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Topology Optimization (TO) by distribution of isotropic material

Variations of the conditions

1. Multiple loads

The framework described for minimum compliance design for a single load case
generalizes easily to the situation where design for multiple load conditions is formulated
as a minimization of a weighted average of the compliances for each of the load cases.
We here obtain a simple multiple load formulation as:
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In this formulation the displacement fields for each individual load case are independent,
thus implying that the multiple load formulation for the displacement based case has the
equivalent form

Similarly, for use of an algorithm like MMA, the sensitivity of the weighted average of
compliances just becomes the weighted average of the sensitivities of each of the
compliances. Also, the similarity of the iterations in MMA and in the optimality criteria
method remains. Finally, it may be remarked that the inclusion of extra load cases is very
cheap since the stiffness matrix already has been factorized.



For the stiffness modelled as in the SIMP model, the optimality criteria method developed
for the single load case generalizes directly and we obtain an update scheme for ρK at
iteration step K which is exactly the same as previous single load, but with a modified
"energy" expression
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Example of differences in using one or more load cases. a) and b) Design domains. c) and d) Optimized topologies for all loads in one load
case. e) and f) Optimized topologies for multiple loading cases. It is seen that single load problems result in instable structures based on
square frames whereas multi load case problems results in stable structures based on triangular frames.
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2. Variable thickness sheets

For planar problems, the stiffness tensors given by the SIMP method reduces to the setting of
the well-known variable thickness sheet design problem if we set p=1; in this circumstance the
density function P is precisely the thickness h of the sheet. The minimum compliance problem
then becomes



As the stiffness is linear in h, the compliance c is convex, as it is given as a maximization
of convex functions. Also, the complete problem statement above is a convex-concave
saddle point problem that (as noted earlier) lends itself to a complete FE convergence
analysis within the framework of the theory developed for the Stokes' flow problem. The
variable thickness sheet design problem also corresponds very closely to truss design
problems in the sense that the stiffness of the structure as well as the volume of the
structure depend linearly on the design variable for both models. This implies that a
discrete version of the problem can be solved using some very efficient algorithms that
have been developed for truss topology design. These algorithms do not require that hmin

>0, and the setting thus allows for a prediction of the optimal topology of the sheet
without the ambiguity inherent in the chosen value of hmin ; this is especially important here
as we do not force the design towards a 0-1 design. The linear dependence of the stiffness
on the design function h has an even more significant implication for the continuum
problem, as one can prove existence of solutions. Thus there is no need for restriction
methods or the introduction of materials with micro-structure (this holds for minimization
of compliance and optimization of the fundamental frequency). Finally, we remark that the
variable thickness sheet problem also plays a significant role when considering optimal
design within a completely free parametrization of the stiffness tensors over all positive
definite tensors in 2-D as well as 3-D. Here the problem form arises after a reduction of
the original full formulation.
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The design of a variable thickness sheet for two cantilever-like ground structures with aspect ratios a) 1:1 and b) 1:4. c) - h) : The optimal
designs for a volume constraint c) and d) 30%, e) and f) 60% and g) and h) 90%, respectively, of the volume of a design with uniform
thickness hmax (cf. constraints on thickness). Notice that the areas of intermediate thickness is considerable, especially for low amounts of
available material. Thus the variable thickness design does not predict the topology of the structure as a true 2-dimensional object, but
utilizes that the structure is in effect a 3-dimensional object.



Explicit penalization of thickness The variable thickness design problem has been used as
the inspiration for topology design methods where one seeks the optimum over all isotropic
materials with given Poisson ratio and linearly-varying Young's modulus. This formulation
results in designs with large domains of "grey" and modifications are necessary to obtain 0-
1 designs. This can be accomplished by adding to the objective an explicit penalty of
intermediate densities, for example in the form of functionals (we revert to using a density
ρ as the design variable):
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where one evaluates the original penalty function on a filtered version of the density p
(we use here the notation introduced in section 1.3.1). The filter smoothes the density
before penalization and as such provides for a more severe penalization than does W.
Thus using W, the designs become almost entirely black and white (a 0-1 design) if the
penalty factor is large enough. The penalty approach maintains the existence of solutions
for the problem of minimum compliance and the maximization of the fundamental
frequency. If a broader range of problems is to be considered, the restriction techniques
should be applied. Note also that the use of the penalty W makes it impossible to use the
efficient truss-type algorithm mentioned above. In order to maintain the structure of the
original computational problem, it has been suggested instead to consider a sequence of
problems where the volume constraint in each step K of the sequence is modified as
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where the weight function W K is fixed and determined from the optimal solution pK -1 to the 
prior step so as to penalize low density regions:
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3. Plate design

Studies of the problem of variable thickness plate design and the appearance of stiffeners in
such design problems have played a crucial role in the developments in optimal structural
design. The design of variable thickness Kirchhoff plates or Mindlin plates is at first glance
just another sizing problem of finding the optimal continuously varying thickness of the
plate. The close connection with the 0-1 topology design problems is not entirely evident,
but the cubic dependence of plate bending stiffness on the thickness of the plate implies that
the optimal design prefers to achieve either of the bounds on the thickness, in essence a plate
with integral stiffeners. This in turn implies non-existence of solutions unless the gradient of
the thickness function is constrained or the problem is extended to include fields of
infinitely many stiffeners.

Variable thickness design of Kirchhoff plates The minimum potential energy statement for
a Kirchhoff plate is of the form
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The number of stiffeners increase when the discretization of design is refined, with a
resulting (substantial) decrease in compliance, a situation completely similar to the
behaviour of the 0-1 topology design setting. Compared to the variable thickness design
problem for sheets, this is caused by the cubic dependence of the stiffness of the plate on
the thickness. Physically, this dependence makes it advantageous to move as much
material as possible away from the mid-plane of the plate, for example in the form of
integral stiffeners. A method to obtain mesh-independence and existence of solutions is
analogous to what has been described previously, by restricting the variation of the
thickness function, for example in the form of a constraint on the slope (gradient) of the
thickness function. The computational procedure for computing optimal plate designs is
completely analogous to the procedure described earlier and the optimality criteria and
sensitivity calculations carry over, with strains and stresses interpreted as curvatures and
moments, respectively.
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Topology design for Mindlin plates

The minimum potential energy statement for a constant thickness Mindlin plate constructed
from one material is of the form
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Other possibilities is to consider reinforcement of a given plate or to consider the design of
a sandwich structure, where two outer skins are given and the topology design deals with
the topology design of the inner core

Resulting topologies for compliance
minimization of square Mindlin plates. The
material volumes are restricted to 25% of the
filled plates and the plates are loaded with a
force at the center. a) Simply supported and b)
clamped plate

Resulting topologies for compliance
minimization of square Mindlin cantilever
plates. a) Design problem with loads for the
first and the second load case. b) Solution to
one-load case problem with two upward
oriented forces, c) solution to one-load case
problem with one force upwards and one
downwards and d) solution to two load case
problem. The volume fraction is 50%

Presenter
Presentation Notes
Load is in-and-out of the plane!!!
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4. Other interpolation schemes with isotropic materials

The use of SIMP or the penalized variable thickness formulation have in the last few years
been supplemented by some alternative interpolation schemes that have certain theoretical
or computationally advantageous features for specific problems. As they fall within the
class of interpolation models with isotropic materials we briefly discuss them here.

Hashin-Shtrikman bounds The so-called Hashin-Shtrikman bounds for two-phase
materials express the limits of isotropic material properties that one can possibly achieve by
constructing composites (materials with microstructure) from two (or more) given, linearly
elastic, isotropic materials.
These bounds give expressions of material parameters as functions of volume fraction, or for
our purposes as functions of density ρ of material, and can thus be employed as interpolation
schemes (all material laws involved will be isotropic). For our purposes we work with two
materials, one with a low stiffness Emin and one with high stiffness EO. The corresponding
values of the Poisson ratios are vmin and vO.



Hashin–Shtrikman bounds

Topology Optimization (TO) by distribution of isotropic material

The Hashin-Shtrikman bounds are the tightest bounds possible from range of
composite moduli for a two-phase material. Specifying the volume fraction of the
constituent moduli allows the calculation of rigorous upper and lower bounds for the
elastic moduli of any composite material. The so-called Hashin-Shtrikman bounds
for the bulk, K, and shear moduli μ is given by:

The upper bound is computed when K2 > K1. The lower bound is computed by
interchanging the indices in the equations.
For the case of a solid-fluid mixture, K2 is KS, the bulk modulus of the solid
component, and and K1 is Kf, the bulk modulus of the fluid component.



Quartz-Brine mixture: Quartz with solid mineral modulus, KS = 36.6 GPa, 
and Kf = 2.2 GPa.
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The interpolation using SIMP (solid curves) compared with the Hashin-Shtrikman bounds (dotted curves).

SIMP and the Hashin-Shtrikman bound If we require that an interpolation model in any
sense can be related to a composite made of the given materials, then we should demand that
the model satisfies the Hashin-Shtrikman bounds stated above. For SIMP one of the material
phases is zero, i.e., Emin=0. Then the only relevant Hashin-Shtrikman bound simplify somewhat
and it is possible to show that SIMP satisfies the bounds if the power of the model satisfies the
inequalities. As already noted, this does not assure that a composite can actually be
constructed.
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6. Alternative approaches

The technique for topology design of continuum structures that is described here is based on
the concept of optimal distribution of material, using interpolation of material properties
together with mathematical programming. As we shall see soon, this is a universally
efficient approach for a broad range of problems in engineering design. In parallel with the
development of this methodology, other schemes have also evolved. Some of these work
within the same modelling framework using algorithms for discrete optimization or various
types of growth/shrinking procedures, but a completely different modelling paradigm can
also be found in for example the bubble method. We will here only briefly mention some of
these concepts here.
Solving the discrete problem The introduction of the interpolation schemes for the
0-1 design problem is extremely useful as it allows for the use of mathematical
programming methods for continuous (smooth) problems. However, it would be very
useful if one could attack the original formulation directly. This has been done for the
compliance design problem using dual methods, that have been shown to be effective
in the absence of local constraints. Methods like simulated annealing or genetic
algorithms have also been tested for more general settings, but their need for many
function evaluations is computationally prohibitive, but for rather small scale
examples (each call involves a costly finite element analysis on a grid at least as fine
as the raster representation of the design). It has been shown that for a broad class of
problems one can formulate the 0-1 topology design problem as a linear mixed
continuous-integer programming problem and this will no doubt be useful for
generating more efficient methods for treating the discrete format in the future.
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Growing and shrinking a structure; Bone remodeling Numerous methods have been proposed
for dealing with topology design without the use of mathematical programming. They are
typically named as "evolutionary“ methods, but they are not in any way connected to the use
of genetic algorithms. On the contrary, these methods typically work with concepts that are
similar to the idea of fully stressed design, i.e., material is added to highly stressed areas of a
design and removed from understressed areas of the design, typically implemented by an
addition or removal of elements from the FE model. Some implementations of such
concepts are very similar to an optimality criteria type algorithm, but the removal and
adding of elements can lead to erroneous results. This is basically because gradient
information is used to perform changes of variables between zero and one. It is interesting to
note that many models used in bio-mechanics for bone adaptation have a form which is
similar to the optimality criteria algorithm. These models are usually based on energy
arguments and are not derived from an optimization principle. This similarity in approach to
material redistribution updates has also lead to bone adaptation models being proposed as
topology redesign methods.
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Topological variations and level sets The concepts of topological derivatives and the bubble method
is based on utilizing ideas from the boundary variations technique for shape design as a basis
for topology design. The topological derivative of a functional as compliance expresses the
sensitivity with respect to the opening of a small (infinitesimal) hole at a certain position in
the analysis domain. Likewise, in the bubble method a criterion is developed that allows for
the prediction of the most effective location for creating a hole and this information is used
to perform a boundary variations shape optimization of the resulting topology. The hole
placement is then repeated in this shape optimized structure leading to good designs with
smooth boundaries. A direct application of the topological derivative in a mathematical
programming technique is presently not possible, as there is no evident underlying
parametrization available; implementations have thus been based on techniques reminiscent
of element removal techniques. The application of level-set techniques for topology design
have also been proposed. The contours of a parametrized family of level-set functions are
here used to generate the boundaries of a structure, and the topology can change with
changes in the level-set function.



Thank you for your attention
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