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Recall: Three types of design optimization: size, shape and topology
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The generalized topology design problem of finding the optimal material distribution 
in a two-dimensional domain

1. Problem formation and parametrization of design



Introducing the energy bilinear form (i.e., the internal virtual work of an elastic body at the 
equilibrium u and for an arbitrary virtual displacement v)
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with linearized strains and the load energy linear form

the minimum compliance (maximum global stiffness) problem takes the form
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Minimum elastic energy



Topology Optimization (TO) by distribution of isotropic material

Discretize the problem using finite elements. It is here important to note that there are two
fields of interest, namely both the displacement u and the stiffness E. If we use the same
finite element mesh for both fields, and discretize E as constant in each element,
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In the design of the topology of a structure we are interested in the determination of the
optimal placement of a given isotropic material in space, i.e., we should determine which
points of space should be material points and which points should remain void (no material).
That is, we think of the geometric representation of a structure as similar to a black-white
rendering of an image. In discrete form this then corresponds to a black-white raster
representation of the geometry, with "pixels" (or "voxels") given by the finite element
discretization. Restricting our spatial extension to the reference domain Ω we are thus
seeking to determine the optimal subset Ω mat of material points.

A black-and-white minimum compliance design for a loaded knee structure obtained with the
SIMP interpolation scheme. The discretization is 60 by 60 elements and the material volume
is limited to 47% of the design domain



The most commonly used approach to solve this problem is to replace the integer variables
with continuous variables and then introduce some form of penalty that steers the solution
to discrete 0-1 values. The design problem for the fixed domain is then formulated as a
sizing problem by modifying the stiffness matrix so that it depends continuously on a
function which is interpreted as a density of material. This function is then the design
variable. The requirement is that the optimization results in designs consisting almost
entirely of regions of material or no material. This means that intermediate values of this
artificial density function should be penalized in a manner analogous to other continuous
optimization approximations of 0-1 problems. One possibility which has proven very
popular and extremely efficient is the so-called penalized, proportional stiffness model (the
SIMP-model)

Topology Optimization (TO) by distribution of isotropic material

by specifying a value of p higher than one makes it "uneconomical“ to have
intermediate densities in the optimal design. Thus the penalization is achieved
without the use of any explicit penalization scheme. For problems where the
volume constraint is active, experience shows that optimization does actually
result in such designs if one chooses p sufficiently big (in order to obtain true
"0-1" designs, p > 3 is usually required)



the SIMP model can indeed be considered as a material model if the power p satisfies that:

by specifying a value of p higher than one makes it "uneconomical“ to have intermediate
densities in the optimal design. Thus the penalization is achieved without the use of any
explicit penalization scheme. For problems where the volume constraint is active, experience
shows that optimization does actually result in such designs if one chooses p sufficiently big
(in order to obtain true "0-1" designs, p > 3 is usually required)
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2. Solution methods

The use of an interpolation scheme like SIMP allows us to convert the optimal topology
problem into a sizing problem on a fixed domain. Compared to many traditional sizing
problems for, e.g., frames and built-up structures of plates, stringers, etc., the present problem
differs in that the number of design variables is typically very large (the number of design
parameters and the number of analysis variables is of the same order of magnitude). Thus
efficiency of the optimization procedure is crucial and one typically has to adopt optimization
settings that trade number of constraints for number of design variables.

In the following we shall derive the necessary conditions of optimality for the density of the
minimum compliance design problem that employs the SIMP interpolation scheme. The key
is to devise iterative methods which, for a previously computed design and its associated
displacements, update the design variables at each point (or rather at each element of a finite
element discretization) independently from the updates at other points, based on the
necessary conditions of optimality.

2.1 Conditions of optimality
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Note that we here have introduced a lower bound ρmin on the density in order to prevent any 
possible singularity of the equilibrium problem. In typical applications we set ρmin = 10-3

In mathematical optimization, the method of Lagrange multipliers is a strategy for finding
the local maxima and minima of a function subject to equality constraints (i.e., subject to
the condition that one or more equations have to be satisfied exactly by the chosen values
of the variables). The basic idea is to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can still be applied. The relationship
between the gradient of the function and gradients of the constraints rather naturally leads
to a reformulation of the original problem, known as the Lagrangian function.

The method can be summarized as follows: in order to find the maximum or minimum of a 
function 𝑓𝑓 𝑥𝑥 subjected to the equality constraint g 𝑥𝑥 = 0
form the Lagrangian function

𝐿𝐿(𝑥𝑥, λ) = 𝑓𝑓 𝑥𝑥 − λg 𝑥𝑥

and find the stationary points of 𝐿𝐿, considered as a function 𝑥𝑥 of and the Lagrange
multiplier λ . The solution corresponding to the original constrained optimization is always
a saddle point of the Lagrangian function.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Derivative_test
https://en.wikipedia.org/wiki/Stationary_point
https://en.wikipedia.org/wiki/Saddle_point
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2.2 Implementation of the Optimality Criteria (OC) method

Computational procedure
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MATLAB® codes for minimum compliance problems 99-line Matlab code

https://www.topopt.mek.dtu.dk/apps-and-software

https://www.topopt.mek.dtu.dk/Apps-and-software/A-99-line-topology-optimization-code-written-in-MATLAB
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2.3 Sensitivity analysis and mathematical programming methods

The use of mathematical programming algorithms
for solving problems in structural optimization is
well established and described in detail in the
literature, for sizing as well as shape design
problems. The standard procedure is to consider
the design problem as an optimization problem in
the design variables only, and with the
displacement field regarded as a function of these
design variables. The displacement fields are given
implicitly in terms of the design variables through
the equilibrium equation and finding the
derivatives of the displacements with respect to
the design variables is termed sensitivity Analysis.
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The Method of Moving Asymptotes (MMA) and its "mother" method CONLIN are
mathematical programming algorithms well suited for topology design. They are in nature
similar to methods like Sequential Linear Programming (SLP) and Sequential Quadratic
Programming (SQP) for solving smooth, non-linear optimization problems, in the sense that
they work with a sequence of simpler approximate subproblems of given type. For MMA
and CONLIN these subproblems are separable and convex and are constructed based on
sensitivity information at the current iteration point as well as some iteration history. At
each iteration point this subproblem is solved by for example a dual method or by an
interior point algorithm (primal-dual algorithm) , and the solution to the subproblem is then
used as the next design in the iterative procedure.
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and where, loosely speaking, the positive numbers Ui, Li control the range for which the
approximation of F can generate reasonable answers for our optimization problem (the
parameters Ui, Li give vertical asymptotes for the approximations of F and is the source of
the name of the algorithm). In the optimization algorithm, the values of Ui , Li for each
function of the problem are updated in each iteration, depending on the iteration history so
far. A central aspect of MMA and CONLIN is the use of such separable and convex
approximations. The former property means that the necessary conditions of optimality of
the subproblems do not couple the primary variables (the design variables) while the
convexity means that dual methods or primal-dual methods can be used. Together this has
an immense effect on reducing the computational effort needed to solve the subproblems,
especially for problems with only a few constraints.

We found in (1.17) that the sensitivity of compliance is negative for any element density ρe.
Thus an MMA approximation of the compliance gives a subproblem after iteration step K
in the form
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Solving this problem by a dual method now involves steps similar to the ones performed in
section 1.2.1 for the optimality criteria method. First one minimizes the Lagrange functional



2.4 Implementation - the general concept
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The use of mathematical programming techniques does not change the general flow of a
topology design procedure. Thus, compared to the optimality criteria based method for
topology design described in section 1.2.2, it only influences the optimization step of the
scheme. This iterative loop becomes:



It is here important to underline that for the minimum compliance problem the by far most
time-consuming part of the computations is spent on solving the equilibrium equations
report this share as up to 97%, in a parallel implementation). Thus it is critical for large
problems, especially in 3-D, to improve on the efficiency of the analysis capability. Here
the utilization of homogeneous meshes on rectangular or box-like domains is useful , as it
removes the necessity for the repeated computation of local stiffness matrices. Also, the
use of iterative solvers is useful in large scale problems, and may be required for storage
reasons. The ultimate tool is to use vector computations and parallel computing.
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Thank you for your attention
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