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Predictive Learning of Error Recovery with a Sensorized
Passivity-Based Soft Anthropomorphic Hand

Kieran Gilday,* Thomas George-Thuruthel, and Fumiya lida

Manipulation strategies based on the passive dynamics of soft-bodied interactions
provide robust performances with limited sensory information. They utilize the
kinematic structure and passive dynamics of the body to adapt to objects of varying
shapes and properties. However, these soft passive interactions make the state of
the robotic device influenced by the environment, making control generation and
state estimation difficult. This work presents a closed-loop framework for dynamic
interaction-based grasping that relies on two novelties: 1) a wrist-driven passive soft
anthropomorphic hand that can generate robust grasp strategies using one-step
kinaesthetic teaching and 2) a learning-based perception system that uses temporal
data from sparse tactile sensors to predict and adapt to failures before it happens.
With the anthropomorphic soft design and wrist-driven control, it is shown that
controllers can be generated robust to novel objects and location uncertainty. With
the learning-based high-level perception system and 32 sensing receptors, it is
shown that failures can be predicted in advance, further improving the robustness of
the entire system by more than doubling the grasping success rate. From over 1000
real-world grasping trials, both the control and perception framework are also seen to
be transferable to novel objects and conditions. An interactive preprint version of the
article can be found here: https://doi.org/10.22541/au.167687985.55182112/v1.

Furthermore, soft hands open up addi-
tional functionalities that can be exploited
for versatile manipulation strategies like
the use of environmental constraints!!
and programmable anisotropic stiffness
properties.”'? When it comes to dynamic
manipulation tasks, soft robotic designs
have shown surprisingly robust behaviors.
The RBO hand 3" displays robust
manipulation capabilities when reorienting
variable objects with a manually trained
sequence of finger moves. This contrasts
to other more rigid robotic designs that
require millions of iterative learning epi-
sodes to generate robust control policies,
e.g., with the Shadow hand.!*”!

Even with the robustness and adaptabil-
ity that soft robotic hands provide, sensory
feedback is still vital for more complex and
dexterous manipulation tasks.'*?? In
order to leverage the full capabilities of a
soft hand’s underlying passive adaptive

1. Introduction

Grasping and manipulation using soft robotic hands have dem-
onstrated notable advantages over more traditional rigid hands,
especially in passive adaptive grasping.["™ Soft hands can readily
conform to the environment, guaranteeing some robustness to
inevitable sources of uncertainty in the environment.”® Hands
such as the Pisa/IIT Softhand™ utilize underactuation and mus-
cle synergies!'® to greatly reduce control complexity for power
grasping, even with substantial environmental uncertainty.!'"
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behaviors, the sensing and control systems

must augment the existing soft structures

and leverage the same behaviors to
enhance perception.?>?! Soft robotic technologies for tactile
sensing are a wide researched field with numerous technological
solutions.['”?>?3 Tactile sensing in soft robotics generally suffers
from issues of nonlinearity, low receptor density, and/or lack of
modularity and softness, preventing wide adoption of any single
solution."*?% Distributed tactile sensing arrays go some way to
solving the low-density problem, however, are usually confined to
flexible PCBs!**** or soft sensors with highly nonlinear charac-
teristics.”**”! For tactile sensing with a soft interface and high
effective density, vision-based sensors such as the gel sight or
tactip sensors achieve impressive tactile resolution, though in
a constrained form factor.”®??! Another novel solution is the
use of sound-based sensors within the RBO hand 2,*% which
reads braille from the interference patterns of sound within
its soft pneumatic fingers. Several recent works have shown
how these soft sensors can be modeled for low-level state
estimation.?'*! The main challenge in the field currently is
the development of sensory models that can provide high-level
sensory information for closed-loop control.

Execution of robust grasp policies require two components: a
grasp planning algorithm and a reactive component that adapts
to uncertainties in the environment. Model-driven approaches
use models of objects and robot physics to optimally plan stable
grasp strategies.*®*”) Due to the large variability and uncertainty
in environment/robot parameters, data-driven approaches are
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more recently preferred.’® Even then, most of these grasp strat-
egies rely on quasi-static assumptions. The human grasp strategy
heavily relies on the passive properties of the hand. They are
characterized by dynamic interaction-based strategies that
require little visual-feedback.”! These morphological principles
have been applied to develop soft robotic hands that require min-
imal grasp planning and visual processing to solve various
tasks.?>*% Recent works have shown that these soft robotic
designs also provide can leverage human knowledge to generate
one-step grasp strategies, owing to their anthropomorphic
nature.!) With internal models and contact information, these
open-loop strategies can be converted to sequential closed-loop
strategies, making the controller more robust to varying objects.[*!]

Actions affect our cognition, so high-level decision making
should not be decoupled from low-level control.*? Error detec-
tion and recovery gives some coupling, which has the potential to
improve manipulation capabilities. For grasp adaptation, there
has been promising investigation into detecting “anomalies” dur-
ing manipulations,?**?! training error detection using sequential
neural networks with visual inputs,** and frameworks for error
recovery.?**! Though there is notable lack of investigation in
this area with soft hands, slip detection and prevention is one
of the most common grasp adaptation strategies.[**>% However,
failure due to slip is just one of the many failure modes that occur
after grasping and requires dense tactile information and high
control bandwidth for adaptation. For passive soft interaction-
based designs, like in the case of passive prosthetic devices, such
high sensory and control bandwidth is rarely available. Moreover,
there are other modes of failure that can arise even before full
closure with the object. Recent works have worked on identifying
grasp quality using dense vision-based tactile sensors on static
grasps.”"*%

In this work, we present predictive grasp quality estimation in
a soft passive anthropomorphic hand with sparse sensory data, as
shown in Figure 1. We trained a soft, passive, anthropomorphic
hand with embedded soft sensors to detect and recover from

Passive grasping %
interactions

-

Figure 1. Error detection and recovery from passive perception.
Demonstrated with a wrist-driven soft hand—which achieves grasping
through sequential hand-environment interactions rather than any inter-
nal actuation—prediction of future errors in an open loop grasp can be
learned using exteroceptive and proprioceptive information from a baro-
metric sensing skin. With a self-resetting environment, large-scale experi-
ments can generate training data and evaluate error recovery performance.

Adv. Intell. Syst. 2023, 2200390 2200390 (2 of 13)

www.advintellsyst.com

errors even before they cause failures. Interaction-based wrist
control®*¥ is augmented with a form of active perception by
a soft skin with 32 soft barometric sensors. Our framework dem-
onstrates adaptive grasping capabilities while being able to repro-
duce multiple grasp classifications on a wide variety of objects
when trained on a single object with a single trajectory. We study
the grasping performance of the hand in a self-
resetting environment, which allows large-scale experimenta-
tion. We observe emergent grasping failure and success modes
under real and artificial perturbations. A long short-term mem-
ory (LSTM) network is used to predict real-time failure and suc-
cess from few trials, using exteroceptive and proprioceptive data
from our soft, modular sensors. Real-time error predictions and a
heuristic error recovery routine are implemented and compared to
grasping with no feedback, resulting in an 144% improvement in
success rate. In addition, we demonstrate the system’s generaliz-
ability when grasping and predicting errors with unknown objects
and interference (Movie 1).

The main contributions of this work are 1) the anthropomor-
phic hand and sensor design for robust and adaptable object
grasping with tactile feedback; 2) an early grasp error prediction
algorithm using an LSTM network and the sparse tactile data for
the described open-loop grasping strategy; and 3) a method of
error recovery that exploits early error predictions and passive
hand behaviors to improve grasping success rate.

2. Experimental Section

2.1. Passive Hand Design

The anthropomorphic hand improves upon the design seen in
ref. [6], primarily with the addition of sensing capabilities.
The hand was adapted from a commercial 3D model purchased
from TurboSquid (www.turbosquid.com).”) Muscles, tendons,
and ligaments were removed, leaving only the skeleton. The bones
were then modified for manufacturing of ligaments, tendon
arrangement and skin molding. Collateral ligaments stabilized
each joint.” For all joints, except the thumb carpometacarpal
(CMC), the collateral ligaments formed an “S” shape over each
side,”** this allowed rolling and prevents sliding. These ligaments
allowed some abduction/adduction for the metacarpophalangeal
(MCP) joints. Though, the thumb CMC required a greater range
of motion,***”) therefore an additional ligament was added for
stability at larger deflections. Ligament mounting holes were mod-
eled on each bone at the limits of the rolling motion. Volar plates,
which prevent hyperextension,”®! were omitted from this design
for reduced complexity and ease of manufacturing (Figure 2B).
Tendon pulleys were modeled as rigid loops embedded into
the bones for a five-tendon arrangement. Each finger had four
degrees of freedom (DoF), therefore required a suitable arrange-
ment of five antagonistic tendons for control.*® The chosen
arrangement was two flexor tendons, one to each of the intermedi-
ate and distal phalanx, and three extensor/abductor tendons, one to
the distal phalanx while avoiding the proximal-interphalangeal
(PIP) joint, the other two connecting to the intermediate phalanx
while running laterally on the MCP for abduction/adduction
(Figure 2B). This arrangement approximated the flexor tendons
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Figure 2. Passive hand and modular sensor design. A) Passive anthropomorphic hand design with sensorized skin. Receptors are air chambers embed-
ded throughout the soft skin tissue, where density, placement, and geometry are highly customizable. Receptors are coupled to surface mount barometric
sensors through pneumatic channels. The hand is tendon-driven, with each tendon connected to reconfigurable springs with tuneable pretension and
stiffness. B) Hand skeleton and tendon routing. Anatomical joints constrained by ligament pairs and 5 tendons per finger. C) Modular receptor design.
Modeled air channels connect receptor air pockets to ports on the rear of the skin for interfacing with pneumatic tubing. Sensitivity to exteroceptive force
or joint deformation can be controlled by receptor placement and geometry. D) Receptor distribution. 32 total receptors are placed in the thumb, index,

middle finger, and palm.

and extensor hood of a real finger.**®!! Mounting holes for these
pulleys were directly modeled into the bones.

A 3D scan of similar proportions to the skeleton was added,
and the bones were aligned within. By subtracting the skeleton
and a cavity around each joint,”* the scan became a model of the
soft tissues of a real hand.®”! This soft tissue model was where
the sensing receptors are modeled. Each receptor was an “L”-
shaped tube with a curve in the stem to run around the bones.
Four shorter receptors (2mm) were placed in each fingertip
where space was more constricted, these were aligned at a skin
depth midway between the outer surface and bone to minimize
any thin walls and are more sensitive to tactile pressure. Four
longer receptors (4 mm) were arranged around each joint and
placed deeper under the surface and close to the joint cavity,
therefore were sensitive to both tactile pressure and skin defor-
mation from joint bending. Two additional receptors were placed
in the palm close to the skin surface, one in between the thumb
and index finger and the other beneath the thumb. This gave a
total of fifty receptor locations over the palm, thumb, index, and
middle finger (Figure 2).

One final modification to the skeleton was made, modeling
fingernails. These served dual purpose, one being improved
grasping capabilities with fingernail pinching and the other
being stabilization during the skin molding process. For the
molding process, the inner mold was modeled from the skeleton
without ligament and tendon modifications, only joint cavities
and fingernails. The outer mold was primarily a negative of
the 3D hand scan, though individual sections for each of the
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thumb, inde,x and middle finger containing higher detail recep-
tor positives are generated to allow mold assembly.

The final hand component was the wrist-mounting hardware
(Figure 2A). Consisting of a hand-mounting plate with tendon
routing holes, a UR5 robot arm mounting plate with tendon
spring anchors, and a sensor mounting shield on the rear.

2.2. Hand Manufacturing

The first manufacturing step was 3D-printing components.
Fused deposition modeling with PLA was used for the wrist-
mounting hardware and the lower detailed inner and outer
molds. For more detailed parts, the bones, and receptor molds,
inkjet printing was utilized with a Stratasys Objet500. The bones
were printed with Stratasys Durus for strength and toughness,
and the receptor molds were printed with a blend of Stratasys
Rigur (high stiffness) and Agilus (low stiffness) for stability dur-
ing molding and large elongations before breaking during mold
assembly.

For the skeleton assembly process, the bones were printed
with a scaffold keeping them aligned during ligament fabrica-
tion, these were snapped off once assembly was complete.l*®!
Ligaments were formed from Festo 2mm flexible tube with
shore hardness D52, cut to individual lengths for each joint, then
bonded into the modeled ligament mounting holes using
Araldite two-part epoxy. Flexible tubing provided a robust flexure
joint with low rolling resistance and limited extensibility to
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reduce joint dislocation. Tendon pulleys were “U” shapes with
2 mm diameter and 0.6 mm thickness formed of single core, cop-
per, stripped 23AWG wire. These were inserted in the modeled
mounting holes and bonded with Araldite epoxy. To resist higher
forces, pulleys for the flexor tendons penetrated the thickness of
the bone and hook onto the rear side. The final skeleton assembly
step was attaching the wrist-mounting hardware and routing
the tendons. Tendons tied to anchors at predefined termination
points, then were routed through pulleys toward the wrist mount-
ing hardware. Each tendon was looped through a spring and
clamped to the hand mounting plate with a screw. Spring stiff-
nesses can be limited individually using hooks. With this mount-
ing method, pretension and stiffness of each tendon can be tuned
for different starting postures and interaction force behaviors.®

The sensorized soft skin was cast into the 3D-printed, assem-
bled mold using Smooth-on Ecoflex 00-30 two part silicone. After
mixing, the silicone was vacuumed to remove any air bubbles,
then pored into the mold, and allowed to cure for four hours.
The cast skin was carefully removed from the mold, then placed
over the preassembled skeleton like a glove. The skin was bonded
to the distal phalanx of each finger, underneath the fingernail,
using Smooth-on Silpoxy. The skin over the other joints was left
unbonded and held in place via friction. For sensor connections,
silicone tubing (BS2848, shore hardness: A40, inner diameter:
0.5 mm, outer diameter: 1.5 mm) was inserted to the chosen
receptors, ten receptors on each of the thumb, index and middle
finger and two in the palm. Tubing is was routed on the rear of
the finger and bonded to the skin with Silpoxy. As small a tube as
possible was preferred, to reduce any added elasticity to the fin-
ger motions, allow for higher density of sensor placement and to
increase sensitivity by maximizing change in receptor chamber
volume over total sensor volume.

The final step of hand assembly was the sensor readout.
Pressure within each sensing receptor was transduced with
NXP MPXH6300AC6U absolute pressure sensors. Analog vol-
tages from each pressure sensor were measured with 16-bit
ADS1115 analog to digital converters (ADC) capable of 860 sam-
ples sec”'. These were 12C devices with four ADC channels and
four possible addresses, hence a single 12C bus can support 16
sensor channels. Custom PCBs were manufactured for mount-
ing and connecting the pressure sensors to the ADCs. Eight of
these PCB were mounted on the sensor shield on the wrist-
mounting hardware, where sensor tubing can be safely con-
nected (Figure 2A and S1, Supporting Information). The total
of 32 available sensing channels was divided onto two indepen-
dent I2C buses of an FRDMKL25Z microcontroller. This control-
ler configures each ADC and collates sensor readouts ready for a
master device. With this configuration, the maximum sampling
frequency of all channels together was 26.9 Hz, though to
account for delays in communications and stabilizing timings
for processing, we sampled all channels at 10 Hz.

2.3. Wrist-Control Framework

Grasping with a passive hand relieds on wrist-driven interactions
with the environment. Wrist control was essential in grasping
and manipulation, especially in more constrained environments.
Edge grasps were an example of wrist control being used to
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overcome limitations.*®) Techniques for generating similar
environmental constraints’ exploitation were generally bespoke
algorithmic solutions.!**! These approaches required significant
teaching effort, which the wrist-control framework!® attempts to
solve. This was a method for training and adapting grasps
based-on sequential interaction classification from only a single
demonstration trajectory. The following process generated tem-
plate trajectories for distinct grasping strategies on familiar
objects:

Kinaesthetic teaching was used to generate a trajectory for a
particular grasping strategy on a training object

D = [x;,y;, 2i, 1%, TY;, Zi] im0, n—1 1)

The trajectory D was subsampled into k keypoints at interaction
“inflection” points, resulting in a simplified trajectory R with a
discrete set of interactions

R = [%i, Vi 20, 75, 195, 723 ik, k) 1RP E N[O < kp <n}  (2)
Each interaction was given a classification that defines how it
adapts to changing object geometry. Therefore, by inputting a
familiar object with changes in its primitive geometry, this tem-

plate trajectory T can allow grasping adaptation (Figure 4A).

T=R+A

A= [8x;, 8y;, 62, 6%, Y3, S1Z] ifip,. .. . kpe,]

G)

Figure 3B shows an example trajectory with the wrist position,
orientation, and sensor readout. The sensor readout enhanced
key point extraction and classification, which previously was
processed manually, and with the additional sensor information
had the potential to be automated.

Grasping and manipulation via sequential interactions can not
only improve robustness and simplify control with a soft hand*!
but it can also add redundancy!® and extend behavioral diver-
sity.”) For successful robotic grasping, a minimum amount of
knowledge is required about itself and the environment. With
a passive adaptive hand, this information requirement was offset
by the information gain through environmental interactions,
therefore success was tolerant to significant deviations in self
and environment state./) However, large uncertainty in the ini-
tial states can cause failures in later interactions, this is where
additional information gain can keep the robot within the range
of tolerated states.

2.4. Experimental Setup

To facilitate large-scale grasping experimentation, the hand was
mounted on a URS arm and the grasping environment is
self-resetting. Figure 1 shows the robot and environment. By
grasping the sphere and releasing onto a plate with a shallow
recession, the sphere always returns to the center ready for
the next trial. Since the hand was passive, releasing the object
was achieved by pushing into a fixed dowel as part of the grasping
trajectory. A grasp is considered a success if the object remains in
the hand up until the point where it is knocked out by the dowel.

Many grasping strategies can be chosen for the same object.®
Different strategies have strengths and weaknesses under differ-
ent environmental constraints and uncertainties. The primary
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Figure 3. Experimental setup and passive grasping/error recovery control architecture. A) System diagram for data collection. Learning experiment takes
a recorded trajectory for wrist-driven grasping, adds perturbation, then records sensor data and grasp outcome. B) Example recorded trajectory and
sensor time-series data through phases of reaching, interacting, and releasing the object. C) Modified system diagram for error recovery experiment,
network predictions lead to error recovery actions once the prediction is “certain”. D) Prediction network architecture trained on data from the learning

experiment and outputting outcome predictions in real time.

grasping strategy in this article is chosen such that failures are
relatively common (Figure 5C) but occur with little dependence
on injected noise. The trajectory was recorded using the wrist-
control framework, where kinaesthetic teaching gave a six
DoF time series D sampled at 10 Hz on a central PC which
was them subsampled into seven keypoints (Figure 4B). The
simplified trajectory can be replayed as a set of waypoints.
Artificial noise was added in the form of a constant shift to
the trajectory in the plane of the table, (r~(0,5mm),
0 ~U(—nx), R* =R+ [rcos(d),rsin(6),0,0,0,0]), essentially
adding uncertainty to the starting location of the object. This
noise was distributed radially, with uniform probability between
0 and 5 mm distance from the object origin.

Simultaneous to recording and replaying trajectories, sensor
data S were streamed to the central PC and video was recorded
from a webcam. To ensure reliable sampling rate and data

Adv. Intell. Syst. 2023, 2200390 2200390 (5 of 13)

synchronization, a central PC process collated all data. The result
was a synchronized AVI file and tabulated data file (CSV) with
timestamp, robot pose, and sensor readout.

S = [so,51, -+ 531] i=[0,...n-1] 4)

Grasping experiments can now be performed in rapid succession
with minimal oversight. Six hundred fifty grasping trials were
performed over 5d, with different environmental conditions
such as temperature, which offsets the barometric sensor read-
ings. Footage of each trial was manually reviewed, and the final
outcome was labeled. The label corresponded to the classification
of outcome which was qualitatively evaluated, e.g., failure due to
missing the object or failure due to the object getting trapped
(Figure 5B). This data set was used to train the network. With
the network trained, sensor readout at 10 Hz was forwarded
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Figure 4. Passive hand motions and adaptive behaviors. A) Skeleton range of motion in the Kapandiji thumb test.”* Hand posture can be preset by tuning
tendon springs (Figure 2A). High test score excluding ring and little finger contributions. B) Passive shape adaptation. Similar to the “finray effect” [’
forces toward the base of a finger cause negative bending. As the MCP joint is extended, flexor tendon tension is increased, causing bending in the PIP and
DIP joint. C) Complex and anisotropic stiffness for diverse interaction, e.g., abduction/adduction stiffness varies with finger extension due to joint
geometry.®® Lower stiffness when extended allows the finger to deflect, higher stiffness when flex provides higher passive grasping force.
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Figure 5. Learning experiment results. A) Prediction accuracy over trajectory phase (upper). Further into the trajectory, predictions stabilize (middle) and
become more accurate (lower). B) Different grasping outcomes are classified manually by the observed interactions. A single success type was observed,
four failure types were observed. C) Effect of perturbations on the learning data set. With no perturbation, success outcomes were the majority (upper).
With perturbation added, outcome variance increases, some failures types are dependent on the direction of perturbation (lower).
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to the recurrent network, which returned a live prediction of
grasping success. Trials can be run with or without error recovery
enabled. The network and error recovery was tested with 250 tri-
als (Movie S4, Supporting Information), half have recovery dis-
abled as a control, the other half error recovery iswas enabled.

2.5. Network Architecture and Training

The network for predicting failure was designed to perform a
sequence-to-one regression. The architecture of the deep
LSTM network is shown in Figure 3D. The network was made
of two layers of LSTM units with a size of 60 and 15, with a
dropout unit in between. The first LSTM layer performed
a “sequence-to-sequence” transformation and the second
LSTM layer performed a ’sequence-to-one’ transformation.
The dropout unit had a dropout probability of 0.2. The network
creation and training were done on the MATLAB Deep Learning
Toolbox.

Six hundred and fifty sequence data were collected for train-
ing. All the sequence had its corresponding scalar outcome vari-
able. Here, we gave a value of 1 for failure and 0 for success, in
order to convert the learning to a regression problem. The data
set was augmented to a larger set, eighty times its size, by clip-
ping the sequences randomly within a range of 5-15s. Time
exponentially decreasing noise was also added to the sensor data.
This data augmentation forces the network to predict the grasp
outcome as early as possible without overfitting to the small data-
set. Six hundred and ten samples were used for learning and the
rest for testing.

2.6. Error Recovery

The error recovery process allowed us to test the real-world impli-
cations of error detection. Figure 3C shows the modified wrist-
control framework for error recovery. During an activity, the
sensor readout was fed to a network, which generates live out-
come predictions. When the network is certain of failure, the out-
put regresses to a steady “1”, if the network is certain of success,
the output regresses to a steady “0”. If there is uncertainty, the
value may oscillate. The “certain” states generally occur late in
the trajectory, often times after failure or potential for failure
has passed.

To perform an error recovery process, a decision had to be
made whether to act or not during the trajectory. In order to
obtain a prediction as soon as possible, analysis was performed
to extract a prediction to act upon when network certainty was
lower. The network output Z was passed through a first-order
digital filter, with transfer function coefficients a=[0.5 0.25
0.125 0.0625 0.03125 0.03125], then the decision Z¢ was made
if the filtered value was within 0.2 of each class and the derivative
was within 0.2 of 0.

Z(i) = F(So,...:)
f

ZHi) = > 4Z(i-j) ©)
j=0,...5
4 J1 08<Zf(i) <12and—02< 7 (i) < 0.2
Z%(i) = . f (©)
0 —02<2Zf(i) <02and - 0.2 < Z/ (i) < 0.2
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For the error recovery process, a heuristic strategy was chosen
since. From the training data, one mode of failure dominated,
with ~50% of total outcomes, therefore the recovery strategy tar-
geted this. In this failure mode “F1” (Figure 5B), the sphere was
trapped under the index finger and ejected before the grasp can
be modulated by thumb contact. A simple hypothesis for recov-
ery is to relieve pressure and bring the thumb into contact with
the sphere before the elastic force within the index finger builds
up too high. This can be achieved with a translation (away from
the camera in Figure 6A). If this intuitive recovery technique is
successful, then error detection is demonstrated to have great
potential in robust grasping and manipulation when used in con-
junction with human intuition or more advanced recovery pro-
cesses which can account for types of failure, or even used as part
of a training process itself.

2.7. Statistical Analysis

Statistical analysis was performed on the results to test the sig-
nificance of the findings. A Chi-squared test was performed on
the outcomes of the error recovery trials compared to the control
trials (Figure 6B). The significance of the change in rates of the
success and failure modes was tested to a 0.00001 significance
with a single-ended p-value.

3. Results
3.1. The Soft Anthropomorphic Hand

Embedding mechanical intelligence within a robotic hand
increases greater behavioral diversity through mechanical com-
plexity and redundancy.”-%>%®! In addition, intelligent behaviors
are readily exploited by cheap control,’”) especially in common
repetitive tasks such as grasping.[®® This is key for developing
intelligent and general-purpose hands for use in industrial,
social, and prosthetic devices.*®*”® The human hand provides
the ideal starting point for the design of such intelligent systems.
Not only are they highly generalized and adaptable, but much of
the modern world is designed with the specific ergonomics of
human-hand interactions.!!

For this investigation into passive adaptive grasping and error
prediction, we have developed a sensorized soft hand with an
anatomically accurate structure. The replica synovial joints
(Figure 2) ground the hand design with biological basis.*”"7%
These types of joints are the most common and most mobile
joint seen in mammals, however, are exceedingly rare in robot-
ics. In part due to the inherent instability of floating bones versus
pin or socket joints. While synovial joints may have arisen due to
biological constraints, they demonstrate significant advantages in
terms of efficiency, customizability, and resilience./”?! Figure 2B
shows the underlying skeletal structure of our passive hand. This
design allows significant ranges of motion, including thumb
abduction, resilience to impacts, and dislocation, while retaining
controllability and passive-adaptive behaviors (Figure S3,
Supporting Information adaptive grasping).

The sensorized skin receptors act according to the ideal gas
law. Air chambers located within the soft skin are deformed
under tactile loads or joint bending (Figure 2C). The change

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 6. Error recovery experiment results. A) Heuristic error recovery procedure. Prediction is monitored, as soon as error is “certain,” the recovery
intervention is implemented. The routine corrects for the most common error (F1: Figure 5), relieving the trapped object with a shift, primarily in the x
direction. B) Change in outcomes when implementing error recovery, successes increase and failure mode 1 decreases significantly (to 0.001%). Other
failures are not significantly affected. C) Real grasping outcomes broken down by time of prediction, whether success was predicted (upper) or not (lower)
and intervention disabled (left) as a control or enabled (right). Change in outcome distribution when failure is predicted and intervention enabled (lower
right) demonstrates the recovery—early decisions are critical for successful recovery.

in volume corresponds to a change in pressure measured by
barometric sensors mounted on the wrist (Figure 2A). The skin
has a resolution of 0.69 mN with a 16-bit ADC, a force range of
23-5800mN, and a response time up to 1ms (Table S1,
Supporting Information).

3.2. Passivity and Anthropomorphic Design Provides One-Step
Stable Adaptive Grasps

A previous study demonstrated adaptive grasping with the skel-
etal hand under a framework for passive grasping with sequential
interactions through control of the wrist.!”) The skeletal hand is
able to grasp spheres with diameter 25-75 mm from single dem-
onstration with an overall success rate of 57.7%, with the wrist
adaptations contributing to an 86% increase in success rate over
simple open-loop control.

Figure 4 outlines some of the capabilities of our passive system.
For use in a diversity of tasks, high posture control is desired. Using
the Kapandji thumb test as an evaluation of thumb range of
motion,”* Figure 4A shows successful posture setting to extreme
positions in the test (some positions untestable). Additionally, intel-
ligent behaviors in the hand can be exploited for more robust grasp-
ing or enabling new interactions. Figure 4B shows the curling
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behavior of the index finger. Due to the tendon layout and joint
design, when pressing a finger toward the base, the tip deflects
toward the force. This negative bending, similar to the finray
effect”” enhances passive shape adaptation. In Figure 4C,
posture-dependent stiffness is demonstrated. Due to bone geome-
try at joint interfaces, abduction/adduction in the flexed position is
restricted relative to the extended position, similar to a human
hand.P® This can be exploited during grasping, where when form-
ing grasps, lower stiffness is useful, then when holding, higher stiff-
ness is preferred.

To evaluate adaptive grasping augmented by the soft sensor-
ized skin, learned trajectories can be tested on everyday objects of
similar size to the training object used during kinaesthetic teach-
ing. The hand, in a partially closed position, is driven through a
series of interactions with a 60mm sphere (Movie S1,
Supporting Information). This trajectory has been simplified
by interaction-based key point extraction.!! One limitation from
the wrist-driven framework is the subjective manual trajectory
processing, the presence of sensory information can enable auto-
mation, and objectification of the manual steps such as keypoint
extraction and interaction classification.!”

Table S2, Supporting Information shows the grasping success
rates of each test object. Three of fourteen objects have no suc-
cesses, either too heavy and small (battery), too small and
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deformable (grapes), or too large and concave (spool). These
grasps may not be possible with this particular hand starting
posture and trajectory, as grasping force in this case depends
on elastic forces from index finger and thumb deformations.
The remaining objects have variable success rate. Note that no
information about the object and its pose is provided to the con-
troller, showcasing the adaptability of the hand design. Success
rates can be improved by visual feedback, wrist adaptations, and
error predictions, especially as some of the worst performing
objects are orientation dependent unlike the training object. The
wooden block, ground coffee, and computer mouse geometries
are all anisotropic and successes are only seen in favorable starting
orientations, this is a problem that can be solved at the grasp plan-
ning stage through vision or exploration of the object with tactile
feedback.

Notable objects that showcase the passive hands capabilities
include the highly deformable bubble wrap, which has a high
success rate when aligned with the hand; the smaller sphere,
with a 100% success rate; the ground coffee bag, which is much
heavier (550%) than the teaching spheres; and the wooden block,
whose lack of smooth, curved surfaces does not prevent
successful grasping in all cases (Grasping success: Movie S2,
Supporting Information, grasping failure: Movie S3, Supporting
Information).

3.3. Recurrent Neural Networks Can Predict Grasping Outcome
Before Lift-Off

The trajectory in Figure 4B is used for the majority of experiments.
We expect the hand to be able to adapt and grasp from different
starting states, such as under object position uncertainty. This
recorded grasp policy is perturbed to generate training data
and can be used for large-scale grasping experimentation,
Figure 4A,C.

As the grasp policies are open-loop trajectories, the sensor data
history from the onset of contact is indicative of future outcomes.
We use an LSTM network (Figure 3D) to predict the grasp out-
come in real time, assuming future actions are fixed. Even
though the labeling of the data set for training can only be done
after the end of each grasp episodes (Figure 3A), our training
framework drives the network to predict grasp outcomes as early
as possible (See Materials and Methods). The speed of detection
and its certainty depends on the nature of failure. An example of
the network prediction for different kind of grasp outcomes is
shown in Figure 3B.

The prediction accuracy with respect to the length of sensory
data on the test set provides an insight on the highest accuracy
achievable with the current setup and training data (Figure 5A
(lower)). Given the whole sequence of sensory data after lift-
off (time > 10's), the learned network can predict the final out-
come with very high accuracy. Note that this is not a trivial problem
because the sensors are significantly affected by nonlinearities like
hysteresis and drift in the material and the temperature surround-
ing the skin. The prediction accuracy reduces as the length of the
sensory data is reduced, as expected. However, most of the failure
cases are still predicted early and with higher confidence, which is
vital for error recovery and robustness. Figure SA (middle) shows
the average predictions for the test set, labeled with the actual

Adv. Intell. Syst. 2023, 2200390 2200390 (9 of 13)

www.advintellsyst.com

outcome, where it can be observed that failure predictions are more
accurate and robust. Even though convergence of the predictions
happens at a later stage, by observing the trends of the prediction,
we can make reasonable predictions of the outcome early enough
that it can be used for error recovery using low-bandwidth
controllers.

3.4. Large-Scale Grasping Experimentation Reveals Multiple
Failure Modes with Simulated Noise

The passive anthropomorphic hand has a vast number of possi-
ble grasps. Not only are there multiple grasp type possiblel”””!
but also multiple possible trajectories to achieve the same grasp
type. Limiting the hand to a single starting posture (Figure 2A)
narrows down the grasping possibilities; however, there is still a
multitude to choose from.

An exploration of grasping trajectories is performed, with the
criteria that we find a trajectory with a significant proportion of
failure modes, therefore less training and test data are needed to
observe failures and recovery. Figure 3B shows this trajectory.
Figure 5C and Table S3, Supporting Information show the
results from a trial of 200 grasps; the first 100 trials follow
the same trajectory without artificially added perturbation, and
the last 100 have a random perturbation applied in the plane
of the table to simulate uncertainty in grasping location. The first
100 trials have a success rate of 69%, which drops to 51% with
perturbation. Failures are distributed over four distinct modes
(Figure 5B and S5, Supporting Information left), with the first
failure mode being the mode common. Figure 5C (top) shows
the outcomes of these 100 trials over the object starting locations.
The presence of failures under the no noise condition suggests
there are other sources of uncertainty, the most likely being the
hand starting posture, where joint and tendon friction can result
in position hysteresis.

During exploration, a second trajectory of note was found.
This trajectory (Figure S5, Supporting Information right) dem-
onstrated a much higher success rate than the trajectory
used for the remaining experiments (Figure S5, Supporting
Information left). Table S4, Supporting Information shows the
outcomes of 200 trials, 100 with added noise. With no noise, this
trajectory achieved a 100% success rate, signaling that it is robust
to uncertainties in the starting hand posture and that trajecto-
ries can be optimized for particular environments (Movie S5,
Supporting Information). With an appropriate trajectory, the pas-
sive hand framework can achieve highly robust grasp perform-
ances under slight environmental uncertainties. As we are
interested in error prediction and recovery, this grasp trajectory
is not investigated in detail. The trajectory did see a significant
drop in success rate under the presence of added noise, down to
67%. Within the 67 successes, three were observed as distinct
new grasps, where the teaching sphere ended in a power grasp
against the palm, rather than a pinch between the thumb and
index finger. This gives a passive boost in performance which
can be exploited in more novel and challenging tasks. In addi-
tion, this demonstrates the behavioral diversity enabled by pas-
sive design which can be exploited by minor changes in control
(as this mode is observed to be starting position dependent,
Figure S4A, Supporting Information right).
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3.5. Error Recovery is Possible via Heuristics-Based Wrist
Trajectory Adaptation

Passive grasping relies upon successful completion of a series
of interactions. There is tolerance in these interactions.
Passivity in design aims to increase these tolerances, meaning
less information is required about the self and environment
(Figure 4). In this way, the task of information gathering is
exported from perception systems to the physical dynamical sys-
tem. This means for many simple or familiar tasks, much lesser
burden is placed on the perception system, though for more com-
plex or unfamiliar tasks, perception is required.

The addition of a perception system can allow reaction to sur-
prise during grasping.[*® 78 This way, expensive attention is
required less frequently.P!) If this reaction comes too late, the
grasp may have already failed, generally requiring an expensive
rerun of the grasp.”® Therefore, if potential failures can be
detected early, they can be accounted for without either expensive
attention or regrasping (Movie S6, Supporting Information).

From Figure 5C, we see failure mode one is the most com-
mon. In this mode, the teaching sphere is trapped under the
index finger and the table, rather than in a more stable contact
with the thumb (Figure 5B). This leads to a build-up of pressure,
which when released knocks the sphere out of the grip. A heu-
ristic recovery method is introduced, which intervenes with a
shift to the trajectory when the failure prediction is “certain”.
This shift relieves pressure by rolling the sphere from under
the finger and bringing it into contact with the thumb. Figure 6A
illustrates the error recovery process. Of note, the recovery can
intervene at any moment in time, so can react immediately when
failure prediction exceeds a threshold (Figure 3C) (Movie S7,
Supporting Information).

The heuristic recovery intervention only operates as intended
for a single failure mode, though acts as a proof of concept for
improving manipulation robustness with error prediction. With
a cheap control technique and exploitation of the anthropomor-
phic hand’s passive dynamics, intuitive and natural skills can be
observed.

With both the error predictions and recovery functioning, an
experiment is run to evaluate the combined performance. Two
hundred fifty grasping trials are run, alternating between
open-loop control as a controlled baseline and with intervention
enabled (Figure 3C). Table S5, Supporting Information shows all
real outcomes and predictions for these trials. Observing the
baseline results, the true positive rate of successes is 36% and
for failures is 95%. Figure 6B shows the change in success
and failure modes between the baseline and trials with interven-
tion enabled. With intervention enabled, the number of success-
ful outcomes increases from 25 to 60 and the number of failures
decreases from 72 to 39. As the distribution of predictions is
approximately equal between the two cases, this would suggest
the intervention is impactful (with statistical significance
p < 0.00001). The remaining failure modes are grouped and
do not change significantly, this is expected due to the targeted
nature of the error recovery.

Average predictions over time show patterns in the different
outcomes. Figure S6, Supporting Information shows mean and
standard deviation for the baseline trials (left), success (top) and
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failure (bottom) outcome chosen. Incorrect decisions happen
early on in the trajectories, when the predictions are less distin-
guishable. The more common occurrence being failure out-
comes looking similar to successful outcomes before 8s. By
waiting to make a decision, more information can be gathered,
and higher accuracy can be achieved (with an upper limit from
the regression accuracy, Figure 5A). However, this results in
delayed reaction to recover from errors. There is high prediction
variance within the different outcome modes, especially in failure
mode two. This is partly because of our coarse classification of
outcomes. Within each success and failure mode, there is some
variance in terms of catastrophic failure point. Especially in failure
mode 2, in which the sphere is dropped any time after lifting and
before being reset. Therefore, significant variance in sensor infor-
mation is expected, potentially causing overlaps in sensory infor-
mation which can be resolved by gathering more information
(either from further hand—environment interactions or with place-
ment of additional sensing receptors).

Observing the decision times for the different predictions and
real outcomes confirms the effect of the recovery intervention
(Figure 6C). First, the shapes of the total cumulative predictions
counts are near identical between the baseline and intervention
modes. Second, for the success predictions, when no recovery
happens in either the baseline or in the intervention case,
the distribution of real outcomes is on average within 13%.
Therefore, the difference in real outcomes when failure is pre-
dicted is evident.

There are patterns in both the successful predictions and fail-
ure predictions based on the time the decisions are made. For the
cases where failure outcomes were misidentified as successes
(Figure 6C top, modes F1 and F2), 87% are decided before 9s
into the trajectory. Failure prediction accuracy increases if they
can be identified early (before 8.0s) or later (after 9.55s)
(Figure 6C bottom left). The first peak is critical for the recovery
routine. From the predicted failures in the intervention case, the
successful outcomes significantly increase over the baseline case.
However, after 8.1s into the trajectory, there are no additional
success outcomes. The failure decision has to come before this
time for a chance of recovery. At 7.8 s, 35 failures are identified,
34 of them are successful outcomes (assuming 3 misclassified
successful outcomes from the baseline failure predictions),
and the recovery success rate is ~97%. At 8.4 s, the recovery suc-
cess rate drops to ~87% and at 9.5 s drops to ~66%.

3.6. Grasp Predictions are also Generalizable

While the error predictions are only trained on the grasping of
spheres with position uncertainty, grasping success potentially is
indicated by underlying patterns in the sensor readout which are
not unique to spheres. Patterns such as net forces, enclosure of
the object, or stability of each contact (e.g., lack of slip) have the
potential to be learned and transferred by the network to wider
situations.

Table S2, Supporting Information shows the prediction accu-
racy on the set of everyday objects. The accuracy compares the
decision point of the prediction to the real outcome. The most
accurate predictions are seen with the 50 mm sphere (100%),
the battery (90%), and the spool (80%). For the sphere, the grasp
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is near identical to the grasp of the training object (60 mm
sphere), the battery and spool both have no successes and fail
early in the trajectory, giving more information for the predic-
tions. The lowest accuracy is seen in the 70 mm sphere (50%),
bubble wrap (20%), and bottle (20%). The 70 mm sphere grasp is
successful only in a different grasping mode which utilizes the
middle finger, hence the predictions are less accurate for the suc-
cesses. Additionally, both the bubble wrap and bottle succeed
with slightly different emergent grasps (Movie S2, Supporting
Information). This would suggest the network is overfitting on
the success outcomes. This is not unexpected due to the lower
diversity in grasping success in the training data versus the diver-
sity in failures.

The predictions demonstrate some intuition for more general
cases. This intuition is observed in predictions for familiar objects,
in addition to predictions with unfamiliar environmental interfer-
ence. For example, when grasping and the object is knocked out of
the grasp during lift, the prediction rapidly updates to a failure
(Figure S7 and Movie S8, Supporting Information). This exact
interference case is not present in the training data, though failure
mode two can look similar. Other live prediction updates do back
up the intuition and generalized performance, particularly the abil-
ity of the prediction to update after the heuristic error recovery.
The final prediction of the network (at 15s) has 100% accuracy
(50 of 50) for the baseline cases where failure was correctly pre-
dicted, for the intervention cases where failure was predicted but
not recovered the final prediction was correct 100% (21 of 21), for
cases where the intervention succeed, the prediction correctly
updated to success 97% (35 of 36) of the time. The failure predic-
tions were made on average 7.403 s into these trajectories, then by
8.2 s, the average prediction became uncertain (regression output
0.5) and by 8.5 s, the prediction average (0.143) passed the thresh-
old to a success (<0.2). Therefore, there is potential for closed-loop
error recovery and self-supervised learning of recovery behaviors.

4. Discussion

Performance of robotic manipulators in general-purpose tasks is
lacking when compared to human manipulation. Two significant
problems we see in robotic manipulation include the develop-
ment of appropriate designs that can exhibit adaptive dynamic
behaviors and the development of control strategies for adapta-
tion and learning in novel and niche situations. The passive
dynamics of the hand have shown to be essential for generating
diverse adaptive behaviors through interactions,”) ensuring low
control effort through strategies including passive shape adapta-
tion! and stiffness control.l”) In passive soft grasping, emergent
behaviors allow robustness to uncertainties in object and envi-
ronment properties, though these behaviors can result in com-
plex sensory responses which makes perception difficult. The
described soft anthropomorphic hand is the ideal platform for
testing passive dynamic behaviors and investigating sensing
strategies for intuitive manipulation. In total, 1240 grasping trials
were performed (650 training, 250 heuristic recovery testing, 140
everyday object trials, 200 alternate trajectory grasps), providing
diverse manipulation data.

The passive anthropomorphic hand demonstrates significant
adaptive grasping behaviors. Trained in one-shot on a regular
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sphere, the hand is able to successfully grasp 11 of 14 everyday
objects chosen at random with similar size to the sphere. These
objects include highly irregular objects such as a computer
mouse and highly deformable objects such as a roll of bubble
wrap. The soft sensing skin demonstrates a low-cost, highly sen-
sitive, and modular design (sensor response is customizable and
receptors can be placed in any geometry of hand). These sensors
provide tactile and proprioceptive information, though the cur-
rent solution has limited receptor density and scalability is chal-
lenging with individual barometric pressure gauges for each
sensing channel. The sparse data are informative for studying
the hand—environment interactions, Figure 3B shows sensor
channel peaks corresponding to the extracted keypoints, which
mark changing interactions.!’ The anatomically correct design
approach coupled with the soft sensing capabilities allows intui-
tive training from nonexpert users.

Our error prediction approach is able to overcome traditional
soft sensing problems including nonlinearities, drift, and tem-
perature dependence by using recurrent learning architectures.
Low-level, high-bandwidth control is performed in a pure mechan-
ical manner by the passive-adaptive behaviors (Figure 4) and emer-
gent grasps (Figure S3, Supporting Information). Hence, sensory
feedback is only required for higher level monitoring and predic-
tive reactions. When incentivizing early predictions, prediction
accuracy can be as high as 79% with data length of 80 (8 s), improv-
ing to 98% with data length 150. Extracting the trends of the pre-
diction, we are able to make a decision about the outcome in
advance of catastrophic grasp failure (greater than 1 stable contact
to one or fewer, e.g., object is ejected from grasp), therefore
allowing us to correct for any error and recover the grasp.
Implementation of a heuristic recovery routine targeted at the
most common failure mode improves the success rate from
19.8% to 48.4%. Of the 35 earliest failure predictions, 34 were suc-
cessfully recovered. The recovery strategy is a simple translation
added based on intuition, showing the power of this predictive
approach only requiring simple interventions, which is promising
for scalability and developing recovery routines for other manip-
ulations and failure modes, potentially through self-supervised
learning, 83"

To go beyond just improving grasping robustness and adap-
tation, we hope to see the emergence of intuitive behaviors. The
first of these is being able to recognize grasping failures on unfa-
miliar objects. When only trained on grasping of a regular
sphere, the network is able to detect failures with 68% accuracy
(successes with 41%). This is promising and highly likely to be
improved with a more diverse training set. Second, is being able
to react to external sources of interference. Even when the object
is knocked out of the hand post-lift, the network output reacts
within 0.2 s to update the prediction and smaller sources of inter-
ference. Additionally, by being similar to a human hand, the
achievable grasp types are well understood,”®””# the hand
matches ergonomically with the environment, and human input
during teaching is intuitive due to familiarity.®*! This has great
implications for making robust and intuitive manipulation sys-
tems, for example, in flexible industrial or logistic robotic appli-
cations where the environment can constantly change, but highly
robust and adaptable systems are required. Or for prostheses,
where the anthropomorphic design is highly desirable, both
for esthetics®® and for the ease of exploitation.®®*”]

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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An additional requirement for prostheses is low-cost, simplicity,
and sensory feedback during use.'>**#% Our hand achieves all of
these, in particular the passive nature greatly simplifies the sys-
tem and usability in the real world, and the high-level sensory
feedback is easily interpretable by the user and can give real-time
feedback of grasp quality.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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