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Lecture 5: Finite Element for Topological Optimization 
(without intensive mathematics)

1. A very brief guide into Continuum Mechanics
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2. Another brief guide into Finite Element Method

Lecture 5: Finite Element for Topological Optimization 
(without intensive mathematics)

• A continuous function of a continuum (given domain Ω) having
infinite degrees of freedom is replaced by a discrete model,
approximated by a set of piecewise continuous functions
having a finite degree of freedom.

Example:
A bar subjected to some excitations
like applied force at one end. Let the
field quantity flow through the body,
which has been obtained by solving
governing DE/PDE, In FEM the domain
Ω is subdivided into sub domain and
in each sub domain a piecewise
continuous function is assumed.



Common Types of Elements

One-Dimensional Elements
Line

Rods, Beams, Trusses, Frames

Two-Dimensional Elements
Triangular, Quadrilateral

Plates, Shells, 2-D Continua

Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)

3-D Continua



Discretization Examples

One-Dimensional 
Frame Elements

Two-Dimensional 
Triangular Elements

Three-Dimensional 
Brick Elements



Basic Steps in the Finite Element Method

- Domain Discretization
- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)
- Assemble Element Equations to Form Global System

[K]{U} = {F}

[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector

- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal         

Displacements and Secondary Unknowns of Stress and Strain Values



Development of Finite Element Equation
• The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem

• For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from 
Either Strength of Materials or Theory of Elasticity

• FEM Equations are Commonly Developed Using Direct, Variational-Virtual Work or 
Weighted Residual Methods

Variational-Virtual Work Method

Based on the concept of virtual displacements, leads to relations between internal and 
external virtual work and to minimization of system potential energy for equilibrium

Weighted Residual Method

Starting with the governing differential equation, special mathematical operations 
develop the “weak form” that can be incorporated into a FEM equation.  This method is 
particularly suited for problems that have no variational statement.   For stress analysis 
problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational 
methods.  

Direct Method 

Based on physical reasoning and limited to simple cases, this method is worth 
studying because it enhances physical understanding of the process



Simple Element Equation Example
Direct Stiffness Derivation
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One-Dimensional Bar Element
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One-Dimensional Bar Element

A = Cross-sectional Area
E = Elastic Modulus

f(x) = Distributed Loading
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Virtual Strain Energy = Virtual Work Done by Surface and Body Forces

For One-Dimensional Case
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Axial Deformation of an Elastic Bar

Typical Bar Element
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Linear Approximation Scheme
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Element Equation
Linear Approximation Scheme, Constant Properties
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3. Finite Element for topological optimization: an example
Discretized SIMP (Solid Isotropic Microstructure with 
Penalization for intermediate densities) method
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Thank you for your attention
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