
MAEG5160: Design for Additive Manufacturing
Lecture 24: Summary

Prof SONG Xu
Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong.



1. Topology optimization
2. Multiscale structure design
3. Multi-material design
4. Design for mass customization
5. Parts consolidation
6. Lattice structures

Lecture 24: Summary

√

√

√



Additive Manufacturing (AM) 

Vat 
Photopolymeri

zation
Binder Jetting Material Jetting

Material 
Extrusion

Powder Bed 
Fusion

Sheet 
Lamination

Directed 
Energy 

Deposition

ISO/ASTM52900-15 Standard  Terminology for Additive Manufacturing – General Principles – Terminology

https://www.lboro.ac.uk/research/amrg/about/whatisam/

Lecture 24: Summary

https://www.lboro.ac.uk/research/amrg/about/whatisam/


AM economically advantageous scenario

Zone 1: Batch-enabled scenarios. 
Zone 2: Complexity-enabled scenarios.
Zone 3: Ultra-high complexity scenarios.
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Anisotropy

Implication/example

X Y

Z (stacking direction)
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Wall thickness

In general, for light-weight consumer products, this ranges from around 0.6–2.5 mm, and
for more industrial heavy-duty industrial products, this can range from 3 to 5 mm. Though
it is possible to create thinner walls, how successfully they will print will depend on the
surface area of the wall, and the unsupported width to height ratio.
Large surface area flat thin walls will be hard to print without distortion and, depending on
the AM technology used, may delaminate. A simple technique to avoid this problem, if the
wall cannot be made thicker, is using ribs to reinforce the wall. A general rule of thumb is to
use even wall thicknesses throughout the parts, as uneven wall thicknesses can create part
distortion.
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Overhangs and Support Material

Almost all polymer AM technologies, with the exception of powder bed fusion, and some
binder jetting technologies, the printed parts require support material to support any
overhanging features. Support material is a sacrificial material that is utilized during the
printing process to allow any features that overhang, because it is not possible to print in
air without the material collapsing, and is removed after the part has finished printing

There is usually a support ‘angle’ option in your 3D printing software that determines the
angle in which the part requires support material (a very rough starter is 45 degrees).
Some printers measure this angle from the vertical, while others measure it from the
horizontal. It is therefore important to be aware of how each particular printer takes this
measurement.
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Metal Powder Production and Characteristics

Metal AM powder is, most commonly, made through a gas atomization process. There
are a number of different atomisation processes including gas atomisation, vacuum
induction melting gas atomisation, plasma atomisation, centrifugal atomisation, and
water atomisation. Most of these atomization processes produce:

• A spherical powder shape
• A good powder density, thanks to the spherical shape and particle size distribution
• A good reproducibility of particle size distribution

Gas atomisation process and resultant powder
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For powder-bed fusion the powder size most commonly used is between 30 and 40 μm,
with a bell-curve distribution with some large and some smaller particles. Some systems
that allow for very thin layer thicknesses may require smaller particle sizes. Some
materials, such as aluminium, for example, may have a slightly larger powder size
distribution than, say, steel or titanium. Larger powder sizes of between 50 and 100–
150 μm are commonly used for EBM and DED technologies. The reason a mixed powder
size distribution is desirable is so that the smaller particles fit between the larger ones,
and allow a denser layer of powder to be spread. If all the particles are exactly of the
same size, this will leave gaps between the spread powder particles, which will cause it
to collapse, or shrink, more during the meting process.
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Powder bed metal AM process

Overall powder bed metal AM build process

Effect of powder on energy beam absorption

Cross section details

Different energy beam scanning strategy

There are also various scanning strategies that can be
used in order to minimize the stress in each layer of the
part so as to minimize part distortion. A common
scanning strategy, for example, is to rotate the scan
pattern for each successive layer by 67°. This avoids
consecutive layers having exactly overlapping scan
patterns, which could increase residual stress in the
part.
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Powder bed metal AM process – energy density
In the example below, using Ti6Al4 V
as the material, energy densities
above 40 J/mm3 are needed to obtain
parts with 99.7–99.9% relative
density. As the energy density
increases beyond that, part density
continues to improve but surface
roughness gets worse. This is because
the increased energy causes the
molten material to be violently
agitated, which results in a rougher
surface. At an energy density of 30 J/
mm3, however, the part is slightly less
dense (but generally still better than
99% dense) but the part has both
improved surface quality and
minimized defects at the borders.
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A general rule of thumb for angles that do not require 
support material are angles greater than 45° from horizontal.

In general, any design with an overhang 
greater than 0.5 mm will require additional 

support to prevent damage to the part.

The maximum allowable unsupported distance for the powder bed fusion process is around 2 mm.
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If large masses of material are completely unavoidable (which is rare), use different
laser hatch parameter settings to minimize the build-up of residual stress.
• Smaller chess-board hatch patterns will, for example, create less residual stress
than bigger ones, or than large scan areas. But they will slow down the build
process a bit.
• Rotate each hatch scan, usually by 67°, for each layer.
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Horizontal Holes

In metal AM, horizontal holes (or holes angled below the minimum support angle) over a
certain diameter will require support material inside the hole. Though this is not necessarily
a problem, it should be remembered that it is always harder to remove support material
from inside the part than from outside the part. For long holes or pipes that are not perfectly
straight, in particular, the support can be hard to remove from inside the pipe. As a general
guideline, holes below a diameter of 8 mm can be printed without supports. If larger holes
are required, the most common technique is to change the hole from a circular to a shape
that can be printed without the need for support material. These shapes commonly include
ellipses, teardrops, and diamonds.
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Basic concept of digital design and design optimization: design can be numerated, and
compared numerically.
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Optimization statement
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Design Optimization
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Design Optimization

Selecting the best “structural” design

-Size Optimization
-Shape Optimization
-Topology Optimization
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Size Optimization
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Shape Optimization
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Topology Optimization
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Size

Shape

Recall: Three types of design optimization: size, shape and topology

Topo
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Optimization method: Gradient-based method

Optimization method: Heuristic method
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The generalized topology design problem of finding the optimal material distribution 

in a two-dimensional domain

Topology Optimization (TO) by distribution of isotropic material
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Introducing the energy bilinear form (i.e., the internal virtual work of an elastic body at the 

equilibrium u and for an arbitrary virtual displacement v)

with linearized strains and the load energy linear form

the minimum compliance (maximum global stiffness) problem takes the form
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Discretize the problem using finite elements. It is here important to note that there are two

fields of interest, namely both the displacement u and the stiffness E. If we use the same

finite element mesh for both fields, and discretize E as constant in each element,
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The most commonly used approach to solve this problem is to replace the integer variables

with continuous variables and then introduce some form of penalty that steers the solution

to discrete 0-1 values. The design problem for the fixed domain is then formulated as a

sizing problem by modifying the stiffness matrix so that it depends continuously on a

function which is interpreted as a density of material. This function is then the design

variable. The requirement is that the optimization results in designs consisting almost

entirely of regions of material or no material. This means that intermediate values of this

artificial density function should be penalized in a manner analogous to other continuous

optimization approximations of 0-1 problems. One possibility which has proven very

popular and extremely efficient is the so-called penalized, proportional stiffness model (the

SIMP-model)

by specifying a value of p higher than one makes it "uneconomical“ to have

intermediate densities in the optimal design. Thus the penalization is achieved

without the use of any explicit penalization scheme. For problems where the

volume constraint is active, experience shows that optimization does actually

result in such designs if one chooses p sufficiently big (in order to obtain true

"0-1" designs, p > 3 is usually required)
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In the following we will discuss two important issues that significantly influences the

computational results that can be obtained with the material distribution based topology

design procedure. These are (1) the appearance of checkerboards and (2) the mesh-

dependency of results. The former refers to the formation of regions of alternating solid and

void elements ordered in a checkerboard like fashion and is related to the discretization of

the original continuous problem. Mesh-dependence concerns the effect that qualitatively

different optimal solutions are reached for different mesh-sizes or discretization and this

problem is rooted in the issue of existence of solutions to the continuous problem.

Dependence of the optimal topology on mesh refinement for the MBB beam example. Solution for a discretization with a) 2700, c) 4800 and 

d) 17200 elements.
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Example of differences in using one or more load cases. a) and b) Design domains. c) and d) Optimized topologies for all loads in one load

case. e) and f) Optimized topologies for multiple loading cases. It is seen that single load problems result in instable structures based on

square frames whereas multi load case problems results in stable structures based on triangular frames.

Lecture 24: Summary

Variations of the conditions

Multiple loads



Extensions and applications:
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1 Problems in dynamics

1.1 Free vibrations and eigenvalue problems

1.2 Forced vibrations

2 Buckling problems

3 Stress constraints

3.1 A stress criterion for the SIMP model

3.2 Solution aspects

4 Pressure loads

5 Geometrically non-linear problems

5.1 Problem formulation and objective functions

5.2 Choice of objective function for stiffness optimization

5.3 Numerical problems and ways to resolve them

5.4 Examples

6 Synthesis of compliant mechanisms

6.1 Problem setting

2.6.2 Output control

6.3 Path generating mechanisms

6.4 Linear modelling

6.5 Linear vs. non-linear modelling

6.6 Design of thermal actuators

6.7 Computational issues



7 Design of supports

8 Alternative physics problems

8.1 Multiphysics problems

8.2 MicroElectroMechanical Systems (MEMS)

8.3 Stokes flow problems

9 Optimal distribution of multiple material phases

9.1 One material structures

9.2 Two material structures without void 

9.3 Two material structures with void

9.4 Examples of multiphase design

10 Material design

10.1 Numerical homogenization and sensitivity analysis

10.2 Objective functions for material design

10.3 Material design results

11 Wave propagation problems

11.1 Modelling of wave propagation

11.2 Optimization of band gap materials

11.3 Optimization of band gap structures

12 Various other applications

12.1 Material design for maximum buckling load

12.2 Crashworthiness

12.3 Bio-mechanical simulations 

12.4 Applications in the automotive industry
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Application: Free vibrations and eigenvalue problem

A commonly used design goal for dynamically loaded structures is the maximization

of the fundamental eigenvalue

Note that the problem as stated has a trivial solution: one can in principle obtain an infinite eigenvalue by

removing the entire structure. Therefore, the eigenvalue problem is often used in "reinforcement"

problems where parts of the structure are fixed to be solid or there is a finite minimum thickness of the

structure like a fixed shell thickness in the reinforcement optimization of an engine hood. Alternatively,

non-structural masses may be added to parts of the design domain.
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Top: A reinforcement problem. Maximization of the fundamental eigenvalue of a 5-bay

tower structure where the outer frame structure is fixed to be solid.

Below: Maximization of the fundamental eigenvalue of a structure with nonstructural

masses (each with a mass of 10% of the distributable mass) attached on the rightmost

corners. The structures are shown in their fundamental mode of vibrations.
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Application: Forced vibrations
In some situations one may want to minimize or maximize the dynamical response of a structure for

a given driving frequency or frequency range. An example of the former could be for an airplane

where the vibrations in the structure should be minimized at the frequency of the propeller. For the

latter, examples are a sensor which should give a large output for a certain driving frequency or a

clock frequency generator that should vibrate at a certain frequency for least possible input.
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The sensitivities of the objective function may by use of the adjoint method be found as

We readily see from above that for low driving frequencies Ω, the results obtained should

correspond roughly to the results of solving static problems (the term Ω2M is a small

perturbation to the stiffness matrix). However, for higher driving frequencies we should

expect different resulting topologies. It can be shown that this formulation corresponds to

forcing the closest eigenfrequency away form the driving frequency.

Optimized topologies for different driving frequencies . a) A zero driving

frequency gives a statically stiff structure. b) while a small driving frequency

forces the first eigenfrequency upwards resulting in a statically stiff structure.

c) A larger driving frequency results in a tuned mass damper, d) and an even

larger driving frequency forces the first eigenfrequency downwards and away

from the driving frequency. All four examples where solved as reinforcement

problems for a given outer frame and a stiffness ratio between black and white

areas of 100:l. The structures are shown in their deformed states corresponding

to the forced vibration mode.
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Application: Stress concentration

A stress criterion for the SIMP model

For the 0-1 formulation of the topology design problem a stress constraint is well-defined,

but when a material of intermediate density is introduced, the form of the stress constraint is

not a priori given.

A stress criterion for the SIMP model should be as simple as possible (like for the stiffness-

density relation) , and the isotropy of the stiffness properties should be extended to the stress

model. Moreover, for physical relevance, it is reasonable that the criterion should mimic

consistent microstructural considerations. This leads one to apply a stress constraint for the

SIMP model (with exponent p) that is expressed as a constraint of the von Mises equivalent

stress
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This constraint reflects the strength attenuation of a porous medium that arises when an

average stress is distributed in the local microstructure, meaning that "local" stresses

remain finite and non zero at zero density. This results in a reduction of strength

domain by the factor ρp. We see that the same exponents are used for the stiffness

interpolation and the stress constraint. Choosing another exponent is not consistent with

physics and using an exponent that is less than p can for example lead to an artificial

removal of material.

The classical stress-constrained optimization problem consists of finding the minimum

weight structure that satisfies the stress constraint and which is in elastic equilibrium

with the external forces, that is, we have a design problem in the form

where the stress for example is evaluated at the center-node of the individual FE elements.
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A realization of the SIMP model We have continually compared the SIMP and other

interpolation models with the Hashin-Shtrikman bounds for isotropic composites. These

bounds gives necessary conditions for the interpolation models. However, it is the material

design methodology of the inverse homogenization method that allows us to construct

concrete realizations of the SIMP model, as seen below. Note that, in itself, the inverse

homogenization is based on a SIMP interpolation in the unit cell, making the dog bite its tail.

Microstructures of material and void realizing the material properties

of the SIMP model with p = 3, for a base material with Poisson's ratio

v = 1/3. As stiffer material microstructures can be constructed from the

given densities, non-structural areas are seen at the cell centers

Microstructures of material and void realizing the material properties

of the SIMP model with p = 4 for a base material with Poisson's ratio v

= 0 (top row) and v = 0.5 (bottom row), respectively. As left figure,

non-structural areas are seen at the centers of the cells
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Negative Poisson's ratio materials An extremely interesting application of the material

design method is the search for negative Poisson's ratio materials. A number of such

structures have been suggested in the literature, but here we apply topology optimization

to obtain the behaviour we are looking for. If previous equation is formulated so as to

minimize the Poisson's ratio with a constraint on bulk modulus and isotropy, the inverse

homogenization method gives results as shown for 2D below.

Material microstructure with negative Poisson's ratio. a) one unit cell discretized by 60 by 

60 elements, b) repeated unit cell and c) micromachined test beam built at MIC, DTU, DK

The isotropic and negative Poisson's ratio

structure has been manufactured in micro-

scale. The 40 by 8 cell test beam was built

using surface micromachining with a unit-cell

size of 60 µm as shown in (c). The Poisson's

ratio of the test-beam was measured to -

0.9±0.1 in experiments; this compares

favourably to the theoretical value of -0.8.
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Figure 3.2
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The importance of the layered materials not only hinges on the analytical formulas for the

effective material parameters. Of equal significance, studies on bounds on the effective

material properties of composite mixtures made of two isotropic materials have shown that

for elasticity the stiffest (or softest) material for a single load or multiple load problem can

be obtained by a layered medium, with layering at several microscales. For single load

problems the stiffest material consists of orthogonal layers, with no more than 2 layers for

dimension 2 and no more than 3 layers for dimension 3. For multiple load problems the

stiffest material (for the weighted average formulation) consists of layers that are not

necessarily orthogonal, up to 3 for dimension 2 and up to 6 for dimension 3. The rank-2

materials are not the only composites which in 2-D achieves the upper bound on stiffness

of a mixture of two materials. The layered materials are thus not special in the sense of

being uniquely optimal, but they are special in the sense that their effective material

properties can be expressed analytically.
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One of the advantages of the computational program just described is that the main

flow of the procedure is independent of the modelling of the material used for the

description of design. This latter information is added as an external module. This

feature makes it possible to generate flexible procedures, where the material model

can be changed easily.

Optimal design using a hierarchical approach. The resulting 

structure is here a low volume solution to the problem
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Problem formulation for minimum compliance truss design

In the ground structure approach for truss topology design a set of n chosen nodal points

(N degrees of freedom) and m possible connections are given, and one seeks to find the

optimal substructure of this structural universe. In some papers on the ground structure

approach, the ground structure is always assumed to be the set of all possible connections

between the chosen nodal points, but here we allow the ground structure to be any given

set of connections. This approach may lead to designs that are not the best ones for the

chosen set of nodal points, but the approach implicitly allows for restrictions on the

possible spectrum of possible member lengths as well as for the study of the optimal

subset of members of a given truss-layout.

Ground structures for transmitting a vertical force to a vertical line of supports. Truss ground

structures of variable complexity in a rectangular domain with a regular 5 by 3 nodal layout. In c) all

the connections between the nodal points are included.
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Extensions of truss topology design
1. Combined truss topology and geometry optimization

The topology design methods considered so far all employ the basic idea of a ground

structure or reference design domain to obtain problem statements that are sizing problems

for a fixed geometry. The choice of this reference geometry influences the result of the

topology optimization making it important to consider sensitivity analysis of the optimal

designs with respect to variation of the reference geometry, and even optimal design of this

reference geometry may be fruitful in some situations.

In the ground structure approach to topology design of trusses the positions of nodal points

are not used as design variables. This means that a high number of nodal points should be

used in the ground structure to obtain efficient topologies. A drawback of the method is that

the optimal topologies can be very sensitive to the layout of nodal points, at least if the

number of nodal points is relatively low. This makes it natural to consider an extension of the

ground structure approach and to include the optimization of the nodal point location for a

given number and connectivity of nodal points. With very efficient tools at hand for the

topology design with fixed nodal positions it seems natural to treat the variation of nodal

positions as an outer optimization in a two-level hierarchical formulation. As the optimal

value function of the topology compliance depends on the geometry variables in a non-

smooth way, this outer minimization requires non-smooth optimization techniques.
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An example of a 3-D topology and geometry

optimization for a beam carrying a single

load. In a) we show the ground structure of

nodal points and potential bars. Note that the

ground structure has non-equidistant nodal

point positions along the length axis of the

"beam" . In a) we see the optimal topology

for the fixed nodal lay-out of the ground

structure, in c) a combined geometry and

topology optimization with nodal positions

restricted to move along the length axis of

the 'beam". Finally, in d) the result of a

combined geometry and topology

optimization with totally free nodal

positions is shown. The (non-dimensional)

compliance values of the optimized designs

are 1.00, 0.945 and 0.911, respectively.
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4.2 Truss design with buckling constraints

Lecture 24: Summary

An example of what can be achieved with this formulation is illustrated in Figure below.

Here the initial design has ti = 1000/m, i = 1, ... , m, with a corresponding compliance of

0.177 and a critical force (0.397) that is smaller than one, meaning that the truss is

unstable. The standard truss optimization without stability constraint gives a design that is

twice as light as the previous one but absolutely unstable. Finally, by truss optimization

with stability constraint one can obtain a design that at a volume of 1179.6 is a bit heavier

than the first one. However, it is stable under the given load. To see fully the effect of the

stability constraint, we have for this example chosen the upper bound for the compliance

so that the compliance constraint is not active. For truss (and frame) models local

buckling of the individual members is also an important aspect to take into consideration.

The effect of a constraint on the global

buckling load, a) shows the initial truss with its

buckling mode in b). c) is the optimal truss

without stability constraint and, d) is the

optimal truss with a stability constraint.
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Topology optimization methods

The Michell truss

Ground structure

Level-set methods

Discrete (voxel) methods

Bidirectional evolutionary structural optimization (BESO) methods

Solid isotropic material with penalization (SIMP) method
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Parametric optimization

Brute force methods (DOE)

Sequential optimization methods: Gradient methods, Nelder-Meade simplex methods, etc

Topology optimization and generative design (BC2AM)

Automated extraction of parametric data from TO outcomes

Smoothed TO outcomes



Computer Aided Design (CAD)

Computer Aided Design (CAD) data provides unambiguous representations of the geometric
envelope associated with a specific intended geometry. Numerous formal protocols for CAD
representation exist and are defined for various purposes according to their specific capabilities
and attributes. These attributes include the fundamental method of geometric representation,
either as a volume or external surface; the representation of geometry as either explicit or
implicit data; the associated data storage protocol; and the representation of either toleranced
or nominal geometries.

CAD data can be generated according to numerous
protocols. These protocols consist of both
proprietary and open-source formats and can be
classified according to the method of geometry
generation. Prominent explicit methods for data
generation include Constructive Solid Geometry
(CSG) and boundary representation (B-rep).
Implicit methods for geometry representation
include voxel methods, level sets, and scalar fields
that indirectly represent the geometry of interest.
Each of these methods has distinct opportunities
and challenges for AM application.
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Constructive Solid Geometry (CSG) represents the intended component geometry with Boolean operations
applied to primitive geometry structures, such as spheres, cylinders and cubes. These CSG methods are
therefore eminently compatible with algorithmic methods, as are required for generative AM design.
However, these representations are not necessarily compatible with curvilinear geometries, which are not
readily constructed from the available library of primitive structures.
Boundary representations (B-rep) consist of surface elements that interconnect to define the volume of
interest. B-rep is robust and flexible, especially for curvilinear geometries including complex variable radius
fillets and sweeping blends. Consequently, B-rep is often the preferred data representation used in manual
CAD software. The explicit data representation of B-rep and CSG methods can be data-inefficient for
repetitive geometries, including for self-tessellated lattice structures and the complex geometry that is often
preferred for high-value AM applications. For these scenarios, the necessary file size can rapidly expand
beyond the feasible data processing limit.

Schematic representation of explicit
and implicit data representation of
lattice structure. Data generated by
commercially available tools with no
data compression for repetition
elements.
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Open (pore)

Close

RegularRandom

Classification of Cellular Materials
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Lattice structures

Lattice structures refer to the open-celled arrangement of strut elements with defined
connectivity at specified nodes. These lattice arrangements are readily tessellated to fill space
and allow highly efficient paths for the grounding of external and internal loads.
Consequently, lattice structures are often observed in both naturally occurring biological
systems such as the cellular structures of trabecular bone, and in engineered structural
systems, for example three-dimensional truss structures used to efficiently ground loads in
civil engineering structures. Lattice structures may have either stochastic or periodic
arrangements. Biological lattice systems generally feature stochastic arrangements, whereas
engineered lattice structures are typically periodic; however engineered structures with
stochastic and hierarchical attributes are emerging within the research literature and in
commercial applications.

Schematic representation of 
potential planar lattice 
configurations, Maxwell number, M 
and associated response type, either 
bending or stretch-dominated
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Maxwell stability criterion

Triangulated truss structures (known as space-frames in 3D space) provide a fundamentally
efficient structural system. Such truss structures are typically designed to ground internal and
external loads by a combination of tensile and compressive axial loading within the associated
strut elements.For external loads to be robustly equilibrated by internal forces within the truss
structure, a sufficient number of strut elements with appropriate nodal connectivity must exist.
Maxwell proposed a set of mathematical conditions that must be satisfied for the loads be
grounded in a mechanically robust manner. The Maxwell stability criterion is stated such that
there are 2 free equilibrium-equations(3 for 3D space) associated with each node, j, and that
each strut, s, represents an unknown equilibrating force; furthermore, there are 3 external
forces (6 for 3D space), resulting in the inequalities

For scenarios where M < 0, there are insufficient struts to equilibrate the external forces, and
the under-stiff truss system becomes a mechanism. For M = 0, the strut elements are arranged
such that the strut loading is determinant for any external loading; such structures are defined
as just-stiff and contain no structurally redundant strut elements. Additional strut elements can
further increase the Maxwell number, M > 0, making the truss over-stiff.
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Observed mechanical response (lattice system)

Lattice system typically consists of an
assemblage of individual unit cells. The
mechanical response of such a lattice
system is dependent on the structural
response according to the Maxwell
stability criterion. The overall behaviour of
AM lattice systems has been documented
both experimentally and mechanistically
and may involve the following observed
responses:

1. Initial plastic consolidation

2. Linear elastic response

3. Non-linear elastic response

4. Yield strength, or elastic limit

5. Unloading Modulus

6. Ultimate compressive strength

7. Crushing strength

8. Densification
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Prediction of AM lattice response

Numerous predictive models have been established to relate the lattice topology and
material properties to the observed mechanical properties, most notably the seminal
Gibson-Ashby model. This fundamental model is derived from first principles based on
insights into cellular geometry and associated mechanical failure modes, resulting in
predictive relationships of the type defined below. Specifically, these relationships predict
the lattice mechanical response, P, to be proportional to some known response of the solid
material PS, and the ratio of lattice to solid material density, ρ*/ρS, to the power of some
exponent, n, and scaled by some proportionality constant, C. The predicted exponent
depends on whether the structure is bending- or stretch-dominated as summarized in next
Table for a number of pertinent scenarios.
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A selection of Gibson-Ashby relationships for bending-
dominated and stretch-dominated mechanical response.

Gibson-Ashby model illustrating Young’s Modulus
for bending and stretch-dominated structures with
reference to the solid material.

Figure above provides further insight into the range of mechanical responses to be expected based on Gibson-Ashby
relationships. Specifically, the Maxwell stability criterion can be used to directly characterize the lattice response as being
either bending- or stretch-dominated. From this understanding, the Gibson-Ashby model can be utilized to predict the
specific mechanical response of the associated lattice system. These predictions are compatible with the experimentally
observed mechanical response of AM lattice structures; However, variability exists due to simplifications inherent in the
Gibson-Ashby model and variation between the idealized and as manufactured AM lattice geometry. Due to the potential
for variability in Gibson-Ashby model predictions, experimental results or validated numerical predictions are required for
the design of high-value AM lattice applications.
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All Additive manufacturing (AM) technologies
require post-processing to produce parts that
are ready for use. This post-processing can
range from support material removal, to
surface quality improvement, to colouring and
painting, and to aging for polymer parts and
heat-treatment for metal parts. Throughout
the AM industry there is a vast amount of
tacit knowledge in the area of post-processing
but there, currently, exists very little
documentation on the various post-
processing methods for different AM
technologies and materials. This leads to time
being wasted by companies having to
individually learn and develop post-processing
methods. The overall process flow of additive
manufacturing includes pre-processing and
post-processing, and is presented in the
following table. Note that the steps can vary,
sometimes greatly, depending on the
application, material, AM system being used,
and specific requirements of the parts.
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Post-processing for AM



Thank you for your attention


