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Extensions and Applications
Foreword

Previously, we discussed the basics of the topology optimization method applied to
compliance minimization. Due to the simple form of the compliance minimization
problem, this problem was used as the fundamental test case in the initial developments
of the topology optimization method. Despite its simplicity, the compliance
minimization problem gives rise to non-trivial theoretical and numerical problems such
as checkerboards, mesh-dependency and existence issues, and convergence to local
minima. These problems have to be dealt with before one can proceed to more advanced
applications and objective functions.

Here we describes a range of advanced applications, emphasizing problem formulations
and solution procedures. New numerical and theoretical problems like for example
localized modes in low-density regions, one-node connected hinges, instability of low
density elements for geometrical nonlinear modelling, etc., appear for the more advanced
applications, and we also discuss methods to avoid them.



Extensions and Applications
Here we mainly use the SIMP approach to interpolate between solid and void
material since this approach has proven to generalize easily to alternative
applications. Unless otherwise stated we use filtering of sensitivities to obtain
checkerboard-free and mesh-independent designs. Also, the solution procedure
follows the methodology described before. This means that the optimization is
based on the use of density as the primary variable, with state equations and
associated sensitivity analysis being treated as a function call. For this reason we
write all optimization problems with only the density as a free variable.
Nonetheless, for easy identification of problem structure we still include the state
equations in the formulation. Finally note that we throughout this chapter base all
formulations on a discretized FE format.
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1. Problems in dynamics
One of the first applications of the topology optimization method outside of compliance
minimization was in eigenvalue optimization for free vibrations. This problem is relevant
for the design of machines and structures subjected to dynamic loads. For example, one
may wish to keep the eigenfrequencies of a structure away from the driving frequency of an
attached engine or one may wish to keep the fundamental eigenfrequencies well above
possible disturbance frequencies. Also, structures with high fundamental eigenfrequency
tend to be reasonable stiff for all conceivable loads and therefore maximization of the
fundamental frequency results in designs that are also good for static loads.
In specialized cases, one may wish to maximize the dynamic response of a structure. This
may be the case in sensors where the output signal is dependent on the vibration amplitude,
in actuators where resonance phenomena may increase performance or in musical
instruments and loudspeakers where the radiated sound power (over a wide spectrum of
frequencies) should be maximized.



1.1 Free vibrations and eigenvalue problem
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A commonly used design goal for dynamically loaded structures is the maximization
of the fundamental eigenvalue

Note that the problem as stated has a trivial solution: one can in principle obtain an infinite eigenvalue by
removing the entire structure. Therefore, the eigenvalue problem is often used in "reinforcement"
problems where parts of the structure are fixed to be solid or there is a finite minimum thickness of the
structure like a fixed shell thickness in the reinforcement optimization of an engine hood. Alternatively,
non-structural masses may be added to parts of the design domain.
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Top: A reinforcement problem. Maximization of the fundamental eigenvalue of a 5-bay
tower structure where the outer frame structure is fixed to be solid.
Below: Maximization of the fundamental eigenvalue of a structure with nonstructural
masses (each with a mass of 10% of the distributable mass) attached on the rightmost
corners. The structures are shown in their fundamental mode of vibrations.
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An alternative to the formulation is to apply the so-called bound formulation



For a solution where the optimum eigenvalue is single modal, the implementation is
straight forward although one should note that the sensitivities of eigenvalues, as
opposed to the sensitivities of the compliance objective, may take negative as well as
positive values. This is not a problem when using mathematical programming methods
for the optimization but it requires a small modification for an application of the
optimality criteria algorithm. The density update used in compliance minimization

Extensions and Applications

The bound-formulation problem may be solved using mathematical programming
solvers like for example MMA.
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For the formulations above, the optimized structures will often have a multi-modal
eigenvalue and this may be critical for stability. In order to prevent multiple eigenmodes,
one may require that the second eigenvalue is some percent bigger than the first, the third
is some percent bigger than the second and so on. These constraints may easily be applied
by rewriting the bound formulation to the format:
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Optimized topology for maximization of the fundamental eigenfrequency. The design domain is a simply supported 
Mindlin plate with a 10% non-structural mass at the center and volume constraint of 60% of the total volume



1.2 Forced vibrations
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In some situations one may want to minimize or maximize the dynamical response of a structure for
a given driving frequency or frequency range. An example of the former could be for an airplane
where the vibrations in the structure should be minimized at the frequency of the propeller. For the
latter, examples are a sensor which should give a large output for a certain driving frequency or a
clock frequency generator that should vibrate at a certain frequency for least possible input.
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The sensitivities of the objective function may by use of the adjoint method be found as

We readily see from above that for low driving frequencies Ω, the results obtained should
correspond roughly to the results of solving static problems (the term Ω2M is a small
perturbation to the stiffness matrix). However, for higher driving frequencies we should
expect different resulting topologies. It can be shown that this formulation corresponds to
forcing the closest eigenfrequency away form the driving frequency.

Optimized topologies for different driving frequencies . a) A zero driving
frequency gives a statically stiff structure. b) while a small driving frequency
forces the first eigenfrequency upwards resulting in a statically stiff structure.
c) A larger driving frequency results in a tuned mass damper, d) and an even
larger driving frequency forces the first eigenfrequency downwards and away
from the driving frequency. All four examples where solved as reinforcement
problems for a given outer frame and a stiffness ratio between black and white
areas of 100:l. The structures are shown in their deformed states corresponding
to the forced vibration mode.
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2. Buckling problems

Another important problem in structural optimization is the maximization of the
fundamental buckling load of a structure. The solution of the buckling problem and its
associated numerical problems have many features in common with the dynamical
problems discussed in the previous section.



In practice one does not solve for all Ndof modes of the eigenproblem. In the beginning of
the design iterations there is usually only one or two critical eigenvalues whereas towards
the end, up to 10 eigenvalues may cluster above the most critical eigenvalue. The number
of eigenvalues close to the most critical eigenvalue should be monitored during the
iterations.
Alternatively, one may reformulate it to a bound-formulation
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As was the case for dynamical problems, artificial modes may also here appear in low
density regions where the (non-linear) geometrical stiffness is high compared to the linear
stiffness. To avoid the problem of artificial local modes one can ignore the geometrical
stiffness of low-density elements. This approach corresponds to ignoring the mass of low-
density elements in the vibration problem. This cut-off method seems to stabilize the
problem but may cause oscillations of the algorithm due to abrupt changes in the values of
the objective function and sensitivities. However, a smooth version of this approach can
be obtained by writing the interpolation schemes in a slightly different way for the two
stiffness matrices:

Optimal re-enforcement of portal frames for maximum fundamental buckling load. a) 40
by 40 elements discretization. b) and c) 120 by 30 element discretizations where b) is a re-
enforcement problem where the outer frame is fixed to be solid and c) allows a free
distribution of 50% material. The buckling load for the second tower c) is 1 % higher than
for the first tower b) .
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3. Stress concentration

Imposing stress constraints on topology optimization problems is an extremely important
topic. However, several challenges must be overcome in order to solve the problem
efficiently. This section discusses some possible solution methods. However, the best way to
solve stress constrained problems has probably yet to be suggested.

3.1 A stress criterion for the SIMP model
For the 0-1 formulation of the topology design problem a stress constraint is well-defined,
but when a material of intermediate density is introduced, the form of the stress constraint is
not a priori given.

A stress criterion for the SIMP model should be as simple as possible (like for the stiffness-
density relation) , and the isotropy of the stiffness properties should be extended to the stress
model. Moreover, for physical relevance, it is reasonable that the criterion should mimic
consistent microstructural considerations. This leads one to apply a stress constraint for the
SIMP model (with exponent p) that is expressed as a constraint of the von Mises equivalent
stress
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This constraint reflects the strength attenuation of a porous medium that arises when an
average stress is distributed in the local microstructure, meaning that "local" stresses
remain finite and non zero at zero density. This results in a reduction of strength
domain by the factor ρp. We see that the same exponents are used for the stiffness
interpolation and the stress constraint. Choosing another exponent is not consistent with
physics and using an exponent that is less than p can for example lead to an artificial
removal of material.

The classical stress-constrained optimization problem consists of finding the minimum
weight structure that satisfies the stress constraint and which is in elastic equilibrium
with the external forces, that is, we have a design problem in the form

where the stress for example is evaluated at the center-node of the individual FE elements.
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The MBB beam. a) stress design and b) compliance design with 45x15
finite elements, and c) stress design with 60x20 finite elements

Stress concentration For stress constraints one has to pay special attention to domains or
problems that introduce a stress singularity (like in the inner corner of an L-shaped
domain). The real difficulty for such situations is not so much in the optimization part but
more the numerical problem of capturing the high stress at the corner. The optimization
solution is of course strongly dependent on the quality of the analysis, and for most
applications the stress constrained design optimization should be coupled with a much more
refined analysis, using for example mesh adaptation.
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3.2 Solution aspects

Constraint relaxation The so-called "singularity" problem associated with stress constraints
requires special care when dealing with topology design problems. It was first identified
for truss problems and arises from a "degeneracy" or an "irregularity" of the design space.
The key effect is that the feasible set in the design space contains degenerated appendices
where constraint qualification does not hold. This means that classical optimization
algorithms are unable to reach the optima that are located in these regions. In other words,
a standard optimization algorithm is not able to completely remove some low density
regions and to find the true optimal topologies.

One approach to circumvent this complication is to reformulate the problem as a sequence of
problems that have nicer properties and which can give solutions that converge to the true
design (like a continuation method). First, we note that in a topology design problem, the
stress constraints should only be imposed if material is present. To eliminate the condition ρ
> 0 from the constraint, one considers a modified formulation:



For bars in a truss, this is equivalent to considering forces instead of stresses. Unfortunately,
this reformulation does not change the problems with constraint qualification, and additional
measures are required. One method is to rewrite the stress constraints using the E-relaxation
approach. This relaxation is a perturbation of the original problem where the original stress
constraints are replaced by the following relaxed stress constraints and associated side
constraints:
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Where ε is given. For any ε>0, the E-relaxed problem with the constraints is characterized
by a design space that is not any longer degenerate, and the factor (1 - p) on ε assures that
the real stress constraint is imposed for p = 1. It is thus possible to reach a local optimum
with optimization algorithms. If we can find the global optimum, then for ε→0, the sequence
of feasible domains and their optimal solutions converge continuously towards the original
degenerate problem and its associated optimal solution.

The solution procedure thus now consists in solving a sequence of optimization problems,
for decreasing ε, in a continuation approach similar to what is done with barrier and penalty
functions. The implementation process is here driven by the minimum density ρmin = ε2 and
choosing a quite large initial minimum density is necessary to obtain reasonable results. We
remark here that the method may fail if the problem is such that there are many local minima
for the relaxed problems. This may happen even for rather simple truss examples. An
alternative approach is to not rely on gradient based techniques.
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Implementation aspects The local stress criterion adds a large number of constraints to
what is already a large scale optimization problem. Thus it is important to apply an active
set strategy which at each iteration step preselects the potentially dangerous stress
constraints to be considered. At the beginning of the optimization process, the selection is
large, but at the end of the optimization the set of active constraints is stable and it can be
restricted to a fraction of the elements. For working with MMA (or CONLIN) it is also
important to treat the stress constraint in a form which is suited for the approximation
strategies of these. Thus the stress constraints should be written as (observe that the
density variables are strictly positive for ε > 0):

A global stress constraint An alternative to working with the local constraints is to use
global U constraints that for large q approximates the local constraints. This can be
implemented in the form

This is just one constraint, so the savings in computational effort is immense. The
difficulty is the numerical problems associated with using large q. Computational
experiments shows that q=4 is a good choice; however, for problems with very localized
high stresses (like an L-shape) one cannot assure that the stress is below the critical value
in all areas. Nonetheless, the designs one can obtain are quite reasonable compared to
using the very cumbersome local constraint.
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4. Pressure Loads
An example of design dependent loads is pressure loads. Since the direction as well as the
position of attack of the pressure loads depend on the boundary between solid and void
and because the boundaries are not well defined in topology optimization problems,
topology design with pressure loads is a highly challenging problem. The optimization
problem is the classical one of compliance minimization of a structure where the design
parameters are the volumetric material densities throughout the design domain. The novel
aspect here lies in the type of loading considered which occurs if free structural surface
domains are subjected to forces where both the direction, the location, and the size can
change with the material distribution. Examples are pressure and fluid flow loading with
the direction and location of the load changing with and following the structural surface.
The compliance of the structure is written as:



The optimization process is performed by successive iterations making use of the finite
element analysis model with fixed mesh on the one hand, and the design model with the
parametrized iso-volumetric density surface for the pressure loading on the other. The load
surfaces in the design model are controlled by the density distribution in the finite element
model and in turn fully determine the global load vector on the finite element model. Thus
the sensitivity analysis is based on both the analysis model and the design model. In the
sensitivity analysis also the sensitivities of the load vector with respect to a design change
must be evaluated, and this is done analytically. The problem is solved by an optimality
criteria method.
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Optimization of an inlet. Two separate parts of the structural surface are subjected to pressure loads. The
design domain with the pressure initially distributed to narrow white internal channel is shown to the left.
To the right is shown the optimized topology for a volume fraction of 40%. The pressurized surfaces are
marked with grey lines



Thank you for your attention
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