
of a numerical analysis to a voxel discretization of the available
design space. The results of this analysis are then evaluated by a
representative characteristic, for example stress or energy density.
Based on relative values of this characteristic, discrete voxels are
either added or removed such that the strain energy is minimized
for a specific volume fraction constraint, V. The structure iteratively
evolves from the initial form to a more efficient topology until some
convergence criteria is achieved. This method accommodates
control factors including the allowable rate of evolution, ER, and a
filter radius, rmin, to control undesirable solutions. The BESO
method has been implemented in both hard and soft variants,
whereby the soft variant avoids discontinuities associated with zero
density voxels. The method is applicable to a range of objective
functions of relevance to commercial engineering challenges
including thermal and vibrational problems. BESO is well
documented and numerous publications provide guidance on
maximization of TO outcomes for a given computational resource.
Robust, open-source code is available, making the BESO method a
capable platform for the development of commercial code and for
research contributions on the application of TO as a DFAM tool.

(A\) 2D BESO optimized cantil

Representative BESO solutions
implemented with (A) open-source code
for cantilever beam in 2D and (B) an
example of a 3D implementation
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1.7 Solid isotropic material with penalization (SIMP) method

No penalisation,
no r;. filter

25%

Degree of convergence

75%

100%

.

With penalisation,
Fminfilter applied

Representative SIMP solutions presented for various degrees of convergence with
varying control parameters, including the effects of penalization and filter radius, r

By their fundamental nature, discrete TO methods result in geometric discontinuities and roughness at the void/solid
boundary. Various methods have been proposed to algorithmically accommodate these challenges, including local mesh
refinement and local geometry smoothing. These methods potentially enhance geometric outcomes but can be
computationally expensive, can fail to provide technically robust solutions and may be incompatible with commercial
documentation requirements. For these reasons typical commercial best practice requires that parametric optimization

strategies are applied to the TO outcomes.

With penalisation,
Imin filter applied

The dependence of the TO outcome on the associated
control parameters. For example, figure on the right
indicates several design solutions with common
boundary conditions and loading solved with varying
SIMP control parameters, resulting in varying topological
solutions. This outcome demonstrates that, as for BESO,
SIMP is not guaranteed to identify a global optima and
the specific solution generated is a function of the
associated input parameters. However, much research
and practical guidance is available that provides
strategies to assist in the systematic identification of high
performing optima. One practical method is to iteratively
solve the TO problem while parametrically varying the
input parameters of interest. This approach, sometimes
known as extension, is useful and readily implemented;
however, it is an exhaustive search and thereby
compounds the required execution time.

min*
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Below figure represents feasible solutions of
Michell truss, ground structure, level-set and
voxel methods (BESO and SIMP) for a point
loaded cantilever beam. From this data it is
apparent that in practical terms the
generated solutions enabled by these
methods are equivalent. This outcome may
seem surprising given the extensive debate
within the research community on the
relative merit of the available TO methods.
For the practicing designer with a mandate
to effectively deploy TO for the identification
of efficient geometries, it is sufficient that
the design team select a TO method that
suits their specific preferences. In addition,
they must be aware of the limitations
inherent in the TO methods in general, as
well as specific challenges associated with
the selected TO method. The following
section summarizes current research and
commercial best practice applications of TO
in the specific domain of AM.

oS S —F—F Ny i e | o
— - R 4 - ) 4

- B N Lot PR /
R 4 - i .
- g g5
e

AN

(A). Michell truss optimized cantilever beam (B). Ground structure optimized cantilever

{C) Level-set method optimized cantilever beam
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(D). BESO optimized cantilever beam (E). SIMP optimized cantilever beam

A comparison of the solutions generated by the TO
reviewed here suggests that, (despite ongoing debate
within the research community) for the practicing
engineer, there is little practical difference in structural
insights enabled by Michell truss, ground structures, level-
set, BESO or SIMP.
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2. Opportunities for TO applied to AM

Although topology optimization has been an active research area for over a century, its
practical application had been reserved to a relatively small group of engineering
optimization specialists. More recently, and in particular since the development of the
robust and generally applicable TO methods above, topology optimization has found
increasing application by generalist engineering practitioners and has become well
integrated within non-specialist commercial engineering design tools.

A particular challenge associated with the commercial utilization of topology optimization is
the potential incompatibility between TO outcomes and associated manufacturing
constraints, especially for traditional manufacturing methods. Although, as discussed
previously, the description of AM as constraint-free manufacture is incorrect and
misleading, AM does enable the direct manufacture of high complexity geometry and is
therefore often more compatible with the outcomes of TO methods than traditional
manufacture. This synergy between TO and AM has spurred a range of commercial
applications of TO for AM as well as associated DFAM research contributions and TO
integrated DFAM tools, including:

e accommodation of specific AM manufacturability constraints
e allowing systematic compromise between TO outcomes and AM manufacturability
e methods to predict and mitigate the computational costs of TO simulation.



Lecture 19: Topology Optimization for AM

2.1 TO integrated DFAM tools

There exist significant challenges in developing all encompassing definitions for AM
manufacturability. These challenges exist because AM failure modes are often subject to
complex underlying phenomena that are challenging to predict, stochastic in response, and
are validated by limited experimental data. Nonetheless, AM manufacturability constraints
have been defined for a range of potential failure modes. The development of TO integrated
DFAM tools has progressed significantly, resulting in a useful body of research, and
commercially useful methods for integrating AM manufacturability requirements within TO
outcomes. However, there remains much opportunity for the development of advanced TO
integrated DFAM tools, as is demonstrated by the following summary of current approaches.

Of the many applicable DFAM failure modes, the potential limit on inclination angle is the
most commonly understood measure of AM manufacturability, and is the most commonly
implemented within TO integrated DFAM tools. Several such tools have been presented
within the literature that intend to modify a planar TO outcome such that allowable AM
inclination angle constraints are satisfied. These DFAM tools provide useful design insight
but they remain limited in the potential DFAM failure modes that are explicitly
accommodated, and they are not necessarily transferrable to 3D structures.
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(A)

(C)

TO integrated DFAM tools that intend to modify a planar TO outcome such that allowable
AM inclination angle constraints are satisfied.
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Fewer TO integrated DFAM tools that can accommodate 3D space fields exist than for the
equivalent 2D scenario; however, innovative methods have been proposed in the research
literature below. These methods are primarily based on the avoidance of specific inclination
angles: note that some of the proposed 3D methods utilize a diagonal voxel field
(equivalent to a 45 degree angle) to represent the allowable inclination angle and cannot
be modified to accommodate alternate inclinations. However, more advanced methods are
emerging that can accommodate integrated requirements for support structure
optimization, including combined requirements for support-free inclinations, as well as
methods to minimize the overall volume of support material required.

(A)

(B)

TO integrated DFAM tools that accommodate AM inclination angle constraints in a 3D space field to optimizes the standard TO outcome (left)
for advanced AM manufacturability (right), including (A) restriction of allowable overhang, and (B) outcomes that minimize support volume
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Furthermore, methods that accommodate AM
manufacturability =~ constraints by the
application of self-supporting internal trusses
have been proposed for 2D and 3D scenarios,
as shown below. Despite their inherent
commercial value, relatively few DFAM tools
exist that accommodate AM manufacturability
constraints. The existing tools reported here
utilize only inclination angle and, to a lesser
extent, minimum feature size as the measures
that characterize manufacturability. It is
apparent then that significant opportunities
exists in the design of TO strategies that
accommodate DFAM constraints. In particular,
existing methods do not accommodate
temperature field as a TO constraint; however,
the avoidance of excessive local temperatures
is critically important for high-value product
manufactured with thermal AM systems.
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representative survey of TO methods that
utilize cellular infill geometry to accommodate
AM manufacturability limits
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2.2 Compromise between TO outcomes and AM manufacturability considerations

As for all manufacturing technologies, AM presents a series of unique technical
manufacturability challenges; for example, minimum feature size, self-supportable
inclination angle, thermal conductivity, and material entrapment. However, TO outcomes are
typically more compatible with the manufacturability limitations of AM than with traditional
manufacture. In response to the synergy between AM and TO, numerous TO integrated
DFAM tools have been proposed, and this field remains a highly active area of research and
commercial innovation. These strategies can be classified as either strategies that modify the
TO optimization outcomes such that AM manufacturability constraints are satisfied; or,
strategies that retain the optimized TO geometry but provide additional material, modified
processing or active support structures in order to satisfy AM manufacturability. Strategies
that modify TO outcomes to satisfy manufacturability constraints are advantageous for
applications that intend to be implemented algorithmically, as they generate output
topology that can be directly manufactured without requiring additional support or
geometric post processing. These strategies compromise the structural optimality of the
manufactured topology in favour of direct manufacturability. For scenarios where
manufacturability is less important than overall structural efficiency of the manufactured
product, and for components that are not strictly net shape (for example structures that
include some post-AM machining), methods that include additional supporting geometry to
retain the optimal topology may be preferable.
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13
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(A). TO outcomes modified to enable AM (B). TO outcomes retained

-5

Example of TO integrated DFAM tools that: (A) modify the TO optimization outcomes to
satisfy AM manufacturability constraints, and (B) retain the optimized TO geometry

The former strategy tends to be of interest to theorists who intend that manufacturability
constraints be accommodated directly within the TO algorithm. The latter strategy tends to
be the focus of commercially motivated designers, where it is understood that post-
processing is required, and that additional material removal is typically less important than
structural efficiency of the delivered component. The majority of TO integrated DFAM tools
presented in the literature favour modified TO outcomes for optimal manufacturability
rather than structural efficiency of the manufactured component. It is apparent that there
remain significant commercial and research opportunities for the development of TO
integrated DFAM tools that retain structural efficiency.
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2.3 Challenges associated with computational costs of TO simulation

A fundamental technical challenge associated with the practical utilization of TO is the compounding of
computational complexity as a function of associated problem size. This challenge is often referred to as
the curse of dimensionality, whereby a linearly increasing problem size can rapidly become prohibitively
expensive to solve. In fact, the curse of dimensionality is exacerbated for the TO methods, as these TO
strategies must numerical solve a finite-element problem in an iterative manner. Specifically, TO strategies
apply numerical analysis techniques to solve for the local structural field variable (for example peak
displacement). Numerical methods such as the Finite Element Method (FEM) can solve this problem for
generalizable geometry, boundary conditions and loading; however, FEM is dimensionally inefficient, even
for single iteration solutions, and with a linearly increasing number of voxels, N, computational cost
exponentially increases to values that exceed the data processing limit of the available computational
hardware. For TO methods, this phenomenon is exacerbated as the numerical solution is iterated to allow
convergence on a specific topological solution. Pragmatic design strategies that utilize TO methods must
accommodate their inherent computational inefficiency. For example, charts such as below of
computational cost versus number of voxels can be utilized to define the feasible limit on the allowable
number of voxels within the solution space based on the practically allowable computational cost - this
approach can reduce the risk of failing to generate solutions within the available design time and is
demonstrated in the case study later on.

Multiple 4
Iteration

(TO)
-\\
N 1

Computational cost

Simulation data indicating solution time versus number of voxels, Nvoxels.
Computational cost increases non-linearly for a single iteration numerical analysis. For
TO methods, computational costs are exacerbated as multiple iterations of the
underlying numerical analysis are required to allow convergence on a specific TO
solution. With increasing Nvoxels, computational costs rapidly exceed the technical data
processing limit of the available computational hardware.
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3. Parametric optimization

The optimization methods identified above provide insight into efficient methods to
generate solutions for explicit design scenarios, either by reference to closed-form solutions,
design precedent, or topology optimization. These optimization methods are often highly
efficient in identifying globally optimal structural topology, but due to imperfect
assumptions or limitations of the solution method, may result in suboptimal refinement of
the local geometry. For these scenarios, parametric optimization provides a complementary
optimization method. Parametric optimization refers to techniques that optimize some
objective function (typically a single value representation of desired performance) in terms
of the parametrically defined control factors that represent local geometry. Parametric
methods allow optimization of these local geometric variables by various methods including
brute force and sequential optimization methods.

3.1 Brute force methods

Brute force methods, also known as exhaustive search refer to optimization methods that
assess solutions for various permutations of the design space, in this case the parametrically
defined control factors. Once the specified permutations of control factors are assessed,
they are compared in terms of the relevant objective function to allow identification of high
performing solutions. To increase their effectiveness, systematic brute force methods have
been proposed, for example, full-factorial design of experiments (DOE), whereby all feasible
permutations of a particular design space are assessed. To reduce the dimensionality of full-
factorial DOE, partial-factorial DOE methods exist that assess some subset of the full-
factorial data without losing insight into efficient parametric solutions.
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3.2 Sequential optimization methods

Sequential optimization methods differ from brute force methods in that the results of
previous evaluations are used to inform the selection of future evaluations, potentially
reducing the number of solution iterations required to converge to the optimal solution.
Extensive research exists on these iterative optimization methods and numerous
algorithms have been proposed. Of the available algorithms, gradient and Nelder-Meade
simplex methods will be discussed in more detail as they provide solutions to a general
category of problems, are well documented in the literature, and are readily applied to
commercially relevant design problems.

Gradient methods evaluate some objective function and associated rates of change
(gradient) with respect to the parametric variables of interest. Based on the local gradient,
parametric variables are then selected for the next solution to be evaluated. The step size
is modulated by an experientially selected learning rate. This rate may be tuned according
to the observed rate of change of the objective function: too low and convergence may
not occur, too high and local optima may be overshot. Gradient methods are simple to
implement and are robust in enhancing performance in the region of a local optima.
Acquisition of the local gradient can be computationally expensive as the effect of each
control factor must be evaluated where each evaluation requires an additional numerical
analysis.
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Nelder-Meade simplex methods are an industrially useful class of optimization methods
that are gradient free. The method involves the initialization (usually arbitrarily) of a
simplex of potential solutions. The simplex solution with lowest performance is deleted,
and a replacement solution is then generated, typically by a sequence of reflection,
extension and subtraction. Reflection involves moving from the deleted point to the
centroid of the remaining solutions and then continuing this trajectory for the same
distance again. If this solution is superior to any other existing solution, extension of this
trajectory is applied. Conversely, if this solution is the least optimal of the existing solutions,
the trajectory is reduced to a value half-way to the identified centroid, known as
subtraction. These methods have proven to be remarkably effective in the optimization of
complex industrial problems, and as the optimization method is gradient-free it has the
advantage of reducing the number of numerical evaluations required per iteration.
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3.3 Practical application of brute force and iterative methods

Although brute force methods often receive dismissive reviews within mathematically
focused optimization literature, they do provide important advantages for the pragmatic
outcomes required in commercial engineering practice. These advantages include solution
parallelization, robustness to flawed analysis, and robustness to discontinuous solution
space. For brute force methods, the intended simulation permutations are independent
and are known a priori. Consequently, multiple computational simulations can be evaluated
concurrently, either in parallel on a specific workstation, or by delegating simulations across
multiple computational resources. This opportunity for solution parallelization is not
available for sequential optimization methods as the associated solutions are not
independent. Consequently, brute force methods present an important computational
opportunity, especially for engineering enterprises that have access to the computational
resources necessary for simulation parallelization.

A significant challenge to the automated optimization of engineering systems is associated
with the robustness of parametric models. Parametric models typically include numerous
control factors that interact in complex ways that can be difficult to predict, including states
that are not numerically robust. Furthermore, numerical models require that these
geometries are compatible with finite element meshing tools, further increasing the
potential for flawed simulation outcomes.
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Brute force methods are robust to the flawed regeneration of the parametric model: such a
flaw will simply result in a failure to generate a solution, or the generation of an incorrect
solution. Neither of these results will contaminate the results for other permutations
scheduled to be assessed. Conversely, sequential optimization methods are not robust to
flawed parametric regeneration and will either terminate the optimization process, or will
attempt to iterate with flawed data, resulting in incorrect convergence. Similarly, brute
force methods are robust to discontinuities within the allowable solution space.
Furthermore, where control-factors are ill-defined, the brute force DOE can be modified to
omit these solutions, thereby eliminating the cost associated with a failed or invalid
solution execution. From a practical point of view for commercial application of
optimization methods, this is possibly the most significant imperative toward the use of
brute force methods for models that have uncertainties in robust regeneration.
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4. Topology optimization and generative design (BC2AM)

Topological optimization provides a profound opportunity for the generative design of
engineering systems that are subject to sophisticated design requirements. For example, the
outcomes of figure below indicate a range of potential solutions for a compliance limited
structural design subject to specific loading conditions. These topological variants are
generated by manipulating the control variables associated with the number of voxels
within the design domain, n.and n,, and the intended volume fraction, V*.

n=62, n,=31,V"=0.2 n,=50, n,=25, V*=0.5 n,=100, n,=50, V'=0.7

N

For a common boundary condition, a range of candidate topologies are generated for varying number of voxels, n, and volume
fraction, V*. Results are reported for intermediate (upper) and final convergence (lower). These topologies can provide the basis
for generatively designed structures.
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Despite the significant commercial opportunities for TO in enabling generative design, there
exist significant barriers to its implementation as a commercial DFAM tool. Commercial best
practice in this space involves the use of TO for the generation of optimal topologies, which
are then manually parametrized prior to production. This outcome allows the benefits of TO
and parametric optimization to be integrated within the design process, as well as allowing
the designer to add value from their experience and intuition by manually determining
elements of the design; however, this manual intervention is not compatible with the
autonomous implementation required for generative design. Specific research opportunities
exist for methods that can autonomously extract a parametric representation directly from
the TO outcome, as well as methods that can smooth the TO outcome such that is can be
directly fabricated without the geometric discontinuities inherent to the voxel representation.
The motivation of these methods is to enable robust AM outcomes to be achieved
algorithmically from a specification of the functional boundary conditions (BC), therefore the
acronym BC2AM may be useful in describing this emerging field of DFAM research.

4.1 Automated extraction of parametric data from TO outcomes

Commercial imperatives require that production geometry be parametrically defined. As
illustrated by the examples presented in this chapter, TO outcomes include geometric features
that are not directly feasible for manufacture and require subsequent refinement.
Consequently, a strong commercial motivation exists towards the automated extraction of
robust parametric data directly from the TO results. Despite this opportunity, there exists few
robust research outcomes in this space.
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Figure below conceptually demonstrates a commercial challenge to BC2AM implementation.
The TO outcomes provide robust insight into efficient geometry, but to be assessed with
gradient optimization methods and for production documentation, a parametric
representation is required. Commercial best practice is to manually parametrize these
structural elements by inspection; however, algorithmic tools that can assist in this
parametrization process are much required for commercial practice.

Manual
parametrization
allows control and
flexibility, but is
inccompatible with
gJenerative design.

Topological Parametrization Parametrized
connectivity process geometry

Conceptual representation of parametrization techniques that are typically implemented manually, thereby providing an
opportunity for the development of algorithmic DFAM tools.
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An alternate method observed in the literature involves the extraction of representative
splines from a smoothed representation of the discretized solid boundary (Figure below).
This method is not directly compatible with 3D structures but does indicate the potential for
such DFAM implementations to enable automation of practical AM design workflows,
especially as is associated with generative methods. These methods appear to have received
little research attention in the DFAM relevant literature: an omission that is potentially due
to the multidisciplinary nature of the underlying research required to execute this significant

DFAM opportunity.
:DQC}/\\

TO outcome

IParametriz representatlnn

S

AM manufactured structure

A method for extracting parametric data directly from the TO outcome.
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4.2 Smoothed TO outcomes

Topology optimization typically results in discontinuous data that is not directly
compatible with AM manufacturability requirements. In order to achieve AM compatible
outcomes algorithmically, it is required to modify this non-smooth data. Various methods
have been proposed to achieve this BC2AM outcome. These methods include smoothing
of the discretized TO outcome, dynamic re-meshing of the TO design domain such that
resolution is enhanced locally as required, and methods that overcome singularities such
that the discretized representation is geometrically conformal.

These methods provide useful DFAM outcomes, but, as for the automated extraction of
parametric data, little published data is available for formal application of these methods
to achieve BC2AM outcomes. Again, this limitation is potentially due to the
multidisciplinary research inputs required and provides a significant commercial and
research opportunity for those capable of integrating mesh smoothing methods from the
computer science domain to the practical requirements of commercial DFAM tools.

Methods of increasing the
conformance of  traditional
hexahedral mesh (left) with a less
distorted meshed solution (right)
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5. Case study: optimization of high-value nonstationary aerospace component

Aerospace structures are non-stationary, meaning that propulsion energy must be consumed
during flight in proportion to the associated mass. For such structures, mass reduction
enables commercial value in terms of increased flight capabilities, increased load carrying
capability or as reduced fuel consumption. AM provides a technically and economically
strategic opportunity for the commercialization of such high-value applications. As an aside,
aerospace structures are often safety-critical, and are therefore subject to rigorous
certification requirements. As an example of how topology optimization can be strategically
applied to increase the value of non-stationary applications, a high-value aerospace
application is presented below, and is structurally optimized subject to AM manufacturability
requirements using the topology and parametric optimization methods presented here.

Incumbent structure design summary:

Material of manufacture:
Aluminium 6061-T6

Method of manufacture:
Machined billet

Design objectives:
Minimize mass subject to
design constraints

Design constraints:
Strength-limited (multiple loads) Incumbent structure Voxel representation
Allowable system cost

Vibratory modes

Allowable deflection

Redesign of incumbent design according to defined statement of requirements



Lecture 19: Topology Optimization for AM

Based on the opportunities and limitations inherent in topology optimization
methods, a systematic strategy needed to be applied for the pragmatic
optimization of AM for the mass-critical aerospace application specified above.

This strategy includes the following phases:

e Define initial conditions: such that there is no ambiguity associated with the intended
technical function and constraints of the proposed system.

e |dentify spatial requirements and available design volume (including access for assembly
and fasteners): such that the design domain can be systematically scheduled for topology
optimization compatible with the available computational budget.

e Apply TO methods: to acquire insight into efficient material distributions.

e Accommodate AM manufacturability: this may include reference to integrated DFAM
tools, but, given the current state-of-the art, commercial best practice typically requires
manual input to accommodate the diverse potential failure modes associated with AM
technologies.

e Generate parametric representation of the preferred topology: emerging BC2AM tools
can be useful in enabling generative design at this stage. Once parametric models are
specified, parametric optimization methods can be applied to optimize local geometry and
document the intended design.

This allowed the rapid deployment of a functional prototype that was robustly fabricated using
Selective Laser Melting with a mass reduction of over 50% when compared with the incumbent
structure.
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Optimized
lattice s rrucfu
&

b
*.

Self-supporting
‘ internal cavities

Optimized fastener
interface

Topological outcomes Paremetrized detail based on
for standard load cases TO outcomes

Final protoype structure

Systematic strategy for the efficient
application of TO and parametric
optimization methods in the design of
a high-value lightweight aerospace
structure manufactured

e Triangulated structure to ground load-paths. These
structural elements are hollow to increase structural
efficiency in bending, and to allow powder removal, and
are inclined to be structurally self-supporting to avoid
entrapped internal support material.

e Self-supporting internal cavities were defined to
increase the efficiency of the central ring feature which
ensuring AM manufacturability. Powder removal was
accommodated by physical conduits within low stress
regions.

e Surrounding material included to allow accommodate
external fasteners, but adjacent material removed in
self-supportable manner.

e Lattice structure applied to enable connection of the
locating ring.



Thank you for your attention
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