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Abstract:  Single-loop elastic rings can be folded into multi-loop equilibrium configurations. In 

this paper, the stability of several such multi-loop states which are either circular or straight are 

investigated analytically and illustrated by experimental demonstrations. The analysis ascertains 

stability by exploring variations of the elastic energy of the rings for admissible deformations in 

the vicinity of the equilibrium state. The approach employed is the conventional stability analysis 

for elastic conservative systems which differs from most of the analyses that have been published 

on this class of problems, as will be illustrated by reproducing and elaborating on several 

problems in the literature. In addition to providing solutions to two basic problems, the paper 

analyes and demonstrates the stability of six-sided rings that fold into straight configurations.1 

1.  Introduction 

 Slender elastic rods formed into rings can assume a surprising variety of equilibrium 

shapes other than the basic single-looped configuration. For example, a single-looped circular 

ring formed from a uniform straight rod can be twisted to form a ring having three equal sized 

circular loops with essentially no twist in the circular 3-loop state. Moreover, for rod cross-

sectional geometries that have an out-of-plane bending stiffness large enough compared to the 

in-plane bending stiffness, both the 1-loop state and 3-loop state can be stable. The transition 

between the 1- and 3- loop configurations is three-dimensional, involving twist and out-of-plane 

displacements. This phenomenon has been known and exploited for many years, but other 

phenomena of this type are currently being uncovered and explored as illustrated by the recent 

articles by Wu et al. (2021, 2022), Lu et al. (2023), and Yu et al. (2023). The three-dimensional 

behavior of slender rod systems is of interest to a wide audience of scientists and mathematicians 

dealing with applications in mechanical and biological arenas. The motivation of the authors of 

the present paper derives primarily from structural applications of lightweight collapsible, or 

 
1 This paper is dedicated to Viggo Tvergaard, a major contributor to the subject of the stability of solids 
and structures, in celebration of his 80th birthday. 
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foldable, structures (Mouthuy et al. (2012); Leanza et al. (2022); Sun et al. (2022); Lachenal et 

al. (2012); Mhatre et al. (2021)). 

In the nineteenth century, Kirchhoff laid out the three-dimensional theory of elastic rods, 

generalizing Euler’s two-dimensional elastica. Much of the work on this class of problems has 

been conducted within the framework Kirchhoff developed, including that presented in this 

paper. The main problem addressed in this paper is the stability of six-sided rings formed by 

joining six rods in the shape of 120o or 240o circular arcs into a complete ring. Each of the six arc 

segments has a uniform natural curvature n  when unloaded. The rods are bent into 120o or 240o 

circular arcs and joined to form the ring as depicted in Fig. 1. Each rod segment joins its 

neighbor at a cusp. This 1-loop ring can be folded into a 3-loop ring with straight sides. The 

bending stresses in the folded state depend on the natural curvature and they are the source of the 

residual stresses in the structure. In this paper, the stability of the straight folded state is 

determined and, specifically, the largest natural curvature at which the straight state becomes 

unstable is obtained. Experimental demonstrations of the behavior of these rings will be 

presented. 

 

 

 

Fig. 1. a) A 6-sided ring formed from 120o circular arcs which folds into a straight 3-loop 

configuration of length 02 / 3R . b) A 6-sided ring formed from 240o circular arcs which folds 

into a 3-loop straight configuration of length 04 / 3R . 



3 
 

 

 Many of the stability studies of three-dimensional rod structures, going back to some of 

the earliest papers, e.g., Michell (1889), are based on investigations of the vibration spectrum of 

the structure. These studies identify the load or residual stress level at which at least one natural 

frequency becomes zero.  This approach is a natural choice because Kirchhoff rod theory is an 

Eulerian-type formulation with the variables describing the rod defined in the deformed state. 

For certain problems, such as those illustrated in this paper, an equivalent, but alternative, 

Lagrangian approach based on Kirchhoff theory may have advantages and may provide a more 

direct and less complicated pathway to ascertaining stability. In Section 2, equations are 

presented for the investigation of the stability of configurations that are either circular or straight. 

In Section 3, three problems previously analyzed in the literature will be re-analyzed to illustrate 

application of the approach adopted in this paper and to establish its validity. One of the three 

problems in Section 3 is the maximum curvature that can be imposed on a uniformly curved rod 

arc that is clamped at its ends. The importance of this problem will be emphasized, and detailed 

results not previously available in the literature will be presented. A model problem for a pre-

stressed bi-rod is analyzed in Section 4 providing basic insights, and the stability of the 3-loop 

folded states of the six-sided rings are analyzed in Section 5. 

 
2.  Equations governing ring behavior for circular and straight reference configurations  
 
 The equations associated with deformations and strains based on Kirchhoff rod theory 

from circular reference states are first presented and then specialized to straight reference states. 

The procedures employed to derive these equations are the same as those given in many papers 

and books in the literature (Antman, 1995), and thus the present presentation will be as brief as 

possible. As seen in Fig. 2, the right hand set of unit vectors in the reference state, 3( , , )r i i i , 

have i  tangent to the reference circle, ri  perpendicular to the circle, and 3i normal to the plane 

of the circle. The embedded set of unit vectors in the deformed state is denoted by 1 2 3( , , )e e e  

with 2e  tangent to the rod and 1 3( , )e e  rotating with the cross-section. The set 1 2 3( , , )e e e  

coincides with 3( , , )r i i i  when the ring is in the reference state.   
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Fig. 2. Unit vectors and Euler angles. a) Cartesian base vectors and reference cylindrical base 
vectors. b) Local cylindrical base vectors and the two Euler angles,   and  , specifying the 

three embedded base vectors, ie , with no rotation about the rod axis, 2e . c) Same as b) but after 

rotation   about 2e (dashed arrows denote e1 and e3 before rotation). 

 Euler angles are employed to describe the change of deformation of the rod for departures 

from the circular reference state. The two Euler angles that define the geometry of the axis of the 

rod are shown in Fig. 2b with no rotation of the embedded unit vectors about the axis. The third 

angle is the accumulated rotation of the cross-section about the 2e -axis,  , occurring during the 

motion from the circular state (Fig. 2c). Attention in this paper will be limited to inextensional 

rods, and the distance along the rod measured from some reference point and increasing with the 

circumferential angle   is denoted by s . A Lagrangian description will be employed in the 

analyses in this paper. With R  as the radius of the ring, or rings, in the reference state, the unit 

vectors introduced above, 3( ( ), ( ), )r  i i i , and the Euler angles, ( , , )   , are functions of   or 

s . The relations between the two sets of unit vectors are: 

  
 
 

1

3

cos( ) (1 cos )sin sin sin sin

sin( ) (1 cos )sin cos

r       

    

    

    

e i i

i

 2 3sin sin cos sin cosr       e i i i

 
 
 

3

3

sin( ) (1 cos )cos sin cos sin

cos( ) (1 cos )cos cos

r       

    

    

   

e i i

i
    (2.1) 

The direction cosines between the axes, ij i jl  i e  such that i ji jle i , with 1 2( , ) ( , )r  i i i i  for 

notational convenience, and i ij jli e . These are provided in the Supplementary Materials. 
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 Denote the displacement components from the circular reference state by 

3 3r ru u u   u i i i . A vector tangent to the centerline axis pointing in the direction of 2e  is 

 1 1
3 3 3 3( / ) (1 / ) / (1 )r r r r rdu ds R u du ds R u du ds                 t i i i i i i  

The inextensionality condition is 

 1 1 2 1 2 2
32( / ) ( / ) ( / ) ( / ) 0r r rdu ds R u du ds R u du ds R u du ds  

          (2.2) 

which also ensures that 2t e  is a unit vector. Note that 1( / )rdu ds R u    , 3 /r du ds   and 
1

3 ( / )rdu ds R u     are, respectively, the centerline linearized stretching strain and 

linearized rotations about ri  and 3i . Furthermore, solving the inextensionality condition for   

in terms of the other two quantities (with 2 2
3 1r   ) gives the constraint expressed as  

 2 2
31 1r               (2.3) 

By comparing the terms in the equation for t  with those for 2e , the following exact 

relations are also seen:  

1( / ) cos 1rdu ds R u              (2.4) 

or 2 2
3cos 1 r      and 

 3 / sin cosr du ds     and  1
3 ( / ) sin sinrdu ds R u         (2.5) 

If  0  , it also follows that 

 3tan / r              (2.6) 

 With 1  and 3  as the curvatures about the 1e  and 3e  axes, respectively, and 2  as the 

derivative of twist with respect to distance along the rod, one can use the Frenet-Seret formula 

(c.f., Champneys and Thompson, 1996;  Audoly and Seffen, 2015),  

 
1

2
j

i ijk k

d

ds
  

e
e ,         (2.7) 

to compute the curvatures. The exact results are 
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1 1
1

1
2

1 1
3

cos ( / sin ) sin ( sin / cos cos )

/ cos / sin cos

cos ( sin / cos cos ) sin ( / sin )

d ds R d ds R

d ds d ds R

d ds R d ds R

        

     

        

 



 

    

  

    

  (2.8) 

The curvature components are defined with respect to the embedded unit vector system ie  in the 

deformed state, as reflected by the vector, i iΩ e .   

 For the stability bifurcation calculations to follow, the ‘natural’ uncoiled state of the rod 

has length L  and an initial uniform curvature n  about the 3-axis. Attention here is restricted to 

uniform rods with linear bending and twisting properties. The principal axes of the cross-section 

in the natural state are taken to be aligned with 1 3( , )e e ,i.e., 3( , )ri i  in the reference state, and the 

bending stiffnesses about these two axes are denoted by 1B  and 3B . The torsional stiffness about 

the 2e -axis is denoted by 2B . For all but one of the problems analyzed in this paper, the rods in 

their unstressed state have a uniform natural curvature, n , about the 3i -axis. Then, the rods are 

bent uniformly about the 3-axis into circular loops or arc segments of radius R . Stability or lack 

thereof is investigated in this circular state of radius. We will also investigate stability of straight 

states with R  . In the circular reference state, the non-zero curvature is 1
3 R  , the change 

of curvature from the natural state is 1
nR   , and the moment in the ring in the circular state is 

1
3 3( )nM B R   . For rods of length L  in reference states that are either circular or straight, the 

strain energy in configurations displaced from the reference state is assumed to be governed by 

linear constitutive behavior such that 

 1 2 2 2
1 1 2 2 3 32 0

( )
L

nSE B B B ds             (2.9) 

with curvatures given by (2.8). These curvature expressions hold for reference states that are 

straight by setting the terms multiplied by 1R  to zero. Equations (2.8) agree with those given by 

Champneys and Thompson (1996) in their study of initially straight rods, but with different 

notation. 

2.1 Moderate rotation approximation 
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 For moderate rotations from the circular state (with no initial twist) we anticipate that 2 , 

2
r  and 2

3  are all small compared to 1. Bifurcation calculations of stability of the circular or 

straight state require the energy changes of the elastic system to be accurate to the second order 

in the displacements and their gradients from that state. It follows from the equations given 

above that 2  is also small compared to 1, however, in the circular state,   cannot be inferred 

from 3tan / r    . In the problems investigated here, the curvatures must vary continuously 

from those in the reference state as bifurcation proceeds from this state. When there is no initial 

torsion in reference state, the formulas for 1  and 3  in the circular state with ( 0, 0)    

reveal that   must be zero at bifurcation, and it must emerge continuously from zero given the 

initial curvatures 1
1 3( 0, )R     and a continuous variation of the curvatures. Assuming 

( , , )    are all small and expanding the curvature expressions in these quantities in a Taylor 

series up to and including quadratic terms one obtains: 

 1
1 3

d
R O

ds

    , 1
2 3

d
R O

ds

    ,  

1 2 2
3 4

1 1 ( )
1

2 2

d d
R O

ds ds

            
 

     (2.10) 

with     . The notation 3O  and 4O  signifies that no terms below cubic and quartic order, 

respectively, have been neglected. Thus, the first two curvatures have no quadratic terms, and the 

third curvature has no cubic terms. To the same order,  

 1 2 2 2
3

1 1
( )

2 2r r

du
R u

ds


           
 

, 3
r

du

ds
   , 1

3
rdu

R u
ds       

 
 (2.11) 

2.2 The strain energy functional to quadratic order  

Up to and including quadratic terms, the strain energy (2.9) is 

 1 2
3 22
(1/ ) ( , , )nSE B R L P M            (2.12) 

where 
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2 2 2 2
1

2 1 2 3 32 0
0

2 2
L

L d d d
P B B B M ds B M

ds R ds R R R R ds R

                                             
  

with     , and 1 nM R  , the parameter introduced by Audoly and Seffen (2015). 

Because of the symmetry of the ring or arc, and the accuracy of the curvature expressions noted 

earlier, SE  has no cubic terms, so, in fact, (2.12) is accurate to 4O . 

The quadratic functional 2P   determines the second variation of SE about the reference 

state and governs its stability. Consider either complete rings, for which  ,   and   are 

continuous across 0s   and s L , or circular arcs clamped at both ends ( 0   ). For these 

entities, 
0

0
L  . The functional 2P  defines an eigenvalue problem with 1 nM R   as the 

eigenvalue. To the order relevant to the bifurcation problem, the inextensionality condition 

requires ( / / ) 0rdu ds u R     . Additional conditions imposed on the Euler angles by 

displacement constraints may have to be taken into consideration, as will be illustrated. If 0M 

, 2 0P   for all nonzero variations ( , )  . 2P  only vanishes for nonzero variations having     

and  0      which correspond to linearized rigid-body rotations. In other words, if 0M  , 

2 0P   for all non-zero admissible variations that are not rigid-body motions. For complete rings, 

the Euler angles and their associated displacements in the bifurcation problem are required to be 

continuous and differentiable with period 2L NR  where N  is the number of loops, and 

continuity of displacement around the ring requires 
0

0
L

ds  .  For either complete rings or 

arcs, we seek the range of M , such that 2 0P   for all nonzero admissible variation (excluding 

rigid-body motions. The circular state is stable within this range and unstable for M  outside this 

range. For complete rings, the class of deformations involving a uniform axisymmetric twist, i.e., 

   independent of   with 0   , deserves special attention. The integrand of 2P  for this 

class of deformations is simply 2
1( )b M  , and thus the ring is unstable against uniform 

axisymmetric twist if 1M b  and stable if 1M b .  Further discussion of this mode will be given 

later. 

3. Three solved problems in the literature 
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 In this section we use the standard quasi-static approach to the stability, or buckling, of 

elastic conservative systems outlined above to reproduce solutions to three problems previously 

analyzed and solved in the literature.  The Lagrangian quasi-static method employed here, in 

some cases, generates results more directly.  In the case of the second problem, the stability of 

pure bending of clamped circular and straight arcs, we will provide more complete and extensive 

results than are available in the literature and follow up in Sections 4 and 5 by demonstrating the 

importance of this fundamental problem. 

3.1 The stability of circular rings untwisted in 1-loop or 3-loop states 

 The remarkable property of a 1-loop elastic circular ring to deform into multi-loop 

circular rings without twist when the number of loops is odd ( 3,  5,...N  ) has been known for 

years (Goto et al., 1992, Stojanoska and Stoytchev, 2008), but this phenomena is evidently not 

widely known to the community concerned with the buckling of structures.  Two papers have 

provided a rather complete analysis of multi-state rings within the framework of Kirchhoff rod 

theory dealing with both the stability of the circular states and the transitional behavior linking 

them (Manning and Hoffman, 2001, Audoly and Seffen, 2015).  The present paper will analyze 

the stability of circular and straight states but not the transition between the states.  Our results 

reproduce some those in the studies of Audoly and Seffen and those still earlier by Manning and 

Hoffman.  This section serves the purpose of presenting and validating the present approach for a 

solved problem. 

We seek the critical eigenvalues, CM   and CM  , and the associated modes, that define the 

range of stability of the ring subject to the condition that ( )  and ( )  , with /s R  , have 

periodicity 2 N  with continuous derivatives. The eigenvalue equations are obtained from 

rendering the variations of 2P  stationary with respect to the variables ( , )  . The ordinary 

differential equations (ODEs) governing the eigenvalue problem are 

2 1 1 2

1 2 1 2

( ) ( ) 0

( ) ( ) 0

b M b M b b

b M b M b b

  
  
       
       

      (3.1) 

with 1 1 3/b B B , 2 2 3/b B B , and ( ) ( ) /d d  . These equations do not involve 3  or the in-

plane displacements, ru  and u . From (2.11), these quantities are of second order and play no 



10 
 

 

role in the first order bifurcation problem, which involves a combination of the out-of-plane 

displacement, 3u R  , and twist. Continuity of 3u  requires 
2

0
0

N
d


   . 

 A central concern of Audoly and Seffen (2015) is ribbon-like rods with high aspect ratio 

cross-sections for which the bending-torsional behavior is nonlinear due to developable 

deformations of the ribbon.  Throughout this paper the emphasis will be on rods with linear 

bending-torsional constitutive behavior.  The height to thickness ratios of the cross sections are 

assumed to be in the range such that ribbon-like nonlinear behavior does not occur.   Consider 

modes of the form 

 cos( / ) , sin( / )A j N B j N            (3.2) 

where j  is any non-negative integer.  The modal displacement is 3 ( / ) cos( / )u B RN j j N   

for 0j   and these all satisfy 
2

0
0

N
d


   .   (Potential modes of the form .const   are 

periodic but they are excluded by the condition 
2

0
0

N
d


   .) The algebraic eigenvalue 

problem is 

 
 

 

2
1 2 1 2

2
1 2 1 2

( / ) ( )( / ) 0

( )( / ) ( / ) 0

A b b j N M B b b M j N

A b b M j N B b j N b M

       
        

 

leading to  

    2 2 2
1 2 1 2( ) 1 ( / ) 1 ( / ) 0M M b b b b j N j N       

whose solutions are / 1j N   for any M  (rigid-body modes), and 

 2 2
1 2 1 2 2

1 1
( , ) ( ) ( ) ( / ) ,

2 4
M M b b b b b j N            (3.3) 

for all other j and N.  This agrees with the solution of Audoly and Seffen (2015) and Manning 

and Hoffman (2001)   
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For demonstrating and validating the present method, in this subsection we will consider 

only rings with an isotropic cross-section made of an isotropic elastic material. For circular 

cross-sections, solid or annular, these have 1 1b   and 2 1/ (1 )b    with   as Poisson’s ratio. 

The uniform axisymmetric twisting mode for any integer number of loops, corresponding to 

0j  , with A  , 0  , 1M    and 2M b   has been discussed earlier. Rods with cross-

sections having 1 1b   are unstable in the uniform twisting mode if 1 1nM M R    , i.e., 

0n  . If the rod in the natural state is straight, i.e., 0n  , it is easy to see that strain energy of 

the ring does not change subject to uniform axisymmetric twist. The ring has neutral stability 

with respect to this class of deformations. Any such rod with an initial curvature 0n   would 

immediately undergo a 180o uniform axisymmetric twist when shaped into a ring, thus 

effectively switching the sign of the initial natural curvature.  In other words, the uniform 

axisymmetric twisting mode rules out the necessity of further consideration of rings of isotropic 

bending stiffness formed from rods with a negative natural curvature. The shape of the ring is 

unchanged by uniform axisymmetric twist, but the material of which it is composed undergoes 

deformation changes. The second eigenvalue, 2M b  , is spurious because it is associated with 

the trivial eigenmode, 0   . 

The modes associated with / 1j N   for any M  are rigid-body rotations about axes in the 

plane of the ring.  For the form assumed, B A  such that cosA  , sinr A    , 3 0  , 

3 cosu AR   , and 0ru u  .  The one exception is the additional possibility of a mode 

involving deformation of the ring if 21M M b   , but this will not be consequential because 

the associated natural curvature, 2nR b   , is negative and superseded by uniform 

axisymmetric twist. 

For 1-loop rings ( 1N  ) and 2j  , the range of stability for the thj  mode is 

M M M   .  All the values of M   given by (3.3) satisfy 1M    and thus the upper limit of 

the stability range is determined by uniform axisymmetric torsion and 1CM   . The largest value 

of M   is associated with 2j   and (3.3) gives 0.861CM     for circular cross-sections with 

1/ 3  . Thus for 1-loop rings, the stability range is 0.861 1M   . Consider rings formed 
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from a rod of length L  with natural curvature n  with either one or multiple loops such that 

/ (2 )R L N . This is the relevant normalization for rings formed from a rod with a given 

length and natural curvature that assumes one or more loops. The stability limits of the natural 

curvature are given by 

(1 )
2 n C

L
N M


     and  (1 )

2 n C

L
N M


    

For the 1-loop ring, the range of the natural curvature for which the circular state is stable is 

 0 ( / 2 ) 1.86nL      ( 1N  ) 

Determination of stability of the circular state for the same ring with multiple loops 

requires an additional consideration. For each of the modes with / 1j N  , the stability range is 

again given by M M M   , but for each of the modes with 0 / 1j N  , the stability range is 

M M  , with M   playing no role. This is easily established by showing that for M M  , 

2 0P   for all A  and B , while negative values of 2P  exist for some combinations of A  and B  

for every M  if M M  . For the 3-loop ring ( 3N  ), the largest value of M for stability is set 

by 2j   and given by 0.284M   . The largest lower stability limit of M  is determined by 

0.286CM     for 4j  . Thus, the stability range for 3N   is 0.286 0.284M    such that 

2.15 ( / 2 ) 3.86nL      ( 3N  ) 

The stability ranges of the 1- and 3- loop rings do not overlap for circular cross-sections.  

If the natural state of the rod is straight, the 1-loop circular state is marginally stable (susceptible 

to uniform axisymmetric torsion), however the 3-loop state is not. While it is possible to deform 

a stable 1-loop ring into the 3-loop circular state, that state would not be stable. Conversely, if 

the natural curvature is such that the 3-loop ring is stable, it would not transition to a circular ring 

with one loop when dislodged from the 3-loop state. Rods with cross-section having sufficiently 

large out-of-plane bending stiffness compared to in-plane stiffness have overlapping stability 

ranges for 1- and 3-loop rings. The modal displacement, 3 ( / ) cos( / )u B RN j j N  , with the 
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associated twist (3.2), is a progressive separation of the loops around the ring which does not 

bring the ring into contact with itself.   

3.2 Stability of pure bending of straight or naturally curved rods clamped at their ends 

 Consider another problem analyzed by Audoly and Seffen (2015): the stability of pure 

bending about the 3i -axis of rods with natural curvature.  We will see in Sections 4 and 5 that 

this basic problem is fundamental to more complex structural stability phenomena.  Here, 

reasonably complete results for rods with circular or rectangular cross-sections will be presented.  

As depicted in Fig. 3, the natural state of the rod is a uniform curvature, 0n  , and the 

deformed state can be either curved ( 1/ R  ) or straight ( 1/ 0R   ).  The rod is 

inextensional and of length L .  Take s R  measured from the center of the rod such that its 

ends are at / 2s L    The rod is subject to pure bending by equal and opposite end moments of 

magnitude 3 nB    with 1/ R   as the curvature in the deformed state.  In this state, the ends 

of the beam are clamped against further rotation.  The stability of this state requires 2 0P   in 

(2.12) for all non-zero admissible variations from the current circular state.  Due to the clamped 

end conditions, 
0

0
L  .   To remove the constraint imposed by the requirement 

/2

/2
0

L

L
ds


 , 

substitute 3 /du ds   in 2P .  With 3( , )u   as unknowns, the boundary conditions at each 

clamped end of the rod are 3 3 / 0u du ds    .  
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Fig. 3. Stability range of the natural curvature for a rod of length L  with either a circular (dashed 
line) or a rectangular (solid lines, depending on /h t ) cross-section that is bent into an arc of 
radius R  and clamped at its ends.  For natural curvatures greater than those plotted, the arc will 
buckle. Poisson’s ratio is 1/3 in this plot.  The limit in which the bent rod is straight, / 0L R  , 
is given by (3.9).  For the bent straight rod, the result applies when there is no constraint on the 
displacement parallel to the rod at the right end. 

 

 With /x s L , 3 /u u L , 1 nM R  , and /L L R , the ODEs obtained by rendering 

2P  in (2.12) stationary are 

 1 2

1 2

( ) ( ) ( ) 0

( ) ( ) ( ) 0

b u L b L Lu ML Lu

b L u L b Lu ML L u

  

  

          

        
     (3.4) 

The general solution to these equations can be split into symmetric ( 1c , 2c , 3c ) and anti-

symmetric ( 4c , 5c , 6c ) parts as 

  
1 2 3 4 5 6

2 3 5 6

cos( ) cos( ) sin( ) sin( )

cos( ) cos( ) sin( ) sin( )

u c c Lx c Lx c x c Lx c Lx

L c Lx c q Lx c Lx c q Lx

 

  

     

    
   (3.5) 

with (anticipating 1 2( )( ) 0b M b M   ) 

 1 2 2

1 2 2

( )( )
,

b M b M b M
q

b b b
   
          (3.6) 

The eigenvalue equations obtained by satisfying the boundary conditions at 1/ 2x   are  

 sin( / 2)cos( / 2) cos( / 2)sin( / 2) 0L L q L L               (symmetric)  (3.7) 

 
2(1 )sin( / 2)sin( / 2) sin( / 2)cos( / 2)

cos( / 2)sin( / 2) 0

q L L L L L

qL L L

  


 

 
      (anti-symmetric) (3.8) 

 Before discussing some details of this solution, we first present the results for what will 

prove to be an important limiting case—the limit when the clamped rod is straight, R   and 

/ 0L L R  .  To the order relevant to the bifurcation analysis, 2 0u  , and the combination of 
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inextensionality and fully clamped conditions at both ends of the rod is still applicable in this 

limit.  Obviously, a straight rod that is inextensional and clamped in this manner could not 

deflect from straight state.  However, if, for example, the support condition at the right end of the 

rod is modified slightly so that the rod displacement is unconstrained in the 2-direction but 

otherwise constrained against rotation and displacement, the rod could undergo buckling 

displacements at the critical condition.  The present analysis is equally applicable with this slight 

modification (similarly, if in the circular state one end of the rod is free to displace in the 

circumferential direction, the analysis in this section still applies).  The results for the rod in the 

straight state can be obtained either by taking the limit of the above equations or by starting from 

scratch using the ODEs (3.4) with 0L  , noting that nML L  .  One finds that the critical 

mode is symmetric and the maximum natural curvature for which the straight clamped rod is 

stable is  

 1 2

3

2n

B B
L

B
           (3.9) 

The associated mode is a combination of displacement and rotation given by 

    3 1 21 cos(2 / ) , 2 / 1 cos(2 / )u cL s L c B B s L           (3.10) 

 The dimensionless combination of bending and twisting stiffnesses, 1 2 3/B B B  

governing the critical natural curvature is plotted in Fig. 4 for rods with elliptical and rectangular 

cross-sections each having height h  in the 3-direction and thickness t  in the 1- or r -direction.  

Recall that for circular cross-sections (solid or annular), 1 1 3/ 1b B B   and 

2 2 3/ 1 / (1 )b B B     so that 1 2 3/ 1 / 1B B B   .  For elliptical cross-sections 

 1 2
2

3

2

(1 )(1 ( / ) )

B B h

B t t h


 
       (3.11) 

 For solid rectangular cross-sections, 2
1 ( / )b h t , and an accurate approximation for 2b  is 

obtained using Sokolnikoff’s (1956) result for the torsional stiffness: 
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 2
2 5

3

2 195
1 tanh

1 2

B t h
b

B h t


 
          

      (3.12) 

 

 

Fig. 4. A dimensionless combination of the bending and torsional stiffnesses important to rod 
stability (see 3.9) for rectangular and elliptical cross-sections. 

 

 The stable range of natural curvature for rods of circular and rectangular cross-sections is 

presented in Fig. 3. For all cases plotted, the anticipated condition, 1 2( )( ) 0b M b M   , is 

satisfied and the symmetric mode with eigenvalue given by (3.7) is critical. Although the circular 

cross-section and the square cross-section both have 1 1b  , 2b  is slightly smaller for the square 

cross-section and that is reflected in its slightly smaller range of stability. Not surprisingly, the 

aspect ratio of the rectangular cross-section, /h t , has a very strong influence on the stability 

range. One case for a cross-section with higher in-plane bending stiffness than out-of-plane 

stiffness, / 0.75h t  , is included in Fig. 3 showing that rods having such cross-sections have a 

dramatically reduced stability range. When the aspect ratio is very high, e.g., / 1h t  , (3.11) 
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predicts a large range of stability. Such cross-sections are susceptible to the ribbon-like 

instabilities modeled by Audoly and Seffen (2015). 

 The eigenvalue conditions (3.7) and (3.8) have two branches. The one plotted in Fig. 3. 

and in the formula for a straight rod in (3.9) is for 1/n R  . The other branch yields values of 

1/n R  . For example, for the straight rod, this second branch has 1 2 32 /n B B B   , as 

obvious from symmetry. 

 Consider another fundamental problem governed by the eigenvalue equations (3.4): The 

maximum length L  of a straight rod ( 0n  ) that can be bent into a clamped arc of radius R  

such that the rod does not buckle. Equations (3.4) apply with 1M   and clamped conditions 

0u u     at the two ends of the rod. We omit the details of this analysis, which is similar to 

that already given. The mode associated with the critical value of /L L R  at which the bent rod 

loses stability is found to be symmetric about center of the rod with eigenvalues given by:  

 1 2sin( / 2) cos( / 2) cos( / 2)sin( / 2) 0, if  ( 1)( 1) 0L L q L L b b         (3.13) 

with 1 2 1 2( 1)( 1) /b b b b     and 2 2( 1) /q b b  , and 

1 2sinh( / 2) cos( / 2) cosh( / 2)sin( / 2) 0, if ( 1)( 1) 0L L q L L b b        (3.14) 

with 1 2 1 2( 1)( 1) /b b bb      and 2 2( 1) /q b b  . The largest normalized length,  /L R , for 

which the clamped bent arc is stable is plotted in Fig. 5 as a function of /h t  for rods of 

rectangular cross-section. Any rod with equal bending stiffnesses, i.e., 1 1b  , so that 0   in 

(3.13) and (3.14), has a critical length given by / 2L R  , with an associated mode that is a 

combination of uniform axisymmetric torsion and rigid body rotation such that there is no 

rotation where the ring is clamped.  The critical stability limit is extremely sensitive to the cross-

section aspect ratio for rods with in-plane and out-of-plane bending stiffnesses that are nearly the 

same. A slight increase of the out-of-plane bending stiffness relative to the in-plane stiffness 

significantly increases the stability limit. 
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Fig. 5. The stability limit for the length L  of a straight rod of rectangular cross-section that can 
be bent into a clamped circular arc of radius R . The height of the cross-section perpendicular to 
the plane of bending is h , the thickness is t , and 1/ 3   in this plot.  For / 1h t  , / 2L R  . 

 

 A clamped bent rod can store relatively large amounts of energy and remain stable. To 

illustrate this assertion, we compare the elastic energy in a clamped Euler column of length L

under axial compression at the critical Euler buckling load (assuming elastic behavior in the 

compressive state) with the elastic energy stored the clamped straight rod of length L  when the 

natural curvature from which it is formed is at the critical level (3.9). When both entities have the 

same circular cross-section of radius r  and elastic properties, the ratio of these stored energies is 

 
2

2(1 )Euler column

straighten rod

SE r

SE L
      

 
        (3.15) 
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Slender rods clamped at their ends can store enormously more energy and remain stable when 

bent than a clamped Euler column in compression. Implications will be discussed later. 

3.3 Michell’s Problem: Stability of a circular ring with circular cross-section formed from a 
twisted straight rod 

 In the natural state, the rod is straight. It is subject to a uniform initial twist 

0/ /d ds R   , with ( ) ( ) /d d   and 0   as the uniform initial twist, and bent into a one-

loop circle with radius R , and ends ‘welded’. The issue at hand is how much initial twist can be 

imposed for the circular state to remain stable. This problem was first solved by Michell (1889) 

and several other solutions were presented in the literature over succeeding years, including a 

recent elegantly economical solution by Goriely (2006), who also discussed the interesting 

history of Michell and this problem. Here we add another relatively economical and direct 

solution based on an investigation of the second variation of the energy. This example illustrates 

a case in which, due to the initial twist, in-plane and out-of-plane displacements are coupled in 

the bifurcation mode. 

The exact energy functional for the ring from (2.8) and (2.9) is 

 
      
1

3

2 2 2 21
22 0

/ ( )

(cos 1) sin cos sin sin cos cos

SE B R

b d


          



          
 (3.16) 

where     , 1 3B B and 2 2 3/b B B . The associated connections are 

  2 2
3cos 1 r     ,   1( ) cos 1rR u u           (3.17) 

 1 1
3 3sin cos , ( ) sin sinr rR u R u u                 (3.18) 

The pre-bifurcation state has 0    , 0  , with 1 2
0 3 2 0(1 )SE R B b     and   

undetermined. With 0       and neglecting terms of order 3  and smaller, 

       2
0

2 0 0 2 01 0
3

cos sin , , ,
SE SE

b d P
B R


           

             (3.19) 
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where 

   21 2 2 2 2 2 2 2
2 2 02 0

( cos ) cosP b d


                       (3.20) 

 The integral in (3.19) that is linear in   and   vanishes because   and sin   are 

continuous and periodic, and because 1
3cos R u    , neglecting terms of order 3  in (3.18). 

The second integral, 2P , which is quadratic in   and  , determines the stability of the 

circular state. The circular state is stable for a pre-twist, 0  , if 2 0P   for all non-zero 

admissible functions ( , , )   , excluding rigid body motions. The limit of the stable states is 

determined by the smallest value of 0   for which there exists a nonzero admissible ( , , )    

such that 2 0P  . Because   appears only in the first term in (3.20), minimizing  2P  with 

respect to   implies that cos      such that (3.20) reduces to 

  21 2 2 2 2 2 2
2 2 02 0

cosP b d


                    (3.21) 

The in-plane and out-of-plane displacements are coupled through 3 / tanr    , where ( )   is 

unknown.   

One approach to this eigenvalue problem would be to work with the ODEs generated by 

rendering 2P  stationary. Here, we will use a direct method by considering periodic sinusoidal 

displacement fields of the form 

 3cos , sin , sin ( 2, )ru Raj j u Ra j u Rb j j            (3.22) 

The phasing of the in-plane and out-of-plane components is important: the choice 3 cos( )u j  

does not lead to bifurcation. These modes satisfy the lowest order inextensionality condition 

0  . Modes having 0j   and 1j   are excluded by inextensionality or because they are 

rigid-body modes. Neglecting terms of order 3  and smaller, one has 

 2
3cos cos , sin ( 1) sinr bj j a j j                  (3.23) 
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It follows that the terms in the integrand of (3.21) are 

 

     

   

 

2 2 2

2 22 2 2 2 2 2

22
2

2 2 2 2 2 2
2 2 2

2 2 2 2

22 2 2 2

( cos ) ( ) (cos )

( 1)sin cos ( ) (cos ) (sin )

( 1) sin cos
( ( 1)) ( ) sin cos ( )

(cos ) (sin )

( 1) ( )

( ) ( 1)

bj j

a j j bj j bj j r j

r j j j
a j bj j j j bj

j r j

ab j j bj jr

a j bj

  

    

 
   

 
 

 







    


       

     

  
4 2

2
2 2 2

( )
(cos ) (sin )

j r
bj

j r j 




 (3.24) 

where 2( 1) / ( )r a j bj  .  Integrals of the terms in (3.21) are straightforward except for the 2nd 

for which the following was used 

 
2 2 2 2 1 2 2 2 2

0
(1/ ) (cos sin ) sin cos (1 )r d r


          

Evaluating 2P , one obtains (with the same order of terms in (3.21)): 

  2 2 2 2 2 2
2 2 0( ) 2 (1 ) 2 1

2
P bj b jr j r j r

            (3.25) 

which simplifies to 

  2 2 2
2 2 0( ) 2 (1 ) 1

2
P bj b jr j r

             (3.26) 

The lowest non-trivial eigenvalue is associated with 2j   and given by 2 0 3b     with 

3 / 2r    (or, by 2 0 3b      with 3 / 2r  ), in agreement with the original result of 

Michell (1889) and others as described in the history of the problem by Goriely (2006). Coupling 

between the in-plane and out-of-plane displacements is essential with 3b a   depending on 

the sign of 0  .  

The ring in a 3-loop state is expected to be unstable for any initial twist because, as seen 

in Section 3.1, such a ring would be unstable without any twist. This can indeed be confirmed by 
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replacing j  by /j N  in the mode (3.20) and re-evaluating 2P . The outcome is N  times the 

righthand side of Eq. (3.26) with j  replaced by /j N . Then, with 3N  , it is readily 

established that 2P  can be negative for any value of 0   when 1 or 2j  . 

 

4. A model problem: The stability of a straight bi-rod formed from two rods with equal 
natural curvatures 

 The following problem will illustrate the approach used in the next section for more 

complicated geometries, but it is of interest on its own merits. The problem is defined in Fig. 6. 

Apart from the location of their openings, the rods are identical with uniform bending stiffnesses 

1B  and 3B  about the 1- and 3-axes, and torsional stiffness 2B  about the 2-axis. Denote the 

natural curvature of the upper rod by 0n   and that of the lower by 0n   , as defined 

relative to the 2x -axis. The rods are bent until they are straight and then their ends are welded 

together. The straight configuration of the bi-rod is an equilibrium state with equal and opposite 

moments in the rods of magnitude, 3 0B  , about the 3-axis. The rods are assumed to be 

inextensional, each having length 02L R  where 0 01/R   and 2  is the angle subtended by 

the arc prior to bending. The stability of the straight bi-rod as dependent on  , or equivalently 

on 0/L R ,  is analyzed. 

 

Fig. 6. A bi-rod made of two identical rods of equal and opposite natural curvatures, 
1

0 0n R      , that are bent about the 3-axis into straight segments and welded at the ends.   
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 With the straight configuration as the reference state, the changes of curvature from this 

state are given by  

 1 2 3cos sin sin , cos , sin cos sin                           (4.1) 

where now ( ) ( ) /d ds  . The linearized strain and rotation variables are 

 2 2 1 3 3 1cos 1, sin cos , sin sinu u u                     (4.2) 

The strain energy in the bi-rod is 

    1 1(1)2 (1)2 (1) 2 (2)2 (2)2 (2) 2
1 1 2 2 3 3 0 1 1 2 2 3 3 02 20 0

( ) ( )
L L

SE B B B ds B B B ds                 (4.3) 

where the first integral is the energy in the upper rod and the second is that in the lower. 

 With 0   and 0   in the pre-bifurcation state, we evaluate SE  in the bifurcated state 

up to and including terms of order 2  and 2 .  (In-plane displacements, with / 2   and 

3 0u  , do not allow bifurcation.)  To this same order of accuracy, 3u  , and with this 

substitution the strain energy is 

  
 

2
3 0 2

1 (1) 2 (1) 2 (1) (1) (1) (1)
2 1 3 2 3 0 3 3 32 0 0

1 (2) 2 (2) 2 (2) (2) (2) (2)
1 3 2 3 0 3 3 32 0 0

2

2

LL

n

LL

n

SE B L P

P B u B B u ds B u

B u B B u ds B u



    

    

 

       

       





    (4.4) 

Because the ends of the rods are welded together,   and 3u  must satisfy (1) (2)  , (1) (2)
3 3u u  

and (1) (2)
3 3u u   at both ends of the bi-rod. Consequently, the two contributions in (4.4) evaluated 

at the ends add to zero and can be dropped. The energy in the straight state is 2
3 0B L , and 2P  is 

quadratic in   and 3u . 2P  is positive for all admissible non-zero   and 3u (excluding rigid body 

motions) if the straight state is stable. We seek the upper limit to the stability range, i.e., the 

minimum value of   such that there exists non-zero admissible functions    and 3u for which 
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2 0P  . The eigenvalue problem for the stability limit requires 2 0P   for all admissible 

variations, which, in turn, requires 

(1) (1) (1) (1)
1 3 3 0 2 3 0 3

(2) (2) (2) (2)
1 3 3 0 2 3 0 3

0, 0

0, 0

B u B B B u

B u B B B u

   

   

      

      
     (4.5) 

on 0 x L  , and at the ends,  

 
(1) (2) (1) (2) (1) (2)
3 3 3 3 3 0 1

(1) (2) (1) (2)
3 0 2 3 3

0, ( / )( ) 0,

( / )( ) 0

u u u u B B

B B u u

  

  

          

      
,    (4.6) 

in addition to (1) (2)  , (1) (2)
3 3u u  and (1) (2)

3 3u u  . Conditions (4.6) are the natural, or dynamic, 

boundary conditions which ensure there are no external force or moments applied at the ends. 

 The general solution to (4.5) is 

 
 

 

(1) (1) (1) (1) (1)
3 1 2 3 4

(1) (1) (1) (1) (1)
5 6 3 4

( / ) sin( / ) cos( / )

( / ) sin( / ) cos( / )

u L c c s L c s L c s L

c c s L K c s L c s L

 

  

   

   

 
 

 

(2) (2) (2) (2) (2)
3 1 2 3 4

(2) (2) (2) (2) (2)
5 6 3 4

( / ) sin( / ) cos( / )

( / ) sin( / ) cos( / )

u L c c s L c s L c s L

c c s L K c s L c s L

 

  

   

   
 

with 3 0 1 2/B L B B   and 1 2/K B B . To exclude the possibility of rigid body motions, 

the left end of the bi-rod is constrained at 0x   such that it cannot undergo displacement or 

rotation by requiring (1) (2) 0   , (1) (2)
3 3 0u u   and (1) (2)

3 3 0u u   . When these conditions, 

together with the three conditions (4.6), are imposed at 0x  , one obtains 

 
    
    

(1) (1) (1)
3 3 4

(1) (1) (1) (1)
3 4 3

sin( / ) / cos( / ) 1

sin( / ) / cos( / ) 1 ( / )

u L c s L s L c s L

K c s L s L c s L K L u

  

   

   

      

 
    
    

(2) (1) (1) (1)
3 3 4 3

(2) (1) (1) (1)
3 4

sin( / ) / cos( / ) 1

sin( / ) / cos( / ) 1

u L c s L s L c s L u

K c s L x L c s L

  

    

      

     
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The final step is to note that by imposing (1) (2)
3 3u u  and (1) (2)

3 3u u   at s L , all six conditions at 

that end will be satisfied. The eigenvalue equations are 

 
   
 

(1) (1)
3 4

(1) (1)
3 4

sin cos 1 0

cos 1 sin 0

c c

c c

  

 

   

  
 

requiring 1 cos ( / 2)sin 0     .   

The lowest eigenvalue is 2C   implying that (4)
1c  is the amplitude of the eigenmode 

with (3)
1 0c   such that 

    (1) (2) (1) (1) (2) (1)
3 3 4 4cos(2 / ) 1 , cos(2 / ) 1Cu u Lc s L K c s L            (4.7) 

The critical condition, 3 0 1 2/ 2B L B B  , implies that the largest value of the half-angle of the 

arc in the natural state such that the bi-rod is stable in the straight state is 1 2 3/C B B B  , or 

equivalently, the longest rods that can form a stable bi-rod is 

 0 1 2 3/ 2 /L R B B B          (4.8) 

For rods with a circular cross-section, the limit is / 1C    . The bifurcation mode, 

which produces both an opening separation of the bi-rod in the 3-direction and equal rotation in 

the rods, has no displacement or rotation at the right end. Thus, the solution for each rod is 

identical for the solution for the stability of a straightened, clamped rod (3.9) in Section 3.2. It is 

obvious that the solution constructed from (3.10) is an eigenmode. However, it is by no means 

obvious that this is a mode with the lowest eigenvalue because it is constrained to satisfy 3 0u   

at the right end, while the bi-rod only requires that (1) (2)
3 3( / 2) ( / 2)u L u L . This section shows 

that it does generate the critical mode because 3u  does indeed vanish at the right end of the bi-

rod, at least to the order of the bifurcation mode. Furthermore, it is easy to establish that this 

result also applies if each of the rods in Fig. 6 before bending into the straight configuration is 

rotated 180 degrees about the horizontal axis with the gap in the upper rod at the bottom and the 

gap of the lower rod at the top. 
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Two experimental realizations of steel bi-rods with circular cross-sections are displayed 

in Fig. 7, one formed from a naturally curved rod with / 4  , which is well below the 

stability limit, and the other with   , which is about 15% above the stability limit. The ends 

are clamped by a bracket that also provides some constant separation between the ends of the 

individual rods. The bi-rod in Fig. 7a is clearly stable in the straight state and requires counter-

twisting of the ends to trip it into a stable post-buckled state involving both bending and twisting.  

Some plastic deformation occurred while twisting the bi-rod and thus the state seen in the 

righthand photo of Fig. 7a may not be the same if the response had been strictly elastic. The bi-

rod in Fig. 7b is unstable in the folded straight state. The figure shows how, starting from a stable 

state, the bi-rod can be deformed into the straight state, which requires constraint to maintain its 

stability. When that constraint is removed, the bi-rod springs back to its initial stable state. 

Photos of the bi-rods in their ‘natural state’ before both ends are joined are shown in 

Supplemental Fig. 1 of the Supplementary Materials. Additionally, Video 1 depicts the transition 

process between states. 

 

 

Fig. 7. Experimental demonstration of bi-rods with circular cross-sections that are stable in a) 
and unstable in b) in the straight state. a) A stable straight bi-rod with / 4   showing the 

effect of twisting it out of the straight state into a plastically deformed twisted state. b) A bi-rod 
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with    that is unstable in the straight state. The sequence shows the initial stable non-

straight state, manipulation into a constrained straight state, and finally, upon release, return to 
the initial state. Scale bars: 50 mm. 

 

5. Stability of six-sided rings that fold into a straight three-loop 

 Now consider the ring in Fig. 1a. The ring is formed from six rod segments, each with 

uniform natural curvature n , that are bent with a uniform moment, 3 3 0( )nM B    , into a 

120o arc with radius, 0 01/R  , and ‘welded’ at the six joints where the arcs form a cusp. This 

6-sided 1-loop ring can be twisted into a 3-loop ring with straight sides of length 02 / 3L R .  

The 3-loop configuration is in equilibrium with a uniform bending moment in each segment 

alternating in sign, 3 3 nM B   , from segment to segment.  There is no twist in either the 1-loop 

state or the straight 3-loop state, although twist occurs in the transition from one state to another.2 

We investigate the stability of the straight 3-loop state.  The numbering system employed in the 

stability analysis is shown in Fig. 8a. If the rod segments prior to ring formation are straight with 

0n  , there is no stress in the folded state, and it is clearly stable, but the unfolded one-loop 

state will have residual stress, and it may or may not be stable—the stability of the unfolded state 

will not be investigated here. If, on the other hand, the natural curvature of the rod segments is 

01/n R  , the one-loop state is unstressed and stable, while the straight folded state is stressed 

with moments alternating in sign, 3 3 3 0/nM B B R    , from segment to segment. We 

investigate the stability of the straight folded state for rings formed from rods having an arbitrary 

uniform natural curvature n . 

 The elastic energy of the ring with the straight folded state as the reference is 

   6 21 ( )2 ( )2 ( ) ( )
1 1 2 2 3 3 02 0

1

L i i i i

i

SE B B B ds   


           (5.1) 

 
2 The 3-loop ring is sometimes called a ‘covered ring’ (Manning and Hoffman, 2006).  In forming a 3-loop covered 
ring, the rod is wound around itself three times and the two ends are lifted slightly to cross-over the ring and joined.  
There can be a very small twist or non-uniform bending in the vicinity of the cross-over, but this becomes 
vanishingly small for thinner and thinner rods and is neglected in the rod model. 
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where ( ) ( ) ( )
1 2 2( , , )i i i    are the curvature changes measured from the straight state about the 

imbedded unit vectors 1 2 3( , , )e e e  which coincide with the fixed Cartesian unit vectors 1 2 3( , , )i i i

in the straight state. Further, ( )
0

i
n     in segments 1, 3 and 5 and ( )

0
i

n    in segments 2, 4 

and 6. The change in sign of ( )
0

i  from one segment to the next is due to the flip of the 

orientation of the segments at each joint in the folded state and our use of the reference 

coordinate system shown in Fig. 8. 

 

 

Fig. 8. Numbering system for the segments, coordinate definition, and schematic of the 
arrangement in the straight folded state. a) Six-sided ring with 120o arc segments. b) Six-sided 
ring with 240o arc segments. The left ends of segments 1 and 6 are connected in both cases.  In 

the straight folded state, the left ends coincide with 2 0x   and the right ends with 2x L . 

 

 Following the same procedure described in connection with the bi-rod problem, the strain 

energy in the thi  segment is expressed in terms of ( )
3 ( )iu s  and ( ) ( )i s . It is then reduced by 

retaining all terms up to and including order 2u  and 2  such that the strain energy in the thi  

segment is 
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  1 1( ) 2 ( ) 2 ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )
3 1 3 2 3 0 3 3 0 32 2 0 0

2 ( ) ( )
LLi i i i i i i i i

nSE B L B u B B u ds B u                 (5.2) 

The total strain energy in the ring to this order is 2
3 23 nSE B L P   where the quadratic terms 

(which sum to the second variation of the system energy about the straight state) are 

  6
1 ( ) 2 ( ) 2 ( ) ( ) ( )

2 3 1 3 2 3 0 32 0
1

( , , ) 2 ( )
L i i i i i

n
i

P u B u B B u ds    


           (5.3) 

The geometric conditions at the joints require 3 3( , , )u u   to be continuous across the joints and, 

because of this, the terms evaluated at the ends of the segments in (5.2) sum to zero. As in the 

case of the bi-rod problem, the in-plane displacements decouple from 3u  and   in the 

bifurcation problem, and their contribution to the second variation of the energy is positive (apart 

from rigid body motion) so that bifurcation is controlled by out-of-plane deformation plus twist. 

If the natural curvature is zero such that ( )
0 0i  , 2P  is non-negative and only vanishes for 

rigid-body displacements. For the present problem, we seek the largest value of n  such that 

2 0P   for all admissible variations from the straight state, excluding rigid body motions. The 

critical natural curvature is governed by the eigenvalue problem associate with non-trivial 

solutions to rendering the first variation of 2P  stationary. The differential equations and 

conditions at the joints that follow from rendering 2P  stationary are 

 ( ) ( ) ( ) ( ) ( ) ( )
1 3 3 0 2 3 0 30, 0, 1,6i i i i i iB u B B B u i                 (5.4) 

 

( ) ( 1) ( ) ( 1) ( ) ( 1)
3 3 3 3

( ) ( 1) ( ) ( 1)
3 3

( ) ( 1) ( ) ( ) ( 1)
3 3 3 0 1

( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0

( ) ( ) 0, ( ) ( ) 0

( ) ( ) ( / )( ( ) ( ))

i i i i i i

i i i i

i i i i i

u L u L u L u L L L

u L u L L L

u L u L B B L L

 

 

  

  

 

 

      

      

       

   (5.5) 

for 1,3,5i  , while for 2, 4,6i   
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( ) ( 1) ( ) ( 1) ( ) ( 1)
3 3 3 3

( ) ( 1) ( ) ( 1)
3 3

( ) ( 1) ( ) ( ) ( 1)
3 3 3 0 1

(0) (0) 0, (0) (0) 0, (0) (0) 0

(0) (0) 0, (0) (0) 0

(0) (0) ( / )( (0) (0))

i i i i i i

i i i i

i i i i i

u u u u

u u

u u B B

 

 

  

  

 

 

      

      

       

   (5.6) 

where, when 6i  , 1i   must be taken as 1. For each set of joint conditions, the first three are 

geometric requirements and the second three are the natural, or dynamic, conditions that follow 

from the fact that there are no external forces or moments acting on the joints. 

 The following dimensionless quantities are employed: 

 ( ) ( ) ( ) ( )
3 3 2 3 1 2 2 1/ , / ( / ), / , / , /i i i i

n nu u L B L B B L B B x s L B B          (5.7) 

The eigenvalue is  . The details of the following solution to the eigenvalue problem are 

provided in the Supplementary Materials. The dimensionless equations can be solved 

analytically for the relation between the unknown quantities at the ends of the six segments. With 

( ) ( ) ( ) ( ) ( ) ( ) ( )( , , , , , )i i i i i i iu u u u u        , one obtains 

 ( ) ( ) ( ) ( )(1) (0) , 1,3,5 & (1) (0) , 2, 4,6i i i i
A Bu T u i u T u i                    (5.8) 

where AT  and BT  are 6 6  matrices which depend only on  . The conditions at the joints can 

be expressed as  

 ( 1) ( ) ( 1) ( )(1) (1) , 1,3,5 & (0) (0) , 2, 4,6i i i i
A Bu D u i u D u i                     (5.9) 

with 1i   taken to be 1 when 6i  . AD  and BD  are 6 6  diagonal matrices except for one off-

diagonal element, 56D , which depends on 2 1/B B . These matrices allow one to compute 

(6) (0)u    in terms of (1) (0)u   . Then imposing the condition at the joint between segment 1 and 

6 in (5.9), one obtains 

 (1)( ) (0)A I u   =0          (5.10) 

where   3
1

B B A AA D T D T   which depends only on   and 2 1/B B .  The form of A I  is 
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(1)

(2)

0

0

A
A I

A

 
   

 
         (5.11) 

where (1)A  and (2)A  are 3 3  matrices. The first three equations in (5.10) require 

 (1) (1) (1) (1)(0), (0), (0) 0A u u     
 

       (5.12) 

which requires the determinant of (1)A  to vanish. By carrying out the numerical calculations 

prescribed above, the smallest value of   for the determinant of (1)A  to vanish is found to be 2

, independent of 2 1/B B . The solution to (5.12) with 2   is any multiple of 

 (1) (1) (1)(0), (0), (0) 1,0,0u u     
 

       (5.13) 

Moreover, this solution satisfies 

(2) (1) (1) (1)(0), (0), (0) 0A u u     
 

 

Thus, the critical eigenvalue is 2   such that the largest value of the natural curvature 

n  for which the folded straight 3-loop ring is stable is 

1 2 32 /nL B B B    with  02 / 3L R       (5.14)  

This is, again, the same result as for the straightened clamped rod (3.9) in Section 3.2. The other 

three components determining the eigenfunction, (1) (1) (1)(0), (0), (0)u u  
 

, are the amplitudes of 

rigid body modes which can be chosen arbitrarily. For our purposes we will take 

(1) (1) (1)(0), (0), (0) 0u u   
 

. The full eigenmode is plotted in Fig. 9 for the components ( )u s  

and ( )s  as a function of the distance s  starting from the left end of  segment 1, continuing 

from the right end back along segment 2 to its left end, and then towards the right end of segment 

3, etc. The solution for the critical mode is the piecing together of six of the solutions for the 

clamped rod of length L  such that the moment components at each joint are equal and opposite. 

Note that the axial moment, or torque, in the rods, 2 2M B  , vanishes at the joints, c.f., (3.10). 
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Fig. 9. The bifurcation modal components 3u  and   plotted as a function of distance progressing 

continuously around the ring with six 120o arc segments starting at the left end of segment 1. In 

each segment   in this plot is the rotation about 2i . The cross-section is circular and 1/ 3  . 

The joints are tagged with a solid dot. The maximum amplitude of 3 /u L  is normalized to be 

unity. 
 

There can be an advantage to constructing this structure from rods with natural curvature 

(Olson et. al., 2013).  If the natural curvature is zero, the elastic energy in the straight folded state 

is also zero, whereas, with natural curvature, the elastic energy is non-zero and it may be used to 

help drive the unfolding process. For certain designs, it might even be desirable to have the 

folded state be unstable. It would be straightforward to restrain the folded state and release the 

restraint when unfolding is required. The stored elastic energy, which as discussed in Section 3.2 

can be substantial, could drive the unfolding process. The maximum natural curvature for 

stability in (5.14) is proportional to 1 2 3/B B B  which is plotted for rectangular cross-sections in 

Fig. 4. Thus, the height to thickness of the cross-section is the important parameter for stability. 

 Finally, it is noted, without repeating the analysis, that the stability limit for the natural 

curvature of the folded 6-sided ring formed from 240o arcs in Figs. 1 and 6 is also governed by 

(5.14). However, the length is twice that for the 120o-arc structure, i.e., 04 / 3L R , reducing 

the limiting natural curvature for stability by a factor of 2. 

An experimental demonstration of the 1- and 3-loop states of the six-sided 120o arc ring 

is presented in Fig. 10. The cross-section of the rod is rectangular with / 4h t   and the natural 
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curvature of the arcs is 01/n R   such that the initial unfolded state has no residual stress and is 

therefore stable (see Supplemental Fig. 2). For this ring, 2 / 3nL  , and it is seen from the 

criterion in (5.14), in conjunction with Fig. 4, that the folded 3-loop state is far below the 

stability limit, as the experimental realization in Fig. 10 indicates. By applying bending to the 

ends of the folded ring, it can be brought to an intermediate state at which it snaps dynamically 

to the unfolded state. The snapping process occurs with vigor consistent with the considerable 

elastic bending energy stored in the folded state. Photos of the ring before and after the ends of 

the open ring have been connected are shown in Supplemental Fig. 2 of the Supplementary 

Materials along with Video 2 showing the unfolding and snapping process. 

 

 

Fig. 10. Unfolded initial (1-loop) and folded (3-loop) states of a six-sided 120o arc ring that is 

formed from arcs with 01/n R   such that the 1-loop state has no stored elastic energy. a) The 

analytical representation. b) The experimental realizations of the two states, both of which are 
predicted to be stable. c) Applying bending to the ends of the stable folded state until it snaps to 
the unfolded state. 
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6. Conclusions 

 The main finding in this paper is the stability limit of the natural curvature for the bi-rod 

and the straight folded six-sided ring is 1 2 32 /nL B B B  . The bifurcation mode is a 

combination of bending of the rods out of the plane of the natural curvature coupled with twist 

along the length of the rods. The relevance of the fundamental problem in Section 3.2 of the 

stability limit for bending a clamped rod to reduce its natural curvature has been emphasized. For 

the case when the rod is bent to become straight, the stability limit on the natural curvature is the 

same as that for the bi-rod and the straight folded six-sided ring. 

 The approach to stability used in this paper employs the relations of Kirchhoff rod theory 

for conservative loads but specialized to a Lagrangian formulation in which the state being 

investigated is either circular or straight. Stability rests on the positive definiteness of the second 

variation of the energy of the system. This paper has been concerned only with the ranges of 

stability and instability and the bifurcation mode from the reference state. Post-bifurcation 

behavior has not been considered in this paper for any of the problems, although the formulation 

permits extension into the post-buckling range and is particularly well suited for carrying out 

studies based on Koiter’s (1945) approach to initial post-buckling behavior and imperfection-

sensitivity. It should be mentioned that numerical post-bifurcation results for the 1-loop and 3-

loop circular ring problems have been presented by Goto et al. (1992), Mouthuy et al. (2012), 

and by Audoly and Seffen (2015) who deploy the natural curvature as a control parameter to 

follow quasi-static equilibrium transition paths between the two circular states. 

 Although the demonstrated experiments on the bi-rod and the six-sided straight folded 

ring are limited in number and far from being comprehensive, they do suggest that, unlike many 

structures constructed from rods or beams, these entities may display highly unstable post-

bifurcation behavior and strong imperfection-sensitivity. It has been noted that significant elastic 

energy can be stored in structures such as the bi-rod or straight folded rings constructed by 

straightening initially curved rods. Future investigations of post-buckling behavior and 

imperfection-sensitivity of these structures, whether based on the present formulation or the 

classical Kirchhoff formulation, are likely to be interesting. 
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Appendix A. Supplementary materials 

The following is the Supplementary materials to this article.  

Video 1: Bi-rods with circular cross-section 

Video 2: Six-sided 120o arc ring with rectangular cross-section 
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