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Preface

This book has grown out of lectures and courses given at Linköping University,

Sweden, over a period of 15 years. It gives an introductory treatment of problems

and methods of structural optimization. The three basic classes of geometrical op-

timization problems of mechanical structures, i.e., size, shape and topology opti-

mization, are treated. The focus is on concrete numerical solution methods for dis-

crete and (finite element) discretized linear elastic structures. The style is explicit

and practical: mathematical proofs are provided when arguments can be kept ele-

mentary but are otherwise only cited, while implementation details are frequently

provided. Moreover, since the text has an emphasis on geometrical design problems,

where the design is represented by continuously varying—frequently very many—

variables, so-called first order methods are central to the treatment. These methods

are based on sensitivity analysis, i.e., on establishing first order derivatives for ob-

jectives and constraints. The classical first order methods that we emphasize are

CONLIN and MMA, which are based on explicit, convex and separable approxi-

mations. It should be remarked that the classical and frequently used so-called opti-

mality criteria method is also of this kind. It may also be noted in this context that

zero order methods such as response surface methods, surrogate models, neural net-

works, genetic algorithms, etc., essentially apply to different types of problems than

the ones treated here and should be presented elsewhere. The numerical solutions

that are presented are all obtained using in-house programs, some of which can be

downloaded from the book’s homepage at www.mechanics.iei.liu.se/edu_ug/strop/.

These programs should also be used for solving some of the more extensive exer-

cises provided.

The text is written for students with a background in solid and structural mechan-

ics with a basic knowledge of the finite element method, although in our experience

such knowledge could be replaced by a certain mathematical maturity. Previous

exposure to basic optimization theory and convex programming is helpful but not

strictly necessary.

The first three chapters of the book represent an introductory and preparatory

part. In Chap. 1 we introduce the basic idea of mathematical design optimization

and indicate its place in the broader frame of product realization, as well as define

basic concepts and terminology. Chapter 2 is devoted to a series of small-scale prob-

lems that, on the one hand, give familiarity with the type of problems encountered

in structural optimization and, on the other hand, are used as model problems in

upcoming chapters. Chapter 3 reviews basic concepts of convex analysis, and exem-

plifies these by means of concepts from structural mechanics. Chapter 4 is, from an

algorithmic point of view, the core chapter of the book. It introduces the basic idea of

sequential explicit convex approximations, and CONLIN and MMA are presented.

In Chap. 5 the latter is applied to stiffness optimization of a truss. This is a classical
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model problem of structural optimization which we investigate thoroughly. Chap-

ter 6 concerns sensitivity analysis for finite element discretized structures. Sensitiv-

ities for shape changes are combined with two-dimensional shape representations

such as Bézier and B-splines in Chap. 7, and this closes the treatment of shape opti-

mization. Chapter 8 is essentially a preparation for the formulation of the problem of

stiffness topology optimization. We review some classical results of the calculus of

variations, and derive optimality conditions for stiffness optimization of distributed

parameter systems. In Chap. 9 this problem is slightly extended and discretized,

and it provides a gateway into the problem of topology optimization for continuous

structures. We derive the optimality criteria method as a special case of the general

explicit convex approximation method, discuss well-posedness and different types

of regularization methods.

This being an introductory treatment, we have not made an effort to give a com-

plete set of references, nor an historical account of structural optimization. For that

we refer to existing monographs such as Haftka and Gürdal [18], Kirsch [22] and

Bendsøe and Sigmund [4].

As mentioned, this book has its roots in several series of lectures at Linköping

University, where the first one was given by the second author of this book in 1992.

Following these, in the year 2000, a separate course in structural optimization was

established, and Joakim Petersson was made responsible and defined its basic con-

tents. After having taught the course on two occasions, Joakim very unexpectedly

and sadly passed away in September 2002, [3]. The authors of this book then took

over and shared responsibility for the course, initially teaching it in a way that was

very close to the lecture notes of Joakim. Out of appreciation, we have continued to

teach the course, and eventually written this book, closely following the spirit and

style of Joakim, as we remember and understand it.

We like to extend a special thanks to Bo Torstenfelt and Thomas Borrvall for

having provided some of the numerical solutions presented in the book. Torstenfelt’s

easy-to-use finite element program TRINITAS may be downloaded from the book’s

homepage, and should be used for two computer exercises on shape and topology

optimization. A Java applet by Borrvall for performing topology optimization is

also available on the homepage. For the permission to use their programs we are

sincerely grateful.

Linköping, Peter W. Christensen

July 2008 Anders Klarbring



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 General Mathematical Form of a Structural Optimization Problem . 3

1.4 Three Types of Structural Optimization Problems . . . . . . . . . 5

1.5 Discrete and Distributed Parameter Systems . . . . . . . . . . . . 7

2 Examples of Optimization of Discrete Parameter Systems . . . . . . 9

2.1 Weight Minimization of a Two-Bar Truss Subject to Stress

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Weight Minimization of a Two-Bar Truss Subject to Stress and

Instability Constraints . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Weight Minimization of a Two-Bar Truss Subject to Stress and

Displacement Constraints . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Weight Minimization of a Two-Beam Cantilever Subject to a

Displacement Constraint . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Weight Minimization of a Three-Bar Truss Subject to Stress

Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Weight Minimization of a Three-Bar Truss Subject to a Stiffness

Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Basics of Convex Programming . . . . . . . . . . . . . . . . . . . . . 35

3.1 Local and Global Optima . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 KKT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Lagrangian Duality . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Lagrangian Duality for Convex and Separable Problems . . 47

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Sequential Explicit, Convex Approximations . . . . . . . . . . . . . . 57

4.1 General Solution Procedure for Nested Problems . . . . . . . . . . 57

vii



viii Contents

4.2 Sequential Linear Programming (SLP) . . . . . . . . . . . . . . . 58

4.3 Sequential Quadratic Programming (SQP) . . . . . . . . . . . . . 59

4.4 Convex Linearization (CONLIN) . . . . . . . . . . . . . . . . . . 59

4.5 The Method of Moving Asymptotes (MMA) . . . . . . . . . . . . 66

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Sizing Stiffness Optimization of a Truss . . . . . . . . . . . . . . . . 77

5.1 The Simultaneous Formulation of the Problem . . . . . . . . . . . 77

5.2 The Nested Formulation and Some of Its Properties . . . . . . . . 84

5.2.1 Convexity of the Nested Problem . . . . . . . . . . . . . . 85

5.2.2 Fully Stressed Designs . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Minimization of the Volume Under a Compliance Constraint 88

5.3 Numerical Solution of the Nested Problem Using MMA . . . . . . 91

6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Direct Analytical Method . . . . . . . . . . . . . . . . . . 98

6.2.2 Adjoint Analytical Method . . . . . . . . . . . . . . . . . 99

6.3 Analytical Calculation of Pseudo-loads . . . . . . . . . . . . . . . 100

6.3.1 Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Plane Sheets . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Two-Dimensional Shape Optimization . . . . . . . . . . . . . . . . . 117

7.1 Shape Representation . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Bézier Splines . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.2 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Treatment of Geometrical Design Constraints . . . . . . . . . . . . 127

7.2.1 C1 Continuity Between Bézier Splines . . . . . . . . . . . 128

7.2.2 C1 Continuity at a Point on a Line of Symmetry . . . . . . 129

7.2.3 A Composite Circular Arc . . . . . . . . . . . . . . . . . . 131

7.3 Mesh Generation and Calculation of Nodal Sensitivities . . . . . . 132

7.3.1 B-Spline Surface Meshes . . . . . . . . . . . . . . . . . . 133

7.3.2 Coons Surface Meshes . . . . . . . . . . . . . . . . . . . . 134

7.3.3 Unstructured Meshes . . . . . . . . . . . . . . . . . . . . 137

7.4 Summary of Sensitivity Analysis for Two-Dimensional Shape

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 Stiffness Optimization of Distributed Parameter Systems . . . . . . . 147

8.1 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . 147

8.1.1 Optimality Conditions and Gateaux Derivatives . . . . . . 149

8.1.2 Handling a Constraint . . . . . . . . . . . . . . . . . . . . 153

8.2 Equilibrium Principles for Distributed Parameter Systems . . . . . 156

8.2.1 One-Dimensional Elasticity . . . . . . . . . . . . . . . . . 156



Contents ix

8.2.2 Beam Problem . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2.3 Two-Dimensional Elasticity . . . . . . . . . . . . . . . . . 159

8.2.4 Abstract Equilibrium Principles . . . . . . . . . . . . . . . 162

8.3 The Design Problem . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . 166

8.3.2 The Stiffest Rod . . . . . . . . . . . . . . . . . . . . . . . 168

8.3.3 Beam Stiffness Optimization . . . . . . . . . . . . . . . . 170

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9 Topology Optimization of Distributed Parameter Systems . . . . . . 179

9.1 The Variable Thickness Sheet Problem . . . . . . . . . . . . . . . 179

9.1.1 Problem Statement and FE-Discretization . . . . . . . . . . 179

9.1.2 The Optimality Criteria (OC) Method . . . . . . . . . . . . 182

9.2 Penalization of Intermediate Thickness Values . . . . . . . . . . . 188

9.2.1 Solid Isotropic Material with Penalization (SIMP) . . . . . 188

9.2.2 Other Penalizations . . . . . . . . . . . . . . . . . . . . . 190

9.3 Well-Posedness and Potential Numerical Problems . . . . . . . . . 190

9.3.1 The Archetype Problem and an Analogy . . . . . . . . . . 190

9.3.2 Numerical Instabilities . . . . . . . . . . . . . . . . . . . . 191

9.4 Restriction of the Archetype Problem . . . . . . . . . . . . . . . . 193

9.4.1 Bounds on the Design Gradient . . . . . . . . . . . . . . . 194

9.4.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.5 Relaxation of the Archetype Problem . . . . . . . . . . . . . . . . 198

9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Answers to Selected Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 203

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Chapter 1

Introduction

This chapter introduces basic ideas and terminology of structural optimization. The

role of mathematical design optimization in the product design process is discussed.

Nested and simultaneous formulations of structural optimization, as well as the three

basic geometric design parameterizations—size, shape and topology, are defined.

1.1 The Basic Idea

A structure in mechanics is defined by J.E. Gordon [17] as “any assemblage of ma-

terials which is intended to sustain loads.” Optimization means making things the

best. Thus, structural optimization is the subject of making an assemblage of mate-

rials sustain loads in the best way. To fix ideas, think of a situation where a load is

to be transmitted from a region in space to a fixed support as in Fig. 1.1. We want to

find the structure that performs this task in the best possible way. However, to make

any sense out of that objective we need to specify the term “best.” The first such

specification that comes to mind may be to make the structure as light as possible,

i.e., to minimize weight. Another idea of “best” could be to make the structure as

stiff as possible, and yet another one could be to make it as insensitive to buckling or

instability as possible. Clearly such maximizations or minimizations cannot be per-

formed without any constraints. For instance, if there is no limitation on the amount

of material that can be used, the structure can be made stiff without limit and we

have an optimization problem without a well defined solution. Quantities that are

usually constrained in structural optimization problems are stresses, displacements

and/or the geometry. Note that most quantities that one can think of as constraints

could also be used as measures of “best,” i.e., as objective functions. Thus, one can

put down a number of measures on structural performance—weight, stiffness, criti-

cal load, stress, displacement and geometry—and a structural optimization problem

is formulated by picking one of these as an objective function that should be maxi-

mized or minimized and using some of the other measures as constraints. In Sect. 1.3

we will be specific about how such a formulation looks in mathematical terms. In

the next section, Sect. 1.2, we will temporarily move the perspective in the other

direction, and look at how structural optimization enters a broader picture.

1.2 The Design Process

The measures on structural performance indicated above are purely mechanical,

e.g., we did not consider functionality, economy or esthetics. To make clear the

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,
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2 1 Introduction

Fig. 1.1 Structural

optimization problem. Find

the structure which best

transmits the load F to the

support

position of structural optimization in relation to such, usually not mathematically

defined, factors, we give a short indication of the main steps in the process of de-

signing a product in general, as described by Kirsch [22]. At least in an ideal world

these steps are as follows:

1. Function: What is the use of the product? Think of the design of a bridge: how

long and broad should it be, how many driving lanes, what loads can be expected,

etc.?

2. Conceptual design: What type of construction concept should we use? When we

are to construct a bridge we need to decide if we are to build a truss bridge, a

suspension bridge or perhaps an arch bridge.

3. Optimization: Within the chosen concept, and within the constraints on function,

make the product as good as possible. For a bridge it would be natural to mini-

mize cost; perhaps indirectly by using the least possible amount of material.

4. Details: This step is usually controlled by market, social or esthetic factors. In

the bridge case, perhaps we need to choose an interesting color.

The traditional, and still dominant, way of realizing step 3 is the iterative-intuitive

one, which can be described as follows. (a) A specific design is suggested. (b) Re-

quirements based on the function are investigated. (c) If they are not satisfied, say

the stress is too large, a new design must be suggested, and even if such require-

ments are satisfied the design may not be optimal (the bridge may be overly heavy)

so we still may want to suggest a new design. (d) The suggested new design is

brought back to step (b). In this way an iterative process is formed where, on mainly

intuitive grounds, a series of designs are created which hopefully converges to an

acceptable final design.

For mechanical structures, step (b) of the iterative-intuitive realization of step 3,

is today almost exclusively performed by means of computer based methods like

the Finite Element Method (FEM) or Multi Body Dynamics (MBD). These meth-

ods imply that every design iteration can be analyzed with greater confidence, and

probably every step can be made more effective. However, they do not lead to a

basic change of the strategy.

The mathematical design optimization method is conceptually different from the

iterative-intuitive one. In this method a mathematical optimization problem is for-

mulated, where requirements due to the function act as constraints and the concept

“as good as possible” is given precise mathematical form. Thus, step 3 in the de-
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sign process is much more automatic in mathematical design optimization than in

an iterative-intuitive approach.

This text is concerned with a subset of the field of mathematical design optimiza-

tion. That is, we treat mechanical structures whose main task is to carry loads. This

subset is termed structural optimization.

Clearly, not all factors can be usefully treated in a mathematical design opti-

mization method. A basic requirement is that the factor need to be measurable in

mathematical form. This is usually easy for mechanical factors but difficult for, say,

esthetic ones.

1.3 General Mathematical Form of a Structural Optimization

Problem

The following function and variables are always present in a structural optimization

problem:

• Objective function (f ): A function used to classify designs. For every possible

design, f returns a number which indicates the goodness of the design. Usually

we choose f such that a small value is better than a large one (a minimization

problem). Frequently f measures weight, displacement in a given direction, ef-

fective stress or even cost of production.

• Design variable (x): A function or vector that describes the design, and which can

be changed during optimization. It may represent geometry or choice of material.

When it describes geometry, it may relate to a sophisticated interpolation of shape

or it may simply be the area of a bar, or the thickness of a sheet.

• State variable (y): For a given structure, i.e., for a given design x, y is a function

or vector that represents the response of the structure. For a mechanical structure,

response means displacement, stress, strain or force.

A general structural optimization problem now takes the form:

(SO)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize f (x, y) with respect to x and y

subject to

⎧

⎨

⎩

behavioral constraints on y

design constraints on x

equilibrium constraint.

One can certainly imagine a problem with several objective functions, a so-called

multiple criteria, or vector optimization problem:

minimize (f1(x, y), f2(x, y), . . . , fl(x, y)), (1.1)

where l is the number of objective functions, and the constraints are the same as

for (SO). This is not a standard optimization problem since all fi :s in general are

not minimized for the same x and y. Instead, one therefore typically tries to achieve

so-called Pareto optimality: a design is Pareto optimal if there does not exist any
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other design that satisfies all of the objectives better. Thus, (x∗, y∗) satisfying the

constraints is Pareto optimal if there is no other (x, y) satisfying the constraints such

that

fi(x, y) ≤ fi(x
∗, y∗), for all i = 1, . . . , l,

fi(x, y) < fi(x
∗, y∗), for at least one i ∈ {1, . . . , l}.

The most common way to obtain a Pareto optimal point of (1.1) is to form a scalar

objective function

l
∑

i=1

wifi(x, y), (1.2)

where wi ≥ 0, i = 1, . . . , l, are so-called weight factors satisfying
∑l

i=1 wi = 1.

The problem of minimizing (1.2) under the constraints in (SO) is a standard scalar

optimization problem, the solution of which is a Pareto optimum of (1.1). By varying

the weights, different Pareto optima are obtained. It should be remarked, however,

that in general not every Pareto optimal point may be obtained with this simple

method.

In this text we will consider only structural optimization problems of the form

(SO), i.e. problems with only one scalar objective function. The reader is referred to

Ehrgott and Gandibleux [14], and the references therein, for a thorough discussion

of multicriteria optimization.

Three types of constraints are indicated in (SO): (1) Behavioral constraints are

constraints on the state variable y. Usually they are written g(y) ≤ 0, where g is

a function which represents, e.g., a displacement in a certain direction. (2) Design

constraints are similar constraints involving the design variable x. Obviously, these

two types of constraints can be combined. Finally, in a naturally discrete problem or

a discretized problem that is linear (we will discuss these two types of problems in

Sect. 1.5), the equilibrium constraint looks like

K(x)u = F (x), (1.3)

where K(x) is the stiffness matrix of the structure, which generally is a function

of the design, u is the displacement vector and F (x) is the force vector which may

also depend on the design. Note that the displacement vector u takes the role of

the general state variable y. In a continuum problem, the equilibrium constraint will

typically be a partial differential equation. Moreover, in a dynamic structural opti-

mization problem, equilibrium should be seen as dynamic equilibrium. A broader

term than equilibrium constraint that encompasses this is state problem.

In the formulation (SO), y and x are treated as independent variables. Such

a formulation is usually called a simultaneous formulation, since equilibrium (or

more generally, the state problem) is solved simultaneously with the optimization

problem. However, a very frequent situation is that the state problem uniquely

defines y in case of a given x, e.g., if K(x) is invertible for all x; we have

u = u(x) = K(x)−1F (x). By treating u(x) as a given function, the equilibrium



1.4 Three Types of Structural Optimization Problems 5

constraint can be left out of (SO), and this function can be substituted for the state

variable, which gives

(SO)nf

{

min
x

f (x,u(x))

s.t. g(x,u(x)) ≤ 0,

where s.t. denotes “subject to,” and we have assumed that all state and design con-

straints can be written as g(x,u) ≤ 0. This formulation is called a nested formula-

tion and will be the starting point for numerical methods presented in this text.

When treating (SO)nf numerically, one usually needs derivatives of f and g with

respect to the design x. To find such derivatives is the goal of sensitivity analysis.

Since the function u(x) is only implicitly given, this is generally a nontrivial task.

1.4 Three Types of Structural Optimization Problems

In this text, x will almost exclusively represent some sort of geometric feature of

the structure. Depending on the geometric feature, we divide structural optimization

problems into three classes:

• Sizing optimization: This is when x is some type of structural thickness, i.e.,

cross-sectional areas of truss members, or the thickness distribution of a sheet.

A sizing optimization problem for a truss structure is shown in Fig. 1.2.

• Shape optimization: In this case x represents the form or contour of some part of

the boundary of the structural domain. Think of a solid body, the state of which

is described by a set of partial differential equations. The optimization consists in

choosing the integration domain for the differential equations in an optimal way.

Note that the connectivity of the structure is not changed by shape optimization:

new boundaries are not formed. A two-dimensional shape optimization problem

is seen in Fig. 1.3.

• Topology optimization: This is the most general form of structural optimization.

In a discrete case, such as for a truss, it is achieved by taking cross-sectional areas

of truss members as design variables, and then allowing these variables to take

Fig. 1.2 A sizing structural optimization problem is formulated by optimizing the cross-sectional

areas of truss members
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Fig. 1.3 A shape

optimization problem. Find

the function η(x), describing

the shape of the beam-like

structure

Fig. 1.4 Topology optimization of a truss. Bars are removed by letting cross-sectional areas take

the value zero

Fig. 1.5 Two-dimensional topology optimization. The box is to be filled to 50% by material.

Where should the material be placed for optimal performance under loads and boundary conditions

shown in the upper picture? The result is shown in the second picture. Calculations performed by

Borrvall

the value zero, i.e., bars are removed from the truss. In this way the connectivity

of nodes is variable so we may say that the topology of the truss changes, see

Fig. 1.4. If instead of a discrete structure we think of a continuum-type structure

such as a two-dimensional sheet, then topology changes can be achieved by let-

ting the thickness of the sheet take the value zero. If pure topological features

are optimized, the optimal thickness should take only two values: 0 and a fixed

maximum sheet thickness. In a three-dimensional case the same effect can be

achieved by letting x be a density-like variable that can only take the values 0

and 1. Figure 1.5 shows an example of topology optimization.



1.5 Discrete and Distributed Parameter Systems 7

Ideally, shape optimization is a subclass of topology optimization, but practical

implementations are based on very different techniques, so the two types are treated

separately in this text and elsewhere. Concerning the relation between topology and

sizing optimization, the situation is the opposite: from a fundamental point of view

they are very different, but they are closely related from practical considerations.

When the state problem is a differential equation, we can say that shape opti-

mization concerns control of the domain of the equation, while sizing and topology

optimization concern control of its parameters.

The fact that there exist several types of structural optimization problems seems

to have two different interpretations in terms of the design process of Sect. 1.2. The

first one is that the boundary between step 2 and step 3 is flexible: topology opti-

mization, which is the most general type of structural optimization, requires a less

detailed description of the concept than, e.g., shape optimization. The other pos-

sible interpretation is that we have only partially left the intuitive-iterative method

when doing structural optimization: an intuitive ingredient is left and it is likely that

several different types of structural optimization problems need to be solved before

step 3 is finished.

1.5 Discrete and Distributed Parameter Systems

As already indicated in previous sections, the design variable x and the state variable

u may, depending on the situation, be finite dimensional (i.e., they belong to the

space Rn of n-tuples of real numbers) or they may be functions (or “fields”) which

may be said to have an infinite number of degrees-of-freedom. If these variables are

finite dimensional one talks of discrete parameter systems and typical examples of

such systems are trusses, as shown in Figs. 1.2 and 1.4, where the state u is given

by the collection of displacement vectors of nodes, and the design variable x is

represented by a finite number of cross-sectional areas. On the other hand, if the

design or state variable is a field, one talks of distributed parameter systems and

such systems are, e.g., the shape optimization problem of Fig. 1.3 or the topology

optimization problem in Fig. 1.5. Frequently in this text we use the term continuum

problem for a distributed parameter system.

Now, distributed parameter systems are not suited for solution with a computer:

computer implementations of mechanical problems are based on algebra, which is

finite dimensional. This means that in the process of solving a distributed parameter

system one performs a discretization, which produces a discrete parameter system.

To distinguish between such derived discrete systems and systems like a truss struc-

ture we talk of naturally discrete parameter systems in the latter case. Ideally one

would like to know that the discretized problem really is connected to the distrib-

uted one, i.e., one would like to prove that the solution of the discretized problem

converges to the solution of the distributed one when the discretization is made finer

and finer. However, such results are usually very mathematically demanding to ob-

tain, and convergence results are not always available. The structural engineer then

has to rely on intuition, that the discretized problem produces a result that is close

to that of the distributed problem.



Chapter 2

Examples of Optimization of Discrete Parameter
Systems

The following chapter gives some examples of the general optimization problem

(SO) introduced in the previous chapter. They all concern the problem of finding

the cross-sectional areas of bars or beams, i.e. they are sizing problems. The list of

such examples is the following:

1. Minimization of the weight of a two-bar truss subject to stress constraints.

2. Minimization of the weight of a two-bar truss subject to stress and instability

constraints.

3. Minimization of the weight of a two-bar truss subject to stress and displacement

constraints.

4. Minimization of the weight of a two-beam cantilever subject to a displacement

constraint.

5. Minimization of the weight of a three-bar truss subject to stress constraints.

6. Minimization of the weight of a three-bar truss subject to a stiffness constraint.

A simple example of combined shape and sizing optimization of a two-bar truss

is given in Exercise 2.5. Despite their simplicity, it turns out that these problems

display several general features of structural optimization problems.

The solution methods we will use in this chapter are of a very simple nature,

and are applicable only when solving optimization problems with one or two design

variables. Later, in Chaps. 3–5, we will study solution methods that are suitable for

larger problems, and resolve some of the problems presented in this chapter.

2.1 Weight Minimization of a Two-Bar Truss Subject to Stress

Constraints

Consider the two-bar truss shown in Fig. 2.1. The bars have the same length L and

Young’s modulus E. The force F > 0, and for the angle α we assume 0 ≤ α ≤ 90◦.

We are to minimize the weight under stress constraints. The design variables are the

cross-sectional areas A1 and A2. The objective function, i.e., the total weight of the

truss, becomes

f (A1,A2) = (A1 + A2)ρL, (2.1)

where ρ is the density of the material. It may be noted that this particular objective

function does not depend on any state variables. As design constraints we pre-

scribe that the cross-sectional areas must, for obvious physical reasons, be non-

negative, i.e.,

A1 ≥ 0, A2 ≥ 0. (2.2)

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,

© Springer Science + Business Media B.V. 2009

9
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Fig. 2.1 Two-bar truss. Find

the cross-sectional areas that

minimize weight under stress

constraints

Fig. 2.2 Forces on the

cut-out free node

In a truss problem of this type, the general approach would be to take the dis-

placement vector u of the free node as state variable and then establish a state

constraint of the form K(A1,A2)u = F by making use of all three basic condi-

tions of small displacement elasticity theory, i.e. equilibrium in terms of forces and

stresses, geometric conditions relating the bars’ elongations to the displacement vec-

tor, and a linear constitutive law. However, in this particular problem the number of

bars equals the number of degrees-of-freedom, which implies that the bar forces, or

stresses, may be obtained directly from the equilibrium equations. We say that the

truss is statically determinate. Furthermore, the displacement is not present in the

constraints nor in the objective function. Therefore, we do not need to formulate any

constitutive or geometric relations in order to write down the optimization problem.

The equilibrium equations are found from the free-body diagram of the free node as

shown in Fig. 2.2. Equilibrium in the x- and y-directions gives

F cosα − σ1A1 = 0, F sinα − σ2A2 = 0, (2.3)

where we have opted to write the equations in terms of the bar stresses σ1 and σ2

directly, rather than first writing them in terms of the bar forces.

The state constraint involving stresses reads

|σi | ≤ σ0, i = 1,2, (2.4)

where σ0 is a maximum allowed stress level, the same in both tension and compres-

sion.

In summary, the particular version of the general (SO) problem that is at hand

here is to find A1, A2, σ1 and σ2 such that (2.1) is minimized under the constraints

(2.2), (2.3) and (2.4). In a nested version of this problem we eliminate σ1 and σ2 by

using (2.3) in (2.4) to find

−σ0A1 ≤ F cosα ≤ σ0A1,
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−σ0A2 ≤ F sinα ≤ σ0A2.

Since F, cosα, sinα,A1,A2 ≥ 0 it is clear that the left-hand inequalities in these

expressions are always satisfied, i.e., they are redundant and can be left out of the

problem. Furthermore, the right-hand inequalities are

A1 ≥ F cosα

σ0
, A2 ≥ F sinα

σ0
,

which shows that the design constraints (2.2) are also redundant. We arrive at

(SO)1
nf

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
A1,A2

A1 + A2

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A1 ≥ F cosα

σ0

A2 ≥ F sinα

σ0
,

where the constant factor ρL has been left out of the objective function since it does

not affect the optimum values of A1 and A2.

The problem (SO)1
nf is a Linear Program (LP) in two variables and it is easily

solved graphically as shown below. It should be noted that it is very unusual for a

structural optimization problem to have a linear structure. In fact, it is even unusual

for these problems to be convex. The fact that we find the LP structure in this case

hinges on the simplicity of the constraints and objective function as well as on the

statically determinate property.

In Fig. 2.3 a graphical solution of (SO)1
nf is shown. In the A1-A2-plane we

plot the lines defining the admissible domain. Next, we plot the line A1 + A2 =
f̂ (A1,A2) = constant, representing the objective function. The solution is found

when f̂ (A1,A2) is given the smallest possible value that maintains part of the line

in the admissible region. It is given by

A∗
1 = F cosα

σ0
, A∗

2 = F sinα

σ0
.

Fig. 2.3 Graphical solution

of the problem
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That is, both of the bars are fully used in tension: the stress is on the maximum level.

It should be intuitively clear that this is a “good” structure from the point of view of

using the least material.

Note that this problem, which is at the outset a sizing problem, is set so that

topology may change: when α = 0 or 90◦ one of the bars in the optimal solution

“disappears.”

2.2 Weight Minimization of a Two-Bar Truss Subject to Stress

and Instability Constraints

Consider a two-bar truss consisting of bars of length L and Young’s modulus E,

placed at right angle according to Fig. 2.4. The force F > 0 is applied at an angle

α = 45◦. The problem is to find the circular cross-sectional areas A1 and A2 such

that the weight of the truss is minimized under constraints on stresses and Euler

buckling. The weight of the truss is

f (A1,A2) = ρL(A1 + A2),

where ρ is the density of the material. The stress constraints are as usual

|σi | ≤ σ0, i = 1,2, (2.5)

where σ0 > 0 is the stress bound. Equilibrium for the free node gives the stresses in

the bars as

σ1 = F√
2A1

, σ2 = − F√
2A2

,

so the stress constraints to be imposed in the optimization problem are

A1 ≥ F√
2σ0

, A2 ≥ F√
2σ0

. (2.6)

Clearly, these constraints imply that cross-sectional areas will be nonnegative so we

do not need to impose such restrictions explicitly.

Concerning instability, we want to obtain a safety factor of 4 against Euler buck-

ling. Such buckling can occur only in the second bar, since there is tensile stress in

Fig. 2.4 A two-bar truss to

be optimized under an

instability constraint



2.2 Weight Minimization Subject to Stress and Instability Constraints 13

the first bar. The buckling load for a hinged-hinged column is

Pc = π2 EI

L2
,

where for a circular cross section

I =
A2

2

4π
.

Thus, the constraint

Pc

4
≥ σ2A2 = F√

2

becomes

A2
2 ≥ 16FL2

√
2πE

. (2.7)

The optimization problem to be solved can, thus, be summarized as follows:

(SO)2
nf

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
A1,A2

A1 + A2

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A1 ≥ F√
2σ0

A2 ≥ F√
2σ0

A2
2 ≥ 16FL2

√
2πE

.

Depending on the values of the coefficients, the second or the third constraint

will be active. Consider, for instance, the special case

σ0 = E

100
,

√

F

σ0
= L

4
.

Then, the constraints of (SO)2
nf become

A1 ≥ L2

16
√

2
, A2 ≥ L2

16
√

2
, A2 ≥ L2

10
√√

2π

and since

1.6

√√
2 >

√
π ⇔ L2

10
√√

2π
>

L2

16
√

2
,
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it can be concluded that the optimum occurs when both the first and the third con-

straints are active, i.e., when

A∗
1 = L2

16
√

2
≈ 0.044L2, A∗

2 = L2

10
√√

2π
≈ 0.047L2.

2.3 Weight Minimization of a Two-Bar Truss Subject to Stress

and Displacement Constraints

Consider the truss in Fig. 2.5. The bars have lengths according to the figure, and

consist of a material with Young’s modulus E and density ρ. The force F > 0 and

the angle α = 30◦. We want to find the cross-sectional areas A1 and A2 such that

the weight is minimized subject to stress constraints and a constraint on the tip

displacement δ. The weight can be written

f (A1,A2) = ρL

(

2√
3
A1 + A2

)

. (2.8)

The stress constraints are

|σi | ≤ σ0, i = 1,2,3, (2.9)

for a given stress bound σ0 > 0. The displacement constraint is

δ ≤ δ0, (2.10)

where

δ0 = σ0L

E
,

is a given bound on the tip displacement. The design constraints are

A1 ≥ 0, A2 ≥ 0. (2.11)

We are aiming at a nested formulation, and need to rewrite (2.9) and (2.10) in

terms of cross-sectional areas. Equilibrium equations are obtained from Fig. 2.6.

Fig. 2.5 Two bar truss

subject to stress and

displacement constraints
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Fig. 2.6 Forces on the

cut-out free node

The equations for the x- and y-directions become

−s1 cosα − s2 + Fx = 0, s1 sinα + Fy = 0,

where s1 and s2 are the bar forces, Fx = 0 and Fy = −F . These equations may be

written in matrix form as

[

Fx

Fy

]

=
[

√
3

2
1

− 1
2

0

][

s1

s2

]

. (2.12)

In symbolic matrix form this is written F = BT s. Here, superscript T denotes the

transpose of a matrix; it will soon become apparent why we write (2.12) symboli-

cally by use of the transpose of a matrix.

Since the number of bars equals the number of degrees-of-freedom, the truss is

statically determinate, and we may obtain the bar forces s by simply solving the

equilibrium equations. From (2.12) we get

s =
[

s1

s2

]

= B−T F =
[

2F

−
√

3F

]

. (2.13)

In order to rewrite the displacement constraint (2.10) in terms of cross-sectional

areas, we need to include geometric and constitutive conditions. In a small displace-

ment theory, the elongations of the bars, δ1 and δ2, are obtained by projecting the

displacement vector u = [(ux uy)]T of the free node on the unit vectors directed

along the bars and pointing towards the free node:

e1 =
[

√
3

2

− 1
2

]

, e2 =
[

1

0

]

.

The elongations thus become

δ1 = eT
1 u =

√
3

2
ux − 1

2
uy, δ2 = eT

2 u = ux .

In matrix form this reads

[

δ1

δ2

]

=
[

√
3

2
− 1

2

1 0

][

ux

uy

]

. (2.14)
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The—perhaps surprising—fact that occurs here is that the matrix of this equation

is B , i.e., the transpose of the matrix occurring in (2.12), so (2.14) can in symbolic

matrix form be written as δ = Bu. That BT and B appear in this way in the equilib-

rium and geometric equations is not a coincidence: the same property holds in any

truss problem and, in fact, given the right interpretation, in any small displacement

structural problem. It is related to the validity of the work equation δT s = uT F , and

it is a very economical fact since, given equilibrium, we can directly write down the

geometric equations and vice versa.

Next, we need the constitutive equations. Hooke’s law reads σi = Eεi , where

σi = si/Ai, εi = δi/li,

are the stress and strain in bar i of length li . Combining these equations gives us the

elongations in terms of the bar forces as

δi = lisi

AiE
. (2.15)

From (2.13), and since l1 = 2L/
√

3 and l2 = L, we get

δ =
[

δ1

δ2

]

=

⎡

⎢

⎢

⎣

4FL√
3A1E

−
√

3FL

A2E

⎤

⎥

⎥

⎦

.

The displacements of the free node are thus given by

u = B−1δ = FL

E

⎡

⎢

⎢

⎣

−
√

3

A2

− 8√
3A1

− 3

A2

⎤

⎥

⎥

⎦

.

The tip displacement may now be written in terms of the cross-sectional areas as

δ = −eT
y u = FL

E

(

8√
3A1

+ 3

A2

)

,

where ey is the unit vector in the y-direction, so that (2.10) can be written

8√
3A1

+ 3

A2
≤ Eδ0

FL
= σ0

F
. (2.16)

Regarding the stress constraints, we note from (2.13) and F > 0 that bar 1 is in

tension and bar 2 in compression, so we need to consider only the stress constraints

s1/A1 ≤ σ0 and −s2/A2 ≤ σ0, which with (2.13) lead to

A1 ≥ 2F

σ0
, A2 ≥

√
3F

σ0
. (2.17)
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Since F > 0 and σ0 > 0, we conclude that (2.11) are redundant: the optimal cross-

sectional areas are strictly positive.

In summary, our problem is to minimize f (A1,A2), according to (2.8), under

constraints given by (2.16) and (2.17). Now, we will not treat this problem directly,

but instead rewrite the problem by means of a change of variables. We do this to

demonstrate the use of such ideas, since they will play an essential role in upcoming

sections, and one may consider that the problem is also easier to solve in the new

variables. These new, dimensionless variables are

x1 = 2F

σ0A1
> 0, x2 =

√
3F

σ0A2
> 0,

and the essential thing with these new variables is that they make the constraint

(2.16) linear. Moreover, the new variables are scaled such that (2.17) becomes

1 ≥ x1, 1 ≥ x2. (2.18)

The displacement constraint (2.16) now becomes

4√
3
x1 +

√
3x2 ≤ 1, (2.19)

and the objective function (2.8) is written as

f (A1(x1),A2(x2)) =
√

3ρLF

σ0

(

4

3x1
+ 1

x2

)

. (2.20)

The constraint (2.19) gives the following estimates

1 ≥ 4√
3
x1 +

√
3x2 ≥

√
3x2, 1 ≥ 4√

3
x1 +

√
3x2 ≥ 4√

3
x1,

from which it is clear that (2.18) is redundant.

We have arrived at the following optimization problem

(SO)3
nf

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
x1,x2

f̂ (x1, x2) = 4

3x1
+ 1

x2

s.t.

⎧

⎨

⎩

4√
3
x1 +

√
3x2 ≤ 1

x1 > 0, x2 > 0.

This problem is illustrated in Fig. 2.7, from which we conclude that constraint (2.19)

is active. We write (2.19) as an equality and solve for x2 to obtain

x2 = 1√
3

− 4

3
x1.
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Fig. 2.7 Geometric

illustration of (SO)3
nf

This is then substituted into f̂ (x1, x2), which becomes a function of x1 for which

we seek a stationary value. Such a stationary value is realized whenever

x1 = ±
(

1√
3

− 4

3
x1

)

.

The minus sign gives x1 =
√

3 which is greater than 1 and, thus, not in the admissi-

ble domain. The plus sign gives the solution

x∗
1 =

√
3

7
, x∗

2 =
√

3

7
,

which, going back to the original variables, gives

A∗
1 = 14F√

3σ0

≈ 8.1F

σ0
, A∗

2 = 7F

σ0
.

2.4 Weight Minimization of a Two-Beam Cantilever Subject

to a Displacement Constraint

Consider a cantilever beam, fixed at the left end and subject to a vertical force F > 0

at the right end. The beam consists of N segments, each of length L, so the total

length of the cantilever is NL. Segment number N is to the left, at the built-in end,

and segment 1 is at the free end. Each segment cross section has a hollow square

form, see Fig. 2.8. The thickness of the material is t for all segments, and the length

of the side of the square is xA for segment A = 1, . . . ,N . The bending moment of

inertia, IA can be calculated from classical formulas. If it is assumed that t ≪ xA,

for all A, one finds:

IA =
x4
A

12
− (xA − 2t)4

12
=

2tx3
A

3
.
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Fig. 2.8 The cantilever for 5 segments and the hollow square cross section

We want to minimize the weight of the beam under the constraint that the dis-

placement at the tip, δ, is less than some prescribed value δ0. The design variables

are the cross-sectional sizes xA, A = 1, . . . ,N . The weight when t ≪ xA becomes

f (x1, . . . , xN ) = Lρ

N
∑

A=1

(

x2
A − (xA − 2t)2

)

= 4Lρt

N
∑

A=1

xA,

where ρ is the density. The displacement at the tip of the beam can be seen as the

sum of contributions from each segment, when other segments are considered as

rigid, i.e.,

δ =
N

∑

A=1

δ(A), (2.21)

where δ(A) is the displacement at the tip of the cantilever for a system where only

segment A is elastic. Next, one concludes by simple geometry for small displace-

ments, such that sin θA ≈ θA, that

δ(A) = δA + (A − 1)LθA, (2.22)

where δA and θA are the displacement and the rotation at the right-hand side of

segment A when only this segment is elastic, see Fig. 2.9. One calculates δA and θA

by means of elementary beam theory as follows:

δA = MAL2

2EIA

+ FAL3

3EIA

, (2.23)

θA = MAL

EIA

+ FAL2

2EIA

, (2.24)

where E is Young’s modulus, and

MA = (A − 1)LF, FA = F,
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Fig. 2.9 The cantilever when only segment A is elastic

are the bending moment and the shear force at the right end of segment A. Putting

(2.23) and (2.24) into (2.22), the result into (2.21) and using the above expression

for IA gives

δ = 3FL3

2Et

N
∑

A=1

(

A2 − A + 1

3

)

1

x3
A

. (2.25)

The present cantilever problem was originally formulated and solved analytically

as well as numerically in Svanberg [34] for the case N = 5. Here we will be content

with N = 2, which is easily solved analytically. For this case we have the following

optimization problem:

(SO)4
nf

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
x1,x2

f (x1, x2) = C1(x1 + x2)

s.t.

⎧

⎨

⎩

1

x3
1

+ 7

x3
2

≤ C2

x1 > 0, x2 > 0,

where

C1 = 4ρLt, C2 = 2δ0Et

FL3
.

Assuming equality in the nonstrict inequality constraint we solve this for x2. The re-

sult is put into f (x1, x2), which becomes a function of x1 only. Seeking a stationary

value of this function gives the solution

x∗
1 =

(

1 + 71/4

C2

)1/3

, x∗
2 = 71/4

(

1 + 71/4

C2

)1/3

.

Now, one may ask the question, what happens if we reverse the order of the

structural measures in a problem of this kind, i.e., what if we minimize the tip dis-
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placement under a constraint on the weight? We then have the following problem:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
x1,x2

1

x3
1

+ 7

x3
2

s.t.

{

C1(x1 + x2) ≤ W

x1 > 0, x2 > 0,

where W is some given allowable weight. This problem can be solved in the same

way as (SO)4
nf. One finds the solution

x∗∗
1 = W

C1

(

1

1 + 71/4

)

, x∗∗
2 = W

C1

(

71/4

1 + 71/4

)

,

and it can be concluded that the reversed problem gives a solution different from

(SO)4
nf. However, it holds that

x∗
2

x∗
1

=
x∗∗

2

x∗∗
1

= 71/4 ≈ 1.63.

Thus, the solution of (SO)4
nf can be obtained by a scaling of the solution of the

reversed problem and vice versa. This is a general property which will be discussed

more thoroughly in Sect. 5.2.3.

2.5 Weight Minimization of a Three-Bar Truss Subject to Stress

Constraints

Consider the three-bar truss shown in Fig. 2.10. The bars have Young’s modulus

E and the lengths are l1 = L, l2 = L, l3 = L/β , where β > 0. In this example

β = 1, but in the next section the same truss will be studied with β = 1/10. We will

therefore perform all derivations for a general β > 0. The force F > 0. As for the

two-bar truss in Sect. 2.1 we are to minimize the weight under stress constraints.

The design variables are the cross-sectional areas A1, A2 and A3, but for simplicity

Fig. 2.10 Three-bar truss.

Find the cross-sectional areas

that minimize weight under

stress constraints
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we assume that

A1 = A3.

The objective function, which is the total weight of the truss, becomes

f (A1,A2) = ρ1LA1 + ρ2LA2 + ρ3
L

β
A3 = L

(

ρ1 + ρ3

β

)

A1 + Lρ2A2, (2.26)

where ρ1, ρ2 and ρ3 are the densities of the bars. The design constraints are

A1 ≥ 0, A2 ≥ 0. (2.27)

Concerning designs with A1 or A2 equal to zero, it is clearly impossible to have

A1 = A3 = 0 since then there is no equilibrium possible as it would imply collapse

of the structure under the given external load. On the other hand, A2 = 0 is a valid

design.

The state constraints are that the maximum absolute value of the stress in bar i

must not exceed the values σmax
i , i.e.

|σi | ≤ σ max
i , i = 1, 2, 3. (2.28)

The equilibrium equation is found by cutting out the free node as shown in

Fig. 2.11. The equilibrium equations in the x- and y-directions become

−s1 − s2√
2

+ F = 0, s3 + s2√
2

= 0.

In matrix form these equations read

[

F

0

]

=
[

1 1√
2

0

0 − 1√
2

−1

]

⎡

⎣

s1

s2

s3

⎤

⎦ ⇐⇒ F = BT s. (2.29)

Note that in contrast to the two-bar truss in Sect. 2.3, we cannot obtain the bar forces

from the equilibrium equations alone since the number of bars exceeds the number

of degrees-of-freedom. We say that the truss is statically indeterminate. In order to

find the bar forces, or, rather, the stresses, that appear in the constraints, we need to

make use of Hooke’s law and the geometry conditions.

From (2.15) we have

si = EAiδi

li
.

Fig. 2.11 Forces on the

cut-out free node
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We write these equations for all three bars in matrix form as

s = Dδ,

where

D = E

l

⎡

⎣

A1 0 0

0 A2 0

0 0 βA1

⎤

⎦ .

Since δ = Bu, cf. the discussion following (2.14), the bar forces are obtained as

s = DBu. (2.30)

The equilibrium equations (2.29) thus become

F = BT s = BT DBu = Ku, (2.31)

where K = BT DB is the global stiffness matrix of the truss, which is easily calcu-

lated as

K = E

l

⎡

⎣

A1 + A2

2
−A2

2

−A2

2

A2

2
+ βA1

⎤

⎦ .

From (2.31) we obtain the displacements of the free node as u = K−1F :

ux = FL

EA1

(

2βA1 + A2

2βA1 + (1 + β)A2

)

, (2.32)

uy = FL

EA1

(

A2

2βA1 + (1 + β)A2

)

. (2.33)

Using (2.30), the stresses may be written as

σ = As = ADBu,

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

A1
0 0

0
1

A2
0

0 0
1

A1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Some straightforward calculations give us the bar stresses as

σ1 = F

2βA1 + (1 + β)A2

(

2β + A2

A1

)

, (2.34)

σ2 =
√

2Fβ

2βA1 + (1 + β)A2
, (2.35)
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σ3 = −
Fβ

A2

A1

2βA1 + (1 + β)A2
. (2.36)

Since F,A1,A2 > 0, we conclude that bars 1 and 2 are in tension and bar 3 is in

compression, so only the stress constraints σ1 ≤ σ max
1 , σ2 ≤ σ max

2 and −σ max
3 ≤ σ3

need to be considered. In what follows we will put β = 1, i.e. l3 = L. The stress

constraint σ1 ≤ σ max
1 then takes the form

F(2A1 + A2)

2A1(A1 + A2)
≤ σ max

1 . (2.37)

The constraint σ2 ≤ σ max
2 reads

F√
2(A1 + A2)

≤ σ max
2 . (2.38)

Naturally, this constraint should only be included if bar 2 is present, i.e. if A2 > 0.

Finally, the stress constraint −σmax
3 ≤ σ3 is written as

FA2

2A1(A1 + A2)
≤ σ max

3 . (2.39)

We have arrived at the following optimization problem

(SO)5
nf

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
A1,A2

(ρ1A1 + ρ2A2 + ρ3A1)L

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

F(2A1 + A2)

2A1(A1 + A2)
− σ max

1 ≤ 0

F√
2(A1 + A2)

− σ max
2 ≤ 0 if A2 > 0

FA2

2A1(A1 + A2)
− σ max

3 ≤ 0

A1 > 0, A2 ≥ 0.

In order to illustrate that all bars may not be present in the optimal truss, and that

structural optimization problems may have more than one, and even an infinite num-

ber of solutions, we will solve this problem for five different cases by altering the

density and the yield stress of the bars.

CASE A)

ρ1 = 2ρ0, ρ2 = ρ3 = ρ0, σ max
1 = σ max

2 = σ max
3 = σ0.

By introducing the new dimensionless variables x1 and x2 as

x1 = A1σ0

F
, x2 = A2σ0

F
, (2.40)
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we may write the optimization problem as

(SO)5a
nf

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
x1,x2

3x1 + x2

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2x1 + x2

2x1(x1 + x2)
− 1 ≤ 0 (σ1)

1√
2(x1 + x2)

− 1 ≤ 0 if x2 > 0 (σ2)

x2

2x1(x1 + x2)
− 1 ≤ 0 (σ3)

x1 > 0, x2 ≥ 0,

where, for simplicity, the objective function is the weight divided by the positive

scalar FLρ0/σ0. The problem is illustrated in Fig. 2.12. Note that the σ2-constraint

is linear. It is clear that the σ1-constraint (2.37) is active at the solution, and that all

other constraints are inactive. Thus

2x1 + x2 − 2x1(x1 + x2) = 0,

Fig. 2.12 Case a). A solid thick line with a dotted line alongside indicates a constraint; the region

on the same side of the thick line as the corresponding dotted line is not part of the design space.

The thin solid lines are iso-merit lines, i.e. all points on a thin line yield the same value of the

objective function. Point A is the solution
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which gives

x2 = 2x1(x1 − 1)

1 − 2x1
. (2.41)

Substituting this into the objective function we find that the problem is reduced to

minimizing

3x1 + 2x1(x1 − 1)

1 − 2x1
,

for x1 > 0. We find that this function has a stationary value for x1 satisfying the

second order equation

8x2
1 − 8x1 + 1 = 0.

The solution of this equation is

x∗
1 = 1

2
±

√
2

4
,

where the minus sign is not valid since upon substitution into (2.41) it gives a nega-

tive x∗
2 . Using the plus sign instead, gives

x∗
2 =

√
2

4
.

Reverting to the original area variables A1 and A2, cf. (2.40), the optimal solution

is

A∗
1 = F

2σ0

(

1 + 1√
2

)

, A∗
2 = F

2
√

2σ0

,

and the corresponding optimum weight is

(3A∗
1 + A∗

2)ρ0L = FLρ0

σ0

(

3

2
+

√
2

)

.

CASE B)

ρ1 = ρ2 = ρ3 = ρ0, σ max
1 = σ max

3 = 2σ0, σ max
2 = σ0.

Using the same dimensionless variables as for the previous case, we may write the

problem as

(SO)5b
nf

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
x1,x2

2x1 + x2

s.t.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2x1 + x2

4x1(x1 + x2)
− 1 ≤ 0 (σ1)

1√
2(x1 + x2)

− 1 ≤ 0 if x2 > 0 (σ2)

x2

4x1(x1 + x2)
− 1 ≤ 0 (σ3)

x1 > 0, x2 ≥ 0,
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Fig. 2.13 Case b). Point B is the solution

see Fig. 2.13. It would appear that the solution is at the intersection A of the

σ1- and σ2-constraints. However, we must keep in mind that the σ2-constraint is

valid only for x2 > 0. By deleting this constraint, it is evident from the figure,

that the point B on the σ1-constraint curve, where x2 is zero, gives the lowest

weight that can be attained. This point is obtained by letting x2 = 0 in the active

σ1-constraint:

2x1 − 4x2
1 = 0,

which gives x∗
1 = 1/2 as x∗

1 = 0 is not a valid design. In the original variables, the

optimum solution becomes

A∗
1 = F

2σ0
, A∗

2 = 0,

with the optimal weight

FLρ0

σ0
.

CASE C)

ρ1 = (2
√

2 − 1)ρ0, ρ2 = ρ3 = ρ0, σ max
1 = σ max

3 = 2σ0, σ max
2 = σ0.
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The density of bar 1 is now increased somewhat as compared to case b). This will

alter the objective function but not the constraints:

(SO)5c
nf

⎧

⎨

⎩

min
x1,x2

2
√

2x1 + x2

s.t. the constraints in (SO)5b
nf ,

which is illustrated in Fig. 2.14. It is not evident from the figure whether the so-

lution is at the intersection A between the σ1- and σ2-constraints, or the point B

corresponding to a design without bar 2. Point A may be calculated by solving

the two equations obtained when equality is satisfied in the σ1- and σ2-constraints,

which leads to

x∗
1 = 4 +

√
2

14
, x∗

2 = 6
√

2 − 4

14
.

Point B is x∗∗
1 = 1/2, x∗∗

2 = 0. It turns out that these two points yield the same value

of the objective function, and thus, there are two solutions to this problem! In the

original variables, the solutions are written

A∗
1 = F

σ0

(

4 +
√

2

14

)

, A∗
2 = F

σ0

(

6
√

2 − 4

14

)

,

Fig. 2.14 Case c). Points A and B are the solutions
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A∗∗
1 = F

2σ0
, A∗∗

2 = 0,

with the optimum weight

√
2FLρ0

σ0
.

CASE D)

ρ1 = 3ρ0, ρ2 = ρ3 = ρ0, σ max
1 = σ max

3 = 2σ0, σ max
2 = σ0.

Again, the density of bar 1 is increased. The optimization problem becomes

(SO)5d
nf

{

min
x1,x2

4x1 + x2

s.t. the constraints in (SO)5b
nf .

In Fig. 2.15, we see that the σ1- and σ2-constraints are active at the solution. This

point has already been calculated for case c) as

A∗
1 = F

σ0

(

4 +
√

2

14

)

, A∗
2 = F

σ0

(

6
√

2 − 4

14

)

,

Fig. 2.15 Case d). Point A is the solution
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which gives the optimal weight

FLρ0

σ0

(

6 + 5
√

2

7

)

.

CASE E)

ρ1 = ρ3 = ρ0, ρ2 = 2ρ0, σ max
1 = σ max

3 = 2σ0, σ max
2 = σ0.

Finally, we modify case b) by doubling the density of bar 2, which leads to the

problem

(SO)5e
nf

{

min
x1,x2

x1 + x2

s.t. the constraints in (SO)5b
nf ,

see Fig. 2.16. The solution point is point B , with the optimal truss lacking bar 2:

A∗
1 = F

2σ0
, A∗

2 = 0,

with the optimal weight

FLρ0

σ0
.

Fig. 2.16 Case e). Point B is the solution
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This is the same solution as for case b). The reason that we get the same solution

although we have doubled the density of bar 2 is of course that bar 2 is not present

in the optimal trusses.

Assume now that A2 is not allowed to become too small: A2 ≥ 0.1F/σ0, i.e.

x2 ≥ 0.1. Since the σ2-constraint curve is parallel to the iso-merit lines, we conclude

that in this case there will be an infinite number of solutions, namely all points on

the line between A and C in Fig. 2.16 for which x2 ≥ 0.1! Here, C is the point with

x1 = 1/
√

2 and x2 = 0.

2.6 Weight Minimization of a Three-Bar Truss Subject

to a Stiffness Constraint

In this section, the weight of the three-bar truss in the previous section will be min-

imized under a stiffness constraint; the two-norm of the displacement vector has to

be lower than a prescribed value δ0 > 0, i.e. uT u ≤ δ2
0 . The scalar β = 1/10, i.e.

bar 3 is 10 times longer than bars 1 and 2. The displacements of the free node are

given in (2.32)–(2.33). Inserting β = 1/10 into these expressions we get

u = FL

EA1(2A1 + 11A2)

(

2A1 + 10A2

10A2

)

,

so that the stiffness constraint may be written as

uT u =
F 2L2(4A2

1 + 200A2
2 + 40A1A2)

E2A2
1(2A1 + 11A2)2

≤ δ2
0 .

The density of all bars is ρ0, which gives the objective function

W = ρ0L(11A1 + A2).

Dimensionless variables are introduced according to

xi = Eδ0

FL
Ai, i = 1, 2. (2.42)

Writing the optimization problem in terms of these variables leads to

(SO)6
nf

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
x1,x2

11x1 + x2

s.t.

⎧

⎨

⎩

4x2
1 + 200x2

2 + 40x1x2

x2
1(2x1 + 11x2)2

− 1 ≤ 0

x1 > 0, x2 ≥ 0,

where we have scaled the objective function by a factor Eδ0/(ρ0FL2). This prob-

lem is illustrated in Fig. 2.17. At first glance it would appear that the solution is
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Fig. 2.17 Illustration of problem (SO)6
nf

x1 = 1, x2 = 0. The zoom plots in Fig. 2.18 reveal, however, that this is not the case.

The solution may be obtained by first solving the active stiffness constraint equation

for x2 in terms of x1, and then solving the highly nonlinear one-dimensional opti-

mization problem in the variable x1 obtained by insertion of the expression for x2

into the objective function. The solution of the problem is x∗
1 = 0.995, x∗

2 = 0.0169.

By using (2.42), the corresponding optimal cross-sectional areas are obtained. As a

much simpler alternative solution procedure for the two-dimensional optimization

problem (SO)6
nf at hand, we can simply produce finer and finer zoom plots similar

to those in Fig. 2.18 and read off the solution.

Since the optimum thickness of bar 2 is very small, it is interesting to investigate

how much heavier the optimum structure would be if bar 2 were removed. With no

bar 2, the stiffness constraint reads

1

x2
1

− 1 ≤ 0,

whereas the objective function becomes 11x1. Thus, with bar 2 removed, the optimal

solution is x∗
1 = 1 and the corresponding (scaled) weight is 11. With bar 2 present,

the optimum weight is 10.965, i.e. only 0.3% less than with no bar 2. Since the

production cost of the truss would most certainly be significantly less with no bar 2

present, it would make little sense to manufacture the truss with bar 2 included.

This serves to illustrate that one should never uncritically accept a solution obtained

by performing structural optimization. Finally, we remark that it would have been
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Fig. 2.18 Point A is the solution of problem (SO)6
nf

possible to avoid an optimal solution with a very thin bar 2 if the minimization of

the manufacturing cost had, somehow, been included in the optimization problem.

2.7 Exercises

Exercise 2.1 What happens if F < 0 in the example of Sect. 2.1?

Exercise 2.2 If the length of the second bar in the example of Sect. 2.5 is changed,

the optimum topology of the truss changes: the optimum area of the second bar is

zero for l2 ≥ L given β = 1, ρi = ρ0, and σ max
i = σ0, i = 1, 2, 3. Verify this for a

special case, e.g., l2 =
√

2L.

Exercise 2.3 How does the solution of the example of Sect. 2.5 change if the max-

imum allowable stress in compression is lower than that in tension?

Exercise 2.4 Verify the details leading to the solutions (x∗
1 , x∗

2 ) and (x∗∗
1 , x∗∗

2 ) in

Sect. 2.4.

Exercise 2.5 The stiffness of the two-bar truss subjected to the force P > 0 in

Fig. 2.19 should be maximized by minimizing the displacement u of the free node.
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Fig. 2.19 The

one-dimensional two-bar

truss of Exercise 2.5

Young’s modulus is E for both bars. The volume of the truss is not allowed to exceed

the value V0. The total length of the bars is h, and bar 1 has length αh, where α is a

scalar between αmin and αmax. The cross-sectional areas of the bars are A1 = A and

A2 = βA, where β is a scalar. The design variables are α and β . Since α determines

the “shape” of the truss, and β the cross-sectional area of bar 2, the problem to be

solved is a combined shape and sizing optimization problem.

a) Show that the problem may be formulated as the following mathematical pro-

gramming problem:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
α,β

α(1 − α)

1 − α + αβ

s.t.

{

g1 = α + (1 − α)β − V0

Ah
≤ 0

αmin ≤ α ≤ αmax, β ≥ 0.

Let V0/(Ah) = 1 and αmax = 1. Show that the set {(α, β) : g1 ≤ 0, αmin ≤
α ≤ 1, β ≥ 0} = {(α,β) : αmin ≤ α ≤ 1, 0 ≤ β ≤ 1}∪{α,β) : α = 1, β > 1}. Solve

the problem for arbitrary αmin.

b) Let V0/(Ah) = 1.2 and αmin = 0.2. Solve the problem for αmax = 0.6 and

αmax = 0.8.



Chapter 3

Basics of Convex Programming

The solution procedure of the previous chapter relies crucially on the ability to eas-

ily identify what constraints are active at the solution of the optimization problem

under study. This works fine for problems with only two design variables, but when

trying to solve real-life problems, where the number of design variables may vary

from the order of 10 to the order of 100 000 or more, one needs more systematic

solution methods. In this and the following chapter we will study methods from the

field of mathematical programming that are applicable for large-scale problems. We

begin by reviewing some fundamental results of mathematical programming, with

focus on convex programming. Actually, most problems of structural optimization

are in fact nonconvex, but this does not imply that convex programming is of little

importance in structural optimization: we will see in Chap. 4 that convex approxima-

tions play a very important role in the solution algorithms for nonconvex problems.

All theorems are presented without proofs; these may be found in any good book

on nonlinear mathematical programming such as Bazaraa, Sherali and Shetty [2] or

Bertsekas [5].

3.1 Local and Global Optima

Consider a general minimization problem under inequality constraints, where so-

called box constraints with lower and upper bounds on the variables, are treated

separately:

(P)

⎧

⎨

⎩

min
x

g0(x)

s.t. gi(x) ≤ 0, i = 1, . . . , l

x ∈ X ,

where gi : Rn → R, i = 0, . . . , l, are assumed to be continuously differentiable

functions, and

X = {x ∈ Rn : xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n}.

The given lower and upper bounds xmin
j and xmax

j > xmin
j on xj need not be finite,

i.e. the values xmin
j = −∞ and xmax

j = +∞, j = 1, . . . , n, are allowed. Naturally,

if all lower and upper bounds are infinite, there are in effect no box constraints. Of

course, optimization problems may equally well be written as maximization prob-

lems instead. However, any maximization problem may be reformulated as a min-

imization problem by noting that maxg0(x) = −min(−g0(x)). A feasible point

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,
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of (P) is any point, or tuple, x̄ in the feasible set, i.e. a point that satisfies all the

constraints gi(x̄) ≤ 0, i = 1, . . . , l and x̄ ∈ X . Thus, the problem (P) consists of

finding a feasible point x∗ such that g0(x
∗) ≤ g0(x̄) for all feasible points x̄ of (P).

Such a point is called a global minimum of g0. We note that neither an optimal solu-

tion nor any feasible points need exist. For instance, if we were to minimize the tip

displacement of the cantilever beam on page 18 without any constraint on the total

mass, we would have the following problem:

⎧

⎨

⎩

min
x1,x2

δ(x1, x2) = 1

x3
1

+ 7

x3
2

s.t. x1 > 0, x2 > 0.

(3.1)

For each feasible point (x̄1, x̄2) we can find another feasible point ( ¯̄x1, ¯̄x2) with
¯̄x1>x̄1 and ¯̄x2 >x̄2 such that δ( ¯̄x1, ¯̄x2) < δ(x̄1, x̄2), and consequently no minimum

exists. Further, if we want to minimize the tip displacement under a mass constraint,

and x1 and x2 have to be greater than some specified values xmin
1 and xmin

2 , respec-

tively, we would have the problem

⎧

⎪
⎪
⎨

⎪
⎪
⎩

min
x1,x2

1

x3
1

+ 7

x3
2

s.t.

{

C1(x1 + x2) ≤ W

x1 ≥ xmin
1 > 0, x2 ≥ xmin

2 > 0.

(3.2)

Then, if xmin
1 +xmin

2 > W/C1, no feasible point exists. Naturally, an optimum cannot

exist when there are no feasible points.

In general it is extremely computationally demanding to determine a global min-

imum. Instead, we will rest content with trying to obtain a local minimum. A point

x∗ is a local minimum if the objective function g0 only assumes greater or equal

values in a surrounding of x∗, but may very well assume smaller values elsewhere.

Naturally, any global minimum is also a local minimum. For unconstrained opti-

mization problems, local (and global) minima are located at stationary points x∗,

i.e. points for which the gradient of g0 is zero:

∇g0(x
∗) =

⎡

⎢
⎢
⎢
⎢
⎣

∂g0(x
∗)

∂x1
...

∂g0(x
∗)

∂xn

⎤

⎥
⎥
⎥
⎥
⎦

= 0.

A stationary point need not be a local minimum, however; it may equally well be

a local maximum. For constrained problems, local minima are not even necessarily

located at stationary points, as they may be located on the boundary of the feasible

set. In order to illustrate the difference between stationary points, local and global

optima, we consider a function g0 : [x1, x6] → R, cf. Fig. 3.1.1 The points x2,

1Here, [a, b] denotes the interval {x : a ≤ x ≤ b}. Similarly, (a, b) = {x : a < x < b} and

[a, b) = {x : a ≤ x < b}.
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Fig. 3.1 A function with

several local optima

Fig. 3.2 A convex (left) and

a nonconvex (right) set

[x3, x4] and x5 are stationary points, x1, (x3, x4) and x5 are local minima, [x3, x4]
and x6 are local maxima. Point x2 is neither a local minimum nor a local maximum.

Point x1 is the global minimum and x6 is the global maximum.

Let us return to the three-bar truss on page 21 and see if there are any local optima

that are not global optima for the four different cases studied. In Fig. 2.12, point A

is the unique global minimum. In Fig. 2.13, B is the unique global minimum and A

is a local minimum. In Fig. 2.14, both A and B are global minima. In Fig. 2.15, A

is the unique global minimum and B is a local minimum. Finally, in Fig. 2.16, B is

the unique global minimum, and all points on the line from A to C, not including

the end point C itself, are local minima with identical objective function values.

Although for general problems local minima are not necessarily global minima,

there is an important class of problems for which they are: convex problems.

3.2 Convexity

A set S ⊂ Rn is convex if for all x1,x2 ∈ S and all λ ∈ (0,1), it holds that

λx1 + (1 − λ)x2 ∈ S.

Thus, a set is convex if all points on the line connecting any two points in the set

also belongs to the set, cf. Fig. 3.2. A function f : S → R is convex (on the convex

set S ⊂ Rn) if for all x1,x2 ∈ S with x1 
= x2 and all λ ∈ (0,1), it holds that

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2).

Similarly, f is strictly convex if strict inequality (<) holds above instead. f is

(strictly) concave if −f is (strictly) convex. The graph of a convex function thus

lies on or below the straight line connecting any two points on this graph. For a

strictly convex function, the graph lies strictly below the line, cf. Fig. 3.3.
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Fig. 3.3 A strictly convex (left), a convex (middle), and a nonconvex (right) function

Example 3.1 The function f : R → R, f (x1) = x2
1 is strictly convex, but

f : R2 → R, f (x1, x2) = x2
1 is only convex. The function f : R2 → R, f (x1, x2) =

x1x2 is neither convex nor concave.

By applying the definitions of convex sets and functions, one easily obtains the

following lemma.

Lemma 3.1 (i) The set S = {x ∈ X : gi(x) ≤ 0, i = 1, . . . , l} is convex if the func-

tions gi : Rn → R, i = 1, . . . , l are convex.

(ii) Let S be a convex set. If f : S → R and g : S → R are convex and h : S → R
is strictly convex, then αf is convex, where α ≥ 0 is an arbitrary scalar, f + g is

convex and f + h is strictly convex.

If both the objective function and the feasible set of (P) are convex, the problem

is said to be convex. The lemma above then states that (P) is convex if the objective

function and all constraint functions gi, i = 1, . . . , l, are convex.

As previously mentioned, local minima are also global minima for convex

problems. However, as indicated by the convex problems in (3.1) and (3.2), con-

vex problems need not have a solution (you are to demonstrate the convexity of

these problems in Exercise 3.1). When the feasible set is compact, i.e. bounded and

closed, a solution always exists (this is true for any continuous objective function,

not necessarily convex). If the objective function is strictly convex and the feasible

set is convex, there exists at most one solution. If, in addition, the feasible set is

compact, there exists exactly one solution. For example, if the strictly convex func-

tion 1/x is minimized over the closed, but unbounded convex set x ≥ 1, no solution

exists. If the same function is minimized over the compact set [1, 2], the solution

is x∗ = 1/2. Note that the convexity of the feasible set plays a crucial role here; for

example if the strictly convex function x2
1 + x2

2 is minimized over the nonconvex,

compact set 1 ≤ x2
1 + x2

2 ≤ 2, there is an infinite number of global minima, namely

all points (x∗
1 , x∗

2 ) with (x∗
1 )2 + (x∗

2 )2 = 1.

In order to determine whether a continuously differentiable function is convex,

we may study its gradient.

Theorem 3.1 Let f : S → R, where S is convex and f is continuously differ-

entiable. Then f is (strictly) convex if and only if the gradient ∇f is (strictly)

monotone.
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Here, a function g : S → Rn is monotone on S if for all x1,x2 ∈ S with x1 
= x2

it holds that

(x2 − x1)
T (g(x2) − g(x1)) ≥ 0.

Similarly, g is strictly monotone on S if strict inequality holds here. This definition

is a generalization of the concept of a monotonically increasing function of one

variable: g is monotonically increasing if x2 > x1 implies that g(x2) ≥ g(x1).

Example 3.2 The function f : R → R, f (x) = x4, is strictly convex on R since

∇f (x) = 4x3 is strictly monotone on R:

(x2 − x1)(x
3
2 − x3

1) = (x2 − x1)
2(x2

1 + x1x2 + x2
2)

= (x2 − x1)
2

[(

x1 + 1

2
x2

)2

+ 3

4
x2

2

]

> 0, x1 
= x2.

For a twice differentiable function, convexity is most efficiently tested by exam-

ining its Hessian.

Theorem 3.2 Let f : S → R, where S is convex and f is twice continuously dif-

ferentiable. Then

(i) f is convex if and only if the Hessian ∇2f is positive semidefinite,

(ii) f is strictly convex if ∇2f is positive definite.

Here, the Hessian is given by

∇2f (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2f (x)

∂x2
1

∂2f (x)

∂x1∂x2
. . .

∂2f (x)

∂x1∂xn

∂2f (x)

∂x2∂x1

∂2f (x)

∂x2
2

. . .
∂2f (x)

∂x2∂xn

...
...

. . .
...

∂2f (x)

∂xn∂x1

∂2f (x)

∂xn∂x2
. . .

∂2f (x)

∂x2
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

a matrix A ∈ Rn×n is positive semidefinite if

yT Ay ≥ 0,

for all y ∈ Rn, and positive definite if

yT Ay > 0,

for all y ∈ Rn with y 
= 0. The positive definiteness of a symmetric matrix may be

checked using Sylvester’s criterion:
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Theorem 3.3 A symmetric matrix A ∈ Rn×n is positive definite if and only if the

determinant of the upper left k × k submatrix is positive for each k = 1, . . . , n.

Alternatively, one may use the fact that a symmetric matrix is positive definite

if and only if it possesses a Cholesky decomposition, i.e. that it may be written as

A = LLT , where L is a nonsingular lower triangular matrix.

Example 3.3 Consider the function f : R2 → R, f (x1, x2) = x2
1 + x2

2 . Then

∇f (x1, x2) =
[

2x1

2x2

]

, ∇2f (x1, x2) =
[

2 0

0 2

]

.

The Hessian is positive definite by Sylvester’s criterion since 2 > 0 and 2 · 2 −
0 · 0 > 0. Thus, Theorem 3.2(ii) implies that f is strictly convex on R2.

Example 3.4 The function f : R → R, f (x) = x4 has the Hessian ∇2f (x) =
12x2 > 0, x 
= 0. Thus, from Theorem 3.2(i), we conclude that f is (at least)

convex. At the origin, the Hessian is zero, and consequently not positive definite,

so from Theorem 3.2(ii), we cannot conclude that f is strictly convex. We know,

however, from analyzing the gradient ∇f in Example 3.2, that f is indeed strictly

convex.

We end this section by investigating which of the problems studied in Chap. 2 are

convex. In problem (SO)1
nf on page 11, where the weight of a statically determinate

two-bar truss was minimized subject to stress constraints, the objective function is a

linear, i.e. also a convex, function, and the constraints are box constraints which are

always convex. Thus, (SO)1
nf is a convex problem.

We leave it as an exercise to show that the weight minimization problem (SO)2
nf

of a statically determinate two-bar truss under stress and instability constraints rep-

resents a convex problem, as is the weight minimization of a statically determinate

two-bar truss under stress and displacement constraints in (SO)3
nf on page 17. The

problem (SO)4
nf on page 20 where the weight of a two-beam cantilever was mini-

mized subject to a displacement constraint is also convex.

In the next problem, the weight of a statically indeterminate three-bar truss was

minimized under stress constraints. In this case the stress constraints could not be

written as simple box constraints. It turns out that the convexity properties of this

problem depends on the relation between the stress limits of the bars. For prob-

lem (SO)5a
nf on page 25, the only constraints that limit the feasible set are the

σ1-constraint and x2 ≥ 0. The σ1-constraint is written g1(x1, x2) ≤ 0 where

g1(x1, x2) = 2x1 + x2

2x1(x1 + x2)
− 1.
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Fig. 3.4 The feasible set for

problems (SO)5b
nf –(SO)5e

nf

A straightforward calculation yields the Hessian as

∇2g1(x1, x2) = 1

(x1 + x2)3

⎡

⎣

(2x1 + x2)(x
2
1 + x1x2 + x2

2)

x3
1

1

1 1

⎤

⎦ .

Thus, the (1, 1)-component of the Hessian is positive in the feasible set, and, in

addition, the determinant of the Hessian is x−3
1 (x1 + x2)

−3 which is also positive

in the feasible set. By Sylvester’s criterion, Theorem 3.3, the Hessian is positive

definite, and Theorem 3.2 then states that g1 is strictly convex. Since the objective

function is also linear, we conclude that problem (SO)5a
nf is convex. Note that the

σ3-constraint is not convex, but concave. This, however, has no influence on the

convexity of the problem as the σ3-constraint does not limit the feasible set.

The problems (SO)5b
nf –(SO)5e

nf are all nonconvex, since, as indicated in Fig. 3.4,

the feasible sets are not convex. It is the nonconvexity of these problems that gives

rise to local optima that are not global optima. We note that if one introduces a

positive lower bound xmin
2 , then these problem are all convex as the “tail” that is

responsible for the nonconvexity in that case is not part of the feasible set.

The weight minimization (SO)6
nf of a statically indeterminate three-bar truss un-

der a constraint of the two-norm of the displacement vector is clearly a nonconvex

problem as is evident from Fig. 2.17.

3.3 KKT Conditions

We now turn to the question of how to identify a local, i.e. also a global, minimum of

a convex optimization problem. To that end we first define the Lagrangian function

L : Rn × Rl → R of (P) on page 35 as

L(x,λ) = g0(x) +
l

∑

i=1

λigi(x), (3.3)
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where λi, i = 1, . . . , l are called Lagrange multipliers. The Karush–Kuhn–Tucker

(KKT) conditions of (P) are defined as

∂L(x,λ)

∂xj

≤ 0, if xj = xmax
j , (3.4)

∂L(x,λ)

∂xj

= 0, if xmin
j < xj < xmax

j , (3.5)

∂L(x,λ)

∂xj

≥ 0, if xj = xmin
j , (3.6)

λigi(x) = 0, (3.7)

gi(x) ≤ 0, (3.8)

λi ≥ 0, (3.9)

x ∈ X , (3.10)

for all j = 1, . . . , n and i = 1, . . . , l. Partial differentiation of L with respect to the

design variables gives

∂L(x,λ)

∂xj

= ∂g0(x)

∂xj

+
l

∑

i=1

λi

∂gi(x)

∂xj

.

In most texts, box constraints are not treated separately, but are instead included in

gi(x) ≤ 0, i = 1, . . . , l, by writing xj − xmax
j ≤ 0 and xmin

j − xj ≤ 0, j = 1, . . . , n.

The Lagrangian multipliers corresponding to these constraints may easily be elimi-

nated, however, leading to the KKT conditions above. From (3.7) it is seen that if a

constraint gi is not active, i.e. gi(x) 
= 0, then the corresponding λi = 0. Similarly,

if λi 
= 0, then gi is active: gi(x) = 0. Each point (x∗,λ∗) ∈ Rn × Rl satisfying

(3.4)–(3.10) is called a KKT point. For sufficiently regular nonconvex problems,

the KKT conditions are necessary, but not sufficient, optimality conditions for (P).

That is, local optima are always found among the KKT points, but there may be

KKT points that are not local optima. The fact that the KKT conditions cannot be

sufficient for optimality is evident by studying the special case of an unconstrained

optimization problem, where the KKT points are equivalent to stationary points.

Numerical algorithms typically try to find KKT points, and thus one may end up at

a point that is not a local minimum, but even a local maximum! However, for convex

problems a KKT point is always an optimal point. One has the following theorems.

Theorem 3.4 Let the problem (P) be convex and satisfy Slater’s constraint qual-

ification (CQ), i.e. there exists a point x̂ ∈ X such that gi(x̂) < 0, i = 1, . . . , l. Let

x∗ be a local (i.e. also global) minimum of (P). Then there exists a λ∗ such that

(x∗,λ∗) is a KKT point of (P).

Theorem 3.5 Let (P) be a convex problem, and let (x∗,λ∗) be a KKT point of (P).

Then x∗ is a local (i.e. also global) minimum of (P).
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Fig. 3.5 Illustration of the KKT conditions

A geometric interpretation of this theorem when there are no box constraints is

given in Fig. 3.5. The KKT conditions state that −∇g0(x̄) should belong to the

cone spanned2 by the gradients of the active constraints at a point x̄. At point x̄1

in the figure, −∇g0(x̄1) = λ1∇g1(x̄1) + λ2∇g2(x̄1), λ1 ≥ 0, λ2 ≥ 0, so x̄1 is a

KKT point and consequently the optimal solution. Regarding point x̄2, we see that

−∇g0(x̄2) does not belong to the cone spanned by the active constraints at x̄2. That

is, there does not exist any λ2 ≥ 0 and λ3 ≥ 0 such that −∇g0(x̄2) = λ2∇g2(x̄2) +
λ3∇g3(x̄2), and consequently x̄2 is not a KKT point. Theorem 3.4 then implies that

x̄2 is not an optimum.

Example 3.5 We study the two-bar truss on page 14 again, but this time we will

solve the optimization problem by calculating a KKT point instead. It has been

shown that the problem of minimizing the weight of the truss subject to displace-

ment and stress constraints may be written as

min
A1,A2

ρL

(
2√
3
A1 + A2

)

s.t.

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

F

(
8√
3A1

+ 3

A2

)

≤ σ0

−σ0 ≤ 2F

A1
≤ σ0

−σ0 ≤ −
√

3F

A2
≤ σ0

A1 ≥ 0, A2 ≥ 0.

2The cone spanned by some vectors v1, . . . ,vl is the set of nonnegative linear combinations of

these vectors.
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We rewrite the problem in the same form as the general problem (P):

(P)1

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

min
A1,A2

g0 = 2√
3
A1 + A2

s.t.

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

g1 = F

(
8√
3A1

+ 3

A2

)

− σ0 ≤ 0

g2 = 2F

A1
− σ0 ≤ 0

g3 = −2F

A1
− σ0 ≤ 0

g4 = −
√

3F

A2
− σ0 ≤ 0

g5 =
√

3F

A2
− σ0 ≤ 0

(A1,A2) ∈X = {(A1,A2) : A1 ≥ 0, A2 ≥ 0},

where we, for convenience, have skipped the arguments in gi(A1,A2), i = 1, . . . ,5.

Also, the term ρL has been dropped from the objective function since it is only

a positive constant, and, hence, does not affect the optimal solution (A∗
1,A

∗
2). The

g1-constraint is the displacement constraint, g2 and g3 are the σ1-constraints, and

g4 and g5 are the σ2-constraints. Next, the KKT conditions (3.4)–(3.10) will be

formulated. We conclude immediately that A1 
= 0 at the solution, otherwise the

constraint 2F/A1 ≤ σ0 would be violated. Similarly, A2 
= 0 at the solution, so

that the constraint −σ0 ≤ −
√

3F/A2 is not violated. Since F > 0, σ0 > 0, A1 > 0,

A2 > 0, the constraints g3 and g4 can never be active, i.e. it always holds that g3 < 0

and g4 < 0. Consequently, the corresponding Lagrangian multipliers, λ3 and λ4 are

both zero. We also see that

g2 = 2F

A1
− σ0 < F

(
8√
3A1

+ 3

A2

)

− σ0 = g1 ≤ 0,

so g2 can never be active either: λ2 = 0. Similarly,

g5 =
√

3F

A2
− σ0 < F

(
8√
3A1

+ 3

A2

)

− σ0 = g1 ≤ 0,

so λ5 = 0 as well. Thus, only λ1 may be nonzero. Since the cross-sectional areas

cannot be zero at the solution, the KKT conditions become

[ 2√
3

1

]

+ λ1

⎡

⎢
⎢
⎣

− 8√
3A2

1

− 3√
3A2

2

⎤

⎥
⎥
⎦

=
[

0

0

]

, (3.11)

λ1

(
8F√
3A1

+ 3F

A2
− σ0

)

= 0. (3.12)
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From the second row in (3.11) we get

λ1 =
A2

2

3

= 0.

Insertion of this into the first row gives

2√
3

−
8A2

2

3
√

3A2
1

= 0,

from which we get

A2 =
√

3

2
A1.

If we insert this into (3.12), we finally get

A∗
1 = 14F√

3σ0

and A∗
2 = 7F

σ0
.

Since the problem is convex, cf. Exercise 3.1, we know that this KKT point is also

the global minimum of (P)1, see Fig. 3.6.

In (P)1 we have treated the stress constraints as general constraints, i.e. they were

written as g2 ≤ 0, . . . , g5 ≤ 0. However, since in this example (and as in any stati-

cally determinate truss), the stress in each bar depends only on the cross-sectional

area of that particular bar, the stress constraints may be written as simple box con-

straints instead, cf. (2.17). If we take advantage of this fact, the following optimiza-

tion problem is obtained immediately:

(P)2

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

min
A1,A2

g0 = 2√
3
A1 + A2

s.t.

⎧

⎪
⎪
⎨

⎪
⎪
⎩

g1 = F

(
8√
3A1

+ 3

A2

)

− σ0 ≤ 0

(A1,A2) ∈X =
{

(A1,A2) : A1 ≥ 2F

σ0
, A2 ≥

√
3F

σ0

}

.

Fig. 3.6 Geometric

illustration of (P)1. At the

solution, −∇g0 = λ1∇g1,

λ1 > 0
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The KKT conditions of (P)2 are identical to (3.11) and (3.12) since the box con-

straints cannot be active.

3.4 Lagrangian Duality

It may be quite tedious to obtain an optimal solution of (P) by solving the nonlinear

equations and inequalities constituting the KKT conditions (3.4)–(3.10) directly. In

this section, we will therefore describe another method to obtain an optimal solu-

tion that will prove more suitable, especially for large-scale structural optimization

problems.

It may be proven that (P) is equivalent to the following min-max problem:

(PL) min
x∈X

max
λ≥0

L(x,λ) = min
x∈X

max
λ≥0

{

g0(x) +
l

∑

i=1

λigi(x)

}

.

Thus, first the Lagrangian L of (P) is maximized with respect to λ ≥ 0 for a

fixed x, and the result is then minimized with respect to x ∈ X . Note that the result

of the maximization will be +∞ if some gi(x) > 0, and g0(x) if all gi(x) ≤ 0,

i = 1, . . . , l. Therefore, when the result of the maximization is minimized with re-

spect to x ∈ X , the solution of (P) is obtained. Nothing much has been gained

by this reformulation, however. As will be described in the next chapter, we will

approximate the objective functions and constraints of our structural optimization

problems in such a way that it is computationally efficient to solve the so-called

(Lagrangian) dual problem (D) corresponding to the primal problem (P), which is

obtained by interchanging min and max in (PL):

(D)

{
max

λ
ϕ(λ)

s.t. λ ≥ 0,

where the dual objective function ϕ is defined as

ϕ(λ) = min
x∈X

L(x,λ).

In general, interchanging min and max in (PL), results in a completely different

problem. However, if (P) is convex and Slater’s CQ is satisfied, cf. Theorem 3.4,

then it turns out that (D) is equivalent to (PL), and, thus, to (P):

Theorem 3.6 Let (P) be a convex problem with the set X compact, satisfying

Slater’s CQ. Then there exist a λ∗ that solves (D), and an x∗ ∈ argminx∈X L(x,λ∗)
that solves (P), where g0(x

∗) = ϕ(λ∗).

In order to solve (P) we may thus solve (D) instead, i.e. solve a min–max prob-

lem. It should be noted that the constraints in these optimizations are very simple:

x ∈ X and λ ≥ 0, respectively. This is a major advantage of duality theory, since
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in (P) we have the constraints gi(x) ≤ 0, i = 1, . . . , l, that may be very compli-

cated to deal with directly. The problem of maximizing ϕ is not only easy because

of the simple constraints, but also because ϕ is always concave. If the problem

minx∈X L(x,λ) has exactly one solution for a given λ (a sufficient condition for

this is that g0 is strictly convex and X is compact), then ϕ is differentiable at λ, and

it holds that

∂ϕ(λ)

∂λi

= gi(x
∗(λ)), i = 1, . . . , l, where x∗(λ) = min

x∈X
L(x,λ), (3.13)

which is a useful property when maximizing ϕ.

3.4.1 Lagrangian Duality for Convex and Separable Problems

We consider an optimization problem of the following form

(P)s

⎧

⎨

⎩

min
x

g0(x)

s.t. gi(x) ≤ 0, i = 1, . . . , l

x ∈X = {x ∈ Rn : xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n},

where gi , i = 0, . . . , l, are continuously differentiable, g0 is strictly convex and all

other gi are convex. In addition, gi are separable, i.e. they may be written as a sum

of functions of a single variable:

gi(x) =
n

∑

j=1

gij (xj ), i = 0, . . . , l.

The separability of gi makes it advantageous to use Lagrangian duality to solve the

optimization problem. The Lagrangian function L of (P)s becomes

L(x,λ) = g0(x) +
l

∑

i=1

λigi(x)

=
n

∑

j=1

g0j (xj ) +
l

∑

i=1

λi

(
n

∑

j=1

gij (xj )

)

=
n

∑

j=1

(

g0j (xj ) +
l

∑

i=1

λigij (xj )

)

︸ ︷︷ ︸

Lj (xj ,λ)

,
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where λi ≥ 0, i = 1, . . . , l. Note that xj �→ Lj (xj ,λ) is strictly convex, cf.

Lemma 3.1(ii). The dual objective function is

ϕ(λ) = min
x∈X

L(x,λ) = min
x∈X

n
∑

j=1

Lj (xj ,λ) =
n

∑

j=1

min
xmin
j ≤xj

≤xmax
j

Lj (xj ,λ).

Thus, in order to minimize the Lagrangian for all x ∈X , we need only to perform n

box constrained minimizations of functions of a single variable. This is the reason

why Lagrangian duality is so attractive for convex, separable problems. In more

detail, the minimization of Lj is performed as follows, when the lower and upper

bounds are finite:

if
∂Lj (x

min
j ,λ)

∂xj

≥ 0, then x∗
j = xmin

j

else if
∂Lj (x

max
j ,λ)

∂xj

≤ 0, then x∗
j = xmax

j (3.14)

else x∗
j = x∗

j (λ) from
∂Lj (xj ,λ)

∂xj

= 0,

cf. Fig. 3.7.

Since xj �→ Lj (xj ,λ) is strictly convex, there is a unique solution to this mini-

mization problem. By performing (3.14) for each j , 1 ≤ j ≤ n, we may obtain the

dual objective function. As usual, the dual problem is solved by maximizing the

dual objective function for λ ≥ 0.

Example 3.6 Consider the following convex and separable optimization problem,

which we would like to solve using Lagrangian duality:

(P)3

⎧

⎨

⎩

min
x1,x2

(x1 − 3)2 + (x2 + 1)2

s.t. x1 + x2 − 1.5 ≤ 0

x ∈ X = {x : 0 ≤ x1 ≤ 1,−2 ≤ x2 ≤ 1}.

The problem is illustrated in Fig. 3.8.

The Lagrangian function is

L(x,λ) = (x1 − 3)2 + (x2 + 1)2 + λ(x1 + x2 − 1.5)

= (x1 − 3)2 + λx1
︸ ︷︷ ︸

L1(x1,λ)

+ (x2 + 1)2 + λx2 − 1.5λ.
︸ ︷︷ ︸

L2(x2,λ)

Differentiation gives

∂L1

∂x1
= 2x1 + λ − 6,

∂L2

∂x2
= 2x2 + λ + 2. (3.15)
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Fig. 3.7 Minimization of Lj

From (3.14), we find the x, denoted x∗, that minimizes L for any given λ ≥ 0.

∂L1(0, λ)

∂x1
= λ − 6 ≥ 0 ∴ x∗

1 = 0, if λ ≥ 6

∂L1(1, λ)

∂x1
= λ − 4 ≤ 0 ∴ x∗

1 = 1, if 0 ≤ λ ≤ 4 (3.16)

∂L1(x1, λ)

∂x1
= 2x1 + λ − 6 = 0 ∴ x∗

1 = 3 − λ

2
, if 4 ≤ λ ≤ 6

∂L2(−2, λ)

∂x2
= λ − 2 ≥ 0 ∴ x∗

2 = −2, if λ ≥ 2

∂L2(1, λ)

∂x2
= λ + 4 ≤ 0 never satisfied since λ ≥ 0 (3.17)

∂L2(x2, λ)

∂x2
= 2x2 + λ + 2 = 0 ∴ x∗

2 = −1 − λ

2
, if 0 ≤ λ ≤ 2.
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Fig. 3.8 A simple convex,

separable problem

The dual objective function

ϕ(λ) = (x∗
1 − 3)2 + λx∗

1 + (x∗
2 + 1)2 + λx∗

2 − 3

2
λ (3.18)

then becomes

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

4 + λ + λ2

4
− λ − λ2

2
− 3

2
λ = −λ2

4
− 3

2
λ + 4, if 0 ≤ λ ≤ 2

4 + λ + 1 − 2λ − 3

2
λ = −5

2
λ + 5, if 2 ≤ λ ≤ 4

λ2

4
+ 3λ − λ2

2
+ 1 − 2λ − 3

2
λ = −λ2

4
− λ

2
+ 1, if 4 ≤ λ ≤ 6

9 + 1 − 2λ − 3

2
λ = −7

2
λ + 10, if λ ≥ 6.

Note that ϕ is continuously differentiable (ϕ(2) = 0, ϕ(4) = −5, ϕ(6) = −11,

ϕ′(2) = − 5
2

, ϕ′(4) = − 5
2

, ϕ′(6) = − 7
2

). The function is illustrated in Fig. 3.9. It

is clear that ϕ is maximized for λ∗ = 0. Insertion of this into (3.16) and (3.17)

yields, according to Theorem 3.6, the optimal solution x∗
1 = 1, x∗

2 = −1 of (P)3.

In general it is quite tedious to write ϕ as an explicit function of λ as done above.

When solving small problems by hand it is usually more efficient to first assume

that none of the box constraints is active. It may then turn out that the λ∗ that max-

imizes ϕ results in a x∗ that does not satisfy the box constraints. If this happens,

one simply puts the primal variables x that do not satisfy the box constraints onto
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Fig. 3.9 The dual objective

function

edges of the box region X , and optimize again with these variables kept fixed. We

illustrate the method for the problem at hand.

If the box constraints are not active, L1 and L2 are minimized when ∂L1/∂x1 = 0

and ∂L2/∂x2 = 0. Thus, (3.15) gives

x∗
1 = 3 − λ

2
(3.19)

x∗
2 = −1 − λ

2
. (3.20)

Insertion of this into (3.18) gives the dual objective function

ϕ(λ) = −λ2

2
+ λ

2
,

which is maximized for λ∗ = 1
2

. From (3.19) and (3.20) we then get x∗
1 = 11/4

and x∗
2 = −5/4. This cannot be the actual solution, however, since x∗

1 � 1. We

therefore put x∗
1 = 1 and try to find the optimum x∗

2 . Again, ∂L2/∂x2 = 0 gives

x∗
2 = −1 − λ/2. The dual objective function is

ϕ(λ) = −λ2

4
− 3

2
λ + 4,

which is maximized for λ∗ = 0. This results in the optimal solution x∗
1 = 1 and

x∗
2 = −1 which is a feasible point. It is easily verified that the conditions in (3.14) are

satisfied, so that L has really been minimized for x∗. Since we have also maximized

ϕ, the x∗ obtained is the optimum solution of (P)3.

Example 3.7 We will solve the two-bar truss problem on page 14 once again, this

time using Lagrangian duality. From the primal problem (P)2 on page 45, the La-
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grangian function becomes

L(A1,A2, λ) = 2√
3
A1 + A2 + λ

(
8√
3A1

+ 3

A2
− σ0

F

)

. (3.21)

We differentiate L and assume that the box constraints are not active:

∂L

∂A1
= 2√

3
− 8√

3A2
1

λ = 0,

∂L

∂A2
= 1 − 3

A2
2

λ = 0,

which gives

A1 = 2
√

λ, A2 =
√

3λ. (3.22)

The dual objective function is obtained by insertion of these expressions into (3.21)

as

ϕ(λ) = 4√
3

√
λ +

√
3λ + λ

(
4√

3
√

λ
+ 3√

3λ
− σ0

F

)

= 14√
3

√
λ − σ0

F
λ.

Maximization of ϕ for λ ≥ 0 yields

√
λ = 7F√

3σ0

.

Insertion of this into (3.22) gives the optimum solution as it is easily checked that the

box constraints indeed are not active or violated. A final comment: in this problem

the objective function is linear and thus convex, but not strictly convex. The reason

that we nevertheless obtain a unique solution of (3.14) is that xj �→ Lj (xj ,λ) is still

strictly convex since g1 in (P)2 is strictly convex and the corresponding Lagrangian

multiplier λ > 0.

3.5 Exercises

Exercise 3.1 Show that problem (SO)3
nf on page 17 and problem (SO)4

nf on page 20

are convex.

Exercise 3.2 Show that the problem of Exercise 2.5 is nonconvex.
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Exercise 3.3 One wants to minimize the weight of the two-bar truss in Fig. 3.10.

The lengths of the bars are 5l and 3l, respectively. Young’s modulus is E and the

density is ρ for both bars, and the force P > 0. The design variables are the cross-

sectional areas of the bars: A1 and A2. The truss has to be sufficiently stiff; more

precisely, the so-called compliance has to be lower than a specified number:

−Pux − Puy ≤ c0,

where (ux, uy) are the displacements of the free node, and c0 > 0 is a given number.

a) Formulate the problem as a mathematical programming problem.

b) Change variables to nondimensional ones as xi = P/(EAi), i = 1,2, and

solve the optimization problem by using the KKT conditions.

c) Same as b), but solve the optimization problem by using Lagrangian duality

instead.

Exercise 3.4 The three-bar truss in Fig. 3.11 is subjected to the force P >0. One

wants to maximize the stiffness of the truss by minimizing its compliance Puy ,

where uy is the displacement in the y-direction of the node where P is applied.

The volume of the truss may not exceed the value V0. The design variables are the

cross-sectional areas of the bars: A1, A2 and A3.

a) Formulate the problem as a mathematical programming problem.

b) Solve the optimization problem by using the KKT conditions.

c) Solve the optimization problem by using Lagrangian duality.

Fig. 3.10 The two-bar truss

of Exercise 3.3

Fig. 3.11 The three-bar truss

of Exercise 3.4
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Exercise 3.5 The two-bar truss in Fig. 3.12 is subjected to the force P >0. The

compliance −Puy should be minimized, where uy is the displacement in the y-

direction of the free node. The volume of the truss may not exceed the value V0,

and the magnitude of the stress in each bar (both in tension and compression) is not

allowed to exceed the value (5αP l)/(6V0), where α>0 is a given dimensionless

constant. The design variables are the cross-sectional areas of the bars: A1 and A2.

a) Formulate the problem as a mathematical programming problem.

b) Solve the optimization problem by using Lagrangian duality for all α>0.

Exercise 3.6 The stiffness of the three-bar truss in Fig. 3.13 should be maximized.

More precisely, one wants to minimize the 1-norm of the displacement vector, i.e.

|u1x | + |u1y | + |u2x |.

The truss is subjected to two forces P >0. The volume of the truss may not exceed

the value V0. The design variables are the cross-sectional areas of the bars: A1, A2

and A3.

a) Formulate the problem as a mathematical programming problem.

b) Solve the optimization problem by using Lagrangian duality.

Exercise 3.7 The weight of the three-bar truss in Fig. 3.14 should be minimized

given that the truss should be sufficiently stiff; the maximum nodal displacement

Fig. 3.12 The two-bar truss

of Exercise 3.5

Fig. 3.13 The three-bar truss

of Exercise 3.6
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Fig. 3.14 The three-bar truss

of Exercise 3.7

Fig. 3.15 The five-bar truss

of Exercise 3.8

has to be lower than a prescribed value:

max(|u1|, |u2|, |u3|) ≤ u0,

where ui is the displacement vector of node i and u0 > 0 is a given scalar. The truss

is subjected to two applied forces. It holds that P >0. The design variables are the

cross-sectional areas of the bars: A1, A2 and A3.

a) Formulate the problem as a mathematical programming problem.

b) Solve the optimization problem by using Lagrangian duality.

Exercise 3.8 The volume of the five-bar truss in the Fig. 3.15 should be minimized

given that the truss has to be sufficiently stiff. Specifically, the compliance has to be

lower than the value c0. All bars have Young’s modulus E. The design variables are

the cross-sectional areas of the bars: A1, A2, . . . , A5. The truss is subjected to three

forces P > 0, so that the compliance may be written as

PuAx + PuAy + PuBx ,

where (uNx , uNy ) are the displacements of the node N .

a) Formulate the problem as a mathematical programming problem.

b) Solve the optimization problem by using Lagrangian duality.



Chapter 4

Sequential Explicit, Convex Approximations

In the previous two chapters we were able to formulate a number of structural opti-

mization problems where both the objective function and all of the constraints were

written as explicit functions of the design variables only. For larger problems, how-

ever, it is in general practically impossible to obtain such explicit functions. Our

remedy to be able to solve large-scale problems is to generate a sequence of ex-

plicit subproblems that are approximations of the original problem and solve these

subproblems instead.

As already mentioned, most problems in structural optimization are noncon-

vex. Because of the intrinsic difficulties with solving nonconvex problems, we will

choose approximations that are convex. In this chapter, a number of explicit, convex

approximations will be described. The main focus will be on approximations that

take into account specific characteristics of certain structural optimization problems.

4.1 General Solution Procedure for Nested Problems

Let us study a structural optimization problem of a system with a finite number

of degrees-of-freedom, such as a truss. If linear elasticity is assumed, the problem

under study is written as follows, using a simultaneous formulation:

(SO)sf

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
x,u

g0(x,u)

s.t. K(x)u = F (x)

gi(x,u) ≤ 0, i = 1, . . . , l

x ∈X = {x ∈ Rnxmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n},

where K(x) is the global stiffness matrix of the structure, u is the global displace-

ment vector, and F (x) is the global external force vector. It is certainly possible to

solve (SO)sf directly, but there is major disadvantage with the simultaneous formu-

lation for large-scale problems—the number of constraints due to the equilibrium

equations is huge. In case the stiffness matrix is nonsingular, we may use the equi-

librium equations to write the displacements as functions of the design variables:

u(x) = K−1(x)F (x). Now, for small problems we can easily obtain u(x) explic-

itly, i.e. as a symbolic formula, see for instance (2.32)–(2.33). For larger problems

it would be extremely time-consuming to produce such formulas. In this case, the

equilibrium equations will be used to implicitly define u(x). That is, we do not

write u(x) as an explicit formula, but only take advantage of the fact that K(x),

u(x) and F (x) are related through the formula K(x)u(x) = F (x). Although it is

practically impossible to write u(x) as an explicit function for large problems, it

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,
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is always possible to solve the equilibrium equations numerically for u(x̄) for any

given design x̄.

By using the equilibrium equations to write the displacements as functions of

the design variables, we obtain the nested formulation of the structural optimization

problem as

(SO)nf

⎧

⎨

⎩

min
x

ĝ0(x)

s.t. ĝi(x) ≤ 0, i = 1, . . . , l

x ∈ X ,

where ĝi(x) = gi(x,u(x)), i = 0, . . . , l. The problem (SO)nf will be solved by gen-

erating and solving a sequence of explicit subproblems that are approximations of

(SO)nf. The optimization algorithms used to solve the subproblems will obviously

need information about ĝi, i = 0, . . . , l, and, possibly, their derivatives. We say that

an algorithm is of order j if the highest order of derivatives used is j . In structural

optimization, first order methods are most common. Zero order methods, which con-

sequently do not use any derivatives, but only need ĝi, i = 0, . . . , l, to be calculated,

have begun to attract some interest in recent years, at least for small-scale problems.

Second or higher order methods are rarely used as the calculation of higher order

derivatives is expensive.

The procedure for solving the nested formulation of the structural optimization

problem using a first order algorithm may be described in the following steps:

1. Start with an initial design x0. Set the iteration counter k = 0.

2. Calculate the displacement vector u(xk) for the current design by performing a

finite element analysis: K(xk)u(xk) = F (xk).

3. For the current design xk , calculate the objective function ĝ0(x
k), the constraint

functions ĝi(x
k), i = 1, . . . , l, and their gradients ∇ĝi(x

k), i = 0, . . . , l.

4. Formulate an explicit, convex approximation (SO)knf at xk of (SO)nf.

5. Solve (SO)knf by a nonlinear optimization algorithm to give a new design xk+1.

6. Put k = k + 1 and return to step 2 unless a stopping criterion is satisfied.

In the next sections, we will describe four different methods to obtain an explicit

approximation of (SO)nf: SLP, SQP, CONLIN and MMA. For notational conve-

nience we will skip the circumflex (hat) in ĝi , i = 0, . . . , l.

We end this section by remarking that the numerical efficiency of an optimization

algorithm is in general improved if one scales the variables and constraints so that

they are of a similar order of magnitude. In Chap. 7, for instance, we will use design

variables that all lie between 0 and 1 in order to vary the shape of a structure.

4.2 Sequential Linear Programming (SLP)

In a Sequential Linear Programming (SLP) approximation of (SO)nf at xk , the ob-

jective function and all constraint equations are linearized at the design xk ; this leads
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to the following subproblem at iteration k:

(SLP)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
x

g0(x
k) + ∇g0(x

k)T (x − xk)

s.t. gi(x
k) + ∇gi(x

k)T (x − xk) ≤ 0, i = 1, . . . , l

x ∈ X

−lkj ≤ xj − xk
j ≤ uk

j , j = 1, . . . , n.

Here, lkj and uk
j , j = 1, . . . , n, are so-called move limits; these are used since in

general the linearization used is accurate only close to the current design. The move

limits are updated according to some user-defined rule during the iterations. It turns

out that the choice of move limits affects the efficiency of (SLP) considerably.

Once gi(x
k) and ∇gi(x

k), i = 0, . . . , l, have been calculated, all expressions in

(SLP) are known, explicit functions of x. Thus, (SLP) is indeed an explicit approx-

imation of (SO)nf.

Since the objective function and all constraints in (SLP) are affine functions of x,

i.e. they may be written on the form aT x + b, where a and b are constants, they are

convex. Consequently, (SLP) is a convex problem. Since all gi , i = 0, . . . , l, are

affine, (SLP) is a Linear Problem (LP), which may be solved by, e.g., the Simplex

algorithm.

4.3 Sequential Quadratic Programming (SQP)

By adding a second order term in the Taylor expansion of the objective function in

(SLP), one obtains a Sequential Quadratic Programming (SQP) approximation:

(SQP)

⎧

⎨

⎩

min
x

g0(x
k) + ∇g0(x

k)T (x − xk) + 1
2
(x − xk)T H (xk)(x − xk)

s.t. gi(x
k) + ∇gi(x

k)T (x − xk) ≤ 0, i = 1, . . . , l

x ∈X ,

where H (xk) denotes a positive definite, first order approximation of the Hessian

of g0 at xk . This will lead to a convex objective function, so that (SQP) becomes

a convex problem. In a general SQP implementation, H may very well be chosen

as the actual Hessian, but we do not use it here, since we will use only first order

methods. We have opted not to include move limits, as their importance is far less

than for (SLP) since (SQP) is a better approximation of the original problem at the

current design.

4.4 Convex Linearization (CONLIN)

Both SLP and SQP are designed to solve general nonlinear optimization problems

of the form (SO)nf, i.e. they do not take into account any specific characteristics

that structural optimization problems might have. In order to try to find such special
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characteristics, let us return to Sect. 2.3 where the cross-sectional areas Ai, i = 1,2,

of the bars that minimized the weight of a statically determinate two-bar truss under

stress and displacement constraints were sought. It was found that the stresses can

be written as

σi = bi

Ai

, i = 1,2,

for some constants bi , whereas the displacements become

ui =
2

∑

j=1

bij

Aj

, i = 1,2,

where u1 = ux , u2 = uy and bij are constants. Thus, stresses and displacements are

functions of 1/Ai . We will see in the next chapter that this holds for any statically

determinate truss. For a statically indeterminate truss, however, the expressions for

the stresses and displacements are more complicated; cf. the expressions (2.32)–

(2.36) for the three-bar truss in Sect. 2.5.

Our conclusion from this investigation is that if we were to linearize the stress

and displacement constraints in the so-called reciprocal variables 1/Ai , then these

linearizations would be exact for statically determinate trusses. For other trusses, the

linearizations would not be exact, but it seems reasonable to expect that it is better

to linearize in 1/Ai rather than in the direct variables Ai as done in SLP and SQP.

It would be a bad idea to linearize every possible objective function or constraint

function in the variables 1/Ai , however. For instance, the weight in this example is

already a linear function of Ai . An idea springs to mind: linearize some functions in

the variables Ai and others in the variables 1/Ai . This is exactly what is done in the

approximation method CONLIN (Convex Linearization), developed by Fleury [15].

In CONLIN, one assumes that all design variables are strictly positive, i.e. the

set X in (SO)nf is changed to

X = {x ∈ Rn : 0 < xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n}.

The objective function g0(x) and all constraint functions gi(x), i = 1, . . . , l, are

linearized at the design xk in the intervening variables yj = yj (xj ), j = 1, . . . , n,

where yj will be either xj or 1/xj :

gi(x) ≈ gi(x
k) +

n
∑

j=1

∂gi(x
k)

∂yj

(

yj (xj ) − yj (x
k
j )

)

. (4.1)

The partial derivative of gi with respect to the intervening variable yj is obtained by

employing the chain rule as

∂gi(x
k)

∂yj

= ∂gi(x
k)

∂xj

dxj (x
k
j )

dyj

= ∂gi(x
k)

∂xj

1

dyj (x
k
j )

dxj

.
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Next, we determine the contribution to the sum in (4.1) for the case yj = xj and

yj = 1/xj , respectively. Choosing yj = xj gives us

g
L,k
ij (x) = ∂gi(x

k)

∂xj

(

xj − xk
j

)

, (4.2)

whereas for yj = 1/xj ,

g
R,k
ij (x) = ∂gi(x

k)

∂xj

1
(

− 1

(xk
j )2

)

(

1

xj

− 1

xk
j

)

= ∂gi(x
k)

∂xj

xk
j (xj − xk

j )

xj

. (4.3)

We define the following approximation of gi at xk :

g
RL,k
i (x) = gi(x

k) +
∑

j∈ΩL

g
L,k
ij (x) +

∑

j∈ΩR

g
R,k
ij (x), (4.4)

where ΩL = {j : yj = xj } and ΩR = {j : yj = 1/xj }. We need to supply a rule

to decide what variables should be linearized in the direct variables xj and what

variables should be linearized in the reciprocal variables 1/xj . In CONLIN, the

approximation of gi at xk is defined to be

g
C,k
i (x) = gi(x

k) +
∑

j∈Ω+

g
L,k
ij (x) +

∑

j∈Ω−

g
R,k
ij (x), (4.5)

where

Ω+ = {j : ∂gi(x
k)/∂xj > 0} and Ω− = {j : ∂gi(x

k)/∂xj ≤ 0}.

That is, one linearizes in the direct variables if the corresponding component of the

gradient is positive, and in the reciprocal variables otherwise. The CONLIN approx-

imation turns out to be the most conservative approximation that can be obtained for

an approximation on the form (4.4). This means that g
C,k
i (x) ≥ g

RL,k
i (x) for every

possible choice of the sets ΩL and ΩR , i.e. for every possible choice deciding which

variables should be linearized in the direct and reciprocal variables, respectively.

The reason why g
C,k
i (x) is more conservative than g

RL,k
i (x) simply because

g
C,k
i (x) ≥ g

RL,k
i (x) is that it is more conservative to choose the larger objec-

tive function since we are solving a minimization problem, and the feasible set

{x ∈ X : g
C,k
i (x) ≤ 0, i = 1, . . . , l} will be smaller than {x ∈ X : g

RL,k
i (x) ≤

0, i = 1, . . . , l}. For an illustration, study the following two optimization problems:

(P)1

{

min
x

g0(x)

s.t. g1(x) ≤ 0
(P)2

{

min
x

ḡ0(x)

s.t. ḡ1(x) ≤ 0,

where g0(x) ≤ ḡ0(x) and g1(x) ≤ ḡ1(x), see Fig. 4.1. Since ḡ0 is more conser-

vative than g0 and ḡ1 is more conservative than g1, the solution of (P)2 is more

conservative, i.e. larger, than that of (P)1.
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Fig. 4.1 ḡi is more

conservative than gi , i = 0,1

We will now prove that g
C,k
i (x) ≥ g

RL,k
i (x). We have that

g
C,k
i (x) − g

RL,k
i (x) =

∑

j∈Ω+∩ΩR

(

g
L,k
ij (x) − g

R,k
ij (x)

)

+
∑

j∈Ω−∩ΩL

(

g
R,k
ij (x) − g

L,k
ij (x)

)

, (4.6)

where g
L,k
ij (x) − g

R,k
ij (x) is obtained from (4.2) and (4.3) as

g
L,k
ij (x) − g

R,k
ij (x) = ∂gi(x

k)

∂xj

(

xj − xk
j −

xk
j (xj − xk

j )

xj

)

= ∂gi(x
k)

∂xj

xj − xk
j

xj

(xj − xk
j ).

Since xj > 0 according to the definition of the set X , all terms in the sums in (4.6)

are nonnegative, and thus g
C,k
i (x) ≥ g

RL,k
i (x).

We have designed g
C,k
i such that it is always more, or equally, conservative than

the linear approximation

g
L,k
i (x) = gi(x

k) +
n

∑

j=1

∂gi(x
k)

∂xj

(

xj − xk
j

)

.

That is, CONLIN is more conservative than SLP. Note however, that g
C,k
i may very

well be less conservative than the original function gi .

Some important properties of the CONLIN approximation follow:

• g
C,k
i is a first order approximation of gi , i.e. the function values and the first order

partial derivatives are exact at x = xk : g
C,k
i (xk) = gi(x

k) and ∂g
C,k
i (xk)/∂xj =

∂gi(x
k)/∂xj .
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• g
C,k
i is an explicit, convex approximation. The convexity follows by noting that

for each j , the contribution to g
C,k
i is either xj − xk

j times the gradient at xk or

∂gi(x
k)

∂xj

xk
j

xj

(xj − xk
j ) = ∂gi(x

k)

∂xj

(

xk
j −

(xk
j )2

xj

)

.

This last expression is valid when the partial derivative of gi with respect to xj is

negative, which implies that the expression may be written as A + B/xj where

A and B > 0 are constants. The terms C(xj − xk
j ), where C is a constant, and

A + B/xj are both convex. Since g
C,k
i is obtained by summing such terms and

adding a constant, it follows from Lemma 3.1(ii) that the CONLIN approximation

gC
i is indeed a convex function as the name indicates!

• g
C,k
i is a separable approximation since there obviously exist functions gij such

that g
C,k
i (x) =

∑n
j=1 gij (xj ).

The fact that CONLIN is a convex, separable approximation makes Lagrangian du-

ality a suitable solution method for the approximation of (SO)nf at iteration k:

(CONLIN)

⎧

⎪

⎨

⎪

⎩

min
x

g
C,k
0 (x)

s.t. g
C,k
i (x) ≤ 0, i = 1, . . . , l

x ∈X .

In practice, a term α
∑n

j=1(xj − xk
j )2, where α is a small positive number is added

to the objective function to ensure that it is strictly convex.

Example 4.1 Consider the function g(x) = x + x2 − 1
40

x4. We would like to calcu-

late the CONLIN approximations of this function at x̄ = 1 and ¯̄x = 6.

We start by differentiating g: gx(x) = ∂g(x)
∂x

= 1 + 2x − 1
10

x3. Thus,

g(x̄) = 1.975 and gx(x̄) = 2.9 > 0, so that the CONLIN approximation becomes

the linear approximation: gC(x) = gL(x) = 1.975 + 2.9(x − 1). In Fig. 4.2, g, gC

as well as the reciprocal approximation gR(x) = 1.975 + 2.9
x

(x − 1) are plotted. As

always, gC is larger than, or equal to, gL and gR . It is seen that in a neighborhood

of x̄, g is larger than gC which illustrates the fact that the CONLIN approxima-

tion need not be more conservative than the original function. For the point ¯̄x = 6,

we have g( ¯̄x) = 9.6, gx( ¯̄x) = −8.6 < 0 so that the CONLIN approximation now

becomes the reciprocal approximation: gC(x) = gR(x) = 9.6 + 51.6
x

(x − 6). For

comparison, we also calculate the linear approximation as gL(x) = 9.6−8.6(x−6),

see Fig. 4.2.

Example 4.2 The volume of the four-bar truss in Fig. 4.3 should be minimized

under the constraint that the elongation of bar 1, δ ≤ δ0. The external force P

is positive. The bars all have length l and Young’s modulus E. It holds that

A3 = A2 and A4 = A1. The design variables are the cross-sectional areas A1 and

A2. We define A0 = P l/(10δ0E). There are bounds on A1 and A2 according to



64 4 Sequential Explicit, Convex Approximations

Fig. 4.2 CONLIN approximations of a function g

Fig. 4.3 A four-bar truss

0.2A0 ≤ Ai ≤ 2.5A0, i = 1,2. New variables are introduced as xi = Ai/A0, i =
1,2. The optimization problem may be written as

(P)3

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
x1,x2

g0(x1, x2) = x1 + x2

s.t.

⎧

⎨

⎩

g1(x1, x2) = 8

16x1 + 9x2
− 4.5

9x1 + 16x2
− 0.1 ≤ 0

0.2 ≤ x1 ≤ 2.5, 0.2 ≤ x2 ≤ 2.5.

This problem, like most problems in structural optimization, is nonconvex, see

Fig. 4.4. It may be solved by generating a sequence of convex CONLIN subprob-

lems. The initial design is chosen as x0 = (2,1). The CONLIN approximation of the

objective function will be identical to the function itself. The approximation of the

constraint function g1 at x0 is illustrated in the figure. It is seen that the CONLIN ap-

proximated subproblem is convex. If this subproblem is solved, for instance by use

of Lagrangian duality, the point x1 = (1.2,0.2) is obtained. This point is obviously

not the solution of the original problem (P)3. A new iteration is therefore performed.

The CONLIN approximation of the constraint function at x1 is calculated, and the

subproblem obtained is solved to yield a new design x2 = (0.85,0.2). It turns out

that this point is located slightly outside the set {(x1, x2) : g1(x1, x2) ≤ 0}, which,

again, confirms that the CONLIN approximation of a function may very well be less
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Fig. 4.4 CONLIN approximations of a nonconvex problem

conservative than the function itself. From the figure, we see that x2 is a good ap-

proximation of the solution x∗ of (P)3. Naturally, we may choose to iterate further

in order to get a solution even closer to x∗.
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4.5 The Method of Moving Asymptotes (MMA)

CONLIN has proven successful for a wide range of structural optimization prob-

lems. However, sometimes it converges slowly because of too conservative approx-

imations. On the other hand, sometimes it does not converge at all, indicating that it

is not conservative enough. It seems a good idea to have a method where the degree

of “conservatism” can be controlled. The Method of Moving Asymptotes (MMA),

developed by Svanberg [34], accomplishes just that.

MMA uses the intervening variables

yj (xj ) = 1

xj − Lj

or yj (xj ) = 1

Uj − xj

, j = 1, . . . , n,

where Lj and Uj are so-called moving asymptotes that are changed during the iter-

ations but always satisfy

Lk
j < xk

j < U k
j , (4.7)

for iteration k. The MMA approximation of gi , i = 0, . . . , l, at the design xk reads:

g
M,k
i (x) = rk

i +
n

∑

j=1

(

pk
ij

U k
j − xj

+
qk
ij

xj − Lk
j

)

, (4.8)

where

pk
ij =

⎧

⎨

⎩

(U k
j − xk

j )2 ∂gi(x
k)

∂xj

if
∂gi(x

k)

∂xj

> 0

0 otherwise,

(4.9)

qk
ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if
∂gi(x

k)

∂xj

≥ 0

−(xk
j − Lk

j )
2 ∂gi(x

k)

∂xj

otherwise,

(4.10)

rk
i = gi(x

k) −
n

∑

j=1

(

pk
ij

U k
j − xk

j

+
qk
ij

xk
j − Lk

j

)

. (4.11)

Thus, if pk
ij is not zero, then qk

ij is zero, and vice versa. Differentiation of gM,k twice

gives

∂g
M,k
i (x)

∂xj

=
pk

ij

(U k
j − xj )2

−
qk
ij

(xj − Lk
j )

2
, (4.12)

∂2g
M,k
i (x)

∂x2
j

=
2pk

ij

(U k
j − xj )3

+
2qk

ij

(xj − Lk
j )

3
, (4.13)
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∂2g
M,k
i (x)

∂xj∂xp

= 0, if j 	= p. (4.14)

MMA shares some nice features with CONLIN:

• The MMA approximation is a first order approximation, i.e. g
M,k
i (xk) = gi(x

k)

and ∂g
M,k
i (xk)/∂xj = ∂gi(x

k)/∂xj .

• g
M,k
i is an explicit, convex function. The convexity follows since (4.9) and (4.10)

imply that pk
ij ≥ 0 and qk

ij ≥ 0, and (4.7), (4.13) and (4.14) give that the Hessian

∇2g
M,k
i is positive semidefinite.

• The approximation is separable.

The MMA approximation of (SO)nf at iteration k is written

(MMA)

⎧

⎪

⎨

⎪

⎩

min
x

g
M,k
0 (x)

s.t. g
M,k
i (x) ≤ 0, i = 1, . . . , l

αk
j ≤ xj ≤ βk

j , j = 1, . . . , n,

where αk
j and βk

j are move limits to be defined below. This convex, separable

problem may be solved using Lagrangian duality. Normally, a term ε(U k
j − xk

j )2/

(U k
j − Lk

j ), where ε > 0, is added to pk
0j and a term ε(xk

j − Lk
j )

2/(U k
j − Lk

j ) is

added to qk
0j to make the objective function g

M,k
0 strictly convex.

How do the moving asymptotes affect the MMA approximations? In order to

answer this, let us study two sets of moving asymptotes: (Lk
j ,U

k
j ) and (L̄k

j , Ū
k
j ),

where

L̄k
j ≤ Lk

j < xk
j < U k

j ≤ Ū k
j . (4.15)

Introduce the function

f
M,k
i (x) = gM

i (x) − ḡ
M,k
i (x),

where ḡ
M,k
i (x) is defined as gM

i (x) although using the moving asymptotes (L̄k
j , Ū

k
j )

instead of (Lk
j ,U

k
j ). It is easy to show that the only solution to f

M,k
i (x) = 0 for

Lk
j < xj < U k

j , is xj = xk
j . Differentiation of f

M,k
i gives that ∂f

M,k
i (xk)/∂xj = 0,

whereas the only nonzero elements in the Hessian of f
M,k
i at xk become

∂2f
M,k
i (xk)

∂x2
j

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2

U k
j − xk

j

gi,j − 2

Ū k
j − xk

j

gi,j if gi,j ≥ 0

− 2

xk
j − Lk

j

gi,j + 2

xk
j − L̄k

j

gi,j if gi,j < 0,

where gi,j = ∂gi(x
k)/∂xj . Because of (4.15), the Hessian is positive semidefi-

nite. Thus, f
M,k
i is minimized for x = xk . Since f

M,k
i (xk) = 0, we conclude that
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f
M,k
i (x) ≥ 0, that is g

M,k
i (x) ≥ ḡ

M,k
i (x), for Lk

j < xj < U k
j . This means that if the

asymptotes are brought closer to the current design xk the approximations become

larger, i.e. more conservative. By modifying the asymptotes during the iterations we

may thus control how conservative the approximations should be. In what follows

we describe Svanberg’s heuristic approach to update the asymptotes.

For iteration k, the lower asymptote Lk
j and the upper asymptote U k

j for design

variable xj , j = 1, . . . , n, are updated according to the following rule: for k = 0 and

k = 1,

Lk
j = xk

j − sinit(x
max
j − xmin

j ), (4.16)

U k
j = xk

j + sinit(x
max
j − xmin

j ), (4.17)

where 0 < sinit < 1, xmin
j and xmax

j are the lower and upper bounds of design variable

xj , and xk
j is the value of xj at iteration k. For k ≥ 2 the signs of xk

j − xk−1
j and

xk−1
j − xk−2

j are studied. If the signs are opposite, the variable xj oscillates, and

therefore the asymptotes Lk
j and U k

j should be forced closer to xk
j to make the

MMA approximation more conservative. We put

Lk
j = xk

j − sslower(x
k−1
j − Lk−1

j ),

U k
j = xk

j + sslower(U
k−1
j − xk−1

j ),

where 0 < sslower < 1. If, on the other hand, xk
j − xk−1

j and xk−1
j − xk−2

j have the

same sign, the asymptotes are brought further away from xk
j in order to make the

MMA approximation less conservative and (hopefully) speed up the convergence:

Lk
j = xk

j − sfaster(x
k−1
j − Lk−1

j ),

U k
j = xk

j + sfaster(U
k−1
j − xk−1

j ),

where sfaster > 1. In each iteration, the design variables are made to satisfy the con-

straint

αk
j ≤ xk

j ≤ βk
j ,

where the move limits αk
j and βk

j are chosen as

αk
j = max(xmin

j , Lk
j + µ(xk

j − Lk
j )), (4.18)

βk
j = min(xmax

j , U k
j − µ(U k

j − xk
j )), (4.19)

where 0 < µ < 1. It will then always hold that

Lk
j < αk

j ≤ xk
j ≤ βk

j < U k
j ,
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which prevents U k
j −xk

j and xk
j −Lk

j from becoming zero, and thus division by zero

is avoided in the MMA approximations.

It turns out that both SLP and CONLIN are special cases of MMA: if Lk
j = 0

and U k
j → +∞, CONLIN is obtained, and if Lk

j → −∞ and U k
j → +∞, SLP is

obtained. To prove the first statement, we first write

1

U − xj

= 1

U(1 − xjU−1)
= U−1(1 + xjU

−1 + O(U−2)),

where U = U k
j , and O(U−2) indicates a function that may be written as U−2f (U)

as U → +∞, where f (U) is a bounded function. The MMA approximation be-

comes

g
M,k
i (x) = gi(x

k) −
∑

+
(U − xk

j )gi,j

+
∑

−
xk
j gi,j +

∑

+

(U − xk
j )2

U − xj

gi,j −
∑

−

(xk
j )2

xj

gi,j

= gi(x
k) −

∑

+
(U − xk

j )gi,j +
∑

−
xk
j gi,j

+
∑

+

(

U2 + (xk
j )2 − 2Uxk

j

)

U−1
(

1 + xjU
−1 + O(U−2)

)

gi,j

−
∑

−

(xk
j )2

xj

gi,j

= gi(x
k) −

∑

+
(U − xk

j )gi,j +
∑

−
xk
j gi,j

+
∑

+

(

U − (xk
j )2U−1 − 2xk

j

)(

1 + xjU
−1 + O(U−2)

)

gi,j

−
∑

−

(xk
j )2

xj

gi,j

= gi(x
k) +

∑

+
xk
j gi,j +

∑

−
xk
j gi,j

+
∑

+

(

xj + O(U−1) − 2xk
j

)

gi,j −
∑

−

(xk
j )2

xj

gi,j ,

where gi,j = ∂gi(x
k)/∂xj and

∑

+ indicates summation over terms where gi,j > 0,

and similarly for
∑

−. Letting U → +∞ in this expression, we obtain
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g
M,k
i (x) → gi(x

k) +
∑

+
(xj − xk

j )gi,j +
∑

−

(

xk
j −

(xk
j )2

xj

)

gi,j ,

which coincides with the definition of the CONLIN approximation in (4.5).

Example 4.3 Consider the same function g as in Example 4.1. We would like to

calculate the MMA approximation of this function at x0 = 1. Since the derivative

gx(x
0) = 2.9 > 0, g is linearized in the variable 1/(U0 − x). In Fig. 4.5 the ap-

proximations for different values of the upper asymptote are shown. Note how the

approximation becomes less conservative as U0 is brought further away from x0.

For U0 = 104, the approximation is almost linear, which is in agreement with the

statement above that SLP is obtained as U → +∞ (and L → −∞).

Example 4.4 The constraint function g1 in Exercise 4.2 is to be approximated at

x0 = (2,1) using MMA. We have that ∂g1(x
0)/∂x1 = −0.041 and

∂g1(x
0)/∂x2 = 0.019, so that g1 is linearized in 1/(x1 − L0

1) and 1/(U0
2 − x2). The

asymptotes are calculated according to (4.16) and (4.17). First sinit = 0.2, which

gives L0
1 = 1.54 and U0

2 = 1.46. The asymptotes are moved further away from x0

Fig. 4.5 MMA approximations. The two dotted vertical lines represent the asymptotes of gM for

the case U0 = 1.5 and U0 = 4, respectively
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Fig. 4.6 MMA approximations of a nonconvex problem

by increasing sinit to 0.5 and 5.0 resulting in L0
1 = 0.85, U0

2 = 2.15 and L0
1 = −9.5,

U0
2 = 12.5, respectively. This should make the approximations less conservative,

which can also be verified in Fig. 4.6. CONLIN is simulated by putting L0
1 = 0

and U0
2 = 104, whereas SLP is simulated by letting L0

1 = −104 and U0
2 = 104.
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A CONLIN approximation is always more, or equally, conservative than an SLP

approximation, which is also seen in the figure.

4.6 Exercises

Exercise 4.1 Is the CONLIN approximation of a linear function always exact (i.e.

the function itself)? What is the case for MMA?

Exercise 4.2 Prove that CONLIN and MMA are first order approximations.

Exercise 4.3 Show that if the asymptotes are chosen as Lk
j → −∞ and U k

j → +∞
in MMA, then the SLP approximation is obtained.

Exercise 4.4 One wants to maximize the stiffness of the truss in Exercise 3.4

by instead minimizing the size of the displacement vector, or uT u. Defining

xi = lAi/V0, i = 1, . . . ,3, this leads to the following optimization problem:

min
1

x2
1

+ 1

x2
2

+ 4

x2
3

+ 1

x1x2
+ 2

√
2

x1x3
+ 2

√
2

x2x3

s.t. x1 + x2 +
√

2x3 − 1 ≤ 0, x1, x2, x3 ≥ 0.

a) Show that the problem is convex. Note that in Sect. 2.6, we studied a problem

where uT u turned out to be a nonconvex function of the design variables.

b) Obtain a subproblem by performing a CONLIN approximation of the problem

at xi =1, i = 1, . . . ,3. Solve the subproblem.

Exercise 4.5 The four-bar truss in Fig. 4.7 is subjected to the force P > 0. The

cross-sectional areas A1, A2, A3, A4 of the truss should be determined such that the

displacement uBx is minimized. The volume of the truss is not allowed to exceed the

value V0.

a) Formulate the problem as a mathematical programming problem. Introduce

new design variables as xi = lAi/V0, i = 1, . . . ,4.

b) What is the optimum cross-sectional area A∗
1 of bar 1?

c) Obtain the CONLIN approximation of the problem at (the nonfeasible point)

xi = 1, i = 1, . . . ,4. Solve the CONLIN approximation of the problem by using

Lagrangian duality.

Exercise 4.6 In this exercise you are going to use a MATLAB program to solve

some simple sizing optimization problems using MMA. The aim of the exercise

is to get a better understanding of how MMA works by visualizing the approx-

imated subproblems generated by the algorithm. The code is available from the

book’s homepage (www.mechanics.iei.liu.se/edu_ug/strop/).
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Fig. 4.7 The four-bar truss

of Exercise 4.5

Fig. 4.8 The two-segment

cantilever of Exercise 4.6

Consider the problem of minimizing the weight of a beam consisting of two seg-

ments, see Fig. 4.8, and cf. Sect. 2.4. The problem may be written as a mathematical

programming problem as

(P)4

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
x1,x2

g0(x1, x2) = x1 + x2

s.t.

⎧

⎨

⎩

g1(x1, x2) = 1

x3
1

+ 7

x3
2

− 1 ≤ 0

0.1 ≤ x1 ≤ 10, 0.1 ≤ x2 ≤ 10,

where we have introduced other lower and upper bounds on the design variables

than previously. We will solve this problem by using MMA. The asymptotes are

updated during the iterations according to the rules described on page 68 ff.

The script main_cantilever.m is the main program file to solve (P)1 using

MMA. In it, the number of design variables, constraints, lower and upper bounds

of the design variables, the starting point, the maximum number of iterations and

MMA parameters are given. The objective function, the constraint function and their

derivatives are supplied in the function file cantilever_2.m. Run the program

by typing main_cantilever at the MATLAB prompt. At each iteration, the

current solution and the MMA approximation of the constraint g1 are plotted. The

contour lines of the exact objective function are also plotted. The starting point has



74 4 Sequential Explicit, Convex Approximations

been put to (x1, x2) = (5,5) and sinit = 0.1. As you can see the iterates converge to

the point obtained analytically in Sect. 2.4.

1. Now make the MMA approximation less conservative by putting sinit = 0.3.

What happens? Keep sinit = 0.3, but make MMA more conservative by chang-

ing sslower from 0.7 to 0.5, and sfaster from 1.2 to 1.1. What happens? Run the

script plottie. In MATLAB Fig. 2, the iteration histories of x1, L1 and U1, and

α1 and β1 are plotted (you may click and drag the legend box if it obstructs the

curves). Fig. 3 shows the same for the second design variable, whereas Fig. 4 shows

the iteration histories of g0 and g1. Keep sslower = 0.5 and sfaster = 1.1, but put

sinit = 0.1 again. Run plottie and note the difference in appearance of the plots.

2. Outcomment the call of the function mma_solver, and instead call

mma_solver_mod. This MMA version updates the asymptotes and move lim-

its in a different way:

Lk
j = t xk

j ,

U k
j = xk

j /t,

αk
j = max(0.5xk

j , 1.01Lk
j , xmin

j ),

βk
j = min(2xk

j , 0.99U k
j , xmax

j ),

where t > 0. In the code, t = 10−10, which means that a CONLIN approxi-

mation is obtained (why?). Does CONLIN manage to solve the problem? Run

plottie_conlin, which works in the same way as plottie, except that the

upper bounds U k
j are not plotted as these will be very large.

3. For a general optimization problem it may be very difficult to find a starting

point that is feasible, i.e. a point satisfying the constraints gi(x) ≤ 0, i = 1, . . . , l.

Therefore, it is important that solution algorithms are able to find (local) optima even

if started outside the feasible set. Use CONLIN again, but modify the starting point

to (x1, x2) = (1,1), which is outside the feasible set. What happens? Switch back to

the “ordinary” MMA solver again (mma_solver) and use sinit = 0.1, sslower = 0.7

and sfaster = 1.2. What happens?

4. The volume of the four-bar truss in Example 4.2 should be minimized under

the constraint that the elongation of bar 1, δ ≤ δ0. Derive the nonconvex optimiza-

tion problem (P)3 on page 64. We will solve it numerically by generating a sequence

of convex subproblems.

5. The script main_four_bar.m is used to solve (P)2. All data of the ob-

jective and constraint functions are in the file four_bar.m. Solve the problem

by using the starting point (x1, x2) = (2,1.5), and the MMA parameters sinit = 0.5,

sslower = 0.7 and sfaster = 1.2. What is the solution? What is the optimum objec-

tive value? Also try to use the starting point (x1, x2) = (1.3,2.4). Note: when using

the latter starting point, you should outcomment the line “y1=x_min(2);” in

main_four_bar.m in order to get a nice plot.

6. Put sinit = 1012, which will simulate Sequential Linear Programming (SLP)

(why?). Use the two starting points in task 5. Does it work?
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7. Solve the problem by CONLIN using the two starting points in task 5. What

happens?

8. Let us assume that x1 is fixed at x1 = 1.35, and that only x2 may be varied in

the optimization. For this case, the script main_four_bar_2.m is used. All data

for the objective and constraint functions are in the file four_bar_2.m. Use the

same MMA parameters as in task 5. Choose a number of different starting points:

x2 = 2.45,1.5,1.4,1.3,0.5. What happens? The behavior is typical for nonconvex

problems where there exist several local minima. You can plot the iteration history

by running plottie_2. What is the global minimum of this problem? What are

the optimal objective values obtained by MMA? Are they smaller or greater than

the one obtained in task 5? Why?



Chapter 5

Sizing Stiffness Optimization of a Truss

In this chapter we will describe in detail how sequential explicit approximations can

be used to solve a particular large-scale structural optimization problem, namely

that of determining the cross-sectional areas of the bars in a two-dimensional truss

with fixed locations of the nodes so that its stiffness is maximized.

5.1 The Simultaneous Formulation of the Problem

In order to maximize the stiffness of a truss, see Fig. 5.1, we naturally need to intro-

duce a suitable measure of stiffness. Here, we will choose to use the compliance C

of the truss, i.e. F T u, where u are the displacements of the nonsuppressed nodes of

the truss, and F are the given external forces at these nodes. It should be clear that

if the compliance is small, the truss will be stiff.

One can easily conceive other measures of stiffness, such as the size of the dis-

placement vector, or uT u. Compliance is a much more popular measure, however.

There are at least two reasons for this. First, in a nested formulation, the compliance

is a convex function of the design variables, i.e. the cross-sectional areas of the bars,

whereas as we have seen in Sect. 2.6, uT u can be a nonconvex function of these

variables. Second, in a truss where the compliance has been minimized for a given

amount of material, all bars have the same stress. Intuitively, one has the impression

that good use of the available material has been made if all bars have the same stress.

Precise formulations and proofs of these statements will be given later.

The optimization problem we are faced with then, may be written as follows in a

simultaneous formulation

(P)sf

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
x,u

F T u

s.t. K(x)u = F
n

∑

j=1

ljxj ≤ Vmax

x ∈ X = {x ∈ Rn : xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n},

where n is the number of bars, lj is the length of bar j , xj is the cross-sectional

area of bar j , and Vmax is the maximum allowed volume of the truss. For simplicity,

we have assumed that the global external force vector F does not depend on the

design. In general, F may very well depend on x, e.g. by including the weight of

the bars. The matrix K(x) is the global stiffness matrix of the structure, and there
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Fig. 5.1 A truss to be

optimized

Fig. 5.2 A general bar j in the truss

are given lower and upper bounds xmin
j and xmax

j on the design variables. It holds

that xmin
j ≥ 0 and xmax

j is finite. Next, the matrix K(x) will be derived. To that end,

study a general bar j , and let local node numbers 1 and 2 denote the end points of

the bar, cf. Fig. 5.2. A unit vector ej along the bar is defined so that it points from

node 1 to node 2. The orientation of the bar is determined by the angle θj , which

is the angle from the x-axis to ej , measured anti-clockwise, i.e. around the z-axis.

Thus, ej may be written

ej =
[

cos θj

sin θj

]

.

The displacements of the end points of bar j are collected in a vector

uj =
[

uj,1

uj,2

]

, where uj,1 =
[

uj,1x

uj,1y

]

and uj,2 =
[

uj,2x

uj,2y

]

.

The elongation δj of bar j is (uj,2 − uj,1) · ej , or

δj = Bjuj , (5.1)

where

Bj = [−eT
j eT

j ] . (5.2)

The external force f j on the end points of bar j may be written

f j = BT
j sj , (5.3)
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where sj is the force in the bar. If sj > 0, bar j is in tension, otherwise it is in

compression. From Hooke’s law we obtain the relation between the bar force and

the elongation as

sj = σjxj = Eεjxj = Eδjxj

lj
= Dj δj ,

where σj is the stress in the bar, εj is the strain, E is Young’s modulus, which is

assumed to be the same for all bars in the truss, and

Dj = Exj

lj
. (5.4)

If this is inserted into (5.3), we get, upon using (5.1), that

f j = kjuj , (5.5)

where

kj = BT
j DjBj (5.6)

is the element stiffness matrix of bar j . It will prove useful to write kj = kj (x) on

the form

kj (x) = xjk
0
j , (5.7)

where the constant matrix k0
j is obtained from (5.6) as

k0
j = E

lj

⎡

⎢
⎢
⎣

c2 sc −c2 −sc

sc s2 −sc −s2

−c2 −sc c2 sc

−sc −s2 sc s2

⎤

⎥
⎥
⎦

, (5.8)

where s = sin θj and c = cos θj . The matrix k0
j represents the element stiffness

matrix for bar j per unit area.

The element displacement vector uj for bar j may be obtained from the global

displacement vector u as

uj = Cju, (5.9)

where Cj is a matrix with elements 0 and 1. It should be noted that uj holds all of

the displacements of the end points of bar j , including those that are always zero

due to supports. In u, however, displacements that are always zero are not included.

This means that there is at most one element 1 for each row in Cj . By multiplying

(5.5) by CT
j and summing over all bars, we get the global equilibrium equations for

the truss as

F = K(x)u, (5.10)
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where

K(x) =
n
∑

j=1

Kj (x), Kj (x) = CT
j kj (x)Cj . (5.11)

Here, K(x) is the global stiffness matrix of the truss. The matrix Kj (x) is a global

version of the element stiffness matrix kj (x) whose nonzero elements are the el-

ements of kj (x) that correspond to the degrees-of-freedom in the global displace-

ment vector u. In Example 5.1 below, the calculation of K(x) will be illustrated for

a small truss.

The matrix K(x) may also be expressed as

K(x) =
n
∑

j=1

xjK
0
j , K0

j = CT
j k0

jCj , (5.12)

where K0
j is a constant matrix. Transposing Kj (x), we obtain CT

j (CT
j kj (x))T =

CT
j kj (x)Cj , since kj (x) is symmetric; cf. (5.8). Thus, K(x) is symmetric. Also, in

(5.10),

F =
n
∑

j=1

CT
j f j . (5.13)

In this sum, the contribution from the unknown reaction forces from supports and

the likewise unknown forces from neighboring bars, will be zero. Consequently, we

may rewrite (5.13) as

F =
n
∑

j=1

CT
j f a

j , (5.14)

where f a
j is the vector of the given applied forces on the end points of bar j . Thus,

the vector F is the total applied force on the truss. The total element external forces

f j may be calculated from (5.5) once (5.10) has been solved for the displacements.

The process of calculating the global stiffness matrix and the global applied force

vector from their counterparts on the element level is called assembly. In an actual

implementation of this, the matrices Cj are never formed; instead one simply keeps

track of on which rows and columns of the global stiffness matrix a certain element

stiffness matrix should be added, and similarly for the force vectors. One often sim-

ply writes

K(x) =
n

A
j=1

kj (x), F =
n

A
j=1

f a
j (5.15)

to describe this process.

From (5.1) and (5.9), the elongations δ of all bars in the truss are obtained as

δ = B̄u,
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where

B̄ =

⎡

⎢
⎣

B1C1

...

BnCn

⎤

⎥
⎦ .

If (5.3) is written for the whole truss, it becomes F = B̄
T
s, where s are the bar

forces in all bars. For a statically determinate truss, B̄ is invertible, and one obtains

u = B̄
−1

δ = B̄
−1

diag

(
l1

Ex1
, . . . ,

ln

Exn

)

B̄
−T

F ,

which shows that the displacements vary as 1/xj , as claimed in Sect. 4.4.

Here, diag(A11, . . . ,Ann) denotes a diagonal matrix with the diagonal elements

A11, . . . ,Ann. Similarly, the stresses σ of all bars may be written

σ = diag

(
1

x1
, . . . ,

1

xn

)

B̄
−T

F ,

and, thus, the stresses also vary as 1/xj .

For later use, the expression for the strain energy of bar j will be derived. It is

defined as

Uj = 1

2

∫

σjεj dVj = 1

2
Eε2

jxj lj = 1

2
E

(Bjuj )
2

l2
j

xj lj

= 1

2
(Bjuj )

T Exj

lj
Bjuj = 1

2
uT

j BT
j DjBjuj , (5.16)

for any displacements uj . From (5.6), we then get that

Uj = 1

2
uT

j kjuj . (5.17)

From the last expression in the first row of (5.16), the strain energy is clearly non-

negative, so the stiffness matrix is positive semidefinite. The strain energy U of the

whole truss is obtained by summation over all bars:

U =
n
∑

j=1

Uj = 1

2

n
∑

j=1

(Cju)T kj (Cju)

= 1

2
uT

⎛

⎝

n
∑

j=1

CT
j kjCj

⎞

⎠u = 1

2
uT Ku, (5.18)

where we have made use of (5.9) and (5.11). If all bars have a strictly positive

cross-sectional area, and the truss is properly anchored, so that there does not exist

any nonzero displacement u with zero strain energy of the truss, i.e. a rigid body

displacement, K is positive definite, and, hence, invertible.
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Fig. 5.3 The three-bar truss

of Exercise 3.4

Example 5.1 Let us study the three-bar truss of Exercise 3.4. We wish to write down

the equilibrium equations (5.10) for the truss by using the approach described in this

section. Local and global node numbers are defined as in Fig. 5.3. The displacements

of the bars are u1 = [0 0 0 u3y]T , u2 = [0 0 u2x u2y]T , u3 = [0 u3y u2x u2y]T , and

the global displacement vector is u = [u2x u2y u3y]T . By writing uj = Cju, for

j = 1,2,3, we may identify the matrices Cj as

C1 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

0 0 1

⎤

⎥
⎥
⎦

, C2 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

1 0 0

0 1 0

⎤

⎥
⎥
⎦

, C3 =

⎡

⎢
⎢
⎣

0 0 0

0 0 1

1 0 0

0 1 0

⎤

⎥
⎥
⎦

.

For bar 1, θ1 = 3π/2, so e1 = [0 −1]T and B1 = [0 1 0 −1] which gives

k1 = Ex1

l

⎡

⎢
⎢
⎣

0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1

⎤

⎥
⎥
⎦

,

according to (5.6). For bar 2, θ2 = π , which gives e2 = [−1 0]T , B2 = [1 0 −1 0]
and

k2 = Ex2

l

⎡

⎢
⎢
⎣

1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎤

⎥
⎥
⎦

.

Finally, for bar 3, θ3 = 3π/4, which results in e3 = [−1 1]T /
√

2, B3 =
[1 −1 −1 1]/

√
2 and

k3 = Ex3

2
√

2l

⎡

⎢
⎢
⎣

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤

⎥
⎥
⎦

.
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The global versions K1, K2 and K3 of the element stiffness matrices k1, k2 and k3

are obtained from (5.11) as

K1 = Ex1

l

⎡

⎣

0 0 0

0 0 0

0 0 1

⎤

⎦ , K2 = Ex2

l

⎡

⎣

1 0 0

0 0 0

0 0 0

⎤

⎦ ,

K3 = Ex3

2
√

2l

⎡

⎣

1 −1 1

−1 1 −1

1 −1 1

⎤

⎦ .

The global stiffness matrix then becomes

K =
3
∑

j=1

Kj = E

l

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x2 + x3

2
√

2
− x3

2
√

2

x3

2
√

2

− x3

2
√

2

x3

2
√

2
− x3

2
√

2
x3

2
√

2
− x3

2
√

2
x1 + x3

2
√

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The applied force vectors of the bars are f a
1 = [0 0 0 0]T , f a

2 = [0 0 0 0]T , f a
3 =

[0 0 0 P ]T . It is immaterial whether the force P is chosen to act on bar 2 or 3. The

global applied force vector of (5.14) becomes

F =
3
∑

j=1

CT
j f a

j =

⎡

⎣

0

P

0

⎤

⎦ .

Solution of Ku = F gives

u =

⎡

⎢
⎣

u2x

u2y

u3y

⎤

⎥
⎦= P l

E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

x2

1

x1
+ 1

x2
+ 2

√
2

x3

1

x1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally, we calculate the element external force vectors as f j = kjuj , j = 1,2,3.

The results are f 1 = P [0 −1 0 1]T , f 2 = P [−1 0 1 0]T , f 3 = P [1 −1 −1 1]T ,

see Fig. 5.4. It should be clear from the figure that these forces keep the truss in

equilibrium. It is also readily checked that

F =
n
∑

j=1

CT
j f a

j =
n
∑

j=1

CT
j f j .
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Fig. 5.4 The forces on each bar and on the whole truss

5.2 The Nested Formulation and Some of Its Properties

If the global stiffness matrix is nonsingular we may eliminate the displacement vec-

tor u from the simultaneous formulation in order to get the nested formulation

(P)nf

⎧

⎪
⎪
⎨

⎪
⎪
⎩

min
x

F T u(x)

s.t.

n
∑

j=1

ljxj − Vmax ≤ 0

x ∈ X ,

where x �→ u(x) is an implicit function defined through the equilibrium equations

K(x)u(x) = F . It will be assumed that there is a feasible point, and consequently,

since the feasible set is compact, a solution, to (P)nf. That is, we assume that the

lower bounds on x are not so large that the volume of the truss is always greater

than Vmax.

If xmin
j = 0, j = 1, . . . , n, bars may disappear from the ground structure that one

starts with, i.e. the sizing optimization problem becomes a topology optimization

problem. In this case, the global stiffness matrix will typically be singular for the

optimum truss. In Fig. 5.5, a ground structure and three possible optimum solutions

are depicted. For case a), K(x) is positive definite, whereas for case b), K(x) is

singular since the rows and columns in K(x) corresponding to displacements of the

upper-right node will be zero. Similarly, K(x) is singular for case c) as well. If K(x)

is singular, we cannot formulate the nested formulation, but have to solve the much

larger simultaneous formulation instead. The reader is referred to Achtziger [1] for a
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Fig. 5.5 A ground structure and three optimal structures. Dashed lines correspond to bars with

zero cross-sectional area

solution of the problem using the simultaneous formulation (P)sf. We may avoid the

simultaneous formulation, however, by putting the lower bounds in (P)nf to a small,

positive value: xmin
j = ε > 0. It may be proven that as ε → 0, the solution of (P)nf

for xmin
j = ε approaches that of (P)sf for xmin

j = 0. When using this technique, we

delete bars that have cross-sectional area ε at the optimum. Thereafter nodes that are

not connected with a bar anymore are also deleted. This sounds simple, but it can be

tricky to find a suitable value for the lower bound ε. If ε is too small, then the equi-

librium equations will be solved with large errors due to illconditioning of K(x). On

the other hand, if ε is too large, then one may end up deleting bars that actually are

of great structural importance. In most cases, the truss obtained after this deletion

of bars and nodes will have a positive definite stiffness matrix, although a singular

stiffness matrix may be obtained in exceptional cases, cf. Fig. 5.5, case c) where the

dashed lines now correspond to bars of cross-sectional area ε that are deleted. Note,

however, that this structure will have a positive definite stiffness matrix if it were

modeled as a one-dimensional truss instead of a two-dimensional one.

5.2.1 Convexity of the Nested Problem

The problem (P)nf has the nice feature of being convex, cf. Svanberg [33]. This is

seen as follows. The derivative of the compliance C, is obtained as

∂C(x)

∂xj

= F T ∂u(x)

∂xj

= (K(x)u(x))T
∂u(x)

∂xj

= u(x)T K(x)
∂u(x)

∂xj

, (5.19)
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where we used the fact that K(x) is symmetric. We need to find out ∂u(x)/∂xj . To

that end the equilibrium equations K(x)u(x) = F are differentiated as

∂K(x)

∂xj

u(x) + K(x)
∂u(x)

∂xj

= 0, (5.20)

which gives

∂u(x)

∂xj

= −K(x)−1 ∂K(x)

∂xj

u(x) = −K(x)−1K0
ju(x), (5.21)

where we have used (5.12). From (5.19) and (5.21), we obtain

∂C(x)

∂xj

= −u(x)T K0
ju(x). (5.22)

A second differentiation of the compliance yields

∂2C(x)

∂xi∂xj

= −
(

∂u(x)

∂xi

)T

K0
ju(x) − u(x)T K0

j

∂u(x)

∂xi

= u(x)T K0
i K(x)−1K0

ju(x) + u(x)T K0
jK(x)−1K0

i u(x)

= 2u(x)T K0
i K(x)−1K0

ju(x), (5.23)

where the last equality holds since

u(x)T K0
jK(x)−1K0

i u(x)

= (u(x)T K0
jK(x)−1K0

i u(x))T = (K0
i u(x))T (u(x)T K0

jK(x)−1)T

= u(x)T K0
i K(x)−1(u(x)T K0

j )
T = u(x)T K0

i K(x)−1K0
ju(x).

In order to see that the Hessian ∇2C(x) is positive semidefinite, study

yT ∇2C(x)y

=
n
∑

j=1

n
∑

i=1

∂2C(x)

∂xi∂xj

yiyj = 2u(x)T

⎡

⎣

n
∑

j=1

n
∑

i=1

K0
i yiK(x)−1K0

jyj

⎤

⎦u(x).

If we introduce the symmetric matrix Y =
∑n

i=1 K0
i yi , we get

yT ∇2C(x)y = 2u(x)T
[

YK(x)−1Y
]

u(x)

= 2 (Yu(x))T K(x)−1 (Yu(x)) ≥ 0,

where the inequality holds because K(x)−1 is positive definite since K(x) is pos-

itive definite. Thus, applying Theorem 3.2(i), the compliance is a convex function.

Since also the constraint function
∑n

j=1 ljxj − Vmax is convex, (P)nf is convex.
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It should be noted that the simultaneous formulation (P)sf of the problem is

not convex! This nonconvexity is due to the equilibrium equations h(x,u) =
K(x)u − F = 0. These equalities may be written as a number of inequalities as

hi(x,u) ≤ 0 and −hi(x,u) ≤ 0, for i = 1, . . . , nf , where nf is the number of

degrees-of-freedom of the truss. In order that the feasible set be convex, both hi

and −hi need to be convex. This is the case if, and only if, hi is an affine function of

x and u, i.e. it may be written as hi(x,u) = aT x + bT u + c = 0 for some constant

vectors a and b, and a constant scalar c. Since the equilibrium equations may not be

written on this form, we conclude that (P)sf is a nonconvex problem.

5.2.2 Fully Stressed Designs

Since problem (P)nf is convex, the KKT conditions are both necessary and suffi-

cient optimality conditions. In order to write them down, we start by forming the

Lagrangian defined in (3.3):

L(x, λ) = C(x) +
(

n
∑

i=1

xi li − Vmax

)

λ.

The derivative of the compliance was obtained in (5.22). This expression may be

transformed from the global level to the element level by using (5.11) and (5.9):

u(x)T K0
ju(x) = u(x)T CT

j k0
jCju(x) = (Cju(x))T k0

jCju(x)

= uj (x)T k0
juj (x),

so that

∂C(x)

∂xj

= −uj (x)T k0
juj (x). (5.24)

Since k0
j is positive semidefinite, this derivative cannot be positive. This is intu-

itively clear; if we increase the cross-sectional area of a bar, the stiffness of the truss

will increase, i.e. the compliance will decrease. By comparing (5.24) with (5.17)

and (5.7), we conclude that the partial derivative of the compliance with respect to

the cross-sectional area of bar j equals minus two times the strain energy per unit

area of the bar. From (5.16), we rewrite (5.24) as

∂C(x)

∂xj

= − 1

xj

Eε2
jxj lj = −

σ 2
j

E
lj .

Differentiation of the Lagrangian with respect to xj yields

∂L(x, λ)

∂xj

= −
σ 2

j

E
lj + λlj .
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The KKT conditions (3.4)–(3.6) give the following KKT point (x∗, λ∗):

σ 2
j ≤ λ∗

E
if x∗

j = xmin
j

σ 2
j = λ∗

E
if xmin

j < x∗
j < xmax

j

σ 2
j ≥ λ∗

E
if x∗

j = xmax
j .

If xmax
j , j = 1, . . . , n, are not so small that the maximum volume that the truss can

attain is less than Vmax, then clearly λ∗ > 0, i.e. the volume constraint is active at

the optimum, cf. the KKT conditions (3.4)–(3.10). We conclude that all bars where

the optimum cross-sectional area is strictly greater than the lower bound and strictly

smaller than the upper bound, have the same magnitude of the stress. One there-

fore speaks of a fully stressed design. Of course, some bars will be in tension and

others in compression, i.e. the stress will be positive in some bars and negative in

others.

5.2.3 Minimization of the Volume Under a Compliance Constraint

In Sect. 2.4 we minimized the weight of a cantilever under a tip displacement con-

straint. This problem was then compared with the related problem of minimizing the

tip displacement under a weight constraint. It was found that the solution of the lat-

ter problem could be obtained by scaling the solution of the former and vice versa.

We will now generalize this result for the truss problem at hand. We will denote

the problem of minimizing the compliance under a volume constraint (A), and the

problem of minimizing the volume under a compliance constraint (B):

(A)

⎧

⎪
⎨

⎪
⎩

min
x

F T u(x)

s.t. lT x − Vmax ≤ 0

x ∈X

(B)

⎧

⎪
⎨

⎪
⎩

min
x

lT x

s.t. F T u(x) − Cmax ≤ 0

x ∈ X ,

where l = [l1 · · · ln]T is a vector with the lengths of the bars, and Cmax > 0 is the

maximum allowed compliance in problem (B). It is assumed that F 
= 0.

Under the assumption that the lower and upper bounds in neither (A) nor (B) are

active at the solutions, we prove the following: If x∗
A is a solution to (A), then

x∗
B =

C∗
A

Cmax
x∗

A, C∗
A = F T u(x∗

A), (5.25)

is a solution to (B). Similarly, if x∗
B is a solution to (B), then

x∗
A = Vmax

V ∗
B

x∗
B , V ∗

B = lT x∗
B , (5.26)
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is a solution to (A). Naturally, when performing these scalings, one may obtain

points that are not feasible, and consequently not solutions. As just mentioned, we

assume from the beginning that such situations will not be encountered.

Making use of (5.22) for the derivative of the compliance, the KKT conditions

for (A) are written

−u(xA)T K0
ju(xA) + λAlj = 0 (5.27)

λA(lT xA − Vmax) = 0 (5.28)

lT xA − Vmax ≤ 0 (5.29)

λA ≥ 0, (5.30)

and for (B) they become

lj − λBu(xB)T K0
ju(xB) = 0 (5.31)

λB(F T u(xB) − Cmax) = 0 (5.32)

F T u(xB) − Cmax ≤ 0 (5.33)

λB ≥ 0. (5.34)

Let x∗
A be a solution to (A), and let x∗

B = (F T u(x∗
A)/Cmax)x

∗
A. We will prove

that there exists a λ∗
B ≥ 0 such that (x∗

B , λ∗
B) is a KKT point of (B), and thus, since

the problem is convex, x∗
B is a solution to (B). The following simple lemma will be

needed:

Lemma 5.1 Let the positive definite global stiffness matrix be written as in (5.12)

for any x, i.e. K(x) =
∑n

j=1 xjK
0
j , where K0

j are constant matrices. Let further

x∗ = αx, α 
= 0. Then u(x∗) = u(x)/α solves K(x∗)u(x∗) = F if, and only if,

u(x) solves K(x)u(x) = F .

The lemma follows by rewriting the equilibrium equations for the design x,

K(x)u(x) = F , as

n
∑

j=1

xjK
0
ju(x) = F ⇐⇒

n
∑

j=1

αxjK
0
j

(
u(x)

α

)

= F

⇐⇒ K(x∗)

(
u(x)

α

)

= F .

Thus, u(x∗) = u(x)/α is the unique solution to equilibrium equations for the de-

sign x∗: K(x∗)u(x∗) = F .

Using the lemma, we have that

u(x∗
B) = Cmax

F T u(x∗
A)

u(x∗
A). (5.35)
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Note that the denominator cannot be zero since the compliance C is always positive:

C = F T u(x) = u(x)T K(x)u(x) > 0, since K(x) is positive definite (otherwise we

would not be able to formulate the nested problems we are studying), and u(x) 
= 0

since we assumed that F 
= 0. Intuitively, this result is obvious since the compliance

is the magnitude of the external force times the displacement in the direction of this

force, which certainly must be positive.

From (5.27) we get

λ∗
A =

u(x∗
A)T K0

ju(x∗
A)

lj
, (5.36)

where λ∗
A > 0, since if it were zero, then (5.27) implies that the strain energy is zero

in all elements, which is impossible. Equations (5.31) and (5.35) give

lj − λ∗
B

(

Cmax

F T u(x∗
A)

)2

u(x∗
A)T K0

ju(x∗
A) = 0.

Insertion of (5.36) results in

λ∗
B = 1
(

Cmax

F T u(x∗
A)

)2

λ∗
A

> 0,

so (5.34) is satisfied. From (5.35) we have

F T u(x∗
B) − Cmax = F T Cmax

F T u(x∗
A)

u(x∗
A) − Cmax = 0,

and thus, (5.32) and (5.33) are satisfied. Since all KKT conditions of (B) are satis-

fied, we know that x∗
B as defined above is a solution to (B).

Conversely, let x∗
B be a solution to (B), and let x∗

A = (Vmax/l
T x∗

B)x∗
B .

Lemma 5.1 then implies that

u(x∗
A) = lT x∗

B

Vmax
u(x∗

B).

Combining this with (5.27) and (5.31) gives

λ∗
A =

(
lT x∗

B

Vmax

)2

λ∗
B

> 0,

so (5.30) is valid. Finally, (5.26) yields

lT x∗
A − Vmax = lT

(

Vmax

lT x∗
B

)

x∗
B − Vmax = 0.

Thus, also (5.28) and (5.29) hold true, proving that x∗
A is indeed a solution to (A).
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5.3 Numerical Solution of the Nested Problem Using MMA

We now turn to the problem of solving (P)nf numerically by generating a sequence

of explicit, convex approximations. As proven above, (P)nf is in fact convex, but that

in no way lessens the desire to use approximations that are both explicit and con-

vex. We will use an MMA approximation of the compliance, ĝ0(x) = g0(x,u(x)) =
F T u(x). To that end we need the derivative of the compliance. This has been cal-

culated in (5.24) as

∂ĝ0(x)

∂xj

= −uj (x)T k0
juj (x).

Since k0
j is positive semidefinite, we have ∂ĝ0(x)/∂xj ≤ 0. With this information,

the MMA approximation of ĝ0(x) at the design xk may be formulated. From (4.8),

(4.10) and (4.11) we get

ĝ
M,k
0 (x) = rk

0 +
n
∑

j=1

qk
0j

xj − Lk
j

,

where

qk
0j = (xk

j − Lk
j )

2uj (x
k)T k0

juj (x
k) (5.37)

rk
0 = g0(x

k) −
n
∑

j=1

(xk
j − Lk

j )uj (x
k)T k0

juj (x
k). (5.38)

Note that ĝ0 is linearized in the variables 1/(xj − Lk
j ) only; there are no terms

1/(U k
j − xj ) present. This is because pk

0j = 0 in (4.9) since ∂ĝ0(x
k)/∂xj ≤ 0.

Since the volume is a linear function of the design variable, we choose not to

approximate the volume constraint. Thus, the approximation of (P)nf for iteration k

is

(P)
M,k
nf

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min
x

ĝ
M,k
0 (x)

s.t. ĝ1(x) =
n
∑

j=1

ljxj − Vmax ≤ 0

αk
j ≤ xj ≤ xmax

j , j = 1, . . . , n,

where αk
j are move limits defined as αk

j = max(xmin
j , Lk

j + µ(xk
j − Lk

j )), where

0 < µ < 1. The purpose of introducing αk
j is to prevent division by zero in ĝ

M,k
0 (x)

since they ensure that Lk
j < αk

j ≤ xk
j . If all qk

0j > 0, i.e. the strain energy of all bars

is nonzero, then ĝ
M,k
0 is strictly convex, and thus there is at most one solution to

(P)
M,k
nf ; it could happen that there are no feasible points, and thus, no solution.
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The subproblem (P)
M,k
nf is easily solved by using Lagrangian duality. The La-

grangian is

Lk(x, λ) = ĝ
M,k
0 (x) + λ

⎛

⎝

n
∑

j=1

ljxj − Vmax

⎞

⎠

= rk
0 +

n
∑

j=1

(

qk
0j

xj − Lk
j

+ λljxj

)

− λVmax.

The dual objective function is

ϕk(λ) = min
x

Lk(x, λ) = rk
0 − λVmax +

n
∑

j=1

min
αk

j ≤xj

≤xmax
j

(

qk
0j

xj − Lk
j

+ λljxj

)

︸ ︷︷ ︸

Lk
j (xj ,λ)

,

where we have taken advantage of the separability of Lk , cf. Sect. 3.4.1. The func-

tion xj �→ Lj (xj ,λ) is strictly convex (unless qk
0j = 0). In order to minimize Lk

j
with respect to xj , we first make the guess that the minimum is obtained for the

xj -value, denoted xt
j (t for “trial”), for which the partial derivative of Lk

j with re-

spect to xj is zero:

∂Lk
j (xj , λ)

∂xj

= −
qk

0j

(xj − Lk
j )

2
+ λlj = 0,

which gives

xj = xt
j = Lk

j +

√
√
√
√

qk
0j

λlj
.

If xt
j < αk

j , we conclude that x∗
j = αk

j minimizes Lk
j . Similarly, if xt

j > xmax
j , then

x∗
j = xmax

j . To summarize, we have

x∗
j (λ) =

⎧

⎪
⎨

⎪
⎩

αk
j if xt

j < αk
j

xmax
j if xt

j > xmax
j

xt
j otherwise.

(5.39)

Finally, the dual problem of (P)
M,k
nf may be written

(D)k

{

max
λ

ϕk(λ)

s.t. λ ≥ 0.

Since ϕk is a concave function in only one variable, (D)k is very easy to solve using

some iterative nonlinear programming method, such as the Golden Section method,

the method of steepest descent, or Newton’s method.
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We end this section by summarizing the procedure to solve (P)nf using a se-

quence of MMA approximated subproblems.

1. As input the following is needed: The location of the nodes, what nodes that

are (partially) fixed, the applied force F , Young’s modulus E, lower and upper

bounds, xmin
j and xmax

j , on the cross-sectional areas, and the maximum allowed

volume of the truss, Vmax. In addition, an initial design x0, initial values of the

lower asymptotes, L0
j , as well as an initial value λ > 0 of the dual variable.

Put the iteration index k = 0.

2. Perform a finite element analysis in order to obtain the displacement vector for

design xk :

u(xk) = K(xk)−1F .

3. Calculate the objective function ĝ0(x
k) = F T u(xk). Perform a sensitivity analy-

sis by calculating

∂ĝ0(x
k)

∂xj

= −uj (x
k)T k0

juj (x
k),

for all bars j = 1, . . . , n.

4. Formulate an MMA approximation at xk by calculating qk
0j and rk

0 in (5.37) and

(5.38) for all bars j = 1, . . . , n.

5. Solve the dual problem (D)k iteratively by some nonlinear optimization algo-

rithm. In each iteration of this algorithm, the dual objective function is calculated

as

ϕk(λ) = rk
0 − λVmax +

n
∑

j=1

(

qk
0j

x∗
j (λ) − Lk

j

+ λljx
∗
j (λ)

)

,

for the current value of λ. Here, x∗
j (λ), j = 1, . . . , n, is obtained from (5.39). If

a gradient method is used to solve (D)k , then calculate the gradient of ϕk from

(3.13) as

∂ϕk(λ)

∂λ
= g1(x

∗(λ)) =
n
∑

j=1

ljx
∗
j (λ) − Vmax.

(If a Newton method is used, ∂2ϕk(λ)/∂λ2 needs to be calculated.)

When the solution of (D)k has been found within some tolerance, put the

current, i.e. the optimal, value of λ to λ∗. Calculate the corresponding optimum

design variables x∗
j (λ∗), j = 1, . . . , n, from (5.39). Put xk+1 = x∗.

6. If xk+1 is considered a sufficiently good solution to (P)nf (e.g. because the objec-

tive function and the design variables have not changed much from the previous

iteration), then stop. If not, put k = k + 1 and update the lower asymptotes Lk
j

and the move limits αk
j according to some heuristic rule, and return to step 2 for

a new iteration.

The most time-consuming task in this algorithm is the FE-analysis in step 2.
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Fig. 5.6 (Color online) The

initial configuration of the

truss

Fig. 5.7 (Color online) The truss after 5, 15, 40, 60, 100, 140, 200 and 260 iterations. The thick-

ness of each bar in the plot is directly proportional to its cross-sectional area
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Fig. 5.8 The history of the compliance and the weight during the iterations

Example 5.2 The cross-sectional areas that minimize the compliance of the 136-bar

truss in Fig. 5.6 should be determined. The truss is subjected to the single applied

force shown in the figure, and all bars have the same density. Initially, all bars have

the cross-sectional area 10−4 units. The volume, or, equivalently, the weight, of the

truss is not allowed to increase from the initial value. The minimum and maximum

allowed values of the cross-sectional area are 10−6 and 10−2 units, respectively.

Figure 5.7 shows the truss at various iterations of the algorithm described above as

implemented in the finite element program TRINITAS. Effectively, the truss con-

verges to a four-bar truss. Note, from Fig. 5.8, that the compliance changes almost

nothing from around iteration number 20, although there are significant changes of

the design variables up to around iteration number 200.



Chapter 6

Sensitivity Analysis

When solving nested structural optimization problems by generating a sequence of

explicit first order approximations, such as MMA, one needs to differentiate the ob-

jective function and all constraint functions with respect to the design variables. The

procedure to obtain these derivatives, or sensitivities, is called sensitivity analysis.

In the previous chapter we determined the sensitivity of the compliance of a truss

with respect to the cross-sectional area of the bars. In this chapter we will go further

and describe how to perform a sensitivity analysis for arbitrary functions and design

variables. There are two main groups of methods: numerical methods, which are

all approximate, and analytical methods, which are exact. One may also consider

hybrids of methods from these two groups: so-called semianalytical methods.

6.1 Numerical Methods

We recall that the nested structural optimization problem may be written as

(SO)nf

⎧

⎪
⎨

⎪
⎩

min
x

ĝ0(x) = g0(x,u(x))

s.t. ĝi(x) = gi(x,u(x)) ≤ 0, i = 1, . . . , l

x ∈X = {x ∈ Rn : xmin
j ≤ xj ≤ xmax

j , j = 1, . . . , n},

where x �→ u(x) is an implicit function defined through the equilibrium equa-

tions K(x)u(x) = F (x). In numerical sensitivity analysis methods, ∂ĝi/∂xj , i =
0, . . . , l, are approximated by finite differences, e.g. forward or central differences.

The forward difference approximation of ∂ĝi/∂xj at a design xk is

∂ĝi(x
k)

∂xj

≈ Df = ĝi(x
k + hej ) − ĝi(x

k)

h
, (6.1)

where ej = [0, . . . ,0,1,0, . . . ,0]T and the 1 is in row j .

In order to illustrate the method, let us see how to calculate, at a design xk , the

sensitivity of the compliance ĝ0(x) = g0(x,u(x)) = F (x)T u(x) with respect to

changes in the cross-sectional area xj = Aj of bar j in a truss. First the compliance

ĝ0(x
k) is calculated. Then, a small number h > 0 is added to the cross-sectional area

of bar j . We need to find the compliance for this new design xk + hej . In order to

do so we first have to calculate the displacement for this design, i.e. perform a finite

element analysis to solve the equilibrium equations. Once u(xk + hej ) is known,

the compliance ĝ0(x
k + hej ) may be calculated. Insertion into (6.1) then gives the

desired sensitivity. A major problem with this method is that it can be difficult to

find a suitable h. Clearly, if h is too large, then Df will be a bad approximation of

∂ĝi(x
k)/∂xj . It may be shown that the truncation error ∂ĝi(x

k)/∂xj − Df = O(h)

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,

© Springer Science + Business Media B.V. 2009

97



98 6 Sensitivity Analysis

as h → 0. However, as h → 0, the numerical error due to cancellation increases

dramatically, so one should not choose h too small either.

The central difference approximation of ∂ĝi/∂xj at xk is defined as

∂ĝi(x
k)

∂xj

≈ ĝi(x
k + hej ) − ĝi(x

k − hej )

2h
. (6.2)

This approximation is more accurate; the truncation error is O(h2) as h → 0. On the

other hand it is more expensive, since one has to perform n additional finite element

analyses for the designs xk − hej .

Although numerical sensitivity analysis methods may be very inaccurate and ex-

pensive, they at least have one advantage: they are very easy to implement.

6.2 Analytical Methods

In order to obtain analytical expressions for ∂ĝi(x
k)/∂xj , the chain rule is first

applied:

∂ĝi(x
k)

∂xj

= ∂gi(x
k,u(xk))

∂xj

+ ∂gi(x
k,u(xk))

∂u

∂u(xk))

∂xj

, (6.3)

where ∂gi/∂u is a row matrix, and ∂u/∂xj is a column matrix. Two different ana-

lytical methods will be studied: the so-called direct and adjoint methods.

6.2.1 Direct Analytical Method

In the direct analytical method, ∂u(xk)/∂xj is obtained by differentiation of the

equilibrium equations K(x)u(x) = F (x). The result is then inserted into (6.3). We

get

∂K(xk)

∂xj

u(xk) + K(xk)
∂u(xk)

∂xj

= ∂F (xk)

∂xj

,

which is rewritten as

K(xk)
∂u(xk)

∂xj

= ∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk). (6.4)

In order to find ∂u(xk)/∂xj , we first need expressions for ∂F (xk)/∂xj and

(∂K(xk)/∂xj )u(xk). How this may be accomplished will be described shortly. Note

that (6.4) has the same structure as the equilibrium equations K(xk)u(xk) = F (xk)

that have already been solved. For this reason, the right-hand side in (6.4) is often de-

noted pseudo-load. If the equilibrium equations have been solved by a direct solver

rather than with an iterative one, so that K(xk) has been factorized (for instance by
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performing a Cholesky decomposition, i.e. a nonsingular lower left triangular ma-

trix L has been found such that K(xk) = LLT ), then only forward and backward

substitutions are needed to solve (6.4) for ∂u(xk)/∂xj . Thus, it is computationally

much cheaper to solve (6.4) for a certain design variable xj than the equilibrium

equations. On the other hand, (6.4) needs to be solved n times, so the amount of

time needed to calculate the sensitivity for all design variables may still be consid-

erable if there is a large number of design variables.

Example 6.1 The sensitivity of the compliance, ĝ0(x) = g0(x,u(x)) = F (x)T u(x),

should be calculated using the direct method. Differentiation of g0 gives

∂g0(x
k,u(xk))

∂xj

= ∂F (xk)T

∂xj

u(xk),
∂g0(x

k,u(xk))

∂u
= F (xk)T .

From (6.4),

∂u(xk)

∂xj

= K(xk)−1

(
∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk)

)

.

Insertion of this into (6.3) yields

∂ĝ0(x
k)

∂xj

= ∂F (xk)T

∂xj

u(xk) + F (xk)T K(xk)−1

(
∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk)

)

= 2u(xk)T
∂F (xk)

∂xj

− u(xk)T
∂K(xk)

∂xj

u(xk). (6.5)

6.2.2 Adjoint Analytical Method

If (6.4) is substituted into (6.3), one obtains

∂ĝi(x
k)

∂xj

= ∂gi

∂xj

+ ∂gi

∂u
K(xk)−1

(
∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk)

)

, (6.6)

where gi = gi(x
k,u(xk)). In this expression, we define

λi =
(

∂gi

∂u
K(xk)−1

)T

= K(xk)−1

(
∂gi

∂u

)T

.

In the adjoint method, one starts by solving

K(xk)λi =
(

∂gi

∂u

)T

(6.7)
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for λi . This is then inserted into (6.6) to give the desired sensitivity as

∂ĝi(x
k)

∂xj

= ∂gi

∂xj

+ λT
i

(
∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk)

)

. (6.8)

At this point we may compare the direct and the adjoint method to calculate

∂ĝi(x
k)/∂xj for j = 1, . . . , n and i = 0, . . . , l. In the direct method, one needs to

solve (6.4) once for each design variable xj , i.e. n times. The result is then inserted

into (6.3) l + 1 times for each j . In the adjoint method, (6.7) is solved for the objec-

tive function and each constraint function, i.e. l +1 times. The result is then inserted

into (6.8) n times for each i (= 0, . . . , l). Thus, we conclude that the adjoint method

is to be preferred when there are fewer constraints than design variables, otherwise

the direct method will be more efficient.

Example 6.2 Let us continue Example 6.1 by this time using the adjoint method to

calculate the sensitivity of the compliance. Equation (6.7) reads

K(xk)λ =
(

g0(x
k,u(xk))

∂u

)T

= F (xk).

This system of equations is identical to the equilibrium equations. Thus, since

K(xk) is nonsingular, we conclude that λ = u(xk)! Obviously, there is no need

to solve (6.7) in this case since we already have u(xk) available. Insertion into (6.8)

gives

∂ĝ0(x
k)

∂xj

= ∂F (xk)T

∂xj

u(xk) + u(xk)T
(

∂F (xk)

∂xj

− ∂K(xk)

∂xj

u(xk)

)

= 2u(xk)T
∂F (xk)

∂xj

− u(xk)T
∂K(xk)

∂xj

u(xk).

Thus, as expected, the results of the direct and adjoint methods coincide.

We end this section with some brief words on semianalytical methods. If finite

difference approximations are used for ∂u(xk)/∂xj in (6.3), or for ∂F (xk)/∂xj or

∂K(xk)/∂xj in the direct or the adjoint method, then a semianalytical method is

obtained. These methods are better than the fully numerical methods since parts

of the sensitivity analysis are performed without approximations. In the next sec-

tion we will see that it is actually fairly easy, and, more importantly, numerically

quite inexpensive, to obtain analytical sensitivities of F and K . Thus, numerical

and semianalytical sensitivity analysis methods are of limited value.

6.3 Analytical Calculation of Pseudo-loads

The pseudo-loads appearing in (6.4) and (6.8) may be calculated by adding the

contributions from each element in the structure. Equations (5.14), (5.11) and (5.9)
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give

∂F (x)

∂xj

− ∂K(x)

∂xj

u(x) =
n

∑

e=1

[

CT
e

∂f a
e (x)

∂xj

− ∂Ke(x)

∂xj

u(x)

]

=
n

∑

e=1

[

CT
e

∂f a
e (x)

∂xj

− CT
e

∂ke(x)

∂xj

Ceu(x)

]

=
n

∑

e=1

CT
e

[
∂f a

e (x)

∂xj

− ∂ke(x)

∂xj

ue(x)

]

,

where it has been assumed that Ce is independent of x, i.e. design changes do not

affect which elements are interconnected or which nodes are suppressed. Thus, we

may obtain the pseudo-loads by assembling the sensitivity of the applied load vector

and the sensitivity of the element stiffness matrix times the element displacements,

in exactly the same way as the applied load vector is assembled in an ordinary finite

element analysis to solve the equilibrium equations. Using the assembly operator,

cf. (5.15), we may therefore write

∂F (x)

∂xj

− ∂K(x)

∂xj

u(x) =
n

A
e=1

[
∂f a

e (x)

∂xj

− ∂ke(x)

∂xj

ue(x)

]

. (6.9)

It should be pointed out that although we described the assembly of finite elements

for a truss only, all equations referred to in the derivation of (6.9) remain valid for

any type of displacement-based finite elements.

In the following sections the calculation of analytical expressions for the

element-wise contributions to the pseudo-loads will be exemplified by studying

bars and sheets.

6.3.1 Bars

The element stiffness matrix ke for a general bar e in a plane truss, i.e. a truss where

all bars lie in the same plane, was derived in Sect. 5.1. It was found that

ke = BT
e DeBe, (6.10)

where

De = EeAe

le
, (6.11)

is a scalar relating the elongation δe (generalized strain) to the bar force se (gener-

alized stress) as se = Deδe . Ee is Young’s modulus, Ae the cross-sectional area and

le the length of bar e. Be is the (generalized) strain displacement matrix

Be =
[

−c −s c s
]

, (6.12)
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where s = sin θe, c = cos θe, and the angle θe determines the orientation of the bar,

cf. Fig. 5.2. It holds that δe = Beue where ue are the displacements of the end points

of the bar. Explicitly, ke takes the form

ke = EeAe

le

⎡

⎢

⎢

⎣

c2 sc −c2 −sc

sc s2 −sc −s2

−sc −c2 c2 sc

−sc −s2 sc s2

⎤

⎥

⎥

⎦

. (6.13)

The sensitivity of the stiffness matrix will depend on the nature of the design vari-

ables.

6.3.1.1 Sizing and Topology Optimization

For sizing and topology optimization, the cross-sectional areas are the design vari-

ables: xe = Ae . The only difference between sizing and topology optimization in

this case, is that for topology optimization, the areas are allowed to become zero so

that bars may disappear. In this type of problem, le and θe are constant. Thus, Be is

constant, whereas De = De(xe) = Eexe/le. From (6.10) we obtain

∂ke

∂xj

=

⎧

⎨

⎩

Ee

le
BT

e Be, if j = e

0, otherwise.

6.3.1.2 Shape Optimization

By shape optimization of bars we understand that the locations of the end points of

the bars are taken as the design variables x, see Fig. 6.1. This means that le = le(x),

θe = θe(x), whereas Ae is constant. Differentiation of (6.10) then results in

∂ke

∂xj

= ∂BT
e

∂xj

DeBe + BT
e

∂De

∂xj

Be + BT
e De

∂Be

∂xj

. (6.14)

Let us calculate ∂ke/∂xpq , where xpq are the coordinates of the end points of bar e,

as shown in Fig. 6.2. Obviously, ke is not affected by changes in any other coor-

dinates. The coordinate system that was previously denoted the xy-system is now

Fig. 6.1 Shape optimization

of a two-bar truss



6.3 Analytical Calculation of Pseudo-loads 103

Fig. 6.2 A general bar e

called the x1x2-system. Coordinate xpq is the xq -coordinate of end point p (1 or 2).

We introduce the column matrix h as

h =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

[−1 0]T if pq = 11

[0 −1]T if pq = 12

[1 0]T if pq = 21

[0 1]T if pq = 22.

We have for the unit vector ee directed from end point 1 to 2 that

ee = 1

le

[

x21 − x11

x22 − x12

]

,

where le =
√

(x21 − x11)2 + (x22 − x12)2. Differentiation of le gives

∂le

∂xpq

= hT ee. (6.15)

The derivative of De becomes

∂De

∂xpq

= −EeAe

l2
e

∂le

∂xpq

= −EeAe

l2
e

hT ee.

If we differentiate ee, we obtain

∂ee

∂xpq

= − 1

l2
e

∂le

∂xpq

[

x21 − x11

x22 − x12

]

+ 1

le
h = 1

le
(I − eee

T
e )h,

where I is a 2-by-2 unit matrix. Since Be = [−eT
e eT

e ], ∂Be/∂xpq immediately

follows. Thus, all terms in (6.14) have been calculated.

If the applied load is design dependent we have to calculate ∂f a
e/∂xpq . For ex-

ample, if gravity g acts in the negative x2 direction, then

f a
e =

⎡

⎢
⎢
⎣

0

−Aeleρg/2

0

−Aeleρg/2

⎤

⎥
⎥
⎦

,
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where ρ is the density. The sensitivity is obtained from (6.15) as

∂f a
e

∂xpq

= −Aeρg

2

⎡

⎢

⎢

⎢

⎣

0

hT ee

0

hT ee

⎤

⎥

⎥

⎥

⎦

.

We end this discussion of sensitivity calculations for trusses by noting that we

may also consider problems of simultaneous sizing and shape optimization, i.e.

problems where both optimal cross-sectional areas of bars as well as optimal nodal

positions should be determined.

6.3.2 Plane Sheets

A sheet is an example of a distributed parameter system since there is an infinite

number of degrees-of-freedom. In order to be able to solve optimization problems

involving arbitrary sheets, we discretize the state variables (displacement, stress,

strain, etc.) using the finite element method. The design variables may also be in-

finite; e.g. one may want to determine the thickness of the sheet as a completely

unknown continuous function of the location in the sheet. The design variables will

also be discretized to obtain an optimization problem amenable to computer solu-

tion. If the optimal thickness distribution of the sheet is sought, one may for instance

say that the thickness should be constant in each finite element. After discretization

of the state variables and the design variables, we will have a discrete optimization

problem that is similar to that of a naturally discrete system such as a truss. We will

perform the sensitivity analysis on the finite dimensional, discretized problem. Al-

though much more complicated, it is also possible to perform the sensitivity analysis

for the original infinite-dimensional problem (possibly after a discretization of the

design variables), and then discretize the sensitivity equations obtained. We refer to

Haftka and Gürdal [18] for an introduction to infinite-dimensional sensitivity analy-

sis, and Choi and Kim [12, 13] for a more detailed treatment.

We start by reviewing some fundamentals of finite element modeling of plane

sheets, cf. e.g. Hughes [21]. All finite elements of the same type in the mesh are

mapped from a single parent element by a one-to-one mapping ξ �→ x(ξ), where

x = [x1 x2]T and ξ = [ξ1 ξ2]T , see Fig. 6.3. Illustrating with a four-nodded element,

the parent element occupies the region −1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1, denoted Ω̂ , in

the ξ1ξ2-system. The location Ωe of the finite element in the x1x2-system will in

general depend on the design variables. These will in the following be denoted αi

rather than xi to avoid confusion between design variables and coordinates. Using

an isoparametric formulation, the geometry and displacements are interpolated by

the same shape functions:

x(ξ) = XT Nv (6.16)



6.3 Analytical Calculation of Pseudo-loads 105

Fig. 6.3 Mapping of the parent element to the finite element e

ũ(ξ) = UT Nv.

The matrix X holds the nodal coordinates of element e as

X =

⎡

⎢

⎣

x11 x12

...
...

xnn1 xnn2

⎤

⎥

⎦
, (6.17)

where nn denotes the number of nodes in the element, and xpq is the xq -coordinate

of node p. The column matrix Nv contains the shape functions:

Nv =

⎡

⎢

⎣

N1(ξ )
...

Nnn(ξ)

⎤

⎥

⎦
. (6.18)

Shape function i is 1 at node i and zero for all other nodes. As an example, the shape

functions for a four-nodded element are

N1(ξ) = 1

4
(1 − ξ1)(1 − ξ2)

N2(ξ) = 1

4
(1 + ξ1)(1 − ξ2)

N3(ξ) = 1

4
(1 + ξ1)(1 + ξ2)

N4(ξ) = 1

4
(1 − ξ1)(1 + ξ2).

The elements of the matrix U ,

U =

⎡

⎢

⎣

u11 u12

...
...

unn1 unn2,

⎤

⎥

⎦
,
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are the displacements at the nodes. The displacements at an arbitrary point ξ is de-

noted ũ = [ũ1 ũ2]T . A tilde ( ˜ ) is used here since u is used for the global displace-

ment column matrix that contains the displacements of all nonsuppressed nodes in

the finite element mesh.

The element stiffness matrix may be shown to be, see e.g. Hughes [21],

ke =
∫

Ω̂

BT DB|J |t dΩ̂, (6.19)

where we have skipped index e for all terms in the integrand. This integral is ob-

tained numerically by determining the value of the integrand at certain points, so-

called Gauss points, in the element. The strain displacement matrix B is

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂N1

∂x1
0 · · · ∂Nnn

∂x1
0

0
∂N1

∂x2
· · · 0

∂Nnn

∂x2

∂N1

∂x2

∂N1

∂x1
· · · ∂Nnn

∂x2

∂Nnn

∂x1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.20)

For the case of plane stress, e.g., the stress strain matrix D is written

D = E

1 − ν2

⎡

⎢

⎣

1 ν 0

ν 1 0

0 0
1 − ν

2

⎤

⎥

⎦
,

where E is Young’s modulus and ν is Poisson’s ratio. The matrix

J =

⎡

⎢

⎢

⎣

∂x1

∂ξ1

∂x2

∂ξ1

∂x1

∂ξ2

∂x2

∂ξ2

⎤

⎥

⎥

⎦

is the Jacobian of the mapping ξ �→ x(ξ) and |A| denotes the determinant of an

arbitrary matrix A. Finally, t is the thickness of the element.

6.3.2.1 Sizing and Topology Optimization

Let us assume that we approximate the thickness of the sheet as constant in each ele-

ment e. For sizing and topology optimization, we then choose αe = te , e = 1, . . . , ne,

where ne is the number of elements in the mesh. Thus, te may be moved out of the

integral in (6.19):

ke = te

∫

Ω̂

BT DB|J |dΩ̂ = tek
0
e,
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with an obvious definition of k0
e . Consequently, the sensitivity of the element stiff-

ness matrix becomes simply

∂ke

∂αi

=
{

k0
e if e = i

0 otherwise.

6.3.2.2 Shape Optimization

In shape optimization we assume that the shape of some boundary curves is con-

trolled by a number of design variables αi, i = 1,2, . . . , see Fig. 6.4. In Chap. 7

we will present a detailed account of shape representation of boundary curves. In

shape optimization the region Ωe will depend on the design: Ωe = Ωe(αi), but the

region Ω̂ is fixed, as always. Since the thickness t and the matrix D are constant,

differentiation of (6.19) gives

∂ke

∂αi

=
∫

Ω̂

(

∂BT

∂αi

DB|J | + BT D
∂B

∂αi

|J | + BT DB
∂|J |
∂αi

)

t dΩ̂. (6.21)

Note that t may very well vary within the element, but it does not change because

of changes in the design variables. Our task is now to find analytical formulas for

∂B/∂αi and ∂|J |/∂αi . To the best of our knowledge, such formulas were first de-

rived by Brockman [9]. Our presentation follows the neater derivation in Haslinger

and Mäkinen [19].

First, we define two additional matrices:

G =

⎡

⎢

⎢

⎣

∂N1

∂x1
· · · ∂Nnn

∂x1

∂N1

∂x2
· · · ∂Nnn

∂x2

⎤

⎥

⎥

⎦

, (6.22)

Fig. 6.4 Shape optimization of a sheet. Design variables determine the location of control points

which in turn determine the shape of the boundary curve



108 6 Sensitivity Analysis

and

Ĝ =

⎡

⎢

⎢

⎣

∂N1

∂ξ1
· · · ∂Nnn

∂ξ1

∂N1

∂ξ2
· · · ∂Nnn

∂ξ2

⎤

⎥

⎥

⎦

. (6.23)

Now, by the chain rule we have

Ĝ = JG. (6.24)

Equation (6.16) gives

J = ĜX. (6.25)

Clearly, Ĝ is independent of the design (Ĝ will be a function of ξ , not x(ξ )). For

notational convenience, let us denote ∂/∂αi by a prime (′). We then have

0 = Ĝ
′ = J ′G + JG′. (6.26)

Also, (6.25) gives

J ′ = ĜX′. (6.27)

From (6.26), (6.27) and (6.24) we get

G′ = −J−1J ′G = −J−1ĜX′G = −GX′G.

Next, we try to find |J |′. We will make use of a simple result from linear algebra;

for any nonsingular matrix A it holds that

|A|′ = |A| tr(A−1A′), (6.28)

where trC denotes the trace of an arbitrary square matrix C, i.e. the sum of all

diagonal terms of C: trC = C11 + C22 + C33 + · · · . For a 2-by-2 matrix, such

as J , this result is most easily proven by direct calculation. Let us therefore study

an arbitrary nonsingular matrix

A =
[

a11 a12

a21 a22

]

.

The determinant of A is

|A| = a11a22 − a12a21,

which after differentiation gives

|A|′ = a′
11a22 + a11a

′
22 − a′

12a21 − a12a
′
21. (6.29)
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The term A−1A′ becomes

A−1A′ = 1

|A|

[

a22 −a12

−a21 a11

]
[

a′
11 a′

12

a′
21 a′

22

]

= 1

|A|

[

a′
11a22 − a′

21a12 a′
12a22 − a′

22a12

a′
21a11 − a′

11a21 a′
22a11 − a′

12a21

]

.

By adding the diagonal terms, multiplying with |A| and comparing with (6.29), we

conclude that (6.28) holds.

Applying (6.28), and using (6.27) and (6.24), we have

|J |′ = |J | tr
(

J−1J ′) = |J | tr
(

J−1ĜX′) = |J | tr(GX′).

To summarize, we have shown that

∂G

∂αi

= −G
∂X

∂αi

G (6.30)

∂|J |
∂αi

= |J | tr

(

G
∂X

∂αi

)

. (6.31)

Although derived for two-dimensional problems here, it is straightforward to see

that these formulas are valid in the same form for one- and three-dimensional prob-

lems as well.

Once the sensitivity of G has been obtained, the sensitivity of B follows directly,

cf. (6.22) and (6.20). Note that in ∂B/∂αi only first order derivatives of the shape

functions appear. These terms are exactly the same that are used in a standard finite

element analysis when forming the equilibrium equations. Intuitively, one would

think that second order derivatives of the shape functions would be needed in order

to find the sensitivity of B , since we should calculate (∂/∂αi)(∂Nj/∂xk) where

the geometry (x1 and x2) depends on αi . We still need to find ∂X/∂αi , i.e. the

partial derivatives of the nodal positions with respect to the design variables. These

derivatives will depend on how the shape is represented. In the next chapter we will

see how they can be obtained.

Finally, we will discuss how design dependent loads may be included in the

analysis. First, the following matrix with the shape functions is introduced:

N =
[

N1 0 · · · Nnn 0

0 N1 · · · 0 Nnn

]

.

For simplicity, we will not treat design dependent tractions. For the body force b

(force per unit area), the applied force on element e may be written

f a
e =

∫

Ω̂

NT b|J |t dΩ̂. (6.32)

As examples of design dependent body forces, we may take gravity in the neg-

ative x2-direction, and centrifugal forces due to rotation around the x2-axis: b =
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Fig. 6.5 Design dependent loads

Fig. 6.6 Bar element

[0 −ρg]T and b = [rρω2 0]T , where ρ is the density (mass per unit area), g is the

acceleration due to gravity, ω is the angular speed, and the radius r may be interpo-

lated as r =
∑nn

i=1 Nixi1; see Fig. 6.5. If (6.32) is differentiated we obtain

∂f a
e

∂αi

=
∫

Ω̂

NT

(
∂b

∂αi

|J | + b
∂|J |
∂αi

)

t dΩ̂. (6.33)

Example 6.3 Consider a bar element where the coordinates of the end points x1 and

x2 > x1 are the design variables, see Fig. 6.6. The cross-sectional area is A, and

Young’s modulus is E. We would like to calculate the sensitivity of the element

stiffness matrix, i.e. ∂ke/∂x1 and ∂ke/∂x2, by making use of the formulas derived

for a sheet in this section. Since we in this problem deal with a one-dimensional bar

rather than a two-dimensional sheet, the equations above need to be modified in a

straightforward way.

The end points are collected in the column matrix X, cf. (6.17), and the shape

functions are collected in the column matrix Nv , cf. (6.18):

X =
[

x1

x2

]

, Nv =
[
N1(ξ)

N2(ξ)

]

=
[

1
2

− ξ

1
2

+ ξ

]

.

The geometry is interpolated according to (6.16) as

x = XT Nv =
(

1

2
− ξ

)

x1 +
(

1

2
+ ξ

)

x2.

The matrix Ĝ in (6.23) becomes

Ĝ =
[
∂N1

∂ξ

∂N2

∂ξ

]

=
[

−1 1
]

,
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whereas the matrix G in (6.22) may be written as

G =
[

∂N1

∂x

∂N2

∂x

]

.

Here,

∂N1

∂x
= ∂N1

∂ξ

∂ξ

∂x
= ∂N1

∂ξ

1

dx

dξ

= − 1

x2 − x1
,

and similarly

∂N1

∂x
= 1

x2 − x1
.

The strain-displacement matrix B is

B =
[

∂N1

∂x

∂N2

∂x

]

= 1

x2 − x1

[

−1 1
]

.

Evidently, for this problem, B = G. Note that B relates the strain ε of the bar to

the displacements u of the end points: ε = Bu. Thus, the B-matrix used here has a

different interpretation than the B-matrices used for trusses previously where B is

defined to relate the elongation δ to the displacements: δ = Bu.

The Jacobian J is in this case a scalar:

J = J = ∂x

∂ξ
= x2 − x1.

The element stiffness matrix reads

ke =
∫ 1/2

−1/2

BT DB|J |Adξ,

where the stress strain matrix D in this case will be the Young’s modulus E. The

sensitivities of ke are obtained as

∂ke

∂xi

= AE

∫ 1/2

−1/2

(

J
∂GT

∂xi

G + JGT ∂G

∂xi

+ ∂J

∂xi

GT G

)

dξ. (6.34)

The sensitivities of G and J may be obtained by direct differentiation, but we will

make use of the general formulas (6.30) and (6.31):

∂G

∂x1
= −G

∂X

∂x1
G = − 1

(x2 − x1)2

[

−1 1
]
[

1

0

]
[

−1 1
]

= − 1

(x2 − x1)2

[

1 −1
]

∂J

∂x1
= J tr

(

G
∂X

∂x1

)

= (x2 − x1) tr

(
1

x2 − x1

[

−1 1
]
[

1

0

])

= −1
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∂G

∂x2
= 1

(x2 − x1)2

[

1 −1
]

∂J

∂x2
= 1.

Insertion of these expressions into (6.34) gives us the sensitivities of ke as

∂ke

∂x1
= AE

(x2 − x1)2

[

1 −1

−1 1

]

∂ke

∂x2
= − AE

(x2 − x1)2

[

1 −1

−1 1

]

.

For this simple example, the sensitivities of ke could of course have been obtained

easier by differentiating ke directly, where

ke = AE

x2 − x1

[

1 −1

−1 1

]

.

6.4 Exercises

Exercise 6.1 Consider the function f (x) = u(x)T u(x), where u(x) is an implicit

function of x through the equilibrium equations K(x)u(x) = F (x). The sensitivi-

ties ∂K(x)/∂xj and ∂F (x)/∂xj are known. Calculate the sensitivities ∂f (x)/∂xj

a) by the direct method,

b) by the adjoint method.

Exercise 6.2 A two-bar truss should be optimized, see Fig. 6.7. The x-coordinate

of the free node, x, as well as the cross-sectional areas, A1 and A2, are taken as

design variables. Calculate the sensitivities of the global stiffness matrix K , i.e.

∂K

∂A1
,

∂K

∂A2
,

∂K

∂x
.

Fig. 6.7 The two-bar truss of

Exercise 6.2
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Fig. 6.8 The bar of

Exercise 6.3

Fig. 6.9 The beam of Exercise 6.4

Exercise 6.3 One of the end points of a bar is fixed, whereas the other end point,

point 2, is allowed to move along a fixed horizontal line of length L, see Fig. 6.8.

The leftmost point on this line has the coordinates (a, b). The location of point 2

is controlled by a design variable α which changes linearly from 0 to 1 on the line.

The cross-sectional area A of the bar is also allowed to change, whereas Young’s

modulus E is constant. The stiffness matrix of the bar is given in (6.13). Calculate

the sensitivities ∂k/∂α and ∂k/∂A.

Exercise 6.4 For the beam element in Fig. 6.9, with degrees-of-freedom

[w1 θ1 w2 θ2]T , the stiffness matrix may be written as

ke = EI

L3

⎡

⎢

⎢

⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤

⎥

⎥

⎦

,

where L is the length of the beam, E is Young’s modulus and I is the moment

of inertia of the cross section of the beam. The end points x1 and x2 as well as the

cross-sectional area A are taken as design variables. The cross section is square with

dimensions b × b. Calculate the sensitivities

∂ke

∂x1
,

∂ke

∂x2
,

∂ke

∂A
.

Exercise 6.5 A bar-element is subjected to a centrifugal load b = ρxω2, where

ρ is the mass per unit length, and ω is the angular velocity of the bar around the

y-axis, see Fig. 6.10. The isoparametric element has two nodes with coordinates x1
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Fig. 6.10 The

one-dimensional bar element

of Exercise 6.5

and x2. The shape functions of the parent element are N1(ξ) = 1/2−ξ and N2(ξ) =
1/2+ ξ . The nodal coordinates x1 and x2 are used as design variables. Calculate the

sensitivities of the element force vector f a
e , i.e. ∂f a

e/∂x1 and ∂f a
e/∂x2. Do this in

two ways: 1) form f a
e and then differentiate the expression obtained; 2) use (6.33).

Exercise 6.6 Study a function gi(x,u), where u is an implicit function of x de-

fined through the equilibrium equations K(x)u = F (x). In (6.8), the first order

derivatives of gi are obtained using the adjoint method as

dgi(x,u(x))

dxj

= ∂gi(x,u)

∂xj

+ λT
i

(
∂F (x)

∂xj

− ∂K(x)

∂xj

u(x)

)

,

where λi is obtained from the equation

K(x)λi =
(

∂gi(x,u)

∂u

)T

, (6.35)

and ∂gi/∂u is defined to be a row matrix. It proves convenient in this exercise to

write dgi(x,u(x))/dxj for the complete xj -derivative of gi instead of ∂ĝi(x)/∂xj

as we have done previously.

Show that the second order derivatives of gi may be written as

d2gi

dxjdxk

= ∂2gi

∂xj∂xk

+ ∂2gi

∂u∂xj

∂u

∂xk

+ ∂2gi

∂u∂xk

∂u

∂xj

+
(

∂u

∂xk

)T
∂2gi

∂u2

∂u

∂xj

+ λT
i

(
∂2F

∂xj∂xk

− ∂2K

∂xj∂xk

u − ∂K

∂xj

∂u

∂xk

− ∂K

∂xk

∂u

∂xj

)

,

where λi is obtained from (6.35), ∂2gi/∂u2 is a matrix,

∂u(x)

∂xj

= K(x)−1

(
∂F (x)

∂xj

− ∂K(x)

∂xj

u(x)

)

,

and similarly for ∂u/∂xk .

Exercise 6.7 A sensitivity analysis should be performed for the two-bar truss in

Fig. 6.11 by calculating the derivatives ∂r/∂A1 and ∂r/∂A2, where r = −uy is the
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Fig. 6.11 The two-bar truss

of Exercise 6.7

downward displacement of the free node, and Ai is the cross-sectional area of bar i.

It may be shown that the equilibrium equations read

[

0

−P

]

= E

2
√

2l

[

A1 + 2
√

2A2 −A1

−A1 A1

][

ux

uy

]

.

It holds that P = 1 kN, E = 210 GPa, l = 0.1 m.

Calculate the sensitivities of r at (A1,A2) = (10−4,10−4) m2 in four different

ways using:

a) The direct method.

b) The adjoint method.

c) The numerical method for a forward difference approximation. Use differ-

ent design steps between h = 10−20 m2 and h = 10−1 m2, and plot the sensitivity

as a function of h.

d) The numerical method for a central difference approximation. Plot the sen-

sitivity as a function of h.



Chapter 7

Two-Dimensional Shape Optimization

In order to optimize the shape of a structure, one naturally has to be able to control

the shape of its boundary using some design variables. In Sect. 6.3.2, the sensitivity

analysis for shape optimization of sheets was described. It was concluded that the

nodal sensitivities, i.e. the partial derivatives of the nodal positions with respect to

the design variables were needed. These sensitivities will depend on how the shape

is represented and also on how the finite element mesh is generated. In this chapter

we will discuss how the nodal sensitivities may be calculated for two-dimensional

structures such as plane sheets or axisymmetric bodies.

7.1 Shape Representation

A natural idea that springs to mind when figuring out how to optimize the shape of

a sheet is to use the coordinates of the finite element nodes as design variables, just

as is done for trusses. It turns out, however, that with this choice the boundaries tend

to become extremely jagged, leading to inaccurate stress calculations. Alternatively,

the boundaries can be described using polynomial functions and using design vari-

ables that control their shape. In order to represent complex geometries one may use

either high-order polynomials or use low-order piecewise polynomials functions to

form spline curves. When high-order polynomials are used, experience has shown

that the boundaries may become highly oscillatory. Good results are obtained if in-

stead low-order splines represent the boundary. Examples include Bézier splines,

B-splines and nonuniform rational B-splines (NURBS).

The shape of a spline may be controlled by a number of control vertices V i, i =
0,1, . . . , see Fig. 7.1. When these vertices move, the shape of the curve changes.

In order to perform a shape optimization we therefore introduce design variables

αi to those control vertices that are allowed to move during the iteration process.

Figure 7.2(a) depicts a control vertex V i = [xi yi]T that is allowed to move along

a straight line, a so-called span. The end points of the span, V min
i = [xmin

i ymin
i ]T

and V max
i = [xmax

i ymax
i ]T , are assumed given. Along each span, a design variable

αi varies linearly. At V min
i , αi = 0, and at V max

i , αi = 1. Thus, the location of the

control vertex V i is given by

V i = V min
i + αiLi, 0 ≤ αi ≤ 1, (7.1)

where the constant vector Li is defined as Li = V max
i − V min

i . Differentiation

of (7.1) yields the sensitivity of the control vertex as

∂V i

∂αi

= Li . (7.2)

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,

© Springer Science + Business Media B.V. 2009
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Fig. 7.1 Control vertices of a

spline curve

Fig. 7.2 Control vertices including spans

By making use of two spans for a certain control vertex, one horizontal and

the other vertical, that vertex will be able to move inside a box, as illustrated in

Fig. 7.2(b).

In what follows, we will present some basic properties of Bézier and B-splines.

For a detailed account of these curves, including the more complex NURBS, see

Piegl and Tiller [28] and Rogers [29].

7.1.1 Bézier Splines

An nth degree Bézier spline is defined as

r(u) =
n

∑

i=0

Bi,n(u)V i, 0 ≤ u ≤ 1, (7.3)

where r(u) = [x(u) y(u)]T and the nth degree Bernstein polynomials Bi,n are de-

fined recursively as

Bi,n(u) = (1 − u)Bi,n−1(u) + uBi−1,n−1(u), (7.4)

where B0,0(u) = 1 and Bi,n(u) = 0 for i < 0 and i > n. Thus, u is a scalar variable

that uniquely determines a point on the spline. It may be shown that the Bi,n:s take

the explicit form

Bi,n(u) = n!
i!(n − i)!u

i(1 − u)n−i .
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It holds that r(0) = V 0 and r(1) = V n, i.e. V 0 and V n are the start and end points

of the curve, respectively. Differentiation of (7.3) with respect to u leads after some

calculations to

dr(0)

du
= n(V 1 − V 0) (7.5)

dr(1)

du
= n(V n − V n−1). (7.6)

Thus, the tangent of the curve at the start (end) point only depends on the location

of the first (last) two control vertices.

For n = 1, the Bernstein polynomials are

B0,1 = (1 − u)B0,0 + uB−1,0 = 1 − u

B1,1 = (1 − u)B1,0 + uB0,0 = u,

so that the first degree Bézier spline becomes

r(u) = (1 − u)V 0 + uV 1,

i.e. a straight line between the points V 0 and V 1. Putting n = 2, we have

B0,2 = (1 − u)B0,1 + uB−1,1 = (1 − u)2

B1,2 = (1 − u)B1,1 + uB0,1 = 2u(1 − u)

B2,2 = (1 − u)B2,1 + uB1,1 = u2,

which gives the second degree curve

r(u) = (1 − u)2V 0 + 2u(1 − u)V 1 + u2V 2. (7.7)

From

B0,3 = (1 − u)B0,2 + uB−1,2 = (1 − u)3

B1,3 = (1 − u)B1,2 + uB0,2 = 3u(1 − u)2

B2,3 = (1 − u)B2,2 + uB1,2 = 3u2(1 − u)

B3,3 = (1 − u)B3,2 + uB2,2 = u3,

the third degree Bézier spline becomes

r(u) = (1 − u)3V 0 + 3u(1 − u)2V 1 + 3u2(1 − u)V 2 + u3V 3,

see Fig. 7.3.

For a Bézier spline the number of control vertices equals the degree of the curve

plus one. Thus, in order to describe a complex boundary shape using only one or
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Fig. 7.3 Third degree Bézier spline

just a few Bézier splines, these curves have to be of high degree. Since this is im-

practical, one instead links together several low-degree splines imposing continuity

constraints so that the boundary becomes sufficiently smooth. This will be illustrated

in Sect. 7.2.

7.1.2 B-Splines

In contrast to a Bézier spline, the degree of a B-spline is not determined by the

number of control vertices. A B-spline of degree p with n + 1 control vertices is

defined as

r(u) =
n

∑

i=0

Mi,p(u)V i, 0 ≤ u ≤ 1, (7.8)

where the pth degree B-spline basis functions Mi,p are defined recursively as

Mi,0(u) =
{

1 if ui ≤ u < ui+1

0 otherwise,
(7.9)

Mi,p(u) = u − ui

ui+p − ui

Mi,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Mi+1,p−1(u), p ≥ 1, (7.10)

Mm−p−1,p(1) = 1. (7.11)

The given scalars u0, u1, . . . , um are called knots. The number of knots, m + 1,

equals p + n + 2. In order that the curve starts at V 0 and ends at V n, the first p + 1

knots are put to 0, and the last p + 1 knots are put to 1. A knot vector U containing
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the knots is defined as

U = {0, . . . ,0
︸ ︷︷ ︸

p+1

, up+1, . . . , um−p−1,1, . . . ,1
︸ ︷︷ ︸

p+1

}.

In (7.10), (u−ui)/(ui+p −ui) and (ui+p+1 −u)/(ui+p+1 −ui+1) should be inter-

preted as zero whenever ui+p − ui = 0 and ui+p+1 − ui+1 = 0, respectively.

The pth degree B-spline basis functions Mi,p are only nonzero in a certain in-

terval: Mi,p(u) = 0 for u < ui and u ≥ ui+p+1. Consequently, if the control vertex

V i is moved, the B-spline is only changed for [ui, ui+p+1); one says that B-splines

have local control. Bézier splines, on the other hand, do not share this nice feature

since a change in V i will result in a change of the entire spline from start point to

end point; Bézier curves have global control.

A B-spline of degree p is infinitely continuously differentiable at each u except

at the knots. If knot j has multiplicity rj , i.e. there are rj knots with the same

knot value uj , then the curve is p − rj times continuously differentiable (Cp−rj )

at u = uj . By altering the knot vector, low-order B-spline basis functions may be

joined together automatically to form a complex curve with a desired degree of

smoothness. This will be illustrated in several examples below. Recall that when

low-order Bézier splines are used to represent a complex shape, the splines have to

be joined together manually by imposing continuity constraints such that the curve

is sufficiently smooth at the joints. For this reason B-splines are better suited for

shape optimization than Bézier splines.

Just as for Bézier splines, the derivatives at the end points of a B-spline only

depends on the location of the first and last two control vertices. It may be shown

that

dr(0)

du
= p

up+1
(V 1 − V 0) (7.12)

dr(1)

du
= p

1 − um−p−1
(V n − V n−1). (7.13)

Example 7.1 We study a B-spline with three control vertices (n = 2):

V 0 =
[

0

0

]

, V 1 =
[

1

1

]

, V 2 =
[

2

0

]

.

At first the spline is taken to be a 1st degree curve (p = 1). The number of knots

should then be n + p + 2 = 5 where the first two knots are 0 and the last two knots

are 1. The knot vector is chosen as U = {0,0,1/2,1,1}. The 0th and 1st degree

basis functions are obtained from (7.9)–(7.11) as

M0,0 = 0

M1,0 =
{

1 if 0 ≤ u < 1/2

0 otherwise



122 7 Two-Dimensional Shape Optimization

M2,0 =
{

1 if 1/2 ≤ u < 1

0 otherwise

M3,0 = 0

M0,1 = u − 0

0 − 0
M0,0 + 1/2 − u

1/2 − 0
M1,0 =

{

1 − 2u if 0 ≤ u < 1/2

0 otherwise

M1,1 = u − 0

1/2 − 0
M1,0 + 1 − u

1 − 1/2
M2,0 =

{

2u if 0 ≤ u < 1/2

2(1 − u) otherwise

M2,1 = u − 1/2

1 − 1/2
M2,0 + 1 − u

1 − 1
M3,0 =

{

2u − 1 if 1/2 ≤ u ≤ 1

0 otherwise

In Fig. 7.4, the 1st degree basis functions are plotted. Clearly, these functions are lin-

early independent, as suggested by their name. The B-spline r(u) =
∑2

i=0 Mi,1V i

is depicted in Fig. 7.5(a). Note that if (7.11) is not used, then (7.9) and (7.10) give

M2,1(1) = 0 which means that r(1) = 0 rather than r(1) = V 2 as wanted. Looking

at M0,1 in Fig. 7.4, it is evident that a change in V 0 will only affect the B-spline in

the interval [0, 1/2) which is in agreement with the statement above that a change

in V i only changes the curve in the interval [ui, ui+p+1). In Fig. 7.5(b), the B-spline

is shown when V 0 is changed to V 0 = [1 0]T .

Next, we change the B-spline into a 2nd degree curve (p = 2) by simply mod-

ifying the knot vector as U = {0,0,0,1,1,1}. The 0th, 1st and 2nd degree basis

functions become

M0,0 = 0

M1,0 = 0

M2,0 =
{

1 if 0 ≤ u < 1

0 otherwise

M3,0 = 0

M4,0 = 0

Fig. 7.4 The B-spline basis functions M0,1, M1,1 and M2,1
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Fig. 7.5 A 1st degree

B-spline

Fig. 7.6 A 2nd degree

B-spline that is a Bézier

spline

M0,1 = u − 0

0 − 0
M0,0 + 0 − u

0 − 0
M1,0 = 0

M1,1 = u − 0

0 − 0
M1,0 + 1 − u

1 − 0
M2,0 =

{

1 − u if 0 ≤ u < 1

0 otherwise

M2,1 = u − 0

1 − 0
M2,0 + 1 − u

1 − 1
M3,0 =

{

u if 0 ≤ u < 1

0 otherwise

M3,1 = u − 0

1 − 1
M3,0 + 1 − u

1 − 1
M4,0 = 0

M0,2 = u − 0

0 − 0
M0,1 + 1 − u

1 − 0
M1,1 =

{

(1 − u)2 if 0 ≤ u < 1

0 otherwise

M1,2 = u − 0

1 − 0
M1,1 + 1 − u

1 − 0
M2,1 =

{

2u(1 − u) if 0 ≤ u < 1

0 otherwise

M2,2 = u − 0

1 − 0
M2,1 + 1 − u

1 − 1
M3,1 =

{

u2 if 0 ≤ u ≤ 1

0 otherwise.

The B-spline then becomes

r(u) =
2

∑

i=0

Mi,2V i = (1 − u)2V 0 + 2u(1 − u)V 1 + u2V 2 =
[

2u

2u(1 − u)

]

,

see Fig. 7.6. If we compare this with (7.7), we conclude that the curve is a 2nd

degree Bézier spline! This is not a coincidence; any B-spline with n = p and the

knot vector

U = {0, . . . ,0
︸ ︷︷ ︸

p+1

,1, . . . ,1
︸ ︷︷ ︸

p+1

}.

is indeed a pth degree Bézier spline.
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Fig. 7.7 Effect of knot spacing. Solid line: uniform knot vector. Dotted line: nonuniform knot

vector

Example 7.2 A B-spline has the following eight control vertices (n = 7):

V 0 =
[

0

0

]

, V 1 =
[

1

2

]

, V 2 =
[

2

1

]

, V 3 =
[

5

1

]

,

V 4 =
[

5

4

]

, V 5 =
[

6

6

]

, V 6 =
[

7

3

]

, V 7 =
[

8

0

]

.

For a 3rd degree spline (p = 3) the number of knots should be n + p + 2 = 12.

Naturally, the knot sequence will influence the shape of the curve. If the knots in

the interior of the curve, i.e. those strictly greater than 0 and strictly smaller than 1,

are evenly spaced, the knot vector is said to be uniform. This does not imply that

the distance between the points on the curve corresponding to the knots is the same

since the arclength of a B-spline is not a linear function of u except for 1st degree

curves. In Fig. 7.7 the splines corresponding to two different knot vectors—one

uniform and the other nonuniform—are plotted. The knot vectors are

{0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}
{0, 0, 0, 0, 0.1, 0.2, 0.8, 0.9, 1, 1, 1, 1}.

In the upcoming shape optimization examples only uniform knot vectors will be

used.



7.1 Shape Representation 125

Fig. 7.8 Effect of multiple knots. Single knots in (a), a double knot in (b), a triple knot in (c) and

a quadruple knot in (d). A circle is drawn at the points on the curve that correspond to a knot

In Fig. 7.8, the 3rd degree spline is drawn for knot vectors with multiple knots:

Ua = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}
Ub = {0, 0, 0, 0, 1/4, 1/4, 2/4, 3/4, 1, 1, 1, 1}
Uc = {0, 0, 0, 0, 1/3, 1/3, 1/3, 2/3, 1, 1, 1, 1}
Ud = {0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1, 1, 1}.

The curve is Cp−r continuous at a joint with multiplicity r . Thus, for Ua the curve

is C2 at all knots, C1 at u = 1/4 for Ub , C0 at u = 1/3 for Uc , and discontinuous at

u = 1/2 for Ud .

For the 3rd degree spline with the uniform knot vector Ua , control vertex

V 1 is moved from [1 2]T to [1 3]T . This will change the curve in the interval

[u1 u1+p+1) = [0 2/5), cf. Fig. 7.9.

The spline is changed into a 1st degree (p = 1) curve by altering the number of

knots to 7 + 1 + 2 = 10. A uniform knot vector is chosen, i.e.

{0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1}.
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Fig. 7.9 Effect of changing the location of V 1 for a 3rd degree B-spline. Solid line: V 1 = [1 2]T .

Dotted line: V 1 = [1 3]T

Fig. 7.10 Effect of changing the location of V 3 for a 1st degree B-spline

The spline is drawn in Fig. 7.10 together with the spline obtained when the control

vertex V 3 = [5 1]T is moved to [6 0]T . Note that a 1st degree B-spline is made up

of lines connecting the control vertices, and that the knots will correspond to the

control vertices. Moving V i will only change the curve between V i−1 and V i+1.

Finally, the B-spline is changed to a 7th degree Bézier spline by using the knot

vector

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}.
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Fig. 7.11 A 7th degree Bézier spline modified by moving V 1

In Fig. 7.11 this spline is shown together with the spline obtained when V 1 is moved

from [1 2]T to [1 3]T . This movement results in the whole spline changing its shape

although the spline is close to the original one far away from the vertex moved.

7.2 Treatment of Geometrical Design Constraints

When splines are linked together to form a boundary curve of a body, one has to

impose constraints on some of the control vertices defining the splines such that

the boundary has the desired degree of smoothness. Such constraints are almost

inevitable if low-order Bézier splines are used, but could be necessary also when

B-splines are used. Since the location of the control vertices is directly governed by

design variables, the design variables will evidently be subject to constraints.

In Fig. 7.12 an axisymmetric body is shown. Given some objective function and

constraints, one wants to find the optimum shape of the upper part of the body. For

that purpose one half of the upper boundary is modeled using two 3rd degree Bézier

splines. Spans and corresponding design variables α1, . . . , α8 are also shown in the

figure. The upper boundary should be C1 continuous, which means that we have to

impose constraints such that the boundary is C1 continuous at the joint P2 between

the two splines, and that the boundary curve is C1 continuous at P1 for the complete

structure, not just the half modeled. We will see shortly that there are two constraint

equations at P2 and one constraint equation at P1 that may symbolically be written

as

f1(V 1,V 2) = 0

f 2(V 3,V 4,V 5) = 0,
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Fig. 7.12 An axisymmetric body to be optimized

where V 1 = V 1(α1), V 2 = V 2(α2), V 3 = V 3(α3), V 4 = V 4(α4, α5) and V 5 =
V 5(α6). One way of handling these equality constraints is to supply them to the op-

timization solver used. However, many implementations of optimization solvers for

structural optimization are not able to handle equality constraints directly. There-

fore, we choose to use the three equations to eliminate three design variables. Both

f1 and f 2 turn out to be linear functions which makes it easy to write V 2 = V 2(α1)

and V 4 = V 4(α3, α6), thus eliminating α2, α4 and α5; the optimization solver will

only use the independent design variables α1, α3, α6, α7 and α8. The sensitivity of

V 2(α1) and V 4(α3, α6) with respect to the independent design variables is obtained

by differentiating these functions. For nonlinear constraint equations we cannot in

general use the constraint equations to eliminate dependent design variables directly.

Instead we obtain the needed sensitivities by differentiating the constraint equations

themselves, as will be described in Sect. 7.2.3.

Next, we derive the constraint equations for the two continuity requirements dis-

cussed above, as well as for a composite circular arc where the constraint equations

turn out to be nonlinear.

7.2.1 C1 Continuity Between Bézier Splines

Two Bézier splines of the same degree are linked at the control vertex V j , see

Fig. 7.13. The two vertices adjacent to V j are denoted V l and V r . The span corre-

sponding to V l is denoted Ll and the design variable that determines where V l is

located on the span Ll is denoted αl . The span Lr and the design variable αr cor-

respond to vertex V r . From (7.5) and (7.6) we have that the composite curve is C1

continuous at V j if

V j − V l = V r − V j , (7.14)
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Fig. 7.13 Two linked Bézier splines

i.e.

V j = 1

2
(V l + V r) , (7.15)

so that V j is located right between V l and V r . For given values of αl and αr we

may easily obtain the location of V l and V r using (7.1).

In order to calculate the nodal sensitivities, we first need to know the sensitivities

of the control vertices. For control vertices independent of the location of other

vertices, the sensitivity is given by (7.2), and for V j the sensitivities may be obtained

by differentiating (7.15) upon first using (7.2):

∂V l

∂αl

= Ll,
∂V l

∂αr

= 0

∂V r

∂αl

= 0,
∂V r

∂αr

= Lr .

Insertion of this into (7.15) yields the sensitivities

∂V j

∂αl

=1

2
Ll

∂V j

∂αr

=1

2
Lr . (7.16)

All other ∂V j/∂αk = 0, k �= r, l.

7.2.2 C1 Continuity at a Point on a Line of Symmetry

The vertex V j in Fig. 7.14 lies on a line of symmetry. The two adjacent vertices are

V l and V r , where V l is not actually modeled if we choose to take advantage of the
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Fig. 7.14 C1 continuity at

vertex V j located on the

symmetry line

symmetry. If V r = [xr yr ]T , it thus holds that V j = [0 yj ]T , V l = [−xr yr ]T . Since

the two splines are of the same degree due to symmetry, the continuity constraints

are the ones in (7.14). Note that (7.12) and (7.13) imply that the constraints are the

same for any B-spline. By symmetry, (7.14) becomes

[

0

2yj − 2yr

]

=
[

0

0

]

,

i.e. there is in fact only one constraint, namely that V j and V r should be located on

the same y-coordinate. The location of V j is given by

yj = ymin
j + αjLj,y,

and V r is located on the line

xr − xmin
r = Lr,x

Lr,y

(

yr − ymin
r

)

.

Since we must have that yr = yj , the location of V r for any value of αj is given by

yr = ymin
j + αjLj,y (7.17)

and

xr = xmin
r + Lr,x

Lr,y

(

ymin
j + αjLj,y − ymin

r

)

. (7.18)

The sensitivity of the vertex V r with respect to αj then becomes

∂xr

∂αj

= Lj,y

Lr,x

Lr,y

∂yr

∂αj

= Lj,y,
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i.e.

∂V r

∂αj

= Lj,y

Lr,y

Lr , (7.19)

and all other ∂V r/∂αk = 0, k �= j .

7.2.3 A Composite Circular Arc

Although very versatile, B-splines cannot be used to draw circles or any other conic

sections. The more advanced NURBS can, however, be used to represent conic sec-

tions exactly. Since we do not cover NURBS in this work, we choose to treat circular

arcs as special curves that may be used together with Bézier and B-splines to define

boundary curves.

When using shorter circular arcs to draw a longer circular arc or a complete

circle, one has to make sure that all end points of the smaller arcs lie on the same

longer circular arc. To that end, study a circular arc with center V c, and end points

V s and V j , see Fig. 7.15. Another circular arc with center V c , and end points V j

and V e is joined to the former arc at V j . A design variable αs controls the location

of V s on the span Ls . It is our aim to find out how V j and V e move along the spans

Lj and Le , respectively, when αs changes. For V j , the constraint equations are

|V s − V c| = |V j − V c|,

i.e.

(xs − xc)
2 + (ys − yc)

2 = (xj − xc)
2 + (yj − yc)

2, (7.20)

and that V j is located on the line

⎧

⎨

⎩

yj − ymin
j =

Lj,y

Lj,x

(

xj − xmin
j

)

, if Lj,x �= 0

xj = xmin
j , otherwise.

(7.21)

Fig. 7.15 Two circular arcs

joined together
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Since (7.20) is nonlinear, the easiest way to get the sensitivity of V j is to differen-

tiate the constraint equations rather than first trying to write V j as a function of αs

and then differentiate. We get

(xs − xc)
∂xs

∂αs

+ (ys − yc)
∂ys

∂αs

= (xj − xc)
∂xj

∂αs

+ (yj − yc)
∂yj

∂αs

,

and
⎧

⎪
⎪
⎨

⎪
⎪
⎩

∂yj

∂αs

= Lj,y

Lj,x

∂xj

∂αs

, if Lj,x �= 0

∂xj

∂αs

= 0, otherwise,

where ∂xs/∂αs = Ls,x and ∂ys/∂αs = Ls,y . Solving these equations, we obtain the

desired sensitivity as

∂V j

∂αs

=
(xs − xc)Ls,x + (ys − yc)Ls,y

(xj − xc)Lj,x + (yj − yc)Lj,y

Lj . (7.22)

The denominator in this expression is nonzero as long as the span Lj is not tangent

to the arc. Once the optimization solver has calculated a new value of αs , V s is

obtained from (7.1). After that, (7.20) and (7.21) may be solved, either analytically

or numerically, for V j . The constraint equations ensuring that V e is located on the

same arc as V s , and V j are identical to those above, if the index j is replaced by e.

7.3 Mesh Generation and Calculation of Nodal Sensitivities

The nodal sensitivities will depend on how the finite element mesh is generated.

There are two different classes of meshes: structured and unstructured meshes. In a

structured, or mapped, mesh, there is a regular pattern of connections between the

finite elements. Unstructured, or free, meshes are meshes that are not structured, see

Fig. 7.16.

When creating a finite element model of a structure, one often first creates several

regions bounded by some curves, and then meshes each region separately. Those

regions whose shape will change during the optimization process are denoted design

elements, cf. Fig. 7.17. Naturally, nodal sensitivities need to be calculated only for

design elements since they are zero for other regions.

Fig. 7.16 A structured mesh to the left, and an unstructured mesh to the right
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Fig. 7.17 A fillet to be optimized. The region S2 is a design element

In what follows, we will describe how the nodal sensitivities may be obtained for

two types of structured meshes, namely B-spline surface meshes and Coons surface

meshes, as well as for unstructured meshes.

7.3.1 B-Spline Surface Meshes

A B-spline surface is defined as

r(u, v) =
n

∑

i=0

m
∑

j=0

Mi,p(u)Mj,q(v)V i,j , 0 ≤ u ≤ 1,0 ≤ v ≤ 1, (7.23)

where the B-spline basis functions Mi,p and Mj,q using the knot vectors

U = {0, . . . ,0
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1,1, . . . ,1
︸ ︷︷ ︸

p+1

}

V = {0, . . . ,0
︸ ︷︷ ︸

q+1

, vq+1, . . . , vs−q−1,1, . . . ,1
︸ ︷︷ ︸

q+1

},

are defined in (7.9)–(7.11). For a fixed v = v̄, r(u, v̄) is a pth degree B-spline, and

for a fixed u = ū, r(ū, v) is a qth degree B-spline. The number of knots in U and

V is r + 1 and s + 1, respectively. It holds that r = n + p + 1 and s = m + q + 1.

The vectors V i,j = [xi,j yi,j ]T , i = 0, . . . , n, j = 0, . . . ,m, are control vertices. As

before, there may be one or two spans defined for a control vertex so that it can

move during the optimization process. If V i,j is moved, the surface is changed only

in the interval [ui, ui+p+1)×[vj , vj+q+1). Specifically, if interior control vertices,

i.e. vertices V i,j with 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 1, are moved, the shape of the

boundary curves is not affected.

It is possible to add a third coordinate to the control vertices which can be used

to describe a nonconstant thickness of a sheet: V i,j = [xi,j yi,j zi,j ]T . Unless all

zi,j are the same, r(u, v) will be a curved surface.

Finite element nodes are created by evaluating r(u, v) for the u-values un
0, . . . ,

un
nu

, where 0 = un
0 < un

1 < · · · < un
nu−1 < un

nu
= 1, and the v-values vn

0 , . . . , vn
nv

,
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where 0 = vn
0 < vn

1 < · · · < vn
nv−1 < vn

nv
= 1 . The nodal sensitivities are obtained

by differentiating the mapping (7.23) with respect to the independent design vari-

ables αk , k = 0,1, . . . , at the u- and v-values corresponding to the finite element

nodes:

∂r(u, v)

∂αk

=
n

∑

i=0

m
∑

j=0

Mi,p(u)Mj,q(v)
∂V i,j

∂αk

, (7.24)

where ∂V i,j/∂αk is given by (7.2) for vertices independent of the location of other

vertices. For vertices that are constrained by other vertices, ∂V i,j/∂αk is obtained

following the procedure of Sect. 7.2, cf. e.g. (7.16), (7.19) or (7.22).

A disadvantage with any structured mesh is that even though the mesh is of good

quality before the shape optimization starts, the elements may become more and

more distorted as the optimization proceeds. If this happens, it is recommended to

abort the optimization, remesh the structure, and continue the optimization with this

new, improved mesh.

Example 7.3 A B-spline surface has n = 3, p = 2, m = 2, q = 1, U = {0, 0, 0, 1/2,

1, 1, 1}, V = {0, 0, 1/2, 1, 1}, and

V 0,0 =
[

0

0

]

, V 1,0 =
[

2

0

]

, V 2,0 =
[

4

0

]

, V 3,0 =
[

6

0

]

V 0,1 =
[

−0.2

1.6

]

, V 1,1 =
[

2

2

]

, V 2,1 =
[

4

2

]

, V 3,1 =
[

6.5

2

]

V 0,2 =
[

0

3.2

]

, V 1,2 =
[

2

2.8

]

, V 2,2 =
[

5

4.4

]

, V 3,2 =
[

6

4

]

.

A mesh is created by evaluating r(u, v) for u = 0, 0.025, 0.05, . . . ,1 and v =
0,0.05, 0.1, . . . ,1. Each curve in the mesh corresponds to a constant value of

u or v, see Fig. 7.18. The control vertex V 0,2 is then moved from [0 3.2]T to

[0 4.2]T . This will change the B-spline surface only for [ui ui+p+1)×[vj vj+q+1) =
[0 1/2) × [1/2 1), as illustrated in Fig. 7.19.

7.3.2 Coons Surface Meshes

In a B-spline surface, opposite boundary curves are necessarily of the same degree,

and controlled by the same number of control vertices. It would be nice to be able to

choose all four boundary curves arbitrarily. Coons surfaces provide this possibility.

A four-sided1 Coons surface is defined as

r(u, v) = (1 − u)ρ0(v) + uρ1(v) + (1 − v)r0(u) + vr1(u)

1It is also possible to define three-sided Coons surfaces.
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Fig. 7.18 A B-spline surface mesh

Fig. 7.19 Effect of moving V 0,2 from [0 3.2]T to [0 4.2]T

− (1 − u)(1 − v)r0,0 − (1 − u)vr0,1 − u(1 − v)r1,0 − uvr1,1,

(7.25)

where r0(u), r1(u), ρ0(v) and ρ1(v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 are arbitrary bound-

ary curves, and r0,0 = r0(0) = ρ0(0), r1,0 = r0(1) = ρ1(0), r0,1 = r1(0) = ρ0(1),
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Fig. 7.20 Boundary curves

for a Coons surface

Fig. 7.21 Example of a

Coons surface mesh

r1,1 = r1(1) = ρ1(1), see Fig. 7.20. Finite element nodes are obtained by evaluating

r(u, v) for suitable u- and v-values in the same way as was done for B-spline sur-

faces. In Fig. 7.21, a Coons surface mesh is shown where the boundary curves are all

3rd degree Bézier splines. Nodal sensitivities are obtained by differentiating (7.25).

Indicating ∂/∂αk by ′ we get

r ′(u, v) = (1 − u)ρ ′
0(v) + uρ′

1(v) + (1 − v)r ′
0(u) + vr ′

1(u)

− (1 − u)(1 − v)r ′
0,0 − (1 − u)vr ′

0,1 − u(1 − v)r ′
1,0 − uvr ′

1,1,

(7.26)

where, if e.g. r0 is a B-spline of degree p with n + 1 control vertices, r ′
0(u) is

obtained from (7.8) as

∂r0(u)

∂αk

=

n
∑

i=0

Mi,p(u)
∂V i

∂αk

. (7.27)
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7.3.3 Unstructured Meshes

In order to be able to use structured meshes for bodies with a complex geometry, the

body usually has to be divided into quite a number of four- or three-sided regions,

each of which is then meshed. Thus, it can be very tedious to use a structured mesh

generator for complex geometries. As discussed above, the mesh may also become

severely distorted as the control vertices move during the optimization process. By

using unstructured meshes instead, both of these problems may be avoided. The

price to pay is a more complicated computer implementation.

There is a multitude of algorithms for generating unstructured meshes, which

are all based on either so-called Delaunay, quadtree–octree, or advancing front

techniques. This is not the place to present a review of all these techniques; in-

terested readers are referred to Thompson, Soni and Weatherill [35], George [16]

and Cheung, Lo and Leung [23] for details. For the sake of illustration, we will,

however, describe one algorithm, namely the very simple advancing front algorithm

by Tracy [36].

0. Nodes are placed along the boundary curves of the body. The nodes are intercon-

nected by straight lines that together form the front, see Fig. 7.22(a).

1. For each corner angle ∠ABC of the front that is less than 90◦, an element ABC

is created, where A and C are the nodes adjacent to B . The front is updated by

replacing the line segment A–B–C with A–C, cf. Fig. 7.22(b).

2. At any corner angle ∠ABC of the front less than 180◦, where the line segment

A–B–C runs anticlockwise, create a new node D according to the ad hoc rule

xD =
1

2
(xA + xC) +

1

5
(yA − yC)

yD =
1

2
(yA + yC) +

1

5
(xC − xA) .

Create the elements ABD and BCD. The front is updated by replacing the line

segment A–B–C with A–D–C, as illustrated in Fig. 7.22(c).

3. Go to step 1. Stop when the whole body has been triangularized.

The algorithm is illustrated in Fig. 7.23. The quality of the mesh obtained may

be improved by various techniques, such as the widely used Laplacian smoothing

method. Here, the internal nodes in the mesh are relocated in order to make the

Fig. 7.22 The initial front with updates
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Fig. 7.23 A mesh created by Tracy’s advancing front algorithm

Fig. 7.24 Relocation of

interior node with Laplacian

smoothing

elements more equilateral. This is accomplished by moving each internal node to

the centroid of the polygon comprised of the elements containing that node, see

Fig. 7.24. One usually has to process the internal nodes of the mesh at least twice,

i.e. perform two smoothing iterations, to see any significant improvement in mesh

quality, cf. Fig. 7.25.

For a structured mesh, nodal sensitivities are obtained by simply differentiating

the mesh function. For unstructured meshes there does not exist any continuous

mesh function to differentiate since the mesh will change its topology as the body

changes its shape. For nodes on the boundary curves, the nodal sensitivities may,

as for structured meshes, be obtained by differentiating the functions defining the

curves, cf. e.g. (7.27) for B-splines. For interior nodes things are more complicated.

We refer to Bugeda and Oliver [11] for a discussion. Numerical examples have

shown, however, see e.g. Hilding, Torstenfelt and Klarbring [20], that the sensi-
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Fig. 7.25 Laplacian smoothing of a mesh; (a) no smoothing, (b) one smoothing iteration, (c) two

iterations, (d) three iterations

tivities of interior nodes may be put to zero and still provide sufficiently accurate

sensitivities of the objective function and constraints for the optimization solver!

The reason that this works is probably that the mechanical behavior of a discretized

structure is mostly dependent on the shape of its boundary curves, and to a lesser

extent on the location of the interior nodes, at least for good quality meshes.

7.4 Summary of Sensitivity Analysis for Two-Dimensional Shape

Optimization

For convenience, we summarize all steps needed to perform the sensitivity analysis

in shape optimization of plane sheets using the direct analytical method. The nested

optimization problem may be written

(SO)nf

⎧

⎨

⎩

min
α

ĝ0(α) = g0(α,u(α))

s.t. ĝi(α) = gi(α,u(α)) ≤ 0, i = 1, . . . , l

0 ≤ αj ≤ 1, j = 1, . . . , n.

The sensitivities of ĝi , i = 0, . . . , l, may be obtained as follows.
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For each (independent) design variable αj :

For each design element (DE) whose shape is affected by αj :

Obtain the nodal sensitivities ∂X/∂αj for all nodes in the DE.

For each finite element e in the DE:

Evaluate the sensitivity of the shape function derivatives matrix G and

the Jacobian J at the Gauss points of the finite element by using (6.30)

and (6.31):

∂G

∂αj

= −G
∂X

∂αj

G

∂|J |
∂αj

= |J | tr

(

G
∂X

∂αj

)

.

Obtain the sensitivity of the strain displacement matrix B , ∂B/∂αj , from

∂G/∂αj , cf. (6.22) and (6.20). Get the sensitivity of the element stiffness

matrix and the element applied force vector from (6.21) and (6.33):

∂ke

∂αj

=
∫

Ω̂

(

∂BT

∂αj

DB|J | + BT D
∂B

∂αj

|J | + BT DB
∂|J |
∂αj

)

t dΩ̂

∂f a
e

∂αj

=
∫

Ω̂

NT

(
∂b

∂αj

|J | + b
∂|J |
∂αj

)

t dΩ̂.

Form the pseudo-load ∂f a
e/∂αj − (∂ke/∂αj )ue and assemble to form

∂F /∂αj − (∂K/∂αj )u, cf. (6.9).

end

end

Solve (6.4) for ∂u/∂αj :

K
∂u

∂αj

= ∂F

∂αj

− ∂K

∂αj

u.

Use (6.3) to calculate the required sensitivities of the objective function and the

constraints:

∂ĝi

∂αj

= ∂gi

∂αj

+ ∂gi

∂u

∂u

∂αj

,

for i = 0, . . . , l.

end

Example 7.4 The shape of the upper boundary of the sheet in Fig. 7.26 should be

determined so that the sheet’s stiffness is maximized by minimizing its compli-

ance. The weight of the sheet is not allowed to exceed 180 units, and the den-

sity is 1. The sheet is modeled as a B-spline surface with 6 × 2 control vertices,
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Fig. 7.26 The sheet to be

optimized

Fig. 7.27 Initial mesh of the

sheet

2nd degree curves in the u-direction, and 1st degree curves in the v-direction. Ini-

tially, the control vertices defining the shape of the upper boundary are located at

x = 0, 3.4, 6.8, 10.2, 13.6, 17 and y = 15. These vertices may move vertically

between y = 1.5 and y = 20 during the optimization. Figure 7.27 shows the initial

mesh. The optimization problem is solved using MMA. Figure 7.28 illustrates how

the shape of the sheet changes during the optimization process. Already after 4–5 it-

erations, the shape hardly changes at all, see also Fig. 7.29 where the variation of the

compliance and the weight during the optimization are shown. Note that the initial

configuration is not feasible since the initial weight is greater than 180 units.

Example 7.5 The compliance of the fillet in Fig. 7.30 should be minimized. The

initial weight is 0.32 units, but the optimized fillet should have a weight not greater

than 0.25 units. Two interconnected cubic Bézier splines are allowed to change their

shape. At the point where the two curves meet, the boundary is constrained to be

G1 continuous, which is a relaxation of the constraint of being C1 continuous, see

Exercise 7.2. The finite element program TRINITAS has been used to solve the

problem. An unstructured mesh is created with 298 nodes and 534 elements. The

unstructured mesh generator implemented in TRINITAS is a slight modification

of Tracy’s algorithm described in Sect. 7.3.3. TRINITAS uses MMA to solve the
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Fig. 7.28 The shape of the sheet at various iterations

optimization problem. The shape converges after some 5 iterations, see Fig. 7.31.

Note that there are fewer nodes and elements in the final configuration than in the

initial one: 228 nodes and 394 elements. On the boundary curves, however, the

number of nodes does not change. Since the optimized structure is smaller than the

initial, it is therefore obvious that the number of nodes must decrease when Tracy’s

algorithm is used as a mesh generator.
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Fig. 7.29 The history of the compliance and the weight

7.5 Exercises

Exercise 7.1 Two B-splines are interconnected at V j , see Fig. 7.32. The two ad-

jacent control vertices are V l and V r . The spline which is controlled by V l has

degree pl , and its greatest knot which is smaller than 1 is ul . The other spline has

degree pr and its smallest knot greater than 0 is ur . The composite curve should be

C1 continuous at V j . Show that the sensitivities of V j are given by

∂V j

∂αr

= (1 − ul)pr

(1 − ul)pr + urpl
Lr

∂V j

∂αl

= urpl

(1 − ul)pr + urpl
Ll .

Exercise 7.2 Two Bézier splines of equal degree are interconnected at V j as shown

in Fig. 7.33. The composite curve is said to be G1 continuous at V j if the tangent

dr/du of the curves point in the same direction at V j , but are not necessarily equal

in magnitude (that is, the curve is not necessarily C1 continuous at V j ). Show that

the curve is G1 at V j if, and only if, V j lies on the line between V l and V r . Recall

that the curve is C1 if, and only if, V j lies at the mid-point of the line between

V l and V r . In Fig. 7.34, the difference between C1 and G1 continuity is illustrated

using two composite 2nd degree Bézier splines. Also show that the sensitivities of
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Fig. 7.30 The initial mesh together with the design spans

V j are

∂V j

∂αl

= (yj − yr)Ll,x − (xj − xr)Ll,y

(yl − yr)Lj,x − (xl − xr)Lj,y

Lj

∂V j

∂αr

= (yl − yj )Lr,x − (xl − xj )Lr,y

(yl − yr)Lj,x − (xl − xr)Lj,y

Lj .

When is the denominator zero?

Exercise 7.3 A circular arc has the center point V c and the end points V s and V e as

shown in Fig. 7.35. A design variable αc controls how the center point moves along

the span Lc. The radius of the arc should remain constant. Show that the sensitivity

of V s is given by

∂V s

∂αs

= (xc − xs)Lc,x + (yc − ys)Lc,y

(xc − xs)Ls,x + (yc − ys)Ls,y

Ls .

Exercise 7.4 On the book’s homepage (www.mechanics.iei.liu.se/edu_ug/strop/),

you may find a computer exercise where TRINITAS should be used to optimize the

shape of a bridge pillar.
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Fig. 7.31 The optimized fillet

Fig. 7.32 Two

interconnected B-splines
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Fig. 7.33 Two interconnected Bézier splines

Fig. 7.34 Two composite

curves: one C1 continuous,

the other only G1 continuous

Fig. 7.35 Changing the

location of the center of a

circular arc



Chapter 8

Stiffness Optimization of Distributed Parameter
Systems

In previous chapters we have been concerned with the solution of discrete struc-

tural optimization problems: either the structures have been naturally discrete, like

trusses, or we have made them discrete by a finite element discretization. In this

chapter, on the other hand, we will look at some techniques of mathematics, from

an area usually referred to as calculus of variations, that can handle some continu-

ous optimization problems such as those of distributed parameter systems, without

the need for a discrete approximation. Basic facts from this area will be applied to

two types of optimization problems. Firstly, we will discuss linear elastic systems

without introducing any design variables. It will be shown that the state variables of

such systems are minimizers of the potential energy of the systems. Next, we look

at design problems of a particular type: the design variable enters linearly in the

potential energy and we seek to make the structure as stiff as possible in the sense

previously considered in Chap. 5. It is shown that optimal structures of this type

have the property that a particular specific strain energy is constant throughout the

structure, which is to be compared to the fully stressed designs of Sect. 5.2.2. We

treat mainly simple problems of beams and bars, but the general structure of this

stiffness optimization problem will be used in the next chapter that treats topology

optimization problems.

8.1 Calculus of Variations

In elementary mathematics courses, conditions for a real valued function to take a

minimum (or maximum) value are studied. It is found that at such extreme points

partial derivatives are zero-valued. Calculus of variations may be seen as an exten-

sion of this elementary theory: instead of functions of several real variables, sym-

bolized in standard notation as

f : Rn −→ R,

calculus of variations considers functionals, i.e., functions of functions, for which

we use the notation

J : D −→ R,

where D is a set of functions. We try to find the function, belonging to D, which

makes J as small (or large) as possible. Thus, instead of looking for an optimal

point in Rn as in elementary theory, we look for an optimal function in D. Usually

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,
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Fig. 8.1 Three different

members of the set D

we need to require the functions of D to have certain properties such as a degree of

smoothness. A good example of a set D, used below, is

D = {u ∈ C2[a, b], u(a) = ua, u(b) = ub}

where C2[a, b] denotes all functions which are twice continuously differentiable on

the closed interval [a, b] of the real line, and ua and ub are fixed boundary values.

Figure 8.1 shows how members of the set D may appear. A typical example of a

functional defined on the set D is

J (u) =
∫ b

a

u dx.

In the following example we will see another such typical functional.

Finding the Shortest Path Between Points

We like to consider the problem of finding the shortest path between two points in

the plane. You know that the solution of this problem is a straight line connecting

the points, but do you have a proof of this? We will see that calculus of variations

can provide such a proof. The problem is formulated in the frame of calculus of

variations in this subsection and the actual solution is left as Exercise 8.2. Tools for

doing this exercise are developed in the upcoming section.

Let the coordinates of the plane be denoted (x,u) and let the two points that

should be connected be (a,ua) and (b,ub). Moreover, let s be the curve parameter

of any curve connecting these points. We then find that

ds =
√

dx2 + du2 =
√

1 + (u′)2dx,

where, in the second equality, we have assumed that the curve does not have any

vertical parts so that u can be seen as a function of x, i.e., u = u(x), and ′ is a
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shorthand for the derivative of this function.1 We have also assumed that u(x) is

differentiable: a sufficient condition for this is u ∈ C2[a, b]. The length of the curve

is obtained by summing (integrating) all infinitesimal parts ds, i.e.,

Length =
∫ b

a

√

1 + (u′)2dx,

In summary, the problem of finding the shortest path between two points is given by

min
u∈D

∫ b

a

√

1 + (u′)2dx.

In the following we will look at techniques for solving this and similar problems.

8.1.1 Optimality Conditions and Gateaux Derivatives

We like to characterize a function u∗ ∈ D which makes a certain functional J take

its minimum value, i.e., we consider the minimization problem

(P0) min
u∈D

J (u)

and look for conditions satisfied by a solution of this problem. Suppose u∗ solves

(P0) and let

u = u∗ + εϕ,

be any other function in D. Here, ε ∈ R and ϕ is a function on the interval [a, b].

As can be understood from Fig. 8.2, if u should belong to D we have to require that

Fig. 8.2 The function u∗ and

the nearby function u∗ + εϕ

1Throughout this chapter we use prime, ′, as a shorthand for the derivative of a function of one

variable.
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ϕ ∈ C2[a, b] and ϕ(a) = ϕ(b) = 0. It is natural to denote εϕ as the variation of u∗.

For each ϕ we may define the function φ : R −→ R as

φ(ε) = J (u∗ + εϕ).

By the assumption that u∗ is a solution of (P0), φ takes its minimum at ε = 0 and it

must hold that

dφ(ε)

dε

∣

∣

∣

∣

ε=0

= 0,

which, by the elementary definition of a derivative, is equivalent to

lim
ε→0

J (u∗ + εϕ) − J (u∗)

ε
= 0.

The quantity on the left-hand side is referred to as the Gateaux derivative of J at u∗

in the direction ϕ and we use the notation

J ′(u;ϕ) = lim
ε→0

J (u + εϕ) − J (u)

ε
.

We have found that a necessary condition for u∗ to solve (P0) is that J ′(u∗;ϕ) = 0

for all ϕ ∈ C2[a, b] for which ϕ(a) = ϕ(b) = 0. If J is convex it can be shown that

this condition is also sufficient for u∗ to solve (P0). Furthermore, generalizations

to slightly different situations, for instance, when u(a) = ua is excluded from the

definition of the set D, will be considered in upcoming sections. The optimality

condition J ′(u;ϕ) = 0 can be compared to the condition that all partial derivatives

should be zero when a function of several real variables takes an extreme value.

8.1.1.1 Examples of Gateaux Derivatives

Next, we collect a few explicit examples of Gateaux derivatives of functionals.

These results will take the form of formulas to be used in subsequent sections.

1. Let J (u) = u(x0), where x0 is any point in the interval [a, b]. Then one concludes

that

J ′(u;ϕ) = lim
ε→0

(u + εϕ)(x0) − u(x0)

ε
= ϕ(x0).

2. Let

J (u) =

∫ b

a

f u dx,

for some function f . One finds

J (u + εϕ) − J (u)

ε
=

∫ b

a
f u dx + ε

∫ b

a
f ϕ dx −

∫ b

a
f u dx

ε
=

∫ b

a

f ϕ dx
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so it can be concluded that

J ′(u;ϕ) =

∫ b

a

f ϕ dx.

3. Let

J (u) =

∫ b

a

(u′)2 dx,

where u′ = du/dx. Then

J (u + εϕ) − J (u)

ε

=

∫ b

a
(u′)2 dx + ε2

∫ b

a
(ϕ′)2 dx + 2ε

∫ b

a
u′ϕ′ dx −

∫ b

a
(u′)2 dx

ε

= ε

∫ b

a

(ϕ′)2 dx + 2

∫ b

a

u′ϕ′ dx −→ 2

∫ b

a

u′ϕ′ dx as ε → 0.

Thus,

J ′(u;ϕ) = 2

∫ b

a

u′ϕ′ dx.

4. Generally it can be concluded that for

J (u) =

∫ b

a

F(u′) dx,

where F is any differentiable real function, the Gateaux derivative reads

J ′(u;ϕ) =

∫ b

a

F ′(u′)ϕ′ dx.

Note that in all these four cases u and u′ can be interchanged to produce analogous

results. In the following we will also make use of formulas containing the second

derivative u′′, which follow directly by generalizations from the above. For instance,

the Gateaux derivative of

J (u) =

∫ b

a

(u′′)2 dx

is

J ′(u;ϕ) = 2

∫ b

a

u′′ϕ′′ dx.
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8.1.1.2 Solution of a Simple Example

Consider the following problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
u

∫ 1

0

(u2 + (u′)2) dx

s.t.

⎧

⎨

⎩

u(0) = 0

u(1) = 1

u ∈ C2[0,1].

According to the previous section a necessary (and, in fact, sufficient since the prob-

lem is convex) condition for u∗ to be a solution of this problem can be found by

studying the Gateaux derivative of

J (u) =

∫ 1

0

(u2 + (u′)2) dx.

With straightforward generalization to u without prime, such a derivative can be

calculated by using item 3 above. One finds that an optimal solution u∗ satisfies

J ′(u∗;ϕ) =

∫ 1

0

(

2u∗ϕ + 2u∗′

ϕ′
)

dx = 0, (8.1)

for all

ϕ ∈ C2[0,1] such that ϕ(0) = ϕ(1) = 0. (8.2)

We integrate (8.1) by parts to obtain

[

2u∗′

ϕ
]1

0
+

∫ 1

0

(

2u∗ − 2u∗′′)

ϕ dx = 0, (8.3)

which holds for all ϕ satisfying (8.2). Due to the restriction on ϕ at the end points of

the interval, the first term of (8.3) vanishes. Once this is concluded the second term

in (8.3) can be handled by means of the following lemma, known as “the fundamen-

tal lemma of the calculus of variations”:

Lemma 8.1 If f is a continuous function on [a, b] and

∫ b

a

f η dx = 0

for all η ∈ C2[a, b] with η(a) = η(b) = 0, then f (x) = 0 for all x ∈ [a, b].

The truth of this lemma should be intuitively clear and in the following sections

we will allude to other similar lemmas without explicitly stating them. Applying
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Lemma 8.1 to (8.3), after it has been concluded that the first term is zero, one obtains

the differential equation

u∗ − u∗′′

= 0 on [0,1],

which has the solution

u∗(x) = Aex + Be−x,

where A and B are constants that are determined from the boundary conditions

u∗(0) = 0 and u∗(1) = 1. One then finds

u∗(x) =
ex − e−x

e − e−1
≈ 0.42(ex − e−x) = 0.84 sinhx.

The optimal value of J , i.e., J (u∗), is found to be approximately 1.2796. As a

control of the correctness of this result one may calculate the value of J for any

other function satisfying the constraints, e.g., u = x. The result is

J (u) =

∫ 1

0

(x2 + 1) dx =
4

3
> 1.2796.

8.1.2 Handling a Constraint

Consider the following problem:

(P1)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
u

J (u)

s.t. u ∈ D1 ⇐⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u ∈ C2[a, b]

∫ b

a

f u dx = C,

for some given function f and constant C. The essential difference between this

problem and those considered in the previous section, is a constraint in the form of

an integral. A way to handle this is to form the Lagrangian function

L(u,λ) = J (u) + λ

(∫ b

a

f u dx − C

)

,

where λ ∈ R is a Lagrangian multiplier. The following condition is necessary for

u∗ ∈ D1 to solve (P1):

L′(u∗, λ;ϕ) = J ′(u;ϕ) + λ

∫ b

a

f ϕ dx = 0, (8.4)

for all ϕ ∈ C2[a, b]. If J is convex this condition is also sufficient for optimality.

An essential fact that makes this conclusion possible is that the integral constraint is
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convex since it is linear. Equation (8.4) is a classical result of calculus of variations.

Conceptually it can be seen as a KKT condition, see Sect. 3.3, for a continuous

optimization problem.

8.1.2.1 Solution of an Example Including a Constraint

We will consider the problem of designing a container to include a certain volume

(e.g., of water), see Fig. 8.3. The container has a height of 1 unit and also a depth

of 1 unit, while the width is represented by a function x 	→ u(x); x varies from

the bottom, where x = 0, to the top of the container, where x = 1. The shape is

symmetric and the width for a certain height x is given by 2u(x).

We want to minimize the amount of material required to construct the walls of

the container, not counting top and bottom. For walls of given thickness this means

minimizing the area of the container walls. Letting s be a curve parameter so that

ds =
√

dx2 + du2 =
√

1 + (u′)2 dx,

we find that the expression to be minimized is

2

∫

1 ds + 2

∫

2u dx = 2

∫ 1

0

√

1 + (u′)2 dx + 4

∫ 1

0

u dx, (8.5)

where the number 2 in front of the integrals are included since there are four sides

of the container and the 1 in the first integral represents the depth.

Fig. 8.3 A container of height 1, depth 1 and width 2u(x)
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The constraint saying that the container should include a certain amount of vol-

ume may be written as

∫ 1

0

u dx = C,

for some number C. This constraint means that the last term in (8.5) is constant for

all admissible designs and, thus, need not be included in the objective function. In

conclusion, we are to solve the following optimization problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
u

∫ 1

0

√

1 + (u′)2 dx

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u ∈ C2[a, b]

∫ 1

0

u dx = C.

We solve this problem by writing down a Lagrangian:

L(u,λ) =

∫ 1

0

√

1 + (u′)2 dx + λ

(

∫ 1

0

u dx − C

)

.

Using items 2 and 4 of Sect. 8.1.1.1 to calculate the Gateaux derivative, the condition

for optimality, cf. (8.4), is found to be

L′(u,λ;ϕ) =

∫ 1

0

u′ϕ′

√

1 + (u′)2
dx + λ

∫ 1

0

ϕ dx = 0, (8.6)

for all ϕ ∈ C2[0,1], where, for simplicity, we write u instead of u∗. We integrate

(8.6) by parts to obtain

[

u′ϕ
√

1 + (u′)2

]1

0

+

∫ 1

0

(

λ −

(

u′

√

1 + (u′)2

)′)

ϕ dx = 0. (8.7)

Equation (8.7) should be valid for all ϕ ∈ C2[0,1]. Thus, it is also valid for all

ϕ ∈ C2[0,1] such that ϕ(0) = ϕ(1) = 0. For such a restricted set of ϕ:s, the first

term in (8.7) vanishes and Lemma 8.1 can be used to conclude that

λ =

(

u′

√

1 + (u′)2

)′

on [0,1]. (8.8)

Once this is concluded, (8.7) is reduced to

[

u′ϕ
√

1 + (u′)2

]1

0

= 0 for all ϕ(0) and ϕ(1), (8.9)
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from which we find that

u′

√

1 + (u′)2
= 0 at x = 0 and x = 1. (8.10)

The optimal function u is now governed by (8.8) and (8.10). Integrating (8.8) we

find

u′

√

1 + (u′)2
= λx + C1,

where C1 is an integration constant. From the boundary conditions (8.10) we con-

clude that C1 = λ = 0, which means that u′ = 0 and therefore

u = constant on [0,1].

From the integral constraint, representing the fixed volume of the container, one

concludes that the constant actually has the value C.

8.2 Equilibrium Principles for Distributed Parameter Systems

This section is concerned with state problems in the form of equilibrium principles.

Thus, we do not introduce any design variables that allow for modification or design

of the structure. This will be the subject of the next subsection. Three different

elastic distributed parameter systems will be considered. For each system we will

give three, essentially equivalent, problem formulations. These formulations are

1. Potential Energy Minimization—(PEM).

2. Principle of Virtual Work—(PVW).

3. Partial Differential Equation—(PDE).

For each system it will be shown, or indicated, that

(PEM) ⇐⇒ (PVW) ⇐⇒ (PDE).

We treat below, one-dimensional elasticity, a beam problem and two-dimensional

elasticity, after which we give an abstract formulation that includes all of the previ-

ous examples, as well as many other linear elastic systems.

8.2.1 One-Dimensional Elasticity

Consider the one-dimensional rod problem of Fig. 8.4. The rod, of length L, is fixed

at x = 0 and a force P is applied at x = L. The cross-sectional area A is regarded

as a function of x. The total potential energy for this system may be written as

J (u) =

∫ L

0

AE

2
(u′)2 dx − Pu(L),
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Fig. 8.4 A one-dimensional

linear elastic system with

variable area

where E is the elasticity modulus and x 	→ u(x) is the displacement distribution.

The first term in J (u) is the strain energy and the second term is the potential of

external loading.

We will consider the problem of minimizing the potential energy:

(PEM)

⎧

⎪

⎨

⎪

⎩

min
u

J (u)

s.t.

{

u ∈ C2[a, b]

u(0) = 0.

The boundary condition u(0) = 0 comes from the rod being fixed at the left end.

Since J is convex we know from the previous section that u is a solution of (PEM)

if and only if

J ′(u;ϕ) =

∫ L

0

AEu′ϕ′ dx − Pϕ(L) = 0 (8.11)

for all

ϕ ∈ C2[0,L] such that ϕ(0) = 0. (8.12)

The Gateaux derivative in (8.11) was calculated using items 1 and 3 of Sect. 8.1.1.1.

Equation (8.11) and the admissible variations (8.12) constitute the Principle of Vir-

tual Work (PVW): the term Pϕ(L) can be regarded as the work produced by the

force P when perturbing (virtually) the displacement by the field ϕ; similarly, the

integral term in (8.12) is the work of the stresses for such a perturbation. Next, we

integrate (8.11) by parts to obtain

[

AEu′ϕ
]L

0
−

∫ L

0

(

AEu′
)′

ϕ dx = Pϕ(L), (8.13)

for all ϕ satisfying (8.12). We evaluate (8.13) by first choosing any ϕ which in

addition to (8.12) satisfies ϕ(L) = 0. For such a subset of admissible ϕ:s, the first

term of (8.13) vanishes and Lemma 8.1 gives

(

AEu′
)′

= 0 on [0,L]. (8.14)

This result is substituted into (8.13) which makes the second term disappear. By

returning to the admissible ϕ:s of (8.12) we conclude from the remaining term of
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(8.13) that

AEu′ = P at x = L. (8.15)

In conclusion, a displacement distribution u that makes the potential energy take

a minimum value, i.e., that solves (PEM), is governed by the differential equation

(8.14), the boundary conditions (8.15) and u(0) = 0. The formulation given by these

equations is called the Partial Differential Equation, (PDE), formulation. We recog-

nize this formulation as one that governs equilibrium of the rod and we may say that

minimizing the potential energy means finding an equilibrium displacement.

Note how the two boundary conditions are introduced in different ways when

the problem is seen as a minimization problem: the condition u(0) = 0 is a part

of the definition of the competing, or admissible, displacements, while (8.15) is an

optimality condition resulting from making the Gateaux derivative zero. There is

a terminology for these two types of boundary conditions: u(0) = 0 is called an

essential boundary condition, while (8.15) is a natural boundary condition.

8.2.2 Beam Problem

Consider the Euler-Bernoulli beam of Fig. 8.5. The beam is of length L and is built-

in at both ends so the boundary conditions on transverse displacement x 	→ u(x)

and its derivative are u(0) = u(L) = u′(0) = u′(L) = 0. The area moment of inertia

I may be a function of x. The beam is acted on by a possibly nonconstant transverse

force per unit length q . The total potential energy for this system may be written as

J (u) =

∫ L

0

EI

2
(u′′)2 dx −

∫ L

0

qu dx,

where E is the elasticity modulus. As usual, the first term in J (u) is the strain energy

and the second term is the potential of external loading.

We will consider the problem of minimizing the potential energy:

(PEM)

⎧

⎨

⎩

min
u

J (u)

s.t. u(0) = u(L) = u′(0) = u′(L) = 0,

Fig. 8.5 A built-in beam
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where, for simplicity, we have not explicitly expressed the degree of smoothness

required for u.

We know that u is a solution of (PEM) if and only if

J ′(u;ϕ) =

∫ L

0

EIu′′ϕ′′ dx −

∫ L

0

qϕ dx = 0 (8.16)

for all

ϕ such that ϕ(0) = ϕ(L) = ϕ′(0) = ϕ′(L) = 0. (8.17)

The Gateaux derivative in (8.16) was calculated using items 2 and 3 of Sect. 8.1.1.1.

Equation (8.16) and the admissible variations (8.17) constitute the Principle of Vir-

tual Work (PVW). We integrate (8.16) twice by parts: the first integration gives

[

EIu′′ϕ′
]L

0
−

∫ L

0

(

EIu′′
)′

ϕ′ dx =

∫ L

0

qϕ dx,

where the first term vanishes due to (8.17), and the second integration gives

[

−(EIu′′)ϕ
]L

0
+

∫ L

0

[(

EIu′′
)′′

− q
]

ϕ dx = 0, (8.18)

where, again, the first term vanishes due to (8.17). Now, Lemma 8.1 gives

(

EIu′′
)′′

= q on [0,L], (8.19)

which is the Euler-Bernoulli beam deflection equation. Equation (8.19), together

with boundary conditions, represent the (PDE) formulation for this system. Note

that all boundary conditions are essential such conditions in this example.

8.2.3 Two-Dimensional Elasticity

Consider a two-dimensional domain Ω ∈ R2 and let h be a thickness. The three-

dimensional domain Ω × [0, h] is occupied by a linear elastic body, a sheet, which

is loaded, and also deforms, in the plane containing Ω . The boundary of Ω is de-

composed into the two parts, Γt and Γu, and a point in Ω is denoted x = (x, y).

External forces acting on the body are force per unit area b(x) ∈ R2, defined for

x ∈ Ω , and force per unit length t(x) ∈ R2, defined for x ∈ Γt . The domain Ω , its

boundaries, and the loadings are shown in Fig. 8.6. Internal forces of the sheet can

be represented by the normal stresses σx and σy and the shear stress σxy . A column

vector is formed from these stresses:

σ = [σx, σy, σxy]
T .
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Fig. 8.6 The two-dimensional elastic domain Ω

We want to write down the equations governing equilibrium for the linear elastic

body. To that end, we use a notational scheme that can be found in, e.g., Ottosen and

Petersson [24]. We define an operator matrix as

∇
T =

⎡

⎢

⎣

∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

⎤

⎥

⎦

and equilibrium then reads

∇
T (hσ ) + b = 0 on Ω. (8.20)

On the boundary part Γt , there must be equilibrium between the internal forces

represented by σ and the external boundary force t . This may be formulated by

introducing the matrix

N =
[

nx 0 ny

0 ny nx

]

where n = (nx, ny) is the unit outward normal vector of Γt . Boundary equilibrium

then reads

N(hσ ) = t on Γt . (8.21)

This equation reads in components

tx = (hσx)nx + (hσxy)ny

ty = (hσxy)nx + (hσy)ny .

The displacement is a vector u = [ux, uy]T . On Γu the body is fixed so this

displacement vector is zero, i.e.,

u = 0 on Γu. (8.22)
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What remains to be specified is the constitutive equation for the linear elastic

body. Such an equation is written in terms of strains, which can be collected in a

column vector ε and are defined by

ε = ∇u. (8.23)

The constitutive law of linear elasticity, usually known as Hooke’s law, now reads

σ = Dε, (8.24)

where D is the constitutive matrix. For an isotropic material, assuming plane stress

conditions, this matrix was introduced already on page 106 and reads

D = E

1 − ν2

⎡

⎣

1 ν 0

ν 1 0

0 0
1 − ν

2

⎤

⎦ , (8.25)

where E is Young’s modulus and ν is Poisson’s ratio.

In summary, the problem of two-dimensional linear elasticity is governed by

Eqs. (8.20), (8.21), (8.22), (8.23) and (8.24). We eliminate σ and ε from these

equations to obtain the Partial Differential Equation formulation, which is to find

u : Ω → R2 such that

(PDE)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇
T (hD∇u) + b = 0 on Ω

N(hD∇u) = t on Γt

u = 0 on Γu.

Following a standard procedure, involving a two-dimensional version of

Lemma 8.1, it can be shown that for sufficiently smooth displacement fields, the

(PDE) formulation is equivalent to the Principle of Virtual Work:

(PVW)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find u : Ω → R2 such that u = 0 on Γu and

∫

Ω

(∇v)T hD∇u dA =

∫

Γt

v
T
t ds +

∫

Ω

v
T
b dA

for all v : Ω → R2 that equals zero on Γu.

Finally, we consider the total potential energy

J (u) =
1

2

∫

Ω

(∇u)T hD∇u dA −

∫

Γt

u
T
t ds −

∫

Ω

u
T
b dA,

where, as usual, the first term is the strain energy and the second two terms are the

potential of external loading. We consider the minimization of potential energy over
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admissible displacement fields:

(PEM)

⎧

⎨

⎩

min
u

J (u)

s.t. u = 0 on Γu.

This is a convex problem and the optimality condition becomes

J ′(u;v) = 0 for all v : Ω → R2 that equals zero on Γu ⇐⇒ (PVW),

and so we have equivalence between our three problems.

Note that (PDE) contains second order derivatives with respect to the displace-

ment, while the other two formulations contain only first order derivatives. Thus,

(PEM) and (PVW) make sense for a larger class of displacement fields than (PDE)

and, therefore, the latter formulation is called a strong formulation, while the other

two are weak formulations.

8.2.4 Abstract Equilibrium Principles

The three distributed parameter systems of previous subsections can be covered by

one abstract formulation. To that end, the total potential energy is written as

J (V) =
1

2
a(V,V) − ℓ(V),

where

• V belongs to a set K of admissible displacement fields, i.e., fields that are suffi-

ciently regular and satisfy necessary, or kinematic, boundary conditions,

• a is a symmetric bilinear functional, i.e., it satisfies a(U,V) = a(V,U) for all

V,U ∈ K and it is linear in both of its arguments, and

• ℓ is a linear functional.

Comparing with previous subsections, V ∈ K should be identified with the longi-

tudinal displacement of a rod, denoted u, transverse displacement for a beam, also

denoted u, or the displacement vector of a sheet, denoted u.

The problem of Potential Energy Minimization can abstractly be written

(PEM) Find U ∈ K such that J (U) ≤ J (V) for all V ∈ K.

An alternative statement is

(PEM) Find U ∈ K such that J (U) = min
V∈K

J (V).

The properties of a and ℓ give that the Gateaux derivative of J (U) becomes

J ′(U;V) = lim
ε→0

J (U + εV) − J (U)

ε
= a(U,V) − ℓ(V).



8.3 The Design Problem 163

The Principle of Virtual Work, which is equivalent to (PEM), then follows by re-

quiring that the Gateaux derivative is zero for all admissible variations. We obtain

(PVW) Find U ∈ K such that a(U,V) = ℓ(V) for all V ∈ K,

where it has been assumed, for simplicity, that both the solution function U and the

variation V belong to the same set K .

An identity that will be used in the next section follows by taking the arbitrary

function V ∈ K to be the solution U in (PVW):

a(U,U) = ℓ(U). (8.26)

This equality is known as Clapeyron’s theorem in applied elasticity texts.

8.3 The Design Problem

With reference to the abstract equilibrium principle introduced in the last paragraph

of the last section, we will consider design problems where a design function, de-

noted by ρ, enters linearly in the bilinear form a. It will be assumed that the bilinear

form, now considered as a function of ρ as well as of the displacement field V , can

be written

a(ρ,V,V) = 2

∫

Ω

ρe(V) dΩ. (8.27)

Here, e is the specific strain energy, and the integration domain Ω and the integration

element dΩ are made concrete in each special application of the abstract theory. The

specific strain energy is a quadratic function of the displacement. If ρ dΩ has the

physical dimension of volume, which is the case in most applications, then the term

specific means per volume.

The fact that ρ enters linearly in a is assumed since, as will be indicated in

Chap. 9, if a nonlinear dependence is present there will be difficulties related to

nonexistence of solutions of the corresponding design problem. These difficulties

can be fixed by introducing restrictions, but involve technicalities that we refrain

from discussing until later. Furthermore, as will also be understood later, a linear

dependence gives a convex problem, but a nonlinear dependence usually leads to a

nonconvex problem.

Our design goal is to make the structure as stiff as possible. To that end we use

as objective function the value of the linear form ℓ for the equilibrium displacement

field U , i.e., ℓ(U). This measure is called compliance and is the inverse of a global

stiffness, so when we minimize compliance the structure is made as stiff as possible.

From (8.26) we conclude that compliance is also equal to the bilinear form a when

evaluated for the equilibrium displacement. In this context, see also Chap. 5, where

compliance was used as objective when optimizing truss structures.
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The designs that are allowed to compete during the design optimization are those

that satisfy
∫

Ω

ρ dΩ = V, (8.28)

for a given constant V . In all applications of the general theory that we will see

in this text, this constraint can be regarded as a constraint on available volume.

The constant V will mostly, but not always, have the physical dimension of vol-

ume. Furthermore, the particular examples presented below show that, for physical

reasons, the following additional constraint can always be enforced:

ρ(x) ≥ 0 for all x ∈ Ω. (8.29)

Summarizing, we have the following optimal design problem:

(Ps)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
U ,ρ

ℓ(U)

s.t.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

U ∈ K such that a(ρ,U,V) = ℓ(V) for all V ∈ K

∫

Ω

ρ dΩ = V

ρ(x) ≥ 0 for all x ∈ Ω.

The first constraint is the equilibrium constraint which we can also write as the

minimization problem

Find U ∈ K such that J (ρ,U) ≤ J (ρ,V) for all V ∈ K,

where

J (ρ,V) = 1

2
a(ρ,V,V) − ℓ(V).

The second two constraints of (Ps) are design constraints. The set of functions ρ

satisfying these constraints is denoted H, i.e.,

⎧

⎨

⎩

∫

Ω

ρ dΩ = V

ρ(x) ≥ 0 for all x ∈ Ω.

⇐⇒ ρ ∈ H.

We will now give a few explicit examples, related to the Sects. 8.2.1 through

8.2.3, where this general theory fits:

Example: One-dimensional elasticity

This example relates to the equilibrium problem in Sect. 8.2.1. For a rod or bar we

may identify V with the longitudinal displacement v and the design function ρ with
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the cross-sectional area A to obtain

a(ρ,V,V) =
∫ L

0

E(v′)2ρ dx.

The specific strain energy becomes

e(V) =
1

2
E(v′)2,

and the volume constraint can be written

∫ L

0

ρ dx = V.

Example: Beam with variable width

This example relates to Sect. 8.2.2. Consider a beam with rectangular cross section.

Such a beam has an area moment of inertia

I =
bh3

12
,

where b is the width and h is the height of the cross section. If we want the design

to enter linearly in the bilinear form, ρ may be identified with b. Identifying V with

the vertical displacement v we may write

a(ρ,V,V) =

∫ L

0

Eh3

12
(v′′)2ρ dx.

The specific strain energy becomes

e(V) =
Eh3

24
(v′′)2.

The constraint that the total volume of the beam should have a value C can be

reformulated to match the general form (8.28) as follows:

∫ L

0

hρ dx = C ⇐⇒

∫ L

0

ρ dx =
C

h
= V

so V has the physical dimension of area in this case.

Example: Two-dimensional elasticity

This example relates to Sect. 8.2.3 and will be central in the next chapter when

we introduce topology optimization methods. The displacement field V is identified
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with the displacement vector v and ρ is the thickness h. We may write

a(ρ,V,V) =
∫

Ω

(∇v)T ρD∇v dA.

The specific strain energy becomes

e(V) = 1

2
(∇v)T D∇v,

and the volume constraint is
∫ L

0

ρ dA = V.

8.3.1 Optimality Conditions

In this section, we derive optimality conditions for problem (Ps), i.e., a system of

equations that characterize a solution of this optimization problem. To that end we

can use tools from calculus of variations such as Gateaux derivatives. However, we

first write (Ps) in a nested form, i.e., we eliminate the displacement variable U . Due

to the particular form of (Ps) we can do this without really solving the equilibrium

problem and it turns out that the nested formulation is related to a max-min saddle

point problem.

For each ρ ∈ H we consider those U that are corresponding equilibrium solu-

tions, here denoted Uρ . We may use (8.26) to reformulate the objective function as

follows:

ℓ(Uρ) = 2ℓ(Uρ) − ℓ(Uρ) = 2ℓ(Uρ) − a(ρ,Uρ,Uρ)

= −2J (ρ,Uρ) = −2 min
V∈K

J (ρ,V),

where the last two steps used the definition of the total potential energy and the fact

that (PEM) implies that

J (ρ,Uρ) = min
V∈K

J (ρ,V).

Inserting this rewritten objective function into (Ps) and removing the, now always

satisfied, equilibrium condition we get the following problem:

(Ps)
alt max

ρ∈H
φ(ρ),

where

φ(ρ) = min
V∈K

J (ρ,V).
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Since Uρ is not present in this rewriting, we have a nested formulation of (Ps).

The max-min character of (Ps)
alt hints at a saddle point formulation. In fact, a

solution ρ∗ of (Ps)
alt is also the ρ-part of the solution of the following saddle point

problem:

(SPs)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find U ∈ K and ρ∗ ∈ H such that

J (ρ,U) ≤ J (ρ∗,U) ≤ J (ρ∗,V)

for all V ∈ K and ρ ∈H.

A solution of (SPs) is such that U is an equilibrium solution for ρ∗, i.e., the right-

hand inequality holds, and, simultaneously, ρ∗ maximizes J for U , i.e., the left-hand

inequality holds.

The connection between (Ps)
alt and (SPs) follows since J (ρ,U) is a convex-

concave function: it is quadratic and convex in the second argument and linear and,

thus, concave in the first argument. In the next chapter we will look at similar prob-

lems where the functional is nonconcave in the first argument.

Optimality conditions for the saddle point problem, and thus for (Ps), can be

found by considering stationary points for the Lagrangian function

L(ρ,U, λ) = J (ρ,U) + λ

(∫

Ω

ρ dΩ − V

)

,

where, considering (8.27), we have

J (ρ,U) =
1

2

∫

Ω

ρe(U) dΩ − ℓ(U).

A condition for optimality becomes

L′(ρ,U, λ;ϕ) =

∫

Ω

ϕe(U) dΩ + λ

∫

Ω

ϕ dΩ = 0,

for all functions ϕ defined on Ω . This is rewritten as

∫

Ω

ϕ(λ + e(U)) dΩ = 0,

for all ϕ. By applying Lemma 8.1, or rather a generalization of this lemma since

Ω may be more general than an interval of the real line, we find

e(U) = −λ = constant in Ω. (8.30)

We may summarize the result as a theorem:

Theorem 8.1 Assuming that the constraint (8.29) is not active, the functions U ∈ K

and ρ∗ ∈H solve the maximum stiffness problem (Ps) if the specific strain energy is

constant in Ω , i.e, equation (8.30) holds, and U is an equilibrium displacement for

the design ρ∗.
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If ρ is allowed to take the value zero somewhere in Ω , the contents of Theo-

rem 8.1 still holds but the optimality condition (8.30) needs to be replaced by

e(U) =
{

constant on the part of Ω where ρ > 0

any function on the part of Ω where ρ = 0.
(8.31)

8.3.2 The Stiffest Rod

Consider the one-dimensional rod problem of Fig. 8.7. The rod, of length 1, is

fixed at x = 0 and a force per unit length, b > 0, is applied. The cross-sectional area

ρ is regarded as a function of x. We want to find the distribution of this area that

gives the stiffest structure. The available material volume is V and therefore

∫ 1

0

ρ(x) dx = V. (8.32)

The total potential energy for this system may be written as

J (ρ, v) = 1

2

∫ 1

0

E(v′)2ρ dx −

∫ 1

0

bv dx,

where E is the elasticity modulus and the specific strain energy is

e(V) =
1

2
E(v′)2.

The general theory has shown that the rod is maximally stiff when the specific strain

energy is constant, i.e., when

E(u′)2 = λ ⇔ |u′| =

√

λ

E
(8.33)

Fig. 8.7 A rod for which we

like to find the optimal cross

section distribution ρ(x)
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for a constant λ which must be positive, and for the equilibrium displacement u.

Solutions to the optimal stiffness problem satisfy (8.32) and (8.33) together with

equilibrium constraints on the displacement. These are found by minimizing the

potential energy, i.e., by investigating the condition that the Gateaux derivative of

the potential energy is zero:

J ′(ρ,u;ϕ) =

∫ 1

0

ρEu′ϕ′ dx −

∫ 1

0

bϕ′ dx = 0

for all ϕ such that ϕ(0) = 0. Integrating this expression by parts gives

[

ρEu′ϕ
]1

0
−

∫ 1

0

[

(ρEu′)′ + b
]

dx = 0.

By using Lemma 8.1 and particular choices for the test function ϕ we find that

(ρEu′)′ + b = 0 on (0,1) (8.34)

and

ρEu′ = 0 at x = 1. (8.35)

An optimal solution is now fully characterized by (8.32), (8.33), (8.34) and (8.35)

together with the boundary condition u(0) = 0. These equations are solved as fol-

lows: From (8.34) one concludes that

ρu′ = −
b

E
x + C1,

for some constant C1. The boundary condition (8.35) implies that this constant is

equal to −b/E so we know that

ρu′ =
b

E
(1 − x) on (0,1).

Since we can conclude that the right-hand side of this expression is nonnegative and

so is also ρ, it is found that

ρ|u′| =
b

E
(1 − x)

and by (8.33) one finds

ρ = C2(1 − x),

where C2 is a constant. The value of this constant is found by substituting into

(8.32), which gives C2 = 2V , so our optimal cross section distribution is the wedge

shape

ρ = 2V (1 − x).
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8.3.3 Beam Stiffness Optimization

Before optimizing the distribution of material along the length of a beam we will

consider the shape of an isolated cross section. In any beam problem the magnitude

of the displacement is proportional to the inverse of the area moment of inertia I .

With reference to Fig. 8.8, the moment of inertia for bending in the z-direction

is

I =
∫

A

z2 dA.

Given a fixed area measure we want to maximize I by changing the shape of the

cross section. To that end we introduce two design variables, x1 and x2, according

to Fig. 8.9. The following problem is now considered, based on the idea that we

Fig. 8.8 Cross-sectional area

Fig. 8.9 Definition of design

variables
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want to minimize the beam displacement:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
x1,x2

I (x1, x2)

s.t.

{

ε ≤ xi ≤ 1 (i = 1,2)

x1 + x2 = 1 (given area)

where ε is a small given number. One finds

I (x1, x2) = 2

∫ 1/2

0

x2z
2 dz + 2

∫ 1

1/2

x1z
2 dz = 1

12
x2 + 7

12
x1.

The constraint of given area, x2 = 1 − x1, implies that

I (x1, x2) = 1

12
+ x1

2
,

so our problem now becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
x1

x1

s.t.

{

ε ≤ x1 ≤ 1

ε ≤ 1 − x1 ≤ 1 ⇔ [x1 ≤ 1 − ε, x1 ≥ 0].

Clearly the solution is x∗
1 = 1 − ε which implies x∗

2 = ε. Geometrically this is an

I-beam as shown in Fig. 8.10. The optimum value of the bending moment of inertia

is

I (x∗
1 , x∗

2 ) =
ε

24
+

7

24
(1 − ε) →

7

24
as ε → 0.

Clearly, the optimum cross section is achieved when as much material as possible

is placed in the flanges: in practice, the waist keeps the flanges in place and carries

some shear stress, but almost all bending stiffness comes from the flanges.

Fig. 8.10 Optimal beam

cross section in the form of an

I-beam
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Fig. 8.11 Beam cross section

shape used in the stiffness

optimization problem

represented in Fig. 8.12

Fig. 8.12 Beam to be

optimized

We now return to the stiffness optimization problem of choosing an optimal func-

tion ρ(x). Since the I-beam seems to be a good cross section shape we choose this

and let ρ(x) represent its width, as shown in Fig. 8.11. In this figure, ε is a small

number, t and H are fixed and ρ(x) varies along the length of the beam. Fig. 8.12

shows the beam to be optimized: it is hinged at the ends, of length 1 and is acted on

by a constant load per unit length q . The constraint that a fixed volume of material

V is available is written

∫ 1

0

2ρt dx = V. (8.36)

From Steiner’s theorem, which should be well known from elementary courses, we

find that as ε → 0 the cross section area moment of inertia becomes

I = 2

(

t3ρ

12
+

(

H

2

)2

ρt

)

= I0ρ,

where we introduced the notation I0. The total potential energy of the beam in

Fig. 8.12 can now be written

J (ρ, v) =
EI0

2

∫ 1

0

ρ(v′′)2 dx −

∫ 1

0

qv dx,



8.3 The Design Problem 173

where, as usual, E is the elasticity coefficient. We read off the specific strain energy

as

e(V) = EI0

2
(v′′)2

and the condition of constant such energy, expressed in Theorem 8.1, reads

|u′′| = c (8.37)

for some constant c.

The optimal solution is governed by (8.36) and (8.37) together with equilibrium

equations. We find these by looking at the Gateaux derivative of J (ρ, v):

J ′(ρ,u;ϕ) = EI0

∫ 1

0

ρu′′ϕ′′ dx −

∫ 1

0

qϕ dx = 0,

for all ϕ such that ϕ(0) = ϕ(1) = 0. We integrate by parts twice to obtain

[

EI0ρu′′ϕ′
]1

0
−
[

(EI0ρu′′)′ϕ
]1

0
+

∫ 1

0

[

(EI0ρu′′)′′ − q
]

ϕ dx = 0,

where the second term vanishes since ϕ(0) = ϕ(1) = 0. By appropriate choices of ϕ

and by using Lemma 8.1 we find

(ρu′′)′′ =
q

EI0
in (0,1), (8.38)

ρu′′ = 0 at x = 0 and x = 1. (8.39)

The boundary condition (8.39) says that the ends of the beam are moment free.

We now solve the above numbered equations to obtain the optimal distribution

of the beam width ρ. Equation (8.38) and the boundary conditions (8.39) give

ρu′′ = −
q

2EI0
x(1 − x).

Since the right-hand side of this equation is nonpositive and since ρ is nonnegative,

the optimality condition (8.37) gives

ρ = Cx(1 − x),

for some constant C. The value of this constant is found by substituting into (8.36).

We find

ρ =
3V

t
x(1 − x).
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8.4 Exercises

Exercise 8.1 Find the function u that minimizes

J (u) =
∫ 1

0

(

1 + (u′′)2
)

dx,

subject to the boundary conditions u(0) = 0, u′(0) = 1, u(1) = 1 and u′(1) = 1.

Exercise 8.2 As indicated in Sect. 8.1, calculus of variations can be used to show

that the shortest path between two points in a plane is a straight line. The problem

of finding the shortest path was formulated as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
u

∫ b

a

√

1 + (u′)2 dx

s.t.

{

ua = u(a)

ub = u(b).

Find the function that solves this problem and show that it is a straight line.

Exercise 8.3 For the Euler-Bernoulli beams shown in Fig. 8.13, write down the

potential energies and derive from them the corresponding (PDE) formulations.

Exercise 8.4 How would the shape of the optimal rod in Sect. 8.3.2 change if the

constant load b would be negative?

Exercise 8.5 How would the shape of the optimal rod in Sect. 8.3.2 change if the

elasticity coefficient E is a linear function of x?

Exercise 8.6 Calculate the equilibrium displacement distribution corresponding to

the optimal shape of the rod in Sect. 8.3.2.

Fig. 8.13 The two different

beams of Exercise 8.3
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Exercise 8.7 An elastic rod of length L and Young’s modulus E, shown in

Fig. 8.14, is fixed at x = 0 and subject to a force of magnitude b0L, for a constant

b0, at x = L. The rod is also subjected to a body force (per unit length)

b(x) = b0(1 − x/L).

Find the cross-sectional area function ρ(x) that maximizes stiffness subject to the

constraint
∫ L

0

ρ dx = V

on available volume.

Exercise 8.8 Consider an elastic rod of length 2L and Young’s modulus E that

is fixed at both x = 0 and x = 2L, and which is shown in Fig. 8.15. The rod is

subjected to a constant body force (per unit length) b. Find the cross-sectional area

function ρ(x) that maximizes stiffness subject to the constraint

∫ 2L

0

ρ dx = 2V

on available volume. The equilibrium conditions that one routinely derives by min-

imizing potential energy assumes sufficient smoothness of the displacement field

Fig. 8.14 The rod of

Exercise 8.7

Fig. 8.15 The rod of

Exercise 8.8
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u and the design ρ. At a point where u and/or ρ is continuous but not differentiable

we may use the equilibrium condition

(ρEu′)+ = (ρEu′)−,

where + and − denotes left and right limits.

Exercise 8.9 Verify by means of examples the claim made in the beginning of

Sect. 8.3.3 that “in any beam problem the magnitude of the displacement is pro-

portional to the inverse of the area moment of inertia.”

Exercise 8.10 Consider the cantilever beam in the upper part of Fig. 8.13. Let q = 0

and P > 0, and let the beam be of length L and having a rectangular cross section

with constant height h and variable width ρ(x). Suppose that the available volume

is V and

1. calculate the distribution ρ(x) that gives optimal stiffness.

2. calculate the distribution ρ(x) that gives a constant distribution of maximum

normal stress over the length of the bar. Compare with 1.

Exercise 8.11 A beam of length L is freely supported at its both ends (at x = 0 and

x = L), see Fig. 8.16. It is subjected to a constant load intensity (per unit length)

q(x) = q0 > 0 and a couple M0 > 0 is applied at its right end (at x = L).

Suppose that the beam has a rectangular cross section with a fixed height h and

a variable width ρ. Then the total potential energy is given by the functional

J (ρ, v) =
Eh3

24

∫ L

0

ρ(v′′)2 dx −

∫ L

0

qv dx + M0v
′(L),

where E is the Young’s modulus.

Find the width function ρ(x) that gives maximum stiffness, given the constraint

∫ L

0

hρ(x) dx = V

on available volume.

Exercise 8.12 A shaft of length L is fixed at one end and subjected to a twisting mo-

ment M at the other end, see Fig. 8.17. The rotation of a cross section is denoted κ

Fig. 8.16 The beam of

Exercise 8.11
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Fig. 8.17 The thin-walled cylinder of Exercise 8.12

and is a function of the coordinate x. The shape of each cross section is a thin-walled

cylinder with radius a and material thickness ρ = ρ(x). The total potential energy

of such a system is given by the functional

J (ρ, κ) = 1

2

∫ L

0

GK(ρ)

(

dκ

dx

)2

dx − Mκ(L),

where G is the shear modulus and

K(ρ) = 2πa3ρ

is the polar moment of inertia.

Find the material thickness distribution ρ that gives maximum stiffness, given

the constraint

2πa

∫ L

0

ρ dx = V

on available volume.



Chapter 9

Topology Optimization of Distributed Parameter
Systems

This chapter gives a brief introduction to formulations and solution techniques for

topology optimization of elastic structures. As a starting point we formulate the

problem of optimizing stiffness of a sheet by finding an optimal thickness distribu-

tion, which is basically a special case of the general stiffness optimization problem

of the previous chapter and which relates closely to the truss problem of Chap. 5.

The classical optimality criteria method has shown to be very efficient and is widely

used for problems of this type. We show that this method can be seen as a special

case of the sequential convex approximation method of Chap. 4. Formulations and

solution techniques for topology optimization are next introduced as a modification

of the variable thickness sheet problem where penalization is introduced to favor

discrete-valued thickness distributions. We discuss the occurrence of ill-posedness

of formulations and numerical instabilities, and possible cures of these difficulties

based on restriction or relaxation. As a standard reference for structural topology

optimization we mention Bendsøe and Sigmund [4].

9.1 The Variable Thickness Sheet Problem

The problem that we formulate here is a stiffness optimization problem of the type

previously discussed in the discrete setting of a truss in Chap. 5 and in the continu-

ous setting in Chap. 8. We perform a finite element discretization and show how to

solve the problem by an optimality criteria method.

9.1.1 Problem Statement and FE-Discretization

The stiffness optimization problem of this section is the variable thickness sheet

problem, i.e., a case of two-dimensional elasticity, as shown in Fig. 8.6, where the

thickness is taken as the design function, see Fig. 9.1.

This problem can be seen as a slight generalization of the abstract design problem

introduced in Sect. 8.3; the generalization being that we introduce an upper bound

ρ and a nonzero lower bound ρ > 0 on the design or thickness function ρ. That is,

the set H is now defined by

⎧

⎨

⎩

∫

Ω

ρ dΩ = V

ρ ≤ ρ(x) ≤ ρ for all x ∈ Ω.

⇐⇒ ρ ∈ H.

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,

© Springer Science + Business Media B.V. 2009
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Fig. 9.1 The variable thickness sheet problem where we are seeking for an optimal thickness

distribution ρ(x)

Thus, we are to solve the following problem:

(Psheet
s )

⎧

⎪

⎨

⎪

⎩

min
u,ρ

ℓ(u)

s.t.

{

u ∈ K such that a(ρ,u,v) = ℓ(v) for all u ∈ K

ρ ∈H.

Here

a(ρ,u,v) =
∫

Ω

(∇u)T ρD∇v dA,

where D is given in (8.25) for an isotropic material in plane stress; assuming no

volume forces, the compliance is given by

ℓ(v) =
∫

Γt

vT t ds,

and the set of admissible displacements is defined as

K = {v : Ω → R2 | v = 0 on Γu}.

We introduce a Finite Element (FE) discretization of (Psheet
s ). The resulting prob-

lem will then be mathematically equivalent to the truss problem treated in Chap. 5,

which may be utilized in several places.

The two-dimensional domain Ω is divided into finite elements Ωe, e = 1, . . . , n.

Using standard FE interpolation for displacement fields and approximating ρ as

constant in each finite element, a typical element stiffness matrix can be written

ke(xe) = xek
0
e,
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where xe is the approximate value of ρ in Ωe and k0
e is the element stiffness matrix

for unit thickness. Then the global stiffness matrix can be written as

K(x) =
n

∑

e=1

xeK
0
e

where x = [x1, . . . , xn]T is a vector of approximate thicknesses and

K0
e = CT

e k0
eCe

is a global version of the unit thickness stiffness matrix of element e. Here, Ce is a

kinematic matrix that changes local degrees-of-freedoms for global ones, i.e., per-

forms the assembly process. Note that matrices analogous to these where introduced

in Chap. 5.

The introduction of a finite element approximation of the displacement field

means that the compliance is approximated as

∫

Γt

uT t ds ≈ F T u,

where u is the vector of nodal displacements and F is the vector of nodal forces.

Note that we use the same notation for both the field of displacements and the vector

of nodal displacements. Moreover, the equilibrium problem becomes

K(x)u = F .

Finally, the assumption of constant thickness in each finite element introduces

the following approximation of the integral in the volume constraint:

∫

Ω

ρ dΩ =

n
∑

e=1

∫

Ωe

ρ dA ≈

n
∑

e=1

xeae = xT a,

where ae is the area of element Ωe and a = [a1, . . . , an]
T is a vector of such areas.

An FE-discretized version of (Psheet
s ) now becomes:

(Psheet
s )FE

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
u,x

F T u

s.t.

⎧

⎨

⎩

K(x)u = F

xT a = V

ρ ≤ xe ≤ ρ, e = 1, . . . , n.

A nested version of this problem is

(Psheet
s )FE

nf

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
x

C(x) = F T u(x)

s.t.

{

xT a = V

ρ ≤ xe ≤ ρ, e = 1, . . . , n,
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where u(x) = K(x)−1F .

These two problems are mathematically equivalent to the two problems intro-

duced in relation to trusses in Chap. 5. They could therefore be solved using MMA

as outlined there.

Example 9.1 We wish to determine the thickness distribution that minimizes the

compliance of the sheet in Example 7.4. The mesh is depicted in Fig. 7.27 and con-

sists of 1800 elements. Since we are dealing with a sizing optimization problem,

this mesh will be fixed throughout the iterations. The weight of the sheet is fixed to

180 units, and the density is 1. The thickness is taken to be constant over each finite

element, and has to be greater than 0.05, but smaller than 5. These thicknesses are

the design variables and, thus, there are 1800 such variables in this problem. The

problem is solved using the MMA method described in Chap. 5. Figure 9.2 shows

how the thickness distribution changes during the MMA iterations. After 40 itera-

tions, the solution barely changes at all. Figure 9.3 illustrates how the compliance

and the weight change during the optimization.

9.1.2 The Optimality Criteria (OC) Method

A classical approach to the numerical solution of a discretized structural optimiza-

tion problem of the type given in (Psheet
s )FE

nf , is the optimality criteria (OC) method.

This method is historically older than the method of explicit convex approximations

introduced in Chap. 4 and the two classes of methods are frequently conceived as

competing alternative approaches. However, in this section we will show that, at

least for the special problem (Psheet
s ), the OC method can be seen as a special case

of the explicit convex approximation method. The reason for introducing the OC

method is that it has turned out to be very efficient for solving the topology opti-

mization problems discussed in later sections of this chapter.

Note that (Psheet
s )FE

nf is very similar to the problem that was studied for trusses in

Chap. 5, so from (5.24), we therefore have that

∂C(x)

∂xe

= −ue(x)T k0
eue(x) = −(uk

e)
T k0

eu
k
e at x = xk, (9.1)

where uk
e = ue(x

k) = Ceu(xk) and u(xk) = K(xk)−1F .

The idea that reveals the connection between OC and the method of explicit

convex approximations is a linearization of C(x) in the intervening variable

ye = x−α
e ,

where α is any number greater than zero. Since, due to positive definiteness of stiff-

ness matrices, the derivative (9.1) is always nonpositive and, therefore, α = 1 cor-

responds to the CONLIN linearization in Sect. 4.4. Using this intervening variable



9.1 The Variable Thickness Sheet Problem 183

Fig. 9.2 The thickness distribution of the sheet at various iterations
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Fig. 9.3 The history of the compliance and the weight

we then get

C(x) ≈ C(xk) +

n
∑

e=1

∂C

∂ye

∣

∣

∣

∣

x=xk

(ye − yk
e ), (9.2)

where

∂C

∂ye

=
∂C

∂xe

∂xe

∂ye

=
∂C

∂xe

1

dx−α
e

dxe

= −
1

αx−α−1
e

∂C

∂xe

= −
x1+α
e

α

∂C

∂xe

. (9.3)

Inserting (9.1) and (9.3) in (9.2) gives

C(x) ≈ const. +

n
∑

e=1

bk
ex

−α
e ,

where

bk
e =

1

a

(

(uk
e)

T k0
eu

k
e

)

(xk
e )1+a . (9.4)

We can now formulate an approximate subproblem:

(Psheet
s )FE

k

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
x

n
∑

e=1

bk
ex

−α
e

s.t.

{

xT a = V

ρ ≤ xe ≤ ρ, e = 1, . . . , n.
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This problem is convex and can be treated by Lagrangian duality. The Lagrangian

function is

L(x, λ) =
n

∑

e=1

bk
ex

−α
e + λ

(

xT a − V
)

.

The dual objective function is

ϕ(λ) = min
ρ≤xe≤ρ

L(x, λ) =
n

∑

e=1

min
ρ≤xe≤ρ

[

bk
ex

−α
e + λaexe

]

− λV.

Clearly, this function has a separable structure and ϕ(λ) can be evaluated by finding

separate minima for n functions

ϕe(xe, λ) = bk
ex

−α
e + λaexe.

Assuming that the minimum of ϕe(xe, λ) is taken inside the interval ρ ≤ xe ≤ ρ, we

can find it by seeking a stationary point:

∂ϕe(xe, λ)

∂xe

= −αbk
ex

(−α−1)
e + λae = 0,

from which we find

xe =
(

αbk
e

λae

)

1
1+α

.

By studying this value we can determine whether it was a correct assumption that

the minimum was inside the interval and the primal-dual relation becomes

xe(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ if

(

αbk
e

λae

)

1
1+α

< ρ

(

αbk
e

λae

)

1
1+α

if ρ ≤
(

αbk
e

λae

)

1
1+α

≤ ρ

ρ if

(

αbk
e

λae

)

1
1+α

> ρ.

(9.5)

This function is shown graphically in Fig. 9.4, where it is also indicated in what

intervals particular derivatives must be zero.

We can now insert xe(λ) into the Lagrangian function to obtain the dual function

ϕ(λ) explicitly. The dual problem becomes

max
λ∈R

ϕ(λ),
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Fig. 9.4 The primal-dual function xe(λ)

Fig. 9.5 Graphic illustration of the root λ∗ that solves (9.6)

where

ϕ(λ) = L(x(λ), λ) =
n

∑

e=1

ϕe(xe(λ), λ) − λV.

We solve the dual problem by seeking a stationary point of ϕ(λ). We then use the

properties of zero partial derivatives shown in Fig. 9.4:

∂ϕ(λ)

∂λ
=

n
∑

e=1

(

∂ϕe

∂xe

∂xe

∂λ
+ ∂ϕe

∂λ

)

− V =
n

∑

e=1

aexe(λ) − V = 0. (9.6)

Thus, the dual has a stationary value when the volume constraint is satisfied. Equa-

tion (9.6) is easily solved since the function that should be zero is monotonically

increasing as illustrated in Fig. 9.5. We can find a unique λ∗ that solves (9.6) by,

e.g., interval reduction.

The solution of (Psheet
s )FE

k is now given by inserting λ∗ into (9.5) and these values

of the thicknesses are taken as the next iterate of the method, i.e.,

xk+1
e = xe(λ

∗).
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If we consider only the middle alternative in (9.5) we find by using (9.4) that

xk+1
e =

(

(uk
e)

T k0
eu

k
e

λae

)
1

1+α

xk
e .

We see that the number a only appears in the combination 1/(1 + a) and we there-

fore introduce the notation

η = 1

1 + α
,

which is called a damping factor. The reason for this terminology will appear

shortly.

One step in the iteration method can now be described as follows:

Given a design (thickness) xk , solve equilibrium, i.e., find uk such that

K(xk)uk = F .

A new design iterate is then given by

xk+1
e = min

{

max

[

xk
e

(

(uk
e)

T k0
eu

k
e

λae

)η

, ρ

]

, ρ

}

,

where λ is determined by

n
∑

e=1

aex
k+1
e (λ) − V = 0.

Traditionally this is called an optimality criteria (OC) method. Such methods

were initially formulated directly on the following intuitive grounds: If the con-

straint ρ ≤ xe ≤ ρ is inactive, the method has converged if

(

(uk
e)

T k0
eu

k
e

λae

)

= 1.

This means that

(uk
e)

T k0
eu

k
e

ae

= λ = constant for all e = 1, . . . , n.

The quotient represents twice the strain energy per volume, or specific strain energy,

which is shown to be constant for every finite element at convergence, so the iter-

ation of the method attempts to modify thicknesses so as to approach such a state.
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Elements with high strain energy is expected to be low on stiffness, so we make

these elements thicker. When η is less than unity this modification is damped and,

hence, the term damping factor for η.

9.2 Penalization of Intermediate Thickness Values

The variable thickness sheet problem of the previous section is a sizing optimization

problem if the lower thickness bound is nonzero. On the other hand, if this thickness

is zero the problem also has a topology optimization character since regions where

ρ = 0 can be interpreted as new holes in Ω . Taking this observation one step further

we may think of a pure topology optimization problem where the sheet thickness

can take only the lower bound ρ = 0 and the upper bound ρ. From a practical point

of view this can concern design of a stamping operation where we are to punch out

optimal holes in a sheet of thickness ρ. Now, unfortunately, there are a number of

difficulties associated with this type of discrete optimization problem. Firstly, hav-

ing ρ equal zero produces finite elements with zero stiffness giving state problems

that are singular and not uniquely solvable, as required by the nested formulation.

Therefore, a standard procedure is to let ρ = ε, where ε is a small positive value,

but still interpreting regions where the optimal ρ = ε as holes. Secondly, optimiza-

tion algorithms for problems where variables can take only discrete values are not

very efficient for the large problems that we envisage here. Therefore, an approach

where intermediate values of the design variables are allowed but penalized should

be the more efficient one, and is described in the following. When presenting this

approach, we use ρ = 1. The reason is that the ideas are then directly applicable

for three-dimensional elasticity where ρ cannot represent a thickness, but can be

thought of as a variable which signals no material (ρ = ε ≈ 0) or material (ρ = 1).

9.2.1 Solid Isotropic Material with Penalization (SIMP)

Solid isotropic material with penalization (SIMP) means that intermediate designs

are penalized by using the following constitutive matrix in Hooke’s law:

D =
ρqE

1 − ν2

⎡

⎢

⎣

1 ν 0

ν 1 0

0 0
1 − ν

2

⎤

⎥

⎦
, (9.7)

for a constant q . Thus, the “effective” Young’s modulus is ρqE. Comparing to the

variable thickness sheet problem, the SIMP method is obtained by changing ρ for

ρq and setting ρ = ε ≈ 0 and ρ = 1.

The “effective” Young’s modulus as a function of ρ for different values of q

is shown in Fig. 9.6. We see from this figure that if q > 1, then for ρ between 0

and 1 the obtained stiffness is disproportionately low and therefore such values will
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Fig. 9.6 The “effective”

Young’s modulus as a

function of ρ for different

values of q

be avoided in the optimal solution: they will not represent an economical use of

material. Thus, we may expect an optimal solutions based on the constitutive matrix

(9.7), to consists of large regions where ρ = ε ≈ 0, i.e., “holes,” and large regions

where ρ = 1, i.e., regions where Young’s modulus is E.

SIMP can be used also for a three-dimensional integration domain Ω . We can

then no longer interpret ρ as a thickness. However, we can think of it as a sort

of generalized density, with the interpretation that ρ = ε ≈ 0 represents holes and

ρ = 1 represents solid regions with a prescribed Young’s modulus E. The physical

dimension of ρ is then no longer a length, rather it is dimensionless.

We like to see how the OC method for the sheet problem, given in the previous

section, needs to be changed to work for the SIMP method. With the constitutive

matrix (9.7), the global stiffness matrix becomes

K(x) =

n
∑

e=1

x
q
e K0

e,

and its sensitivity derivative is

∂K(x)

∂xe

= qx
q−1
e K0

e .

This means that (9.1) should be replaced by

∂C(x)

∂xe

= −ue(x)T
{

qx
q−1
e k0

e

}

ue(x).

Hence, the only modification of the OC method on page 187 that we need to do to

get the SIMP OC method is to

replace (uk
e)

T k0
eu

k
e by (uk

e)
T

{

q(xk
e )q−1k0

e

}

uk
e .
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9.2.2 Other Penalizations

In the SIMP method just described, we replaced the ρ of the variable thickness

sheet problem by η(ρ) = ρq in the constitutive equation. There are other functions

that may be used instead of the SIMP scheme to penalize intermediate values. For

instance

η(ρ) = ρ

1 + (q − 1)(1 − ρ)
,

where q should be greater that one and is a control of the level of penalization.

Another way to penalize intermediate values is to keep the original η(ρ) = ρ

in the constitutive equation, but adding a penalty term to the objective function.

A penalty function that could be used for this is

P(ρ) =
∫

Ω

(ρ − ρ)(ρ − ρ) dΩ, (9.8)

which is always positive. This function is multiplied by some large constant q and

added to the objective function. In the minimization process it should tend to small

values, which means that ρ tends towards ρ or ρ.

9.3 Well-Posedness and Potential Numerical Problems

9.3.1 The Archetype Problem and an Analogy

In the previous section we penalized intermediate values in order to achieve a “black

and white” design. Our goal was to get an approximate solution of the following

problem:

(Pa)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min
u,ρ

ℓ(u)

s.t.

⎧

⎪

⎨

⎪

⎩

u ∈ K such that a(ρ,u,v) = ℓ(v) for all u ∈ K
∫

Ω

ρ dΩ = V

point values of ρ belongs to {0,1}.

This is called the archetype problem and the linear and bilinear forms, ℓ and a, could

be related to both two- and three-dimensional elasticity with the elasticity modulus

ρE. As already indicated, the constraint that point values of ρ should belong to the

integer set {0,1} makes this an integer programming problem that is not easy to

handle. Therefore, we suggested using penalization. Now, regardless of whether we

are to treat the original integer problem or its penalization, it is reasonable to ask if

the problem is at all solvable, i.e., is it well-posed in the sense that there actually

exists a solution? The answer to this question, perhaps at first surprising, is that for
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Fig. 9.7 Introducing more and thinner bars gives a better objective function value, but there is no

end to this process if the archetype problem or its penalization is treated. Picture by Borrvall

most specific choices of boundary conditions there exists no solution of (Pa)! An

intuitive explanation of this fact follows below.

In the upper left picture in Fig. 9.7 a design essentially consisting of two bars is

shown. If we replace these bars by more but thinner bars, the stiffness can be made

larger. As indicated in Fig. 9.7, this process goes on indefinitely. Thus, by adding

more and more bars we get a stiffer and stiffer structure with thinner and thinner

bars. The situation can be compared to difficulties related to

minimizing f (x) = 1/x where x ∈H = {x ∈ R | x ≥ 1}. (9.9)

Clearly this problem has no solution since given a candidate solution x ∈ H, the

objective can be made better by simply taking xnew = x +1, and, as in the archetype

problem, this process goes on for ever.

As a remark, note that the variable thickness sheet problem is not included in

what is just said. Problem (Psheet
s ) possesses a solution, which is shown in Peters-

son [25], but when the SIMP modification is introduced to get “black and white”

designs, this property disappears with q > 1.

9.3.2 Numerical Instabilities

If one disregards the theoretical difficulty of nonexistence, indicated in the previous

subsection, and goes on to perform an FE discretization of the archetype problem

or its penalization (this is what is done in Sect. 9.2.1, where the SIMP method is

described) then several numerical difficulties may occur. These are described be-
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low. For a more thorough discussion we refer to Sigmund and Petersson [32] and

Borrvall [6].

At first it may seem as if one gets away with disregarding nonexistence, since

the problem that is produced by introducing the FE-approximation generally shows

existence of solutions. However, if one is not satisfied with the resolution of a design

picture and therefore refines the mesh and performs the optimization again, then the

new numerical result will generally not be an improved picture of the same design.

Rather, the design that is produced will be different for each new mesh: new holes

will appear and so forth. This is called mesh-dependency. Typically, one will get

more and thinner structural parts (where ρ = 1) as the mesh becomes finer, since

nothing restricts this. A consequence is that such parts will tend to be one or two

elements wide and thereby result in a structure that is artificially stiff.

Even if one treats a problem for which there exists a solution, like the variable

thickness sheet problem, a sequence of FE optimization problems, discretized by

finer and finer meshes, may not converge. This happens if the discretizations of the

two fields, the design ρ and the displacement u, are not carefully chosen. Typically

a so-called checkerboard pattern appears in such circumstances, where the design

function ρ is alternating between 0 and 1, i.e., solid and void, see Fig. 9.8. Moreover,

for a problem which has no optimal solution, checkerboards will certainly appear,

since then there is even nothing to converge to. In this case there is no correct FE

discretization whatsoever. For the variable thickness sheet problem, it was shown in

Petersson [26] that an FE discretization with nine node Lagrangian elements for u

and elementwise constant approximations for ρ, leads to solutions without checker-

boards.

A final difficulty for which there seems to be no obvious cure is nonconvex-

ity. The variable thickness sheet problem is a convex problem; convexity is a very

desirable property since every local minimum is then also global, and the global

minimum is what we are looking for. Unfortunately, penalties that help in produc-

ing “black and white” designs will give nonconvex problems: when q > 1 in the

SIMP method the problem becomes nonconvex. For such problems it is possible

that the algorithm terminates to completely different local optima for different start-

ing points. Presently there are no methods that are guaranteed to converge to global

minima, at least not for the large size problems that are typical for topology opti-

mization. It seems as if engineering intuition has to be the guide when a design is

accepted. The heuristic methods that may be used are: (1) to run the problem several

times with different starting points; (2) solve several problems where the value of q

is gradually raised from the value 1, which gives a convex problem, to higher values,

which give “black and white” designs.

Figure 9.8 shows the same problem solved three times in different ways by the

SIMP method and illustrates some of the difficulties discussed in this section. For

instance, all three solutions show checkerboards in different regions of the domain.

The upper left solution is produced by raising q in three steps, q = 1,2,3. The upper

right solution is obtained by solving directly for q = 3. Finally, the lower picture is

obtained by using 4 times as many elements as in the first two pictures. Slightly

different topologies are indicated in the three pictures showing a mesh-dependency

as well as a dependency that could be due to nonconvexity.
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Fig. 9.8 Three pictures produced by use of the SIMP method for an ill-posed problem. The up-

per two pictures are produced using the same FE mesh, but with a continuation procedure for

the penalty exponent q in the left-hand case but not in the right-hand case. The lower picture is

produced using 4 times the number of elements of the upper two pictures. These solutions show

mesh-dependency and checkerboards. The solutions were obtained by Torstenfelt

Table 9.1 is a slightly simplified version of the table in Sigmund and Petersson

[32] and summarizes what has been discussed above, as well as indicates the cure

by restriction to be discussed in the next section.

9.4 Restriction of the Archetype Problem

Nonexistence of solutions to (Pa) or its penalization occurs since nothing bounds

the number of holes or the smallest thickness of structural parts. In Sect. 9.3.1 we

considered a simple problem, defined by (9.9), which in analogy with (Pa) had no

solution since the set H was unbounded to the right. Now, say that one cannot “man-
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Table 9.1 Summary of numerical instabilities. An optimal solution to the continuum problem is

denoted ρ∗ and an optimal design obtained when solving FE-discretized problems are denoted ρ∗
h ,

where h is a mesh-size

Numerical problems Mathematical reason Possible cure

Algorithm terminates at

nonglobal minimum.

Nonconvex problem. Increase q gradually. Try several

starting designs.

Checkerboard pattern. Nonconvergence of ρ∗
h to ρ∗

as h → 0.

Increase number of nodes in dis-

placement FE. Use restriction.

Mesh-dependency. Nonexistence of ρ∗. Use restriction.

ufacture” x larger than some maximum value c. Then, one would like to replace

H = {x ∈ R | x ≥ 1} by H = {x ∈ R | 1 ≤ x ≤ c}, and with such a set the problem

becomes solvable, i.e., well-posed. We call this a restriction of the admissible set.

Similarly to this we can introduce restrictions on the set of admissible designs in

(Pa) or its penalization and thereby produce well-posed continuum problems that

behave well when FE discretized. This section describes some different ways of do-

ing this. The presentation is largely descriptive and we refer to the referenced papers

for details.

9.4.1 Bounds on the Design Gradient

A way to measure oscillations of a function is through a norm of its gradient. It has

been showed, Borrvall [6], that the family of Lp-norms can be used to reduce the

increasingly oscillating designs associated with the archetype problem and, thus,

to produce a well-posed problem. That is, the following constraint is added to the

SIMP penalized version of (Pa):

[∫

Ω

|∇ρ|p dΩ

]1/p

≤ Cp, (9.10)

where ∇ denotes the gradient, p is any integer such that 1 ≤ p ≤ ∞ and Cp > 0

is some constant. Instead of adding the Lp-norm as a constraint to (Pa) it is also

possible to multiply it by a penalty parameter and add the result to the objective

function. That is, the term

cp

[∫

Ω

|∇ρ|p dΩ

]1/p

(9.11)

is added to the objective function for some large constant cp > 0. In fact, this ap-

proach has shown to be the more numerically efficient for p < ∞.

For the extreme case p = ∞, (9.10) reduces to a pointwise bound on the gradient,

i.e.,

|∇ρ| ≤ C∞.
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This is an approach used in Petersson and Sigmund [27], where it was shown to give

mesh independent FE solutions. It has the advantage of being a local constraint on

the width of structural members. In fact, it is shown in Borrvall [6] that the minimum

width is approximately 2/C∞. However, the disadvantage is that a large number of

constraints have to be handled: instead of one global constraint, as for p < ∞, we

have a large number of local constraints. Also, designs tend not to be sharply “black

and white.”

The other extreme case p = 1 reduces to a perimeter constraint, i.e., in two di-

mensions it is a constraint on the length of the boundary between material and holes.

This constraint gives nice “black and white” designs with sharp boundaries. How-

ever, it is rather unstable and sensitive to local optima and is not recommended in

practice.

Considering intermediate values, 1 < p < ∞, Borrvall [6] recommends p = 2 as

being easiest to implement and numerically stable.

To study one effect of the choice of the constant Cp we consider a minimization

problem with objective function f (ρ). Assume that we solve the problem twice,

altering only the value of Cp from C1
p to C2

p , where C1
p < C2

p . Then, if the admis-

sible sets of the two versions of the problems are denoted H1 and H2, we have that

H1 ⊂ H2, and, therefore, f (ρ∗
2 ) ≤ f (ρ∗

1 ), where ρ∗
1 and ρ∗

2 are optimal solutions of

the two problems. Thus, in a stiffness optimization problem the structure becomes

stiffer as the value of Cp is raised. When the stiffness is raised it is also likely that

the structure will consist of thinner and more structural members. These conclusions

hold, of course, only if the error due to the FE modeling is disregarded, or if we use

the same FE mesh in both cases. For large values of Cp , members may tend to be-

come one or two elements thick, resulting in artificially stiff structures due to poor

FE-modeling.

9.4.2 Filters

In image processing, high frequency components are reduced by low pass filtering.

Something similar can be done to reduce oscillations in designs associated with the

archetype problem. The effect of a filter operator SR is shown in Fig. 9.9. The filter

operator depends on a filter radius R which determines how much of the oscillations

are kept. It can be explicitly defined by a convolution, so that the filtered design at a

point x ∈ Ω is defined by

SR(ρ)(x) =

∫

Ω

ρ(y)φ(x, y) dΩ,

where integration is with respect to the variable y ∈ Ω and the so-called filter

φ(x, y) could be

φ(x, y) =
3

πR2
max

(

0,1 −
|x − y|

R

)

, (9.12)
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Fig. 9.9 The filter operator removes oscillations. The filter radius R controls how local an oscil-

lation should be to be removed

Fig. 9.10 The filter function

(9.12)

which is shown in Fig. 9.10.

There are at least three different ways of including the filter operator in the

archetype problem. A simple but efficient approach was suggested by Sigmund [30,

31]. It consists of filtering the sensitivities in an OC or a convex approximation ap-

proach. In contrast to the two other filter methods described below there is no math-

ematical proof that this method will actually result in mesh independent designs, but

all numerical experience points in this direction.

Bruns and Torterelli [10] introduced filtering by changing the SIMP interpola-

tion function η(ρ) for η(SR(ρ)). Then the minimum width of a structural member

becomes approximately 2πR/3. This method has the disadvantage of introducing

an ambiguity as to which density to plot: the optimization is done for the unfiltered

density but the structural response is calculated for the filtered one.

Borrvall and Petersson [7] introduced filters by means of the penalty function

(9.8). They kept the linear dependence on ρ in the equilibrium equation and added

a penalty term to the objective function. However, the penalty function P(ρ) is not

regular enough to result in a well-posed problem: the same difficulties as with the

original SIMP method occur. Therefore, a regularized penalty in the form P(SR(ρ))

was used, which does result in a well-posed problem and a well behaved FE dis-

cretization. Since contributions to the penalty function comes from the region be-

tween “black and white” in a solution, this method is very similar to the perimeter

constraint of the previous subsection, but seems to be more numerically stable. Al-

though regularized penalty works well for the stiffness optimization problem, a dis-

advantage, compared to using bounds on the design variable, is that it is not clear

that it can be extended to other choices of objective function.
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Fig. 9.11 Convergence study for the regularized penalty method. The loading and boundary con-

ditions were given in Fig. 1.5. The solutions were obtained by Borrvall and Petersson

Fig. 9.12 The same problem solved with different filter radius. The solutions were obtained by

Borrvall and Petersson

Figure 9.11 shows four different solutions for a so-called MBB beam, using reg-

ularized penalty. These solutions where presented in Borrvall and Petersson [7]. The

upper solution is for 2 400 elements, the next one uses 9 600 elements and the two

lower solutions are for 38 400 elements. The bottom solution uses a larger penalty

parameter than in the other three cases.

The solutions in Fig. 9.12 are also from Borrvall and Petersson [7] and show the

dependency on the filter radius R. In both solutions 16 000 elements are used.
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Fig. 9.13 A three-dimensional cantilever beam. The filter radius is R = 0.5L, and the available

volume is 50% of the box in the left-hand picture. The solution was obtained by Borrvall and

Petersson

Fig. 9.14 A three-dimensional crank structure. The filter radius is R = 0.1L, and the available

volume is 50% of the box in the left-hand picture. The solution was obtained by Borrvall and

Petersson

Finally in this section we give some three-dimensional results from Borrvall and

Petersson [8], again using regularized penalty. Figure 9.13 shows a cantilever beam

using 245 760 elements. Figure 9.14 shows a crank type structure that was obtained

using 192 000 elements. In Fig. 9.15 the same solution is shown from different

views. Note the I-beam type structure of the outer part of the structure, while close

to the wall the optimum shape tends to have a circular hole.

9.5 Relaxation of the Archetype Problem

Consider the simple problem (9.9), used for analogy in Sect. 9.3.1. This problem

does not have a solution, but it was noted in the introduction of the previous section

that it could be made solvable by restricting the admissible set. Another way of
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Fig. 9.15 The crank structure of Fig. 9.14 showed from different views. The solution was obtained

by Borrvall and Petersson

making this simple problem solvable is to enlarge H. This is called relaxation. We

can replace the old H by H = {x ∈ R | x ≥ 1} ∪ {+∞} and extend the definition

of f to this new value, e.g., by letting

f (x) = 1/x if x ∈ R and f (+∞) = 0.

Then the problem of minimizing f for x ∈H has a solution, namely x = +∞. How-

ever, the solution has a character which is perhaps not of the sort we are interested

in.

Let us return to the archetype problem (Pa). A way of enlarging the set of admis-

sible designs, i.e., doing relaxation, is to allow an infinite perforation by introducing

a microscale. This is achieved through homogenization. The idea is that every point

in the body has a microstructure that is infinitely small and represented by a unit

cell. Given such a unit cell there are formulas from which one can calculate global

material properties. It turns out that not all types of unit cells result in a proper re-

laxation in the sense that they give well-posed problems. However, so-called rank 2

microstructure has been shown to give such a problem for compliance minimiza-

tion. With this microstructure one can obtain a problem for which FE solutions are

mesh independent and convergent. Experience shows, however, that resulting so-

lutions consist of large regions of intermediate values for the design density ρ and

resembles what is found for the variable thickness sheet problem, see Fig. 9.2. Thus,

one is not achieving a topology optimization on the macro scale, which limits the

use of this method for such purposes. For an introduction to relaxation and the ho-

mogenization approach to topology optimization problems we refer to Bendsøe and

Sigmund [4].
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9.6 Exercises

Exercise 9.1 Compare the MMA approximation in Sect. 5.3 to the linearization

used in deriving the OC method of Sect. 9.1.2. Under what circumstances do the

two resulting methods coincide?

Exercise 9.2 Figure 9.16 shows three solutions of the same stiffness optimization

problem: an MBB beam where we have taken account of symmetry. One of the

solutions has been obtained without restriction, one with a low L2 bound, and one

with a high L2 bound. Which ones? The L2 bound is given in (9.10). Among the

two obtained by using an L2 bound, which one has the smallest compliance?

Exercise 9.3 Consider the ground structure in Fig. 9.17. It consists a two-

dimensional domain Ω with a thickness ρ. The load q per unit length is applied

on the top surface Γ1. We want to maximize stiffness, i.e., minimize

∫

Γ1

qu dx,

Fig. 9.16 (Color online) The three different optimization results in Exercise 9.2

Fig. 9.17 The

two-dimensional ground

structure of Exercise 9.3
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where u is the displacement component in the direction of q , given a constraint on

the amount of material that can be used. There are (at least) three different design

parameterizations available for doing this optimization:

1. Shape optimization: Find the shape of the lower boundary Γ2 so as to get an

optimal domain Ωopt ⊂ Ω with thickness ρ.

2. Thickness optimization: Find an optimal thickness distribution ρ for the domain

Ω , where 0 ≤ ρ ≤ ρ.

3. Topology optimization: Find an optimal thickness ρ of Ω which is such that at

each point it is either 0 or ρ. A proper regularization which gives a well-posed

problem is assumed.

Assume that the three problems indicated above can be solved exactly. Which one

gives the stiffest structure and which one gives the least stiff structure? Give mathe-

matical arguments for why your answer to the above question is correct.

Exercise 9.4 On the book’s homepage (www.mechanics.iei.liu.se/edu_ug/strop/),

you may find an extensive computer exercise written by Joakim Petersson where

TRINITAS and a Java applet should be used to solve a number of different topology

optimization problems.
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2.5 a)

α∗ = 0, β∗ ≤ V0

Ah
, and α∗ = 1, β∗ ≥ 0 arbitrary.

b)

αmax = 0.6: α∗ = 0.2, β∗ = 1.25, αmax = 0.8: α∗ = 0.8, β∗ = 2.

3.3 a)
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min
5

x1
+ 3

x2

s.t.

⎧

⎪
⎨

⎪
⎩

25x1 + 3

5
x2 − 16c0

5P l
≤ 0

x1 ≥ 0, x2 ≥ 0.

b)

A∗
1 = 35

4

P 2l

Ec0
, A∗

2 = 7

4

P 2l

Ec0
.

3.4 a)
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

min
1

A1
+ 1

A2
+ 2

√
2

A3

s.t.

⎧

⎪
⎨

⎪
⎩

A1 + A2 +
√

2A3 − V0

l
≤ 0

A1, A2, A3 ≥ 0.

b)

A∗
1 = A∗

2 = 1

4

V0

l
, A∗

3 =
√

2

4

V0

l
.

3.5 a)
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

min
1

A1
+ 2

A2

s.t.

⎧

⎪
⎪
⎨

⎪
⎪
⎩

A1 + A2 − V0

l
≤ 0

A1 ≥ V0

αl
, A2 ≥ V0

αl
.

b)

No solution if 0 < α < 2,

A∗
1 = V0

αl
, A∗

2 =
(

1 − 1

α

)
V0

l
, if 2 ≤ α ≤

√
2 + 1,
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A∗
1 = (

√
2 − 1)

V0

l
, A∗

2 =
√

2(
√

2 − 1)
V0

l
, if α ≥

√
2 + 1.

3.6 a)

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min
3

A1
+ 4

A2
+ 5

A3

s.t.

⎧

⎪
⎨

⎪
⎩

A1 + A2 + A3 − V0

l
≤ 0

A1, A2, A3 ≥ 0.

b)

A∗
1 =

√
3√

3 + 2 +
√

5

V0

l
≈ 0.29

V0

l
,

A∗
2 = 2√

3 + 2 +
√

5

V0

l
≈ 0.34

V0

l
,

A∗
3 =

√
5√

3 + 2 +
√

5

V0

l
≈ 0.37

V0

l
.

3.7 a)

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min A1 + A2 +
√

2A3

s.t.

⎧

⎪
⎨

⎪
⎩

3

A1
+ 1

A2
+ 6

√
2

A3
− Eu0

P l
≤ 0

A1, A2, A3 ≥ 0.

b)

A∗
1 =

√
3(1 + 3

√
3)

P l

Eu0
,

A∗
2 = (1 + 3

√
3)

P l

Eu0
,

A∗
3 =

√
6(1 + 3

√
3)

P l

Eu0
.

3.8 a)

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min A1 + A2 + A3 + A4 +
√

2A5

s.t.

⎧

⎪
⎨

⎪
⎩

1

A1
+ 1

A2
+ 4

A3
+ 4

A4
+ 8

√
2

A5
− Ec0

P 2l
≤ 0

A1, . . . ,A5 ≥ 0.
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b)

A∗
1 = A∗

2 = 10P 2l

Ec0
,

A∗
3 = A∗

4 = 20P 2l

Ec0
,

A∗
5 = 20

√
2P 2l

Ec0
.

4.4 b)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

min (3 + 2
√

2)
1

x1
+ (3 + 2

√
2)

1

x2
+ (8 + 4

√
2)

1

x3

s.t.

⎧

⎨

⎩

x1 + x2 +
√

2x3 − 1 ≤ 0

x1, x2, x3 ≥ 0.

x∗
1 = x∗

2 =
√

3 + 2
√

2

2(
√

3 + 2
√

2 +
√

2 + 2
√

2)
≈ 0.26,

x∗
3 =

√

1 +
√

2
√

3 + 2
√

2 +
√

2 + 2
√

2
≈ 0.34.

4.5 b)

A∗
1 = 0.

c)

⎧

⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎩

min
1

x2
+ 1

x3
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x4
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⎧

⎨

⎩

x2 +
√

2x3 + x4 − 1 ≤ 0

x1, . . . , x4 ≥ 0.

x∗
2 = 1

3
√

λ∗ ,

x∗
3 = 1

3 2
1
4

√
λ∗

,

x∗
3 = 2

3
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λ∗ , where
√

λ∗ = 1 + 2
1
4

3
.
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6.1 a)

∂f/∂xj = 2uT ∂u(x)/∂xj . Get ∂u(x)/∂xj by differentiating K(x)u(x) =
F (x).

6.2
∂K

∂x
= E

⎡

⎢
⎢
⎢
⎣

A1

2xl2
1 − 3x3

l5
1

− A2

x2
−A1l

l2
1 − 3x2

l5
1

−A1l
l2
1 − 3x2

l5
1

−3A1l
2x

l5
1

⎤

⎥
⎥
⎥
⎦

etc.

6.3 x2 = a + αL, y2 = b, l =
√

(a + αL)2 + b2, c = cos θ = x2/l, ∂c/∂α =
L/l − x2

2L/l3, s = sin θ = y2/l = b/l, ∂s/∂α = −bx2L/l3 etc.

6.5 f a
e = 1

6
ρω2[x2

2 − 2x2
1 + x1x2 2x2

2 − x2
1 − x1x2]T ,

∂f a
e/∂x1 = 1

6
ρω2[−4x1 + x2 −2x1 − x2]T ,

∂f a
e/∂x2 = 1

6
ρω2[2x2 + x1 4x2 − x1]T .

6.7 a)
∂r

∂A1
= −0.135,

∂r

∂A2
= −0.0476.

8.7 ρ(x) = 6V

7L

[

3

2
− x

L

(

1 − x

2L

)]

.

8.8 ρ(x) = 2V (L − x)

L2
for 0 ≤ x < L, and

ρ(x) = 2V (x − L)

L2
for L ≤ x ≤ 2L.

8.11 ρ(x) = 12V

h(6M0L + q0L3)

[

M0x

L
+ q0x

2
(L − x)

]

.

8.12 ρ(x) = V

2πaL
.

9.2 The solution in the middle has been obtained without restriction. The left

solution has been obtained with a higher value of C2. This gives a better, i.e.

smaller, optimum value than for the right solution.

9.3 Thickness optimization gives the stiffest structure, and shape optimization

gives the least stiff structure.



References

1. Achtziger, W.: Topology optimization of discrete structures—an introduction in view of com-

putational and nonsmooth aspects. In: Rozvany, G.I.N. (ed.) Topology Optimization in Struc-

tural Mechanics. CISM courses and lectures, vol. 374, pp. 57–100. Springer, Viena (1997)

2. Bazaraa, M.S., Sherali, H.F., Shetty, C.M.: Nonlinear Programming—Theory and Algo-

rithms, 2nd edn. Wiley, New York (1993)

3. Bendsøe, M.P., Klarbring, A.: Joakim Petersson 1968–2002. Struct. Multidiscipl. Optim. 25,

151–152 (2003)

4. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications.

Springer, Berlin (2003)

5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

6. Borrvall, T.: Topology optimization of elastic continua using restriction. Arch. Comput.

Methods Eng. 8, 351–385 (2001)

7. Borrvall, T., Petersson, J.: Topology optimization using regularized intermediate density con-

trol. Comput. Methods Appl. Mech. Eng. 190, 4911–4928 (2001)

8. Borrvall, T., Petersson, J.: Large-scale topology optimization in 3D using parallel computing.

Comput. Methods Appl. Mech. Eng. 190, 6201–6229 (2001)

9. Brockman, R.A.: Geometric sensitivity analysis with isoparametric finite elements. Com.

Appl. Numer. Methods 3, 495–499 (1987)

10. Bruns, T.E., Tortorelli, D.A.: Topology optimization of nonlinear elastic structures and com-

pliant mechnanisms. Comput. Methods Appl. Mech. Eng. 190, 3443–3459 (2001)

11. Bugeda, G., Oliver, J.: A general methodology for structural shape optimization problems

using automatic adaptive remeshing. Int. J. Numer. Methods Eng. 36, 3161–3185 (1993)

12. Choi, K.K., Kim, N.-H.: Structural Sensitivity Analysis and Optimization 1—Linear Sys-

tems. Springer, Berlin (2005)

13. Choi, K.K., Kim, N.-H.: Structural Sensitivity Analysis and Optimization 2—Nonlinear Sys-

tems and Applications. Springer, Berlin, (2005)

14. Ehrgott, M., Gandibleux, X. (eds.): Multiple Criteria Optimization: State of the Art Anno-

tated Bibliographic Surveys. Kluwer, Boston (2002)

15. Fleury, C., Braibant, V.: Structural optimization: A new dual method using mixed variables.

Int. J. Numer. Methods Eng. 23, 409–428 (1986)

16. George, P.L.: Automatic mesh generation and finite element computation. In: Ciarlet, P.G.,

Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV. Elsevier, Amsterdam (1996)

17. Gordon, J.G.: Structures or Why Things Don’t Fall Down. Penguin, Baltimore (1978)

18. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, 3rd revised and expanded edn.

Kluwer, Dordrecht (1992)

19. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization—Theory, Approxima-

tion, and Computation. SIAM, Philadelphia (2003)

20. Hilding, D., Torstenfelt, B., Klarbring, A.: A computational methodology for shape optimiza-

tion of structures in frictionless contact. Comput. Methods Appl. Mech. Eng. 190, 4043–4060

(2001)

21. Hughes, T.J.R.: The Finite Element Method—Linear Static and Dynamic Finite Element

Analysis. Prentice Hall, Englewood Cliffs (1987) (reprinted by Dover Publications, 2000)

22. Kirsch, U.: Structural Optimization—Fundamentals and Applications. Springer, Berlin

(1993)

23. Leung, Y.K., Lo, S.H., Leung, A.Y.T.: Finite Element Implementation. Blackwell Science,

Oxford (1996)

P.W. Christensen, A. Klarbring, An Introduction to Structural Optimization,

© Springer Science + Business Media B.V. 2009

207



208 References

24. Ottosen, N., Petersson, H.: Introduction to the Finite Element Method. Prentice Hall, New

York (1992)

25. Petersson, J.: On stiffness maximization of variable thickness sheet with unilateral contact.

Q. Appl. Math. 54, 541–550 (1996)

26. Petersson, J.: A finite element analysis of optimal variable thickness sheets. SIAM J. Numer.

Anal. 36, 1759–1778 (1999)

27. Petersson, J., Sigmund, O.: Slope constrained topology optimization. Internat. J. Numer.

Methods Eng. 24, 359–373 (1998)

28. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

29. Rogers, D.F.: An Introduction to NURBS—With Historical Perspective. Academic Press,

San Diego (2001)

30. Sigmund, O.: Design of material structures using topology optimization. Ph.D. thesis,

DCAMM, Technical University of Denmark (1994)

31. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech.

Struct. Mach. 25, 493–524 (1997)

32. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: A survey on

procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim.

16, 68–75 (1998)

33. Svanberg, K.: On local and global minima in structural optimization. In: Atrek, E., Gallhager,

R.H., Ragsdell, K.M., Zienkiewicz, O.C. (eds.) New Directions in Optimum Structural De-

sign, pp. 327–341. Wiley, New York (1984)

34. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization.

Internat. J. Numer. Methods Eng. 24, 359–373 (1987)

35. Thompson, J.F., Soni, B.K., Weatherill, N.P. (eds.): Handbook of Grid Generation. CRC

Press, Boca Raton (1999)

36. Tracy, F.T.: Graphical pre- and post-processor for 2-dimensional finite element programs.

Comput. Graph. 11, 8–12 (1977)



Index

A

active constraint, 42

adjoint analytical method, 99, 100

advancing front mesh algorithm, 137

affine function, 59, 87

archetype problem, 190

assembly, 80

B

B-spline, 120

B-spline basis function, 120

B-spline surface, 133

beam, 158, 159, 165

behavioral constraints, 4

Bernstein polynomial, 118

Bézier spline, 118

box constraint, 35

C

C1 continuity, 128, 129

calculus of variations, 147–156

central difference approximation, 98

checkerboard pattern, 192

Cholesky decomposition, 40, 99

Clapeyron’s theorem, 163

compact set, 38

compliance, 77, 163

concave function, 37

CONLIN, 59

conservative approximation, 61

control vertex, 117

convex function, 37

convex optimization problem, 38

convex set, 37

convexity, test for, 38, 39

Coons surface, 134

D
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shape functions, 104

shape optimization, 5, 117–143
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SIMP method, 188
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state variable, 3
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global, 23

stiffness optimization

of a truss, 77

of distributed parameter systems, 163
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strong formulation, 162
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V
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weak formulation, 162
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	cover-large.TIF
	front-matter.pdf
	Preface
	Contents

	fulltext.pdf
	Introduction
	The Basic Idea
	The Design Process
	General Mathematical Form of a Structural Optimization Problem
	Three Types of Structural Optimization Problems
	Discrete and Distributed Parameter Systems


	fulltext_2.pdf
	Examples of Optimization of Discrete Parameter Systems
	Weight Minimization of a Two-Bar Truss Subject to Stress Constraints
	Weight Minimization of a Two-Bar Truss Subject to Stress and Instability Constraints
	Weight Minimization of a Two-Bar Truss Subject to Stress and Displacement Constraints
	Weight Minimization of a Two-Beam Cantilever Subject to a Displacement Constraint
	Weight Minimization of a Three-Bar Truss Subject to Stress Constraints
	Weight Minimization of a Three-Bar Truss Subject to a Stiffness Constraint
	Exercises


	fulltext_3.pdf
	Basics of Convex Programming
	Local and Global Optima
	Convexity
	KKT Conditions
	Lagrangian Duality
	Lagrangian Duality for Convex and Separable Problems

	Exercises


	fulltext_4.pdf
	Sequential Explicit, Convex Approximations
	General Solution Procedure for Nested Problems
	Sequential Linear Programming (SLP)
	Sequential Quadratic Programming (SQP)
	Convex Linearization (CONLIN)
	The Method of Moving Asymptotes (MMA)
	Exercises


	fulltext_5.pdf
	Sizing Stiffness Optimization of a Truss
	The Simultaneous Formulation of the Problem
	The Nested Formulation and Some of Its Properties
	Convexity of the Nested Problem
	Fully Stressed Designs
	Minimization of the Volume Under a Compliance Constraint

	Numerical Solution of the Nested Problem Using MMA


	fulltext_6.pdf
	Sensitivity Analysis
	Numerical Methods
	Analytical Methods
	Direct Analytical Method
	Adjoint Analytical Method

	Analytical Calculation of Pseudo-loads
	Bars
	Sizing and Topology Optimization
	Shape Optimization

	Plane Sheets
	Sizing and Topology Optimization
	Shape Optimization


	Exercises


	fulltext_7.pdf
	Two-Dimensional Shape Optimization
	Shape Representation
	Bézier Splines
	B-Splines

	Treatment of Geometrical Design Constraints
	C1 Continuity Between Bézier Splines
	C1 Continuity at a Point on a Line of Symmetry
	A Composite Circular Arc

	Mesh Generation and Calculation of Nodal Sensitivities
	B-Spline Surface Meshes
	Coons Surface Meshes
	Unstructured Meshes

	Summary of Sensitivity Analysis for Two-Dimensional Shape Optimization
	Exercises


	fulltext_8.pdf
	Stiffness Optimization of Distributed Parameter Systems
	Calculus of Variations
	Optimality Conditions and Gateaux Derivatives
	Examples of Gateaux Derivatives
	Solution of a Simple Example

	Handling a Constraint
	Solution of an Example Including a Constraint


	Equilibrium Principles for Distributed Parameter Systems
	One-Dimensional Elasticity
	Beam Problem
	Two-Dimensional Elasticity
	Abstract Equilibrium Principles

	The Design Problem
	Example: One-dimensional elasticity
	Example: Beam with variable width
	Example: Two-dimensional elasticity
	Optimality Conditions
	The Stiffest Rod
	Beam Stiffness Optimization

	Exercises


	fulltext_9.pdf
	Topology Optimization of Distributed Parameter Systems
	The Variable Thickness Sheet Problem
	Problem Statement and FE-Discretization
	The Optimality Criteria (OC) Method

	Penalization of Intermediate Thickness Values
	Solid Isotropic Material with Penalization (SIMP)
	Other Penalizations

	Well-Posedness and Potential Numerical Problems
	The Archetype Problem and an Analogy
	Numerical Instabilities

	Restriction of the Archetype Problem
	Bounds on the Design Gradient
	Filters

	Relaxation of the Archetype Problem
	Exercises


	back-matter.pdf
	Answers to Selected Exercises
	References
	Index


