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A B S T R A C T   

The toughness of structures is essential to prevent catastrophic failure. This study introduced a design framework 
to improve the toughness of 3D-printed carbon fiber-reinforced composite structures by local latticing utilizing 
the intermediate material fraction obtained in the topology optimization. The framework was based on aniso-
tropic topology optimization considering material fraction and material orientation. The optimized results were 
de-homogenized by the phase field-based technique to determine the 3D printing path. Experimental validations 
were carried out on a three-point bending beam problem. As a result, it was shown that the framework endowed 
toughness for the 3D-printed carbon fiber-reinforced composite structure.   

1. Introduction 

A fail-safe design ensures structural safety under unexpected 
destruction. The fail-safe designs have been validated for aerospace 
structures. However, fail-safe capability frequently requires several 
components to prevent catastrophic failures of entire structures, which 
increases the structural weight. A fail-safe monolithic structure offering 
protection from catastrophic failures, instead of structural redundancy, 
can reduce the structural weight. The fail-safe monolithic structure en-
ables advanced designs of lightweight primary structures, which further 
expands the use of a fail-safe design for small parts in automotive, ro-
botics, and medical applications, such as prostheses. 

Monolithic fail-safety can be realized with high-toughness materials. 
However, high stiffness and strength materials such as carbon fiber- 
reinforced polymer composites exhibit brittle behavior. Fiber-hybrid 
technique has been studied to improve the toughness [1]. Glass/-
carbon fiber hybrids [2] and carbon/carbon fiber hybrids, including 
those with high-modulus/high-strength [3] and 
low-elongation/high-elongation [4], have shown high toughness as 
pseudo-ductility. The toughness improvement of these materials is based 
on a transition between two failure stages. High-modulus fibers bear the 
initial load, and subsequently, high-strength fibers withstand the 
high-level load induced after the failure of the high-modulus fibers. 
However, the pseudo-ductility is restricted by the toughness of the 
constituent materials. 

Metastructures are generally composed of complex-lattice internal 

structures that break the mutually exclusive relationship between stiff-
ness and toughness [5,6]. Loading causes local buckling of the struts in 
their lattices, which absorbs the external work. Successive local buckling 
endows metastructures with high toughness. Many studies have exam-
ined topology optimization of metastructures [7–13]. These optimiza-
tion frameworks divide the process into two parts with different scales; 
first, on a small scale, the mechanical behavior of a metastructure is 
obtained before the optimization process. Subsequently, on the entire 
structure scale, multiple-field optimization determines the optimal 
design parameters. These optimization schemes are focused on isotropic 
materials including metals or polymers because of the geometrical 
complexity of metastructure. However, anisotropic materials such as 
fiber-reinforced composites are beneficial to endow metastructures with 
high mechanical performance-to-weight ratios. 

Additive manufacturing (AM) techniques, including stereo-
lithography, selective laser sintering, and fused filament fabrication 
(FFF), produce metastructures [5,14]. Among these, the FFF method 
prints anisotropic short/continuous fiber-reinforced polymer compos-
ites by a continuous extrusion process considering material (fiber) 
continuity [15,16]. Fiber-reinforced polymer composite lattices are an 
emerging class of metastructures for producing lightweight 
high-performance structures [17,18]. The material path plays a signifi-
cant role in the mechanical properties of fiber-reinforced polymer 
composites. For example, a curvilinear material path that conforms to 
the principal loading direction improves its structural stiffness and 
strength [19–21]. Thus, material anisotropy as well as material 
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continuity must be included in developing metastructures using 
fiber-reinforced polymer composites. 

In this study, a homogenization-based topology optimization 
framework to improve the toughness of fiber-reinforced polymer com-
posite structures by local latticing was established. The material path, i. 
e., the 3D printing path in the FFF process, was developed based on the 
optimized discrete vector field of the material orientation while main-
taining the material continuity. In the optimization process, an inter-
mediate material fraction was obtained by changing the spacing 
between the paths. The proposed structures achieved high toughness 
after the peak load with remaining the high loading resistance. The 
established framework was applied to a beam structure with a sym-
metric cross-ply orthotropic lattice geometry as an example, and the 
experimental results showed the high-toughness metastructure pre-
sented fail-safe capability. 

2. Optimization formulation 

The minimum compliance problem was considered in this study to 
obtain high-stiffness structures. The toughness was not included 
explicitly in the optimization process. The toughness was endowed to 
3D-printed carbon fiber-reinforced composite structures by local lattic-
ing utilizing the intermediate material fraction obtained in the topology 
optimization. The optimal structure was built by optimizing the field 
variables: topology function χ(x), material fraction related to the unit 
cell geometry ρ(x), and orientation vector θ(x). 

2.1. Topology and material fraction representation 

The two dependent variable fields for topology design and material 
fraction were used to update the binary external shape and the material 
fraction simultaneously during the optimization process. The topology 
function, χ(x), was provided in the design domain, D, as follows: 

χ
(

x
)

=

{
0 for∀x ∈ D\Ω
1 for∀x ∈ Ω (1)  

where Ω is the material region and D\Ω represents the void region. The 
relaxed topology function, χ̃(x), was defined using the implicit design 
parameter for topology, φ(x) ∈ [0,1], and the relaxed Heaviside func-
tion, H̃(φ), based on the hyperbolic tangent function as follows: 

χ∼(x) = H
∼

(φ) =
tanh(βρmin) + tanh(β(φ(x) − ρmin ) )

tanh(βρmin) + tanh(β(1 − ρmin) )
(2)  

where β controls the smoothness of the projection and ρmin is the 
threshold of the cutoff value of the implicit design parameter, φ(x), 
which is related to the minimum material fraction. 

The material fraction, ρ(x) ∈ [ρmin, ρmax], was restricted by lower and 
upper bounds ρmin and ρmax, respectively. The reduced stiffness tensor 
C(x) was defined using the above variables and is expressed as follows: 

C(x) = Cvoid + χ∼
p
(C(ρ) − Cvoid ) (3)  

where Cvoid ≈ 0.01 × C represents a small stiffness tensor for the void, p 
is the penalty parameter, which is set as 3, and C(ρ) is the effective 
stiffness tensor related to the material fraction. The p = 3 is generally 
used to obtain a binary solution for the topology function. The addi-
tional variable for the material fraction ρ(x) gives the intermediate 
material fraction. The obtained intermediate material fraction can be 
realized in 3D printing by controlling the spacing between the printing 
paths, which results in local latticing of the optimized structures. 

In this study, asymptotic homogenization was conducted to obtain 
the relationship between the material fraction, ρ, and the effective 
stiffness tensor, C(ρ), which was investigated experimentally consid-
ering a symmetric cross-ply orthotropic lattice geometry as an example. 

2.2. Material orientation representation 

A vector representation was chosen for the material orientation field. 
An isoparametric-projection-based method [22] was used. The orienta-
tion vector, θ(x) ∈ R2, was provided in the design domain, D. This vector 
should satisfy the following constraint: 

‖θ‖ = 1 for ∀x ∈ D. (4) 

However, this position-wise constraint makes solving the optimiza-
tion problem difficult. A relaxed norm constraint was introduced simi-
larly to the relaxed topology function, χ̃(x). 

‖θ‖ ≤ 1 for ∀x ∈ D. (5) 

The implicit design parameters for the orientation vector, 
ϑ(x) ∈ [− 1, 1]2, were provided. These parameters were converted to the 
orientation tensor using the isoparametric projection, N : R2→R2, as 
follows: 

θ(x) = N(ϑ(x) ) (6) 

An isoparametric projection N that converts a box constraint to a 
circle constraint was used. For details of the formulation of the iso-
parametric projection, refer to Ref. [22]. A rotated stiffness tensor was 
defined as follows using the reduced stiffness tensor, C(x), in Eq. (3): 

Crot(x) = R(∠θ)C(x)RT(∠θ) (7)  

where R is the rotation tensor. 

2.3. Optimization problem 

All design variables were vectorized to a single design vector d(x) as 
follows: 

d(x) =

⎡

⎢
⎢
⎣

φ

ρ

ϑ

⎤

⎥
⎥
⎦ (8) 

The Helmholtz equation was used to regularize the design vector, 
d(x), with a filter radius R [23] as follows: 

− R2∇2 d̂ + d̂ = d (9)  

where d̂ represents the regularized design vector. This filtering method 
also improved the continuity of the material orientation. 

The elastic compliance minimization (i.e., maximizing stiffness) 
problem was defined, using the above equations, as follows: 

min
d

F ≡

∫

D
ε : Crot : ε dΩ (10a) 

Subject to: 

d ∈ [0, 1] × [ρmin, ρmax] × [ − 1, 1]2 (10b)  

G(d) ≡
∫

D
χ∼ρ dΩ − M ≤ 0 (10c)  

⎧
⎪⎪⎨

⎪⎪⎩

− ∇⋅σ = 0 in D

u = 0 on ΓD

σ⋅n = t on ΓN

(10d)  

σ = Crotε (10e)  

ε =
1
2
(
∇u + (∇u)T ) (10f)  

where M is the upper boundary of the total material amount, u is the 
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displacement vector fixed as zero on the Dirichlet boundary, ΓD, t is a 
traction vector defined on Neumann boundary ΓN, n is the normal 
vector, σ is the stress tensor, and ε is the strain tensor. 

By optimization using finite element analysis (FEA), the design 
variables were obtained as a discretized vector field, and the results are 
shown in Fig. 1A. 

3. Print path generation based on optimization result 

A de-homogenization approach was used to build a composite vari-
able lattice structure based on the optimization results because the 
discretized vector representation homogenized the design variables. 
Various de-homogenization techniques have been proposed, including 
the projection approach [24], the spinodoid metamaterial approach [25, 
26], the explicit geometry approach [14], and deep learning-based ap-
proaches [27]. However, these approaches are unsuitable for FFF, owing 
to the geometrical complexity of branching and holes. 

In this study, a printing path was directly de-homogenized from the 
optimization results, instead of projecting the complex geometry. The 
printing path was generated using the phase-field approach, in which a 
stripe pattern was derived based on the orientation vectors, which is 
shown in Fig. 1B [21]. Two stripe patterns, that follow the optimal 
vector field and its orthogonal direction, are needed for the orthotropic 
lattice geometry. This method enabled the generation of a material path 
for a variable lattice with material continuity. The following equation 
was used to obtain the i-th layer of the phase field φi, for the variable 
lattices: 

∂φi

∂t
= −

(
∇2 + k2)2φi + 2q2∇⋅{(θi ⊗ θi)∇φi } + εφi − φ3

i (11)  

where θi denotes the optimized orientation vector field of the i-th layer. 
q = 2 and ε = 20 are the parameters. The wavenumber, k, is a function 

of the material fraction, ρ, and the width of the material path w0, as 
follows: 

k = f (ρ;w0) (12) 

The specific form of function f is defined in Section 4. The material 
path was obtained as a zero-level contour of the phase field, φi (Fig. 1C). 
Finally, the material path was cut using the boundary shape, which is 
shown in Fig. 1D. The material path was used as the 3D printing path in 
the FFF process. 

4. Experimental 

4.1. Effective stiffness tensor of symmetric cross-ply orthotropic lattice 

The effective stiffness tensor, C(ρ), must be related to the material 
fraction, ρ, in the optimization process. An asymptotic homogenization 
method was used to obtain the effective stiffness tensor as a function of 
the material fraction. In this study, a symmetric cross-ply orthotropic 
lattice geometry was adopted as an example of a variable lattice, and it is 
shown in Fig. 2A. Orthogonal anisotropy was assumed in the FFF process 
of short carbon fiber-reinforced polymer composites, and the principal 
material direction coincided with the printing direction (Fig. 2B). The 
material fraction, ρ, was a variable and represented by the printing path 
width, wo, and the length, L, of a unit cell. 

ρ(L) = w0

L
(13)  

where the printing path width, w0, was set as a constant and L was 
changed to correspond to the material fraction, ρ. The wave number, k, 
in Eq. (12) was defined based on Eq. (13) as follows: 

Fig. 1. Workflow to generate optimized topology and material path for producing symmetric cross-ply orthotropic lattice geometry. (A) Setting of design domain and 
boundary conditions and example optimization result. (B) Phase-field of optimization results obtained by solving Eq. (11). (C) Material path generated from zero- 
level contour of phase field. (D) Assembled material path corresponding to 3D printing path. 
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k =
πρχ
w0

. (14) 

The stacking sequence was indicated using the optimal orientation θ 
as follows: 

θi = [∠θ/∠θ + 90◦](n/2)s (15)  

where n is the total number of stackings and s represents symmetry. 
Two-dimensional optimization was considered in this study. A unit 

cell of the symmetric cross-ply orthotropic lattice geometry exhibited 
the same material properties in the two orthogonal directions. There-
fore, the independent components of the stiffness tensor were three; 
C11(= C22), C12, and C66. Fig. 2C–E presents the relationships between 
the stiffness ratios, C11/C0

11,C12/C0
12, and C66/C0

66, and the material 
fraction, ρ, where superscript 0 represents solid stiffness. The short 
carbon fiber-reinforced polyamide 12 was used in this study. The 

longitudinal and transverse modulus were obtained by the tensile tests 
of the 3D-printed specimens and listed in Table 1. The shear modulus 
was obtained by fitting between FEA and the experimental results of the 

±45◦ uniform grid structure. Here, the small shear stiffness was used in 
the optimization to promote the orientation of materials to the principal 
loading direction. Tensile tests were conducted on 3D-printed uniform 
grids of short carbon fiber-reinforced polyamide 12 composites with 
several material fractions to validate the calculation results, which are 
shown in Fig. 2C. The experimental results supported the accuracy of the 
calculations. 

4.2. Numerical implementation 

The optimization problem expressed in Eq. (10) was resolved using 
the FEA method. The FEA method was used to determine the total strain 
energy by solving the elastic problem using the current design variables. 

Fig. 2. Asymptotic homogenization of symmetric cross-ply orthotropic lattice geometry composite. (A) Material fraction transition due to curvilinear printing path 
and geometries of unit cells with different material fractions. (B) Definition of unit cell. (C)–(E) Relationships between material fraction and effective stiffness ratios 
C11/C0

11,C12/C0
12, and C66/C0

66, respectively. 
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Subsequently, a sensitivity-based optimization algorithm (the method of 
moving asymptotes) iteratively updated the design variables. FEniCS, an 
FEA framework in Python, was used for all analyses, including asymp-
totic homogenization. The sensitivities of the design variables were 
calculated using the pyadjoint algorithm. 

4.3. Materials and method 

A short carbon fiber-reinforced polyamide 12 filament (PolyMide 
PA12-CF, Polymaker) was used for 3D printing. A three-point bending 
beam configuration was chosen for experimental validation. All speci-
mens were fabricated using an FFF-based 3D printer (Composer A4, 
Anisoprint) with the nozzle heated to 270 ◦C and the building plate to 
60 ◦C. The printing path width was set as 0.5 mm, and the thickness of 
each layer was 0.2 mm. The total thickness of each specimen was 10 mm 
(50 layers). 

4.4. Optimization results 

Fig. 3A–C shows the optimized results and the 3D-printed beams, 
which were obtained using different lower bounds of the material 
fraction, ρmin = 0.9, 0.5, and 0.3, under the same constraint on the 
material amount, M = 0.4. Stringing was developed due to the material 
oozing out of the nozzle while the print head was traveling to another 
point. This defect did not affect the mechanical performance of the 
structures. The initial material fractions and the orientations were set as 
ρmin and 45◦, respectively; the 0◦ direction corresponding to the x1 di-
rection, which is shown in Fig. 1A. The optimized results of the struc-
tural compliance of the three structures are displayed in Fig. 3, where all 
structures show almost the same values because the objectives 
converged in all cases. The printing paths were directed to the optimized 
orientation. The low material fraction was realized by spacing the 
printing paths, which developed locally latticed structures. The high 
ρmin = 0.9 provided 0–1 structures. 

Latticed structures were obtained by adopting lower bounds of the 
material fraction, ρmin = 0.5 and 0.3, in the optimization process. The 
high toughness was expected for the latticed structures because of the 
successive small-scale local buckling of the lattice geometry due to 
loading. The improvement of toughness was investigated experimen-
tally, as discussed in the following section. 

4.5. Assessment of toughness improvement by three-point bending test 

Three-point bending tests were conducted on 3D-printed fiber- 
reinforced polymer composite variable-lattice structures. In the case of 
ρmin = 0.5, the loading-unloading tests were performed after the peak 
load to show the recoverability. Fig. 4A shows the load-deflection curves 
of the structures with various lower bounds of the material fraction and 
a ±45◦ uniform grid structure as a benchmark. For each curve, A 75% 
peak load, peak load, and 15% reduction after the peak load points were 
plotted. The deformation of each structure during the bending tests is 
shown in Fig. 5. 

The 0–1 structure showed the highest stiffness and peak load and the 

Table 1 
Material properties.   

Short carbon fiber-reinforced polyamide 
12 

Young’s modulus along printing 
direction  

4848 

E11 [MPa] 

Young’s modulus along transverse 
direction  

725 

E22 [MPa] 

In-plane shear stiffness  1367 (400*) 

G12 [MPa] 

In-plane Poisson’s ratio  0.33 

ν12 [− ] 

(* was used in the optimization). 

Fig. 3. Optimization results and corresponding 3D-printed structures. (A)–(C) Cases of ρmin = 0.9, 0.5, and 0.3, respectively.  
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±45◦ uniform grid structure showed the lowest. Fig. 4G compares the 
stiffness between the FEA and experimental results. In the cases of 0–1 
structure and ±45◦ uniform grid structure, the FEA results predicted the 
experimental result with high accuracy (the error is less than 3.7%). 
However, the experimental results with ρmin = 0.5 and 0.3 showed 
smaller stiffness as compared to the FEA results. This error was attrib-
uted to the detached printing path that was not considered in the opti-
mization process. Fig. 6A shows the deformation of the 3D-printed 
structure with ρmin = 0.3, as visualized by the digital image correla-
tion (DIC) technique, and Fig. 6B shows an enlarged view of the defor-
mation. In the large deformation regions represented as a red color, 
detached material paths were found, which caused discontinuous load 
transfer. Local large deformations occurred at the points associated with 
a reduction in the stiffness of the entire structure. This print-path defect 
might be caused by the divergence of the optimized material orientation 
fields. Some papers proposed the reduction of the total divergence of the 
material orientation, termed divergence-free vector field methods [28]. 
However, these constraints may strongly restrict the solution space, 
therefore, the result may fall into local minima. 

The 0–1 structure presented brittle failure after the peak load, with 
abrupt crack propagation (Fig. 5A). In contrast, with ρmin = 0.3 and 0.5, 
the ductility was observed after the peak loading. Local buckling 
developed because of the latticed structure, and buckling failure pro-
gressed after the peak load (Fig. 5B and C). The successive local buckling 
behavior led to the brittle failure of the entire structure. Unloa-
ding–reloading tests were conducted after the peak loading, in which the 
load recovered to almost unloaded points. 

The residual toughness was calculated as an area between peak load 
point to 15% reduction point after peak load to indicate the monolithic 
fail-safe capability. The residual toughness indicates how much energy 
can be held after peak loading with remaining high loading. Fig. 4H 
shows the residual toughness of each structure. The lattice structures 
showed improved residual toughness as compared to the 0–1 structure. 
The local latticing utilizing the intermediate material fraction obtained 
in the topology optimization improved the residual toughness of the 3D- 
printed fiber-reinforced polymer composite. 

5. Conclusions 

A homogenization-based topology optimization framework was 
established for fiber-reinforced polymer composite variable lattices. A 
3D printing path was generated by considering material continuity 
based on the optimized results of the topology and material orientation. 
The proposed method was used on a beam structure with a symmetric 
cross-ply orthotropic lattice geometry. The intermediate material frac-
tion was realized by spacing the printing path during 3D printing. 
Unloading–reloading tests after the peak load also validated the recov-
erability of load resistance. The latticing of the intermediate material 
fraction regions improved the toughness of 3D-printed carbon fiber- 
reinforced polymers. 
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