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1. Topology optimization v

2. Multiscale structure design

3. Multi-material design

4. Design for mass customization
5. Parts consolidation v

6. Lattice structures v
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I ASTM52 -15 Standard Terminol for Additive Manufacturing — General Principles — Terminol

https://www.Iboro.ac.uk/research/amrg/about/whatisam/
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AM economically advantageous scenario
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Zone 1: Batch-enabled scenarios.
Zone 2: Complexity-enabled scenarios.
Zone 3: Ultra-high complexity scenarios.
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Design for polymer AM

Anisotropy

Implication/example

Z (stackil

x/ \

Clip will be weak and, almost
certainly, break

Good compromise clip,
with decent spring and
strong hook

Clip has the best spring
strength and flexibility but a
weak hook
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Design for polymer AM

Wall thickness

In general, for light-weight consumer products, this ranges from around 0.6-2.5 mm, and
for more industrial heavy-duty industrial products, this can range from 3 to 5 mm. Though
it is possible to create thinner walls, how successfully they will print will depend on the
surface area of the wall, and the unsupported width to height ratio.

Large surface area flat thin walls will be hard to print without distortion and, depending on
the AM technology used, may delaminate. A simple technique to avoid this problem, if the
wall cannot be made thicker, is using ribs to reinforce the wall. A general rule of thumb is to
use even wall thicknesses throughout the parts, as uneven wall thicknesses can create part

distortion.
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Design for polymer AM

Overhangs and Support Material

Almost all polymer AM technologies, with the exception of powder bed fusion, and some
binder jetting technologies, the printed parts require support material to support any
overhanging features. Support material is a sacrificial material that is utilized during the
printing process to allow any features that overhang, because it is not possible to print in
air without the material collapsing, and is removed after the part has finished printing

There is usually a support ‘angle’ option in your 3D printing software that determines the
angle in which the part requires support material (a very rough starter is 45 degrees).
Some printers measure this angle from the vertical, while others measure it from the

horizontal. It is therefore important to be aware of how each particular printer takes this
measurement.
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Design for metal AM

Metal Powder Production and Characteristics

Metal AM powder is, most commonly, made through a gas atomization process. There
are a number of different atomisation processes including gas atomisation, vacuum
induction melting gas atomisation, plasma atomisation, centrifugal atomisation, and
water atomisation. Most of these atomization processes produce:

e A spherical powder shape
e A good powder density, thanks to the spherical shape and particle size distribution
e A good reproducibility of particle size distribution

Molten metal

Atomization nozzle
Neutral gas jets

Atomized metal powder

~€— Atomizing chamber

Powder collection

)

Gas atomisation process and resultant powder
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Design for metal AM

For powder-bed fusion the powder size most commonly used is between 30 and 40 um,
with a bell-curve distribution with some large and some smaller particles. Some systems
that allow for very thin layer thicknesses may require smaller particle sizes. Some
materials, such as aluminium, for example, may have a slightly larger powder size
distribution than, say, steel or titanium. Larger powder sizes of between 50 and 100-
150 um are commonly used for EBM and DED technologies. The reason a mixed powder
size distribution is desirable is so that the smaller particles fit between the larger ones,
and allow a denser layer of powder to be spread. If all the particles are exactly of the
same size, this will leave gaps between the spread powder particles, which will cause it

to collapse, or shrink, more during the meting process.
% Volume D10 D50 D90

50 pm Powder
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Design for metal AM
Powder bed metal AM process

Laser

Laser scan direction beam

Solidified material Melt pool

[ 7 Part [ Unmelted powder
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Overall powder bed metal AM build process
Laser beam

Reflected energy
Absorbed energy

Scattered energy

Effect of powder on energy beam absorption

Dimensional error N £ Laser beam diameter
without beam offset y ) (‘,/
O ¥ wow -
& Contour line with Effective laser beam
w beam offset Hatch lines diameter
Part :
Beam offset s . ’ / Hatch spacing
Contour line with __| _@ TR ‘\‘} St | 1 Overlap between hatch
beam offset L . 1 regions
g - . _ e
{ k"*‘\ Overlap between contour

and hatch regions
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Different energy beam scanning strategy

There are also various scanning strategies that can be
used in order to minimize the stress in each layer of the
part so as to minimize part distortion. A common
scanning strategy, for example, is to rotate the scan
pattern for each successive layer by 67°. This avoids
consecutive layers having exactly overlapping scan
patterns, which could increase residual stress in the
part.
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Design for metal AM

Powder bed metal AM process — energy density

18.5 J/mm?
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: 500 ym ° 500 pm
41.7 J/mm? 55.6 J/mm’
E = energy density
P = Power (W)
E = v = Scanning speed (mm/s)

h = hatch spacing (mm)
t = layer thickness (mm)

27.8 Jimm’

500 pm

83.3 J/mm?

In the example below, using Ti6Al4 V
as the material, energy densities
above 40 J/mm3 are needed to obtain
parts with 99.7-99.9% relative
density. As the energy density
increases beyond that, part density
continues to improve but surface
roughness gets worse. This is because
the increased energy causes the
molten material to be Vviolently
agitated, which results in a rougher
surface. At an energy density of 30 J/
mm3, however, the part is slightly less
dense (but generally still better than
99% dense) but the part has both
improved  surface quality and
minimized defects at the borders.
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Design for metal AM

50 degrees

35 degrees 30 degrees 25 degrees 20 degrees In genera|’ any design with an overh ang
A general rule of thumb for angles that do not require greater than 0.5 mm will require additional
support material are angles greater than 45° from horizontal. support to prevent damage to the part.
imm 2mm I 3mm 4mm Smm

"
e ‘ ' "

The maximum allowable unsupported distance for the powder bed fusion process is around 2 mm.
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Design for metal AM

If large masses of material are completely unavoidable (which is rare), use different
laser hatch parameter settings to minimize the build-up of residual stress.

e Smaller chess-board hatch patterns will, for example, create less residual stress
than bigger ones, or than large scan areas. But they will slow down the build
process a bit.

e Rotate each hatch scan, usually by 67°, for each layer.

Meander hatch pattern Stripe hatch pattern Chessboard hatch
High build rate Medium build rate pattern

Higher residual stress Medium residual stress Slow build rate
Suitable for small/thin parts Suitable for large parts Lower residual stress

Suitable for large parts
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Horizontal Holes

In metal AM, horizontal holes (or holes angled below the minimum support angle) over a
certain diameter will require support material inside the hole. Though this is not necessarily
a problem, it should be remembered that it is always harder to remove support material
from inside the part than from outside the part. For long holes or pipes that are not perfectly
straight, in particular, the support can be hard to remove from inside the pipe. As a general
guideline, holes below a diameter of 8 mm can be printed without supports. If larger holes
are required, the most common technique is to change the hole from a circular to a shape
that can be printed without the need for support material. These shapes commonly include

ellipses, teardrops, and diamonds.

Round holes
can, generally,
be built without
support up to a
diameter of
around Smm.
Holes larger
than this will
require
supports. Note
that this
diameter varies
based on the
machine and
material used.

Elliptical
holes, when
the height of
the ellipse is
twice the
width, can
be printed to
about 25mm
tall,
depending
on the
system being
used.

Teardrop
shaped holes
can be printed to
almost any
diameter
providing the
top angle is no
less than the
minimum
support angle. It
is good practice
to fillet the top
of the teardrop
to avoid a stress
concentration.

Diamond
shaped holes can
be printed to
almost any size.
It is good
practice to fillet
the corners of the
hole to avoid
stress
concentrations in
the corners.




Digital design for AM

{ ADVANCED DFAM OPPORTUNITIE S |
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| Process Details
DESIGN Boundary conditions
-4 SPECIFICATION | Constraints
Objectives
EMBODIMENT | Initial layout
DESIGN ldealized modeling

!

' (CAD)

DETAIL DESIGN | Stress/Stiffness optimization
Tolerance specification
Support structure design
COMPUTER Parametric modeling
===~ % AIDED DESIGN | B-Rep, Voxel, CSG, Implicit

Ol

VOLUMETRIC
GEOMETRY

Stereolithographic (STL)
AM format (AMF)
Support structure generation

""" | PARAMETERS

SLICE Cross-section perimeters
- - = GEOMETRY
- - — m| TOOL PATH & Tool path vectors
PROCESS Process parameters

{

MANUFACTURE | Process parameter feedback
Environmental data
Sensordata
)
INSPECTION & | Discrete test data
CERTIFICATION | Point cloud geometry
Voxel-based geometry

Available design space

Loading
clearance

Fastener clearance (x4)

conditions (x4)

Bounding conditions

Functionally efficient
voxel arrangement

Topological optima

Paremetrized geometry
arranged according to
topological optima

Parametrized geometry
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Digital design for AM

Basic concept of digital design and design optimization: design can be numerated, and
compared numerically.

Selecting the “best” design within the available means

1. What is our criterion for "best” design?  Objective function

2. What are the available means? Constraints

(design requirements)

3. How do we describe different designs? Design Variables
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Optimization statement

-

" Minimize 7(x)

Subject to g(x)<0
h(x)=0

~

/

f(x) : Objective function to be minimized

2(x) : Inequality constraints

h(x) : Equality constraints

X

: Design variables
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Design Optimization

a N

' N
minimize f(X)

subjectto g(x) < 0
h(x) = 0

N y q

\ BC’s are given Loads are given /

1. To make the structure strong - Min. f(x)
e.d. Minimize displacement at the tip

2. Total mass <M, m ()= 0
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Design Optimization

Selecting the best “structural” design

-Size Optimization
-Shape Optimization
-Topology Optimization

Inltlal . .

Optlmlzed .

o

Lo

Sizing Shape Topology



Size Optimization
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\

minimize f(x)
subjectto g(x) < 0
h(x) = 0

/

/

.

Beams
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/

Design variables (x)

X : thickness of each beam

Number of design variables (ndv)

ndv= 5

f(x) : compliance

g(x) : mass
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Shape Optimization
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minimize f(X) /
subjectto g(x) < 0

h(x) = 0 ;'

7

7

/

B-spline

Hermite, Bezier, B-spline, NURBS, etc.

/

Design variables (x)

X : control points of the B-spline

(position of each control point)

Number of design variables (ndv)

ndv= 8

f(x) : compliance

g(x) : mass



Topology Optimization
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minimize f(x)
subjectto g(x) < 0
h(x) = 0

\

/

.

Cells
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Design variables (x)

Number of design variables (ndv)

X : density of each cell

ndv = 27

f(x) : compliance

g(x) : mass
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Recall: Three types of design optimization: size, shape and topology
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Optimization method: Gradient-based method

Steepest Descent UNCONSTRAINED
Conjugate Gradient

Quasi-Newton
Newton
Simplex — linear
SLP - linear
SQP - nonlinear, expensive, common in engineering applications
Exterior Penalty — nonlinear, discontinuous design spaces
Interior Penalty — nonlinear

Generalized Reduced Gradient — nonlinear

Method of Feasible Directions — nonlinear

Mixed Integer Programming

CONSTRAINED

Optimization method: Heuristic method

= Heuristics Often Incorporate Randomization

= 3 Most Common Heuristic Techniques
= Genetic Algorithms

» Simulated Annealing
= Tabu Search

)

Heuristic Search in
Artificial Intelligence

\ &

Python
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Topology Optimization (TO) by distribution of isotropic material

A design point

) A point with fixed material

A point with no material

LL t
b) J c)

The generalized topology design problem of finding the optimal material distribution
in a two-dimensional domain
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Introducing the energy bilinear form (i.e., the internal virtual work of an elastic body at the
equilibrium u and for an arbitrary virtual displacement v)

a(u,v):[}Eijkg(m)sij(u)ek;(v)dﬂ

with linearized strains e;(u) = 3 (g—;‘? + g;‘;_i) and the load energy linear form
7 ]

l(u):/gfudﬂ-l—/r tuds

the minimum compliance (maximum global stiffness) problem takes the form
s.t. : ag(u,v) =1l(v), forallveU
FE eEyy.
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Discretize the problem using finite elements. It 1s here important to note that there are two

fields of interest, namely both the displacement u and the stiffness E. If we use the same
finite element mesh for both fields, and discretize E as constant in each element,

min fTu
u,F,

st.: K(EJu=1f,
EE - Ead .

Here u and f are the displacement and load vectors, respectively. The stiffness
matrix K depends on the stiffness F, in element e, numbered ase =1,..., N,
and we can write K in the form

N
K=> K.(E)
e=l
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The most commonly used approach to solve this problem is to replace the integer variables
with continuous variables and then introduce some form of penalty that steers the solution
to discrete 0-1 values The design problem for the fixed domain is then formulated as a
sizing problem by modifying the stiffness matrix so that it depends continuously on a
function which is interpreted as a density of material. This function is then the design
variable. The requirement is that the optimization results in designs consisting almost
entirely of regions of material or no material. This means that intermediate values of this
artificial density function should be penalized in a manner analogous to other continuous
optimization approximations of 0-1 problems. One possibility which has proven very

popular and extremely efficient is the so-called penalized, proportional stiffness model (the

SIMP-model)
Eijii(z) = p(z)?EYy, p>1, Stiffness interpolation:

/ plz)d <V; 0<p(zr)<1, z€ E
Q

r Y

Eju(p=0)=0,  Eyulp=1) = Ejy

by specifying a value of p higher than one makes it "uneconomical* to have 1

intermediate densities in the optimal design. Thus the penalization is achieved
without the use of any explicit penalization scheme. For problems where the

volume constraint is active, experience shows that optimization does actually p>1
result in such designs if one chooses p sufficiently big (in order to obtain true
"0-1" designs, p > 3 is usually required)
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Optimization:

Compute the optimal distribution over the reference domain of the design
variable p. The optimization uses a displacement based finite element analysis
and the optimality update criteria scheme for the density. The structure of

the algorithm is:

— Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then:

— For this distribution of density, compute by the finite element method the
resulting displacements and strains.

— Compute the compliance of this design. If only marginal improvement (in
compliance) over last design, stop the iterations. Else, continue. For de-
tailed studies, stop when necessary conditions of optimality are satisfied.

— Compute the update of the density variable, based on the scheme shown in
section 1.2.1. This step also consists of an inner iteration loop for finding
the value of the Lagrange multiplier A for the volume constraint.

— Repeat the iteration loop.

For a case where there are parts of the structure which are fixed (as solid
and/or void) the updating of the design variables should only be invoked for
the areas of the ground structure which are being redesigned (reinforced).

Post-processing of results:

— Interpret the optimal distribution of material as defining a shape, for ex-
ample in the sense of a CAD representation.
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Initialize
(Starting guess)

=

Finite element analysis
|

Sensitivity analysis ‘L

(lineml'ization)

Low-pass filtering
|

Optimization
Mcthod of Moving Asymptotcs

1
Update design variables

yes
plot results/ /
post-processing /
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In the following we will discuss two important issues that significantly influences the
computational results that can be obtained with the material distribution based topology
design procedure. These are (1) the appearance of checkerboards and (2) the mesh-
dependency of results. The former refers to the formation of regions of alternating solid and
void elements ordered in a checkerboard like fashion and is related to the discretization of
the original continuous problem. Mesh-dependence concerns the effect that qualitatively
different optimal solutions are reached for different mesh-sizes or discretization and this
problem i1s rooted in the 1ssue of existence of solutions to the continuous problem.

Dependence of the optimal topology on mesh refinement for the MBB beam example. Solution for a discretization with a) 2700, c) 4800 and
d) 17200 elements.
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Variations of the conditions

Multiple loads

!

e)

Example of differences in using one or more load cases. a) and b) Design domains. ¢) and d) Optimized topologies for all loads in one load
case. ¢) and f) Optimized topologies for multiple loading cases. It is seen that single load problems result in instable structures based on
square frames whereas multi load case problems results in stable structures based on triangular frames.
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Extensions and applications:

1 Problems in dynamics

1.1 Free vibrations and eigenvalue problems 'ir
1.2 Forced vibrations iit
2 Buckling problems

3 Stress constraints

3.1 A stress criterion for the SIMP model J;ﬂﬁh
3.2 Solution aspects .
4 Pressure loads

5 Geometrically non-linear problems

5.1 Problem formulation and objective functions _— m m

5.2 Choice of objective function for stiffness optimization

5.3 Numerical problems and ways to resolve them A m m
5.4 Examples pe2i0kN m m\

6 Synthesis of compliant mechanisms
6.1 Problem setting

2.6.2 Output control S
6.3 Path generating mechanisms
6.4 Linear modelling

6.5 Linear vs. non-linear modelling
6.6 Design of thermal actuators

6.7 Computational issues




Y Support area Fixed support arca I Solid area (road)
Lecture 24: Summary it
7 Design of supports 4 ks = I | s |
8 Alternative physics problems , ﬂ > = . WP

8.1 Multiphysics problems

8.2 MicroElectroMechanical Systems (MEMS) | - i
8.3 Stokes flow problems . k g g |
9 Optimal distribution of multiple material phases
9.1 One material structures

9.2 Two material structures without void

9.3 Two material structures with void

9.4 Examples of multiphase design

10 Material design

10.1 Numerical homogenization and sensitivity analysis
10.2 Objective functions for material design

10.3 Material design results

11 Wave propagation problems

11.1 Modelling of wave propagation

11.2 Optimization of band gap materials =
11.3 Optimization of band gap structures =~ |

12 Various other applications S A

12.1 Material design for maximum buckling load ’ l

Absorbing boundary

Absorbing boundary

Car front seen from the side Car front seen from above
Rigid wall Passenger cabin

02m
-
0
i

%"‘ .
0.4m _0
Tire | |02 m

12.2 Crashworthiness ’ =
12.3 Bio-mechanical simulations Sy
12.4 Applications in the automotive industry
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Application: Free vibrations and eigenvalue problem

A commonly used design goal for dynamically loaded structures 1s the maximization
of the fundamental eigenvalue )

min

mﬁ,x {}.mm =  min }.i}

i=1,...,Ngay
s.t.: (K - )Lt'M]‘I’,; =0, 1= 1,.....,4'“Jdﬂf 3
N
Z?-’eﬂeﬂva 0<pmin $pe <1, e=1,...,N,

e=1

where K and M are the system stiffness and mass matrices, respectively and
P, is the eigenvector associated with the 2’th eigenvalue. In practice one does
not solve for all Ny,5 modes of the eigenvalue problem. Only the first up to
10 modes will usually play a role in determining the dynamical response of a
structure.

Note that the problem as stated has a trivial solution: one can in principle obtain an infinite eigenvalue by
removing the entire structure. Therefore, the eigenvalue problem is often used in "reinforcement"
problems where parts of the structure are fixed to be solid or there is a finite minimum thickness of the
structure like a fixed shell thickness in the reinforcement optimization of an engine hood. Alternatively,
non-structural masses may be added to parts of the design domain.
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Top: A reinforcement problem. Maximization of the fundamental eigenvalue of a 5-bay
tower structure where the outer frame structure is fixed to be solid.

Below: Maximization of the fundamental eigenvalue of a structure with nonstructural
masses (each with a mass of 10% of the distributable mass) attached on the rightmost
corners. The structures are shown 1n their fundamental mode of vibrations.
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Application: Forced vibrations

In some situations one may want to minimize or maximize the dynamical response of a structure for
a given driving frequency or frequency range. An example of the former could be for an airplane
where the vibrations in the structure should be minimized at the frequency of the propeller. For the
latter, examples are a sensor which should give a large output for a certain driving frequency or a
clock frequency generator that should vibrate at a certain frequency for least possible input.

For solving this type of design problem we define the dynamic compliance
as driving force times magnitude of the displacement and express the goal for
the dynamical response in terms of this compliance. An optimization problem
solving the problem of minimizing the dynamic compliance of a structure
subject to periodic forces, f(2), with frequency {2, can then be written as

m&n {;::(fTujﬁ}
st.: (K—2°M)u=f,

Jwr
vapf{—:vi 0<pmin<pe<1l, e=1,...,N.
e=1
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The sensitivities of the objective function may by use of the adjoint method be found as

a(? _ AT
I

where A is the solution to the adjoint problem
(K —2°M) A = -2(fTu) f .

We readily see from above that for low driving frequencies €, the results obtained should
correspond roughly to the results of solving static problems (the term Q’M is a small
perturbation to the stiffness matrix). However, for higher driving frequencies we should
expect different resulting topologies. It can be shown that this formulation corresponds to
forcing the closest eigenfrequency away form the driving frequency.

Optimized topologies for different driving frequencies . a) A zero driving

I frequency gives a statically stiff structure. b) while a small driving frequency

forces the first eigenfrequency upwards resulting in a statically stiff structure.

) c) A larger driving frequency results in a tuned mass damper, d) and an even
jI

larger driving frequency forces the first eigenfrequency downwards and away
from the driving frequency. All four examples where solved as reinforcement
problems for a given outer frame and a stiffness ratio between black and white
areas of 100:1. The structures are shown in their deformed states corresponding
to the forced vibration mode.

X
1]

a)
c)
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Application: Stress concentration

A stress criterion for the SIMP model

For the 0-1 formulation of the topology design problem a stress constraint is well-defined,
but when a material of intermediate density is introduced, the form of the stress constraint is
not a priori given.

A stress criterion for the SIMP model should be as simple as possible (like for the stiffness-
density relation) , and the isotropy of the stiffness properties should be extended to the stress
model. Moreover, for physical relevance, it is reasonable that the criterion should mimic
consistent microstructural considerations. This leads one to apply a stress constraint for the
SIMP model (with exponent p) that is expressed as a constraint of the von Mises equivalent
stress

ovm < PP ifp>0
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This constraint reflects the strength attenuation of a porous medium that arises when an
average stress is distributed in the local microstructure, meaning that "local" stresses
remain finite and non zero at zero density. This results in a reduction of strength
domain by the factor pP. We see that the same exponents are used for the stiffness
interpolation and the stress constraint. Choosing another exponent is not consistent with
physics and using an exponent that is less than p can for example lead to an artificial
removal of material.

The classical stress-constrained optimization problem consists of finding the minimum
weight structure that satisfies the stress constraint and which is in elastic equilibrium
with the external forces, that is, we have a design problem in the form

N

n}i'n Z Ve Pe

e=1
s.t. : Ku="T,
{Uej‘u'ﬁ.-lfpg opif p>0, O0<pmin<pe <1, e=1,...,N

where the stress for example is evaluated at the center-node of the individual FE elements.
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A realization of the SIMP model We have continually compared the SIMP and other
interpolation models with the Hashin-Shtrikman bounds for isotropic composites. These
bounds gives necessary conditions for the interpolation models. However, it is the material
design methodology of the inverse homogenization method that allows us to construct
concrete realizations of the SIMP model, as seen below. Note that, in itself, the inverse
homogenization is based on a SIMP interpolation in the unit cell, making the dog bite its tail.

Young’s Modulus, E

Microstructures of material and void realizing the material properties
of the SIMP model with p = 3, for a base material with Poisson's ratio
v = 1/3. As stiffer material microstructures can be constructed from the

1.0

e
»

o
'S

0.0 02 0.4 0.6 0.8 1.0

given densities, non-structural areas are seen at the cell centers
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Microstructures of material and void realizing the material properties
of the SIMP model with p = 4 for a base material with Poisson's ratio v
= 0 (top row) and v = 0.5 (bottom row), respectively. As left figure,
non-structural areas are seen at the centers of the cells
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Negative Poisson's ratio materials An extremely interesting application of the material
design method is the search for negative Poisson's ratio materials. A number of such
structures have been suggested in the literature, but here we apply topology optimization
to obtain the behaviour we are looking for. If previous equation is formulated so as to
minimize the Poisson's ratio with a constraint on bulk modulus and isotropy, the inverse
homogenization method gives results as shown for 2D below.

The isotropic and negative Poisson's ratio
structure has been manufactured in micro-
scale. The 40 by 8 cell test beam was built
using surface micromachining with a unit-cell
size of 60 um as shown in (c). The Poisson's
ratio of the test-beam was measured to -
0.9+40.1 1in experiments; this compares
favourably to the theoretical value of -0.8.

100 m
Le—]

c)

Material microstructure with negative Poisson's ratio. a) one unit cell discretized by 60 by
60 elements, b) repeated unit cell and ¢) micromachined test beam built at MIC, DTU, DK
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Design with anisotropic materials

Layered material We now consider a layered material (cf., scale 2 of Fig. 3.2
rotated 90°) with layers directed along the y,-direction and repeated peri-
odically along the y;-axis. The unit cell is [0, 1] x R, and it is clear that the
unit cell fields x*' are independent of the variable y,. Also note that in Equa- . e

tion (3.2), the term involving the cell deformation field x** is of the form & Rank-1 matcia

Ayt . : . . .
Eiipg (m,y)ﬁ?—, so an explicit expression for Y* is not needed. Using period-
q

icity and appropriate test functions and assuming that the direction of the
layering coalesces with the directions of orthotropy of the materials involved, £
the only non-zero elements Ey111, Faz22, Fio12(= E1291 = Ea191 = FEa112), macia
Eq122(= E2911) of the tensor Ejjr; can be calculated as shown in Appendix

5.4. Specifically, for a layering of two isotropic materials with the same Pois-

son ratio v, with different Young's moduli E* and E~ and with layer thick-
nesses v and (1 — ~), respectively, the layering formulas (in plane stress)
reduce to the following simple expressions:

T

Figure 3.2

1-v
2 H H
ElHlll '__II: Eggg =Lh+v 11: E1212 = —2——1'15 E1122 =l ,

1 ETE"-

I, =
Y1V yE- + (1 —9)EF

s =":r'E+ -+ (1 —-y)E™ .
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It has been noted earlier that layered materials (so-called rank-N layered
materials) play an important role as a class of composites for use in the
homogenization approach. Such materials are created by successive layering
of one material with composites already constructed. For example, the con-
struction of a rank-2 layering is as follows. First, a (first order) layering of
the strong and the weak material (void in the following) is constructed (see
scale 2 of Fig. 3.2). This resulting composite material is then used as one
of two components in a new layered material, with layers of the isotropic,
strong material and of the composite just constructed; the layers of this com-
posite material are placed at an angle to the direction of the new layering.
The effective material properties of the resulting material can be computed
by recursive use of the effective material parameters for a layering and the
moduli are computed as the material is constructed, bottom up. The rank-N
construction is analogous, and just includes more steps. For a rank-2 layering
of material and void, with perpendicular layerings and with primary layer-
ings of density p in the 2-direction and the secondary layer of density + in
direction 1 (as in Fig. 3.2), the resulting material properties are:

H _ vE
Y (1= + (1= )

E:gzz = HE"'#ZFEEEU: Egl? =0,

H _ H
Eji90 = wE ),
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where E is Young’s modulus and v is Poisson’s ratio of the base material.
Also,the total density of the strong material in the unit cells of this rank-2
layered material is

p=p+1—py=p+vy-py.

The importance of the layered materials not only hinges on the analytical formulas for the
effective material parameters. Of equal significance, studies on bounds on the effective
material properties of composite mixtures made of two isotropic materials have shown that
for elasticity the stiffest (or softest) material for a single load or multiple load problem can
be obtained by a layered medium, with layering at several microscales. For single load
problems the stiffest material consists of orthogonal layers, with no more than 2 layers for
dimension 2 and no more than 3 layers for dimension 3. For multiple load problems the
stiffest material (for the weighted average formulation) consists of layers that are not
necessarily orthogonal, up to 3 for dimension 2 and up to 6 for dimension 3. The rank-2
materials are not the only composites which in 2-D achieves the upper bound on stiffness
of a mixture of two materials. The layered materials are thus not special in the sense of
being uniquely optimal, but they are special in the sense that their effective material
properties can be expressed analytically.
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A hierarchical solution procedure

One of the advantages of the computational program just described is that the main
flow of the procedure is independent of the modelling of the material used for the
description of design. This latter information is added as an external module. This
feature makes it possible to generate flexible procedures, where the material model

can be changed easily.

Analysis (Finite elements);

I

[

Updating spatial
distribution of material

Optimization of material
properties for given
strains/stress and density

no

Converged ?

yes

plotresults Z—

Optimal design using a hierarchical approach. The resulting
structure is here a low volume solution to the problem
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Problem formulation for minimum compliance truss design

In the ground structure approach for truss topology design a set of n chosen nodal points
(N degrees of freedom) and m possible connections are given, and one seeks to find the
optimal substructure of this structural universe. In some papers on the ground structure
approach, the ground structure is always assumed to be the set of all possible connections
between the chosen nodal points, but here we allow the ground structure to be any given
set of connections. This approach may lead to designs that are not the best ones for the
chosen set of nodal points, but the approach implicitly allows for restrictions on the
possible spectrum of possible member lengths as well as for the study of the optimal
subset of members of a given truss-layout.

SNOAONAYY

- a
Ground structures for transmitting a vertical force to a vertical line of supports. Truss ground
structures of variable complexity in a rectangular domain with a regular 5 by 3 nodal layout. In ¢) all
the connections between the nodal points are included.
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Let a;, l; denote the cross-sectional area and length of bar number i,
respectively, and we assume that all bars are made of linear elastic materials,
with Young’s moduli E;. The volume of the truss is V' = E:’ll a;l;. In order
to simplify the notation at a later stage, we introduce the bar volumes t; =
aili, i =1,...,m, as the fundamental design variables. Static equilibrium is
expressed as

where q is the member force vector and f is the nodal force vector of the free
degrees of freedom. The ground structure is chosen so that the compatibility
matrix B has full rank and so that m > N, excluding mechanisms and rigid
body motions. The stiffness matrix of the truss is written as

T
K(t) =Y K,
i=1

where £;K; is the element stiffness matrix for bar number i, written in global
coordinates. Note that K; = %bébg’ where b; is the i'th column of B.

The problem of finding the minimum compliance truss for a given vol-
ume of material (the stiffest truss) has the well-known formulation (cf., the
continuum setting Sect. 1.1)

min f7u
u,t

m i
st.:y tKu=f Y t;=V, ;>0,i=1,...,m.
=1

i=1

(4.1)
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The influence of the ground structure geometry on the optimal topology.
Optimal truss topologies for transmitting a single vertical force to a vertical line of
supports. The ground structures consist of all possible non-overlapping connections
between the nodal points of a regular mesh in rectangles of varying aspect ratios
R = a/b. a): 632 potential bars for 5 by 9 nodes in a rectangle with R = 0.5.
Optimal non-dimensional compliance ¢ = 4.000. b): 2040 potential bars, 9 by 9
nodes, B = 1.0, & = 5.975. c¢): 4216 potential bars, 13 by 9 nodes, R = 1.5,
$ = 9.1676 . d): 7180 potential bars, 17 by 9 nodes, R = 2.0, & = 12.5756. e):
10940 potential bars, 21 by 9 nodes, R = 2.5, ® = 16.4929
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Extensions of truss topology design
1. Combined truss topology and geometry optimization

The topology design methods considered so far all employ the basic idea of a ground
structure or reference design domain to obtain problem statements that are sizing problems
for a fixed geometry. The choice of this reference geometry influences the result of the
topology optimization making it important to consider sensitivity analysis of the optimal
designs with respect to variation of the reference geometry, and even optimal design of this
reference geometry may be fruitful in some situations.

In the ground structure approach to topology design of trusses the positions of nodal points
are not used as design variables. This means that a high number of nodal points should be
used in the ground structure to obtain efficient topologies. A drawback of the method is that
the optimal topologies can be very sensitive to the layout of nodal points, at least if the
number of nodal points is relatively low. This makes it natural to consider an extension of the
ground structure approach and to include the optimization of the nodal point location for a
given number and connectivity of nodal points. With very efficient tools at hand for the
topology design with fixed nodal positions it seems natural to treat the variation of nodal
positions as an outer optimization in a two-level hierarchical formulation. As the optimal
value function of the topology compliance depends on the geometry variables in a non-
smooth way, this outer minimization requires non-smooth optimization techniques.
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An example of a 3-D topology and geometry
optimization for a beam carrying a single
load. In a) we show the ground structure of
nodal points and potential bars. Note that the
ground structure has non-equidistant nodal
point positions along the length axis of the
"beam" . In a) we see the optimal topology
for the fixed nodal lay-out of the ground
structure, in ¢) a combined geometry and
topology optimization with nodal positions
restricted to move along the length axis of
the 'beam". Finally, in d) the result of a
combined geometry and  topology
optimization with totally free nodal
positions 1s shown. The (non-dimensional)

compliance values of the optimized designs
are 1.00, 0.945 and 0.911, respectively.
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4.2 Truss design with buckling constraints

An example of what can be achieved with this formulation is illustrated in Figure below.
Here the initial design has t = 1000/m, 1 = 1, ... , m, with a corresponding compliance of
0.177 and a critical force (0.397) that is smaller than one, meaning that the truss is
unstable. The standard truss optimization without stability constraint gives a design that is
twice as light as the previous one but absolutely unstable. Finally, by truss optimization
with stability constraint one can obtain a design that at a volume of 1179.6 1s a bit heavier
than the first one. However, it 1s stable under the given load. To see fully the effect of the
stability constraint, we have for this example chosen the upper bound for the compliance
so that the compliance constraint 1s not active. For truss (and frame) models /local
buckling of the individual members is also an important aspect to take into consideration.

» EXIIDID -
: The effect of a constraint on the global

— buckling load, a) shows the initial truss with its
(®) \ buckling mode in b). ¢) is the optimal truss

without stability constraint and, d) 1is the
1> optimal truss with a stability constraint.

(c)

(d)
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Fra

Topology optimization methods K XD

(A). Simply supported beam

The Michell truss

(B) Cantilever beam (D). L-shaped cantilever beam

Ground structure

Level-set methods

Volume fraction, V* = 0.90 .'J | P ‘\ N
o 3 - - L g:. i
< (A). Initial ground structure (B). Optimized structure

Discrete (voxel) methods u -

Volume fraction, V* = 0.50

(A) 2D BESO optimized cantil

Solid isotropic material with penalization (SIMP) method (B

Bidirectional evolutionary structural optimization (BESO) methods
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Parametric optimization
Brute force methods (DOE)

Sequential optimization methods: Gradient methods, Nelder-Meade simplex methods, etc

Topology optimization and generative design (BC2AM)

Automated extraction of parametric data from TO outcomes

Manual :
parametrization :
allows controland |

flexibility, but is
inccompatible with |
generative design. :

e L S e

Topological Parametrization Parametrized
connectivity process geometry

Smoothed TO outcomes
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Computer Aided Design (CAD)

Computer Aided Design (CAD) data provides unambiguous representations of the geometric
envelope associated with a specific intended geometry. Numerous formal protocols for CAD
representation exist and are defined for various purposes according to their specific capabilities
and attributes. These attributes include the fundamental method of geometric representation,
either as a volume or external surface; the representation of geometry as either explicit or
implicit data; the associated data storage protocol; and the representation of either toleranced
proprietary and open-source formats and can be

or nominal geometries.

classified according to the method of geometry

generation. Prominent explicit methods for data &&= Beundaryrepresentation (-kep) e
generation include Constructive Solid Geometry
(CSG) and boundary representation (B-rep).
Implicit methods for geometry representation
include voxel methods, level sets, and scalar fields
that indirectly represent the geometry of interest. i
Each of these methods has distinct opportunities  constructive solid Geometry (csc) mplicit representation
and challenges for AM application.

protocols. These protocols consist of both

Low resolution High resolution

+

CAD data can be generated according to numerous .
+
<

V defined for:
PR
0<z<l

0°< 6 < 360°
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Constructive Solid Geometry (CSG) represents the intended component geometry with Boolean operations
applied to primitive geometry structures, such as spheres, cylinders and cubes. These CSG methods are
therefore eminently compatible with algorithmic methods, as are required for generative AM design.
However, these representations are not necessarily compatible with curvilinear geometries, which are not
readily constructed from the available library of primitive structures.

Boundary representations (B-rep) consist of surface elements that interconnect to define the volume of
interest. B-rep is robust and flexible, especially for curvilinear geometries including complex variable radius
fillets and sweeping blends. Consequently, B-rep is often the preferred data representation used in manual
CAD software. The explicit data representation of B-rep and CSG methods can be data-inefficient for
repetitive geometries, including for self-tessellated lattice structures and the complex geometry that is often
preferred for high-value AM applications. For these scenarios, the necessary file size can rapidly expand

beyond the feasible data processing limit. 84
2
¥

""" S N
Schematic representation of explicit representation -~ mplicitdata PO -
and implicit data representation of " r‘"’”""’_’_‘f’_"_“_*i"i’l ------------
lattice structure. Data generated by _,-*"" _______________________
commercially available tools with no |7 .

Number of unit cells

data compression for repetition
elements.
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Classification of Cellular Materials

Open (pore)

Regular

»

Close
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Lattice structures

Lattice structures refer to the open-celled arrangement of strut elements with defined
connectivity at specified nodes. These lattice arrangements are readily tessellated to fill space
and allow highly efficient paths for the grounding of external and internal loads.
Consequently, lattice structures are often observed in both naturally occurring biological
systems such as the cellular structures of trabecular bone, and in engineered structural
systems, for example three-dimensional truss structures used to efficiently ground loads in
civil engineering structures. Lattice structures may have either stochastic or periodic
arrangements. Biological lattice systems generally feature stochastic arrangements, whereas
engineered lattice structures are typically periodic; however engineered structures with
stochastic and hierarchical attributes are emerging within the research literature and in
commercial applications. e strut @ node

|

i
Schematic representation of i
potential planar lattice i
configurations, Maxwell number, M i
and associated response type, either |
|

|

|

|

|

|

|

|

bending or stretch-dominated struts, s =4 s-5 s-8
nodes, =4 j=4 j=5
Maxwell M= -1<0 M=0 M=1=0
M < 0, Under-stiff M = 0, Just-stiff M = 0, Over-stiff

| Bending-dominated response | Stretch-dominated response
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Maxwell stability criterion

Triangulated truss structures (known as space-frames in 3D space) provide a fundamentally
efficient structural system. Such truss structures are typically designed to ground internal and
external loads by a combination of tensile and compressive axial loading within the associated
strut elements. For external loads to be robustly equilibrated by internal forces within the truss
structure, a sufficient number of strut elements with appropriate nodal connectivity must exist.
Maxwell proposed a set of mathematical conditions that must be satisfiedfor the loads be
grounded in a mechanically robust manner. The Maxwell stability criterion is stated such that
there are 2 free equilibrium-equations(3 for 3D space) associated with each node, j, and that
each strut, s, represents an unknown equilibrating force; furthermore, there are 3 external
forces (6 for 3D space), resulting in the inequalities

M =5 — 2j+ 3, for planar (2D) truss systems
M =s - 3j4 6, for 3D space-frames

For scenarios where M < 0, there are insufficient struts to equilibrate the external forces, and
the under-stiff truss system becomes a mechanism. For M = 0, the strut elements are arranged
such that the strut loading is determinant for any external loading; such structures are defined
as just-stiff and contain no structurally redundant strut elements. Additional strut elements can
further increase the Maxwell number, M > 0, making the truss over-stiff.
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Observed mechanical response (lattice system)

Lattice system typically consists of an
assemblage of individual unit cells. The
mechanical response of such a lattice
system is dependent on the structural
response according to the Maxwell
stability criterion. The overall behaviour of
AM lattice systems has been documented
both experimentally and mechanistically
and may involve the following observed

responses:
1. Initial plastic consolidation
2. Linear elastic response
3. Non-linear elastic response
4. Yield strength, or elastic limit
5. Unloading Modulus
6. Ultimate compressive strength

7. Crushing strength
8. Densification

Force
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Prediction of AM lattice response

Numerous predictive models have been established to relate the lattice topology and
material properties to the observed mechanical properties, most notably the seminal
Gibson-Ashby model. This fundamental model is derived from first principles based on
insights into cellular geometry and associated mechanical failure modes, resulting in
predictive relationships of the type defined below. Specifically, these relationships predict
the lattice mechanical response, P, to be proportional to some known response of the solid
material Ps, and the ratio of lattice to solid material density, p*/ps, to the power of some
exponent, n, and scaled by some proportionality constant, C. The predicted exponent
depends on whether the structure is bending- or stretch-dominated as summarized in next
Table for a number of pertinent scenarios.

ES M
. i )
P* =C Pg (’-)
Ps
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Response type

Mechanical property

Relationship

Bending-dominated

Stretch-dominated

Modulus (E£*)

Plastic collapse ('T;f)
Elastic collapse (a7},
Modulus (£%)

Plastic collapse (J;;)

Elastic collapse (o7};)

2

" (o

E = ﬁhx(ps)
15

oy = Coy, (ﬂ—i)

-

¥

1
& e [ 07
E =CE; (ﬂ)

X 1
J;f = Cay (ﬂ—i)

i = )

¥

A selection of Gibson-Ashby relationships for bending-
dominated and stretch-dominated mechanical response.

Young's Mod ulus ofsolid, E, and lattice, E*
1 1 1 1

Gibson-Ashby model

Density of solid p_and lattice p*

illustrating Young’s Modulus
for bending and stretch-dominated structures with
reference to the solid material.

Figure above provides further insight into the range of mechanical responses to be expected based on Gibson-Ashby
relationships. Specifically, the Maxwell stability criterion can be used to directly characterize the lattice response as being
either bending- or stretch-dominated. From this understanding, the Gibson-Ashby model can be utilized to predict the
specific mechanical response of the associated lattice system. These predictions are compatible with the experimentally
observed mechanical response of AM lattice structures; However, variability exists due to simplifications inherent in the
Gibson-Ashby model and variation between the idealized and as manufactured AM lattice geometry. Due to the potential
for variability in Gibson-Ashby model predictions, experimental results or validated numerical predictions are required for
the design of high-value AM lattice applications.
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Post-processing for AM

All Additive manufacturing (AM) technologies
require post-processing to produce parts that
are ready for use. This post-processing can
range from support material removal, to
surface quality improvement, to colouring and
painting, and to aging for polymer parts and
heat-treatment for metal parts. Throughout
the AM industry there is a vast amount of
tacit knowledge in the area of post-processing
but there, -currently, exists very little
documentation on the various post-
processing methods for different AM
technologies and materials. This leads to time
being wasted by companies having to
individually learn and develop post-processing
methods. The overall process flow of additive
manufacturing includes pre-processing and
post-processing, and is presented in the
following table. Note that the steps can vary,
sometimes greatly, depending on the
application, material, AM system being used,
and specific requirements of the parts.

Metal Polymer Material Vat photopoly- Binder jetting
powder-bed powder-bed extrusion merization
fusion fusion
Check quality of | Check quality of | Check quality of | Check quality of | Check quality of
files and repair if | files and repair files and repair files and repair files and repair
necessary if necessary if necessary if necessary if necessary
Prepare print-job | Prepare Prepare Prepare Prepare
in software by print-job in print-job in print-job in print-job in
arranging parts software by software by software by software by
on build platform | arranging parts arranging parts arranging parts arranging parts
and generate on build on build on build on build
support material | platform platform and platform and platform
generate support | generate support
material material
Clean AM Clean AM Clean AM Clean AM Clean AM
system system system system system
Preheat build Preheat build Preheat build Preheat build
chamber chamber chamber chamber
Print Print Print Print Print
Remove build Find and remove | Remove parts Drain and/or Find and remove
plate from build parts from from build recycle unused parts from
chamber powder bed chamber material as powder bed
applicable
Remove loose Recycle Remove support | Remove parts Recycle
powder and remaining material from build remaining
recycle powder chamber powder
Thermal stress Media-blast Surface finish: Remove support | Air-blast parts
relief parts to remove | sand, vapor material o remove

surface powder

smooth, paint,
etc.

surface powder

Remove parts
from build plate

Surface finish:
tumble, sand.
dye, paint, etc.

Inspect

Post-cure in UV
chamber

Bake parts as
necessary

Hot isostatic
pressing

Inspect

Surface finish:
sand, vapor
smooth, paint,
etc.

Strengthen with
infiltration

Remove support

Inspect

Surface finish,

structures sand, paint, etc.
Heat treat Inspect

Surface

machining,

shot-peening,
abrasive flow
machining, etc.

Inspect
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