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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Large deformation

Definition
Large deformation happens when strains and/or rotations are large enough to invalidate assumptions inherent
in infinitesimal strain theory.

Assumptions inherent in infinitesimal strain theory: the displacements of the material particles are assumed to
be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry
and the constitutive properties of the material (such as density and stiffness) at each point of space can be
assumed to be unchanged by the deformation.
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Displacement field & displacement gradient tensor

Definition
Displacement field:

u (𝑥, 𝑦) =

𝑢
𝑣
𝑤

 (1)

Definition
Displacement gradient tensor:

H (𝑥, 𝑦) =

𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌

𝜕𝑢
𝜕𝑍

𝜕𝑣
𝜕𝑋

𝜕𝑣
𝜕𝑌

𝜕𝑣
𝜕𝑍

𝜕𝑤
𝜕𝑋

𝜕𝑤
𝜕𝑌

𝜕𝑤
𝜕𝑍

 (2)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Deformation gradient

Definition
The deformation gradient F is the derivative of each component of the deformed x vector with respect to each
component of the reference X vector. For x = x (X), then

𝐹𝑖 𝑗 = 𝑥𝑖, 𝑗 =
𝜕𝑥𝑖
𝜕𝑋 𝑗

=


𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥1
𝜕𝑋3

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

𝜕𝑥2
𝜕𝑋3

𝜕𝑥3
𝜕𝑋1

𝜕𝑥3
𝜕𝑋2

𝜕𝑥3
𝜕𝑋3

 (3)

A slightly altered calculation is possible by noting that the displacement u of any point can be defined as

u = x − X (4)

and this leads to x = X + u, and

F =
𝜕

𝜕X
(X + u) = 𝜕X

𝜕X
+ 𝜕u
𝜕X

= I + H (5)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Green-Lagrange strains

The length of a vector after the deformation 𝐿 𝑓 can be expressed with the length before the deformation 𝐿𝑜.

𝐿2
𝑓 = x𝑇x = (FX)𝑇 (FX) = X𝑇F𝑇FX = 𝐿2

𝑜M𝑇F𝑇FM (6)

where M is the vector of unit length of the original length direction.
The Green-Lagrange description of strain is the quadratic extension, which is defined as follows. Equation (6)
is again substituted into the definition.

𝜖 =
𝐿2
𝑓
− 𝐿2

𝑜

2𝐿2
𝑜

=
𝐿2
𝑜M𝑇F𝑇FM − 𝐿2

𝑜

2𝐿2
𝑜

= M𝑇 1
2

(
F𝑇F − I

)
︸         ︷︷         ︸

E

M (7)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Green-Lagrange strains

Definition
The Green-Lagrange strains E is defined as:

E =
1
2

(
F𝑇 · F − I

)
(8)

The Green-Lagrange strain tensor written out is

E =


𝐸𝑥𝑥 𝐸𝑥𝑦 𝐸𝑥𝑧

𝐸𝑥𝑦 𝐸𝑦𝑦 𝐸𝑦𝑧

𝐸𝑥𝑧 𝐸𝑦𝑧 𝐸𝑧𝑧

 (9)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Strain tensor

𝐸𝑥𝑥 =
𝜕 𝑢

𝜕𝑋
+ 1

2

[(
𝜕 𝑢

𝜕𝑋

)2
+
(
𝜕 𝑣

𝜕𝑋

)2
+
(
𝜕 𝑤

𝜕𝑋

)2
]

(10)

𝐸𝑦𝑦 =
𝜕 𝑣

𝜕𝑌
+ 1

2

[(
𝜕 𝑢

𝜕𝑌

)2
+
(
𝜕 𝑣

𝜕𝑌

)2
+
(
𝜕 𝑤

𝜕𝑌

)2
]

(11)

𝐸𝑧𝑧 =
𝜕 𝑤

𝜕𝑍
+ 1

2

[(
𝜕 𝑢

𝜕𝑍

)2
+
(
𝜕 𝑣

𝜕𝑍

)2
+
(
𝜕 𝑤

𝜕𝑍

)2
]

(12)

𝐸𝑥𝑦 =
1
2

(
𝜕 𝑢

𝜕𝑌
+ 𝜕 𝑣

𝜕𝑋

)
+ 1

2

[
𝜕 𝑢

𝜕𝑋

𝜕 𝑢

𝜕𝑌
+ 𝜕 𝑣

𝜕𝑋

𝜕 𝑣

𝜕𝑌
+ 𝜕 𝑤

𝜕𝑋

𝜕 𝑤

𝜕𝑌

]
(13)

𝐸𝑥𝑧 =
1
2

(
𝜕 𝑢

𝜕𝑍
+ 𝜕 𝑤

𝜕𝑋

)
+ 1

2

[
𝜕 𝑢

𝜕𝑋

𝜕 𝑢

𝜕𝑍
+ 𝜕 𝑣

𝜕𝑋

𝜕 𝑣

𝜕𝑍
+ 𝜕 𝑤

𝜕𝑋

𝜕 𝑤

𝜕𝑍

]
(14)

𝐸𝑦𝑧 =
1
2

(
𝜕 𝑣

𝜕𝑍
+ 𝜕 𝑤

𝜕𝑌

)
+ 1

2

[
𝜕 𝑢

𝜕𝑌

𝜕 𝑢

𝜕𝑍
+ 𝜕 𝑣

𝜕𝑌

𝜕 𝑣

𝜕𝑍
+ 𝜕 𝑤

𝜕𝑌

𝜕 𝑤

𝜕𝑍

]
(15)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Displacement field, displacement gradient tensor and transformation tensor
Green-Lagrange strain-displacement

Small deformation vs large deformation

Green Strain = Small Strain Terms + Quadratic Terms

𝐸𝑥𝑥 = 𝜕𝑢
𝜕𝑋 + 1

2

[(
𝜕𝑢
𝜕𝑋

)2
+
(
𝜕 𝑣
𝜕𝑋

)2
+
(
𝜕𝑤
𝜕𝑋

)2
]

𝐸𝑦𝑦 = 𝜕 𝑣
𝜕𝑌 + 1

2

[(
𝜕𝑢
𝜕𝑌

)2
+
(
𝜕 𝑣
𝜕𝑌

)2
+
(
𝜕𝑤
𝜕𝑌

)2
]

𝐸𝑧𝑧 = 𝜕𝑤
𝜕𝑍 + 1

2

[(
𝜕𝑢
𝜕𝑍

)2
+
(
𝜕 𝑣
𝜕𝑍

)2
+
(
𝜕𝑤
𝜕𝑍

)2
]

𝐸𝑥𝑦 = 1
2

(
𝜕𝑢
𝜕𝑌 + 𝜕 𝑣

𝜕𝑋

)
+ 1

2

[
𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌 + 𝜕 𝑣

𝜕𝑋
𝜕 𝑣
𝜕𝑌 + 𝜕𝑤

𝜕𝑋
𝜕𝑤
𝜕𝑌

]
𝐸𝑥𝑧 = 1

2

(
𝜕𝑢
𝜕𝑍 + 𝜕𝑤

𝜕𝑋

)
+ 1

2

[
𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑍 + 𝜕 𝑣

𝜕𝑋
𝜕 𝑣
𝜕𝑍 + 𝜕𝑤

𝜕𝑋
𝜕𝑤
𝜕𝑍

]
𝐸𝑦𝑧 = 1

2

(
𝜕 𝑣
𝜕𝑍 + 𝜕𝑤

𝜕𝑌

)
+ 1

2

[
𝜕𝑢
𝜕𝑌

𝜕𝑢
𝜕𝑍 + 𝜕 𝑣

𝜕𝑌
𝜕 𝑣
𝜕𝑍 + 𝜕𝑤

𝜕𝑌
𝜕𝑤
𝜕𝑍

]
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Neo-Hookean Models & Mooney-Rivlin Models
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Preliminary knowledge
Neo-Hookean Models
Mooney-Rivlin Models

Alternative stress measures

Cauchy Stress Tensor is known as true stress because it refers to the current deformed geometry as a
reference force and area. Cauchy stress tensor has a dimension of 3 × 3.
First Piola-Kirchoff Stress is defined differently, in this case, the stress vector is defined by the force,
initial area, and unit normal vector N in the undeformed geometry (initial geometry). First Piola-Kirchoff
Stress is of 3 × 3 dimension. However, it is different as Piola-Stress tensor is not symmetric contrary to
Cauchy Stress Tensor. In short, First Piola-Kirchoff Stress vector refers to force in the current geometry
(deformed) and area in the initial geometry (undeformed).
Second Piola-Kirchoff Stress is derived using the product of transpose of the inverse of the deformation
gradient with First-Piola Kirchoff Stress Vector. Second Piola-Kirchoff Stress Tensor is a symmetric
tensor compared to First Piola-Kirchoff Stress Tensor, which is defined entirely in the reference
configuration.
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Preliminary knowledge
Neo-Hookean Models
Mooney-Rivlin Models

2nd Piola-Kirchhoff stress

The Second Piola-Kirchoff stress tensor is the derivative of the Helmholtz free energy with respect to the
Green strain tensor multiplied by the density (spatial or material depending on the system orientation chosen)
for a thermoelastic body without any internal constraints.

Definition
2nd Piola-Kirchhoff stress:

𝝈PK2 = 𝜌𝑜
𝜕Ψ

𝜕Eel (16)

The Helmholtz free energy contains thermal energy and mechanical strain energy. But in most every
discussion of Mooney-Rivlin coefficients, the thermal part is neglected, leaving only the mechanical part, 𝑊 .
(Actually, 𝑊 is declared to represent 𝜌𝑜Ψ, not just Ψ). Second, since all of the deformations of a hyperelastic
material is elastic by definition, it is sufficient to write Eel simply as E. This gives

𝝈PK2 =
𝜕𝑊

𝜕E
(17)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Preliminary knowledge
Neo-Hookean Models
Mooney-Rivlin Models

2nd Piola-Kirchhoff stress
But there is a challenge with this general approach. It is the determination of off-diagonal (shear) terms. As
with the shear terms in Hooke’s Law, they are not independent of the normal terms, but must be consistent with
coordinate transformations that transform normal components into shears and vice-versa. And as with Hooke’s
Law, the resolution is to define the material behavior for the principal values and rely on coordinate
transformations to give the appropriate corresponding behavior of the shear terms.

𝜎PK2
𝑖 =

𝜕𝑊

𝜕𝐸𝑖
(18)

Using the chain rule,

𝜎PK2
𝑖 =

𝜕𝑊

𝜕𝜆𝑖

𝜕𝜆𝑖
𝜕𝐸𝑖

(19)

where 𝜆 is the stretch ratios.
𝜆 =

𝐿𝐹
𝐿𝑜

(20)

So the stretch ratio is ”one plus engineering strain”

𝜆 − 1 = 𝜖𝐸𝑛𝑔 = Δ𝐿/𝐿𝑜 (21)

Presenter: Liuchao Jin Theory for Large Deformation 15 / 23
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Preliminary knowledge
Neo-Hookean Models
Mooney-Rivlin Models

Principal Cauchy stress

Recall that a principal Green strain equals

𝐸𝑖 =
Δ𝐿𝑖
𝐿𝑜

+ 1
2

(
Δ𝐿𝑖
𝐿𝑜

)2
(22)

So 𝜕𝐸𝑖/𝜕𝜆𝑖 = 𝜆𝑖 and therefore
𝜕𝜆𝑖
𝜕𝐸𝑖

=
1
𝜆𝑖

(23)

Substituting this into the Equation (19) gives,

𝜎PK2
𝑖 =

1
𝜆𝑖

𝜕𝑊

𝜕𝜆𝑖
(24)

Therefore, the principle stress can be calculated by using 𝜎𝑖 = (1 + 𝜖𝑖)2𝜎PK2
𝑖 (𝜎𝑖 = 𝜆2

𝑖 𝜎
PK2
𝑖 ):

𝜎𝑖 = 𝜆2
𝑖 𝜎

PK2
𝑖 = 𝜆𝑖

𝜕𝑊

𝜕𝜆𝑖
(25)
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Introduction
Strain and deformation tensors

Neo-Hookean Models & Mooney-Rivlin Models

Preliminary knowledge
Neo-Hookean Models
Mooney-Rivlin Models

Invariants

A deformation gradient can be written as
F = V · R (26)

where R is the rotation matrix (same as before), and V is the left stretch tensor. This is also a polar
decomposition.

Definition

The invariants are the product of the deformation gradient with its transpose, F · F𝑇 . Using polar
decomposition,

F · F𝑇 = (V · R) · (V · R)𝑇 = V · R · R𝑇 · V𝑇 = V · V𝑇 (27)

And that the principal values of V are

VPr =


(𝐿𝐹/𝐿𝑜)1 0 0

0 (𝐿𝐹/𝐿𝑜)2 0
0 0 (𝐿𝐹/𝐿𝑜)3

 (28)
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Invariants definition

The ratios of (𝐿𝐹/𝐿𝑜)𝑖 are replaced by the single symbol, 𝜆𝑖 , called stretch ratios. (Note that 𝜆𝑖 = 1 + 𝜖𝑖
where 𝜖𝑖 is the 𝑖th principal engineering strain.) So the above tensor becomes.

VPr =


𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

 (29)

The principal values of F · F𝑇 are

(
F · F𝑇

)
Pr

=
(
V · V𝑇

)
Pr

=


𝜆2

1 0 0
0 𝜆2

2 0
0 0 𝜆2

3

 (30)
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Invariants definition

F · F𝑇 is symmetric, so it does have three invariants.

𝐼1 = 𝜆2
1 + 𝜆2

2 + 𝜆2
3

𝐼2 = 𝜆2
1𝜆

2
2 + 𝜆2

2𝜆
2
3 + 𝜆2

1𝜆
2
3

𝐼3 = det(...) = 𝜆2
1𝜆

2
2𝜆

2
3 =

(
𝑉𝐹
𝑉𝑜

)2
= 𝐽2

(31)

For incompressibile material, 𝜆1𝜆2𝜆3 = 1. Therefore,

𝐼1 = 𝜆2
1 + 𝜆2

2 + 𝜆2
3

𝐼2 = 1
𝜆2

1
+ 1

𝜆2
2
+ 1

𝜆2
3

𝐼3 = (𝜆1𝜆2𝜆3)2 = 1
(32)
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Neo-Hookean Models

The neo-Hookean Model is a hyperelastic material model, similar to Hooke’s law, that can be used for
predicting the nonlinear stress-strain behavior of materials undergoing large deformations.

The strain energy density function for an incompressible neo-Hookean material in a three-dimensional
description is

𝑊 = 𝐶1 (𝐼1 − 3) (33)

where 𝐶1 is a material constant.
For a compressible neo-Hookean material the strain energy density function is given by

𝑊 = 𝐶1 (𝐼1 − 3 − 2 ln 𝐽) + 𝐷1 (𝐽 − 1)2 (34)

The neo-Hookean material model does not predict that increase in modulus at large strains and is typically
accurate only for strains less than 20%. The model is also inadequate for biaxial states of stress and has been
superseded by the Mooney-Rivlin model.
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Mooney-Rivlin Models

The Mooney–Rivlin model is a hyperelastic material model where the strain energy density function 𝑊 is a
linear combination of two invariants of the left Cauchy–Green deformation tensor B. The Mooney-Rivlin class
of models expresses the mechanical strain energy as a sum of the invariants as follows.

𝑊 =
∑
𝑖

∑
𝑗

𝐶𝑖 𝑗 (𝐼1 − 3)𝑖 (𝐼2 − 3) 𝑗 + 𝐷 (𝐽 − 1)2 (35)

Note that the series is not a function of 𝐼3 because it is a constant value, 1. The constants, 𝐶𝑖 𝑗 and 𝐷, will be
determined by curve-fitting measured stress-strain curves to the derivative of the equation. The number of
terms in the expansion is determined by the application’s accuracy requirements.
As an example, the first few terms of the series are

𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶01 (𝐼2 − 3) + 𝐶11 (𝐼1 − 3) (𝐼2 − 3) + 𝐶20 (𝐼1 − 3)2 + ... + 𝐷 (𝐽 − 1)2 (36)
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Principal Cauchy stress
Each principal Cauchy stress is related to the derivative of the above equation with respect to the
corresponding 𝜆. For example, the 1st principal Cauchy stress corresponds to derivatives of 𝑊 with respect to
the first stretch ratio, 𝜆1.

𝜎1 = 𝜆1
𝜕𝑊

𝜕𝜆1
= 𝜆1

(
𝜕𝑊

𝜕𝐼1

𝜕𝐼1
𝜕𝜆1

+ 𝜕𝑊

𝜕𝐼2

𝜕𝐼2
𝜕𝜆1

+ 𝜕𝑊

𝜕𝐽

𝜕𝐽

𝜕𝜆1

)
(37)

The derivatives of the strain energy with respect to the invariants, and 𝐽, are
𝜕𝑊

𝜕𝐼1
= 𝐶10 + 𝐶11 (𝐼2 − 3) + 2𝐶20 (𝐼1 − 3) + · · · 𝜕𝑊

𝜕𝐼2
= 𝐶01 + 𝐶11 (𝐼1 − 3) + · · · (38)

𝜕𝑊

𝜕𝐽
= 2𝐷 (𝐽 − 1) (39)

And the derivatives of the invariants, and 𝐽, with respect to 𝜆1 are
𝜕𝐼1
𝜕𝜆1

= 2𝜆1
𝜕𝐼2
𝜕𝜆1

= − 2
𝜆3

1

𝜕𝐽

𝜕𝜆1
= 𝜆2 𝜆3 (40)

All of these terms can be combined to give polynomials relating stretch ratios to principal stresses, with
coefficients such as 𝐶10, 𝐶01, 𝐶11, and 𝐶20 that are determined from curve-fitting these equations to
experimental data.
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Thank You
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