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Lecture 5: Finite Element for Topological Optimization
(without intensive mathematics)

1. A very brief guide into Continuum Mechanics

It starts with observations...

« Deformations (displacement)
- Vector function that maps a material point into its
new coordinate, i.e.

U = [U(T" Y, Z), U("Ea Y, Z): ’LU(SC’ Y, z)]T
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« Strains (measurable) - relative deformation
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« Stresses (NOT measurable):

General stress state:
(similar to strains)

Important - the stress depends
on the point (position) AND the
orientation of cut-surface.
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« Hooke's law - linear, isotropic materials:
Just two independent material parameters

. Stiffness: ¢ = Fe (E in [Pa])
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Governing equations (using Newton’s 2nd law)

The linear system of partial differential equations:
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« Essential since it allows us to interpolate, e.g.
stiffness, density, conductivity, ...

Different problems need
different interpolations

E(ﬂ) — Emin + ﬂp(Enmx — EIIIiII)

« Principle of virtual work

/ o' E(p)ed) — / du' PdS) + / du' tdly = 0
( (

RS J Q) JTp

 The finite element method (FEM)

K(p)U = F
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« The von Mises stress (or equivalent tensile stress):
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« The strain energy and compliance:

U = i) / ol ed) and C=uw'F=u"Ku
0

: _ do L Oe
« Stiffness vs compliance: F = — vs (= —
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2. Another brief guide into Finite Element Method

e A continuous function of a continuum (given domain €2) having
infinite degrees of freedom is replaced by a discrete model,
approximated by a set of piecewise continuous functions
having a finite degree of freedom.

N

Example:

A bar subjected to some excitations ? 1w ) ! I
like applied force at one end. Let the | 4 “Subdomain 2
field quantity flow through the body, | |
which has been obtained by solving N Domain divided with subdomains
governing DE/PDE, In FEM the domain N with finite degrees of freedom
() is subdivided into sub domain and
in each sub domain a piecewise

continuous function is assumed.
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Common Types of Elements

Two-Dimensional Elements

One-Dimensional Elements Triangular, Quadrilateral
Line Plates, Shells, 2-D Continua

Rods, Beams, Trusses, Frames

Three-Dimensional Elements

Tetrahedral, Rectangular Prism (Brick)
3-D Continua




Discretization Examples
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Three-Dimensional

Two-Dimensional Brick Elements

One-Dimensional

Triangular Elements

Frame Elements



Basic Steps in the Finite Element Method

Domain Discretization

Select Element Type (Shape and Approximation)

Derive Element Equations (Variational and Energy Methods)
Assemble Element Equations to Form Global System

[K{U} = {F}

[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector

- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values



Development of Finite Element Equation

* The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem

e For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from
Either Strength of Materials or Theory of Elasticity

e FEM Equations are Commonly Developed Using Direct, Variational-Virtual Work or
Weighted Residual Methods

Direct Method

Based on physical reasoning and limited to simple cases, this method is worth
studying because it enhances physical understanding of the process

Variational-Virtual Work Method

Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium

Weighted Residual Method

Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This method is
particularly suited for problems that have no variational statement. For stress analysis
problems, a Ritz-Galerkin WRM wiill yield a result identical to that found by variational
methods.



Simple Element Equation Example
Direct Stiffness Derivation

U1 uz
—
F
1 2

Equilibrium at Nodel = F, = ku, —ku,
Equilibrium at Node 2 = F, = —ku, +ku,

or in Matrix Form

R W

[KI{u}={F}

Nodal Force Vector



One-Dimensional Bar Element

Approximation :u = Yy, (x)u, =[NKd}

in-ecdu_vd _A[NT e
Strain : e—dx_zk:dxwk(x)uk 0 {d} = [B]{d}

Stress - Strain Law : c = Ee = E[B]{d}
IGSedV = Bu; + Pu; +j foudv =
Q Q
P_
{ody jOL A[B]" E[Bldx{d} = {6d}" {P' } +{od) jOL AINT fdx =
j

jOL AIB]" E[BIdx{d} = {P}+ jOL AINT fdx

v | [K]= [ A[B" E[BJd = Stiffness Matrix

[KHd}={F} {F}= {FF::}JF IOL A[N]" fdx = Loading Vector

J

u.
{d}= {ul } = Nodal Displacement Vector



One-Dimensional Bar Element

Axial Deformation of an Elastic Bar

X

f(x) = Distributed Loading A = Cross-sectional Area

E = Elastic Modulus
Typical Bar Element
U. ‘_> U.
: ’_' i Q) du.

p, = —Ag 2 > — P ——AE—L

dx (i) L (/) dx

(Two Degrees of Freedom)
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
. n
[, o8,V = Lt T 8u,dS + [ Fdu,dv

For One-Dimensional Case

[ odedv = Pu, +Pu; + [ fBudv
Q Q



Linear Approximation Scheme
— U, —u,

(1) L (2)

u(x)
Approximate Elastic Displacement /

» X (local coordinate system)

u =4,
u=a, +a,x = |
u, =a, +a,L .
U, — Uy ( x) (x) (1) (2)
= u=u, + x=[1-2lu, +| = |u,
L L L
= v 00U +y (U, ~YalX) wz(x),‘T
u]_ X X \\\ ///
u= =|1- N1{d . -
v, wz]{uz} [ n LH } [N} .
[N ] =Approximation Function Matrix o N l
{d} = Nodal Displacement Vector 1) 2) > X

v, (x) — Lagrange Interpolation Functions



Element Equation
Linear Approximation Scheme, Constant Properties

X
[K]= || ALBT' E[BIx = AE[B]'[B][dx = AE{ |- {‘i E}L:E{l _1}
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{d}= { } = Nodal Displacement Vector
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3. Finite Element for topological optimization: an example

Discretized SIMP (Solid Isotropic Microstructure with
Penalization for intermediate densities) method

Stiffness interpolation:

Elh
min: ®(p, U(p))

p [
N . =P

s.t.: S Vepe =vip < VH __
ezz‘l o E(p.) = By + p(Ey — E))
g?(an(p))Sg:qa i:]-a“'aM p> ].
0<p<l1

( K(p)U=F)
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Y

[Initialize FEM ]

Finite Element Analysis

(Elastic, Thermal, Electrical, etc.) \
KU=For RU)=0

Sensitivity Analysis

|

B

Regularization (filtering)

Optimization

(material redistribution)

no

Sensitivity analysis by adjoint method

d® _ 0 |\ (0K OF
dﬁg 8!96 aioti apti

KT) = _o®
oU

Mathematical Programming,
Method of Moving Asymptotes (MMA)
by Svanberg (1987)
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C Initialize l
(Starting guess)

=
Finite element analysis

I
Sensitivity analysis
(linearization) L‘ L

Low—pass filtering
|
Optimization
Method of Moving Asymptotes
1
Update design variables

yes

plot results/ /
post—processing /




Thank you for your attention
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