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Topology Optimization (TO) by distribution of isotropic material

Recall: Three types of design optimization: size, shape and topology
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Topology Optimization (TO) by distribution of isotropic material

1. Problem formation and parametrization of design

A design point

) A point with fixed material

A point with no material

lL t
b) J C)

The generalized topology design problem of finding the optimal material distribution
In a two-dimensional domain
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Introducing the energy bilinear form (i.e., the internal virtual work of an elastic body at the
equilibrium u and for an arbitrary virtual displacement v)

a(u,v):LEijkg(m)aij(u)ek;(v)dQ

with linearized strains e;(u) = 3 (g—:% + g;‘;_i) and the load energy linear form
J 1

l(u):/gfudﬂ-l—/r tuds

the minimum compliance (maximum global stiffness) problem takes the form
2 1
s.t.: ag(u,v) =1(v), forallveU
EF ek .
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Discretize the problem using finite elements. It is here important to note that there are two

fields of interest, namely both the displacement u and the stiffness E. If we use the same
finite element mesh for both fields, and discretize E as constant in each element,

min fTu
u,FE,

st.: K(E.Ju=1f,
EE - Ead .

Here u and f are the displacement and load vectors, respectively. The stiffness
matrix K depends on the stiffness F, in element e, numbered ase =1,..., N,
and we can write K in the form
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In the design of the topology of a structure we are interested in the determination of the
optimal placement of a given isotropic material in space, i.e., we should determine which
points of space should be material points and which points should remain void (no material).
That is, we think of the geometric representation of a structure as similar to a black-white
rendering of an image. In discrete form this then corresponds to a black-white raster
representation of the geometry, with "pixels" (or "voxels") given by the finite element

discretization. Restricting our spatial extension to the reference domain Q we are thus
seeking to determine the optimal subset QO mat of material points.

1 1fJL' c nmal- !
Eiju = lﬂ‘““‘ngHﬂ lgmee = {{] if z € 2\ Qmat

f lgmardQ = Vol(QMat) < V|
0

¢

A black-and-white minimum compliance design for a loaded knee structure obtained with the
SIMP interpolation scheme. The discretization is 60 by 60 elements and the material volume
is limited to 47% of the design domain
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The most commonly used approach to solve this problem is to replace the integer variables
with continuous variables and then introduce some form of penalty that steers the solution
to discrete 0-1 values The design problem for the fixed domain is then formulated as a
sizing problem by modifying the stiffness matrix so that it depends continuously on a
function which is interpreted as a density of material. This function is then the design
variable. The requirement is that the optimization results in designs consisting almost
entirely of regions of material or no material. This means that intermediate values of this
artificial density function should be penalized in a manner analogous to other continuous
optimization approximations of 0-1 problems. One possibility which has proven very
popular and extremely efficient is the so-called penalized, proportional stiffness model (the

SIMP-model)
Eiju(z) = p(x)?EYy, p>1, Stiffness interpolation:

/ plz)d <V: 0<p(z)<1, z€ E“
Q

Eijr(p=0) =0, Eijr(p=1) = E?jk.!

by specifying a value of p higher than one makes it "uneconomical“ to have ) P

intermediate densities in the optimal design. Thus the penalization is achieved .
_ p _ K

without the use of any explicit penalization scheme. For problems where the E(p(_{) = b1+ pe(Eg Ey)

volume constraint is active, experience shows that optimization does actually p>1

result in such designs if one chooses p sufficiently big (in order to obtain true

"0-1" designs, p > 3 is usually required)
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by specifying a value of p higher than one makes it "uneconomical® to have intermediate
densities in the optimal design. Thus the penalization is achieved without the use of any
explicit penalization scheme. For problems where the volume constraint is active, experience
shows that optimization does actually result in such designs if one chooses p sufficiently big
(in order to obtain true "0-1" designs, p > 3 is usually required)

the SIMP model can indeed be considered as a material model if the power p satisfies that:

2 4 o
pEmax{}_yﬂ,l_‘_yﬂ} (in 2-D)
}{inS—D)

1-% 310

> max {1502, 22"V
b= {37—5;;0 21— 20
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2. Solution methods

2.1 Conditions of optimality

The use of an interpolation scheme like SIMP allows us to convert the optimal topology
problem into a sizing problem on a fixed domain. Compared to many traditional sizing
problems for, e.g., frames and built-up structures of plates, stringers, etc., the present problem
differs in that the number of design variables is typically very large (the number of design
parameters and the number of analysis variables is of the same order of magnitude). Thus
efficiency of the optimization procedure is crucial and one typically has to adopt optimization
settings that trade number of constraints for number of design variables.

In the following we shall derive the necessary conditions of optimality for the density of the
minimum compliance design problem that employs the SIMP interpolation scheme. The key
IS to devise iterative methods which, for a previously computed design and its associated
displacements, update the design variables at each point (or rather at each element of a finite
element discretization) independently from the updates at other points, based on the

necessary conditions of optimality. min 1(u)
usllp

s.t.:ag(u,v) =Ilv), forallvelU,
Eijia(x) = p(x)P Efyy

f p(z)dQ < V; 0< pmin <p< 1.
g2
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Note that we here have introduced a lower bound pmin 0N the density in order to prevent any
possible singularity of the equilibrium problem. In typical applications we set pmin = 10-3

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding
the local maxima and minima of a function subject to equality constraints (i.e., subject to
the condition that one or more equations have to be satisfied exactly by the chosen values
of the variables). The basic idea is to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can still be applied. The relationship
between the gradient of the function and gradients of the constraints rather naturally leads
to a reformulation of the original problem, known as the Lagrangian function.

The method can be summarized as follows: in order to find the maximum or minimum of a
function f(x) subjected to the equality constraint g(x) =0

form the Lagrangian function

L(x,2) = f(x) —Ag(x)

and find the stationary points of L, considered as a function (x) of and the Lagrange
multiplier A . The solution corresponding to the original constrained optimization is always
a saddle point of the Lagrangian function.



https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Derivative_test
https://en.wikipedia.org/wiki/Stationary_point
https://en.wikipedia.org/wiki/Saddle_point
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With Lagrange multipliers A, A\~ (z), AT(z) for the constraints
the necessary conditions for optimality for the sizing variable p are a subset
of the stationarity conditions for the Lagrange function

L =l(u) — {aE(u i) — l(u } J’L(/ z)d? - V)+

[ @@ = 142+ [ X (@) (pmin = pla))d2.
7

L

where # is the Lagrange multiplier for the equilibrium constraint. Note that
i belongs to the set U of kinematically admissible displacement fields. Under
the assumption that p > pmin > 0 (so that displacement fields are unique),
the conditions for optimality with respect to variations of the displacement
field u give that @ = u while the condition for p becomes:

OF;jk _
-—a-;—et-j[u)em{u) =A + ;'n+ — A ’

with the switching conditions
A" 20, AT 20, A" (pmin — p(z)) =0, A (p(z) 1) =0.

For intermediate densities (pmin < p < 1) the conditions (1.9), can be
written as

pp(x)’ Bl e (wep(u) = A (1.11)
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1'[13.)({(1 - C)qu pmin} if pKBﬂH < max{{l - C]Pﬁ'ﬁpmin} 3
pr+1 = { min{(1+ ¢)px,1} if min{(1+ {)pk,1} < pxBY ,
pr B} otherwise .
(1.12)

Here pg denotes the value of the density variable at iteration step K , and
By is given by the expression

Br = Ay pp(@)P ™ E)yeij (ur e (uk)

where ug is the displacement field at at the iteration step K, determined
from the equilibrium equation and dependent on pg. Note that a (local)
optimum is reached if B = 1 for densities (pmin < p < 1). The update
scheme (1.12) adds material to areas with a specific strain energy that is
higher than A (that is, when Bg > 1) and removes it if the energy is below
this value; this only takes place if the update does not violate the bounds on
p. From integrating (1.11) one can see that A is proportional (by a factor p)
to the average strain energy density of the part of the structure that is given
by intermediate values of the density.
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The variable 7 in (1.12) is a tuning parameter and ¢ a move limit. Both 75
and ¢ controls the changes that can happen at each iteration step and they
can be made adjustable for efficiency of the method. Note that the update
pi+1 depends on the present value of the Lagrange multiplier A, and thus
A should be adjusted in an inner iteration loop in order to satisfy the active
volume constraint. It is readily seen that the volume of the updated values
of the densities is a continuous and decreasing function of the multiplier
A. Moreover, the volume is strictly decreasing in the interesting intervals,
where the bounds on the densities are not active in all points (elements of a
FEM discretization). This means that we can uniquely determine the value
of A, using a bisection method or a Newton method. The values of 1 and
¢ are chosen by experiment, in order to obtain a suitable rapid and stable
convergence of the iteration scheme. A typical useful value of n and ¢ is 0.5
and 0.2, respectively.
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2.2 Implementation of the Optimality Criteria (OC) method

Computational procedure

/ |

Fixed void region Fixed solid region

Pre-processing of geometry and loading:

— Choose a suitable reference domain (the ground structure) that allows for
the definition of surface tractions, fixed boundaries, etc.

— Choose the parts of the reference domain that should be designed, and
what parts of the ground structure that should be left as solid domains or

voids

~ Construct a finite element mesh for the ground structure. This mesh should
be fine enough in order to describe the structure in a reasonable resolution
bit-map representation. Also, the mesh should make it possible to define
the a priori given areas of the structure by assigning fixed design variables
to such areas. The mesh is unchanged through-out the design process.

— Construct finite element spaces for the independent fields of displacements
and the design variables.
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Optimization.:

Compute the optimal distribution over the reference domain of the design
variable p. The optimization uses a displacement based finite element analysis
and the optimality update criteria scheme for the density. The structure of
the algorithm is:

— Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then:

— For this distribution of density, compute by the finite element method the
resulting displacements and strains.

— Compute the compliance of this design. If only marginal improvement (in
compliance) over last design, stop the iterations. Else, continue. For de-
tailed studies, stop when necessary conditions of optimality are satisfied.

— Compute the update of the density variable, based on the scheme shown in
section 1.2.1. This step also consists of an inner iteration loop for finding
the value of the Lagrange multiplier A for the volume constraint.

— Repeat the iteration loop.

For a case where there are parts of the structure which are fixed (as solid
and/or void) the updating of the design variables should only be invoked for
the areas of the ground structure which are being redesigned (reinforced).

Post-processing of results:

— Interpret the optimal distribution of material as defining a shape, for ex-
ample in the sense of a CAD representation.
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Initialize l’
(Starting guess)
o

Finite element analysis
|

Sensitivity analysis l

{linearization)

Low-pass filtering
|
Optmization
Method of Moving Asymptotes
=L
Update design variables

plot results/
post—processing J

https://www.topopt.mek.dtu.dk/apps-and-software


https://www.topopt.mek.dtu.dk/Apps-and-software/A-99-line-topology-optimization-code-written-in-MATLAB
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2.3 Sensitivity analysis and mathematical programming methods

The use of mathematical programming algorithms
for solving problems in structural optimization is
well established and described in detail in the
literature, for sizing as well as shape design
problems. The standard procedure is to consider
the design problem as an optimization problem in
the design variables only, and with the
displacement field regarded as a function of these
design variables. The displacement fields are given
implicitly in terms of the design variables through
the equilibrium equation and finding the
derivatives of the displacements with respect to
the design variables is termed sensitivity Analysis.

a)

100%

| 60%

40%

20%
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Sensitivity analysis In order to complement the presentation of the opti-
mality criteria method, we will here work with the FEM form of the minimum
compliance problem

When solving this by a mathematical programming algorithm we first rewrite
the problem as a problem in the design variables only:

min ¢(pe)
Pe

N (1.15)
s.t. :Z:ﬁzr,ﬁ.p.,E <V, 0<pmin<pe<l, e=1,...,N,

e=1

where the equilibrium equation is considered as part of a function-call:

N
c(pe) =fTu, where u solves : ZpgKeu =f.
e=1
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When gradients are required by the optimization algorithm employed to
solve (1.15), these are easily derived for the objectives and constraints in-
volving only p. For functions that depend on the displacements also, deriva-
tives can be obtained by the chain-rule. These expressions will then contain
derivatives of the displacement, which in turn can be obtained by taking
the derivative of the equilibrium equation Ku = f. In topology design we
typically work with a moderate number of constraints, so the most effective
method for calculating derivatives is to use the adjoint method, where the
derivatives of the displacement are not calculated explicitly. For the minimum
compliance problem (1.15) at hand we rewrite the function ¢(p) by adding
the zero function:

e(p) =fTu—al (Ku-f)

where 1 is any arbitrary, but fized real vector. From this, after rearrangement
of terms, we obtain that

c u oK
;pﬁ = (f" - a"K) g—% - *Tapﬁu.
This can in turn be written as
de - 0K
3_,(?1? = —u 3. u,

when 11 satisfies the adjoint equation:

fT _a’TK =0
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This latter equation is in the form of an equilibrium equation and for compli-
ance we see that we obtain directly that G = u (normally the adjoint equation
requires additional computations). Moreover, the form of the stiffness

means that the derivatives of the compliance ¢(p) for problem (1.15) i
particularly simple form:

dc
dpe

= —pp?u’K.u. (1.17)

Thus derivatives for the minimum compliance problem are extremely easy to
compute. Also, one notices that the derivative is “localized” in the sense that
the derivative only involves information at the element level; however, there
is an effect from other design variables hidden in the displacement u. Finally,
we see that the sensitivity is negative for all elements, so physical intuition is
confirmed in that additional material in any element decreases compliance,
that is, makes the structure stiffer.
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The Method of Moving Asymptotes (MMA) and its "mother" method CONLIN are
mathematical programming algorithms well suited for topology design. They are in nature
similar to methods like Sequential Linear Programming (SLP) and Sequential Quadratic
Programming (SQP) for solving smooth, non-linear optimization problems, in the sense that
they work with a sequence of simpler approximate subproblems of given type. For MMA
and CONLIN these subproblems are separable and convex and are constructed based on
sensitivity information at the current iteration point as well as some iteration history. At
each iteration point this subproblem is solved by for example a dual method or by an
interior point algorithm (primal-dual algorithm) , and the solution to the subproblem is then
used as the next design in the iterative procedure.

In MMA the approximation of a function F' of n real variables x =
(z1,...,2,) around a given iteration point x° has the form

F(x)mF(xO)JrZ( S = ) :
i1 U;'—LU{, .’L‘i—Lz‘

where the numbers r;, s; are chosen as

OF

63:3'
if S—F(a:{]) <0 thenr; =0 and s; =— (2 - L;)
T

if

(z°) > 0 then r; = (U; — z9) —.(:co) and s; =0,
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and where, loosely speaking, the positive numbers Ui, Li control the range for which the

approximation of F can generate reasonable answers for our optimization problem (the
parameters Ui, Li give vertical asymptotes for the approximations of F and is the source of
the name of the algorithm). In the optimization algorithm, the values of Ui , Li for each
function of the problem are updated in each iteration, depending on the iteration history so
far. A central aspect of MMA and CONLIN is the use of such separable and convex
approximations. The former property means that the necessary conditions of optimality of
the subproblems do not couple the primary variables (the design variables) while the
convexity means that dual methods or primal-dual methods can be used. Together this has
an immense effect on reducing the computational effort needed to solve the subproblems,
especially for problems with only a few constraints.

We found in (1.17) that the sensitivity of compliance is negative for any element density pe.
Thus an MMA approximation of the compliance gives a subproblem after iteration step K

in the form
N K 2
. Ky (pe _LB) Oc | k
lgin{r:(p B (p )}

e—1 pe_Le 3Pe
N
s.t.:ZvepegV, 0< pmin <pe<1l, e=1,...,N.

e=1
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Solving this problem by a dual method now involves steps similar to the ones performed in
section 1.2.1 for the optimality criteria method. First one minimizes the Lagrange functional

2

N Sc N
K —
; = L 3pe (") + A(; Vepe — V)

with respect to densities satisfying pmin < pe < 1,e=1,..., N. Using con-
vexity and that L is separable, this optimization can easily be performed,
element by element. For the case where L, = 0 this results in exactly the
optimality criteria update scheme given in (1.12), with move limit { = oo
and tuning parameter n = 0.5. The second step of the dual method is to
maximize the resulting functional with respect to A, and as for the optimal-
ity criteria method this corresponds to adjusting the value of A so that the
update scheme gives a density p5*1) that satisfies the volume constraint. In
the actual implementation of MMA, one chooses the asymptote parameters
L. more cleverly, improving speed of convergence.



Topology Optimization (TO) by distribution of isotropic material

2.4 Implementation - the general concept

The use of mathematical programming techniques does not change the general flow of a
topology design procedure. Thus, compared to the optimality criteria based method for
topology design described in section 1.2.2, it only influences the optimization step of the
scheme. This iterative loop becomes:

Optimization with, for example, MMA:

— Make initial design, e.g., homogeneous distribution of material. The itera-
tive part of the algorithm is then:

— For this distribution of density, compute by the finite element method the
resulting displacements.

— Compute the compliance of this design and the associated sensitivity with
respect to design changes. If only marginal improvement (in compliance)
over last design, stop the iterations. Else, continue.

— Compute the update of the density variable, based on the MMA approxi-
mate subproblem solved by a dual or a primal-dual method.

— Repeat the iteration loop.
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It is here important to underline that for the minimum compliance problem the by far most
time-consuming part of the computations is spent on solving the equilibrium equations
report this share as up to 97%, in a parallel implementation). Thus it is critical for large
problems, especially in 3-D, to improve on the efficiency of the analysis capability. Here
the utilization of homogeneous meshes on rectangular or box-like domains is useful , as it
removes the necessity for the repeated computation of local stiffness matrices. Also, the
use of iterative solvers is useful in large scale problems, and may be required for storage
reasons. The ultimate tool is to use vector computations and parallel computing.




Thank you for your attention
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