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a b s t r a c t

Topology optimization techniques can create efficient and innovative structural designs by redistribut-
ing underutilized materials to the most-needed locations. These techniques are typically performed
based purely on structural performance without considering factors like aesthetics and other design
requirements. Hence, the obtained structural designs may not be suitable for specific practical
applications. This study presents a new topology optimization method, SP-BESO, by considering
the subjective preferences (SP) of the designer. Here, subjective scoring and drawing systems are
introduced into the popular bi-directional evolutionary structural optimization (BESO) technique. The
proposed SP-BESO method allows users to iteratively and interactively create topologically different
and structurally efficient solutions by explicitly scoring and drawing their subjective preferences.
Hence, users do not need to passively accept the optimization results. A user-friendly digital design
tool, iBESO, is developed, which contains four optimizers to simultaneously perform the proposed
SP-BESO method to assist in the design exploration task. A variety of 2D examples are tested using
the iBESO software to demonstrate the effectiveness of the proposed SP-BESO method. It is found that
the combination of parameters used in the scoring and drawing systems controls the formation of
final structural topologies toward performance-driven or preference-driven designs. The utilization of
the proposed SP-BESO method in potential practical applications is also demonstrated.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Topology optimization is an effective strategy to create
ightweight and high-performance structures by redistributing
aterials in continuous design domains [1,2]. In recent years, this

echnique has been utilized across a wide range of disciplines
lso due to its ability to design elegant and innovative struc-
ures, with applications including architectural designs [3–6],
urniture [7,8], and additive manufacturing [9–12]. Conventional
opology optimization techniques are performed based on finite
lement analysis (FEA). They typically require the continuous
esign domain to be discretized into finite element meshes to
epresent the given materials. One of the widely used topol-
gy optimization techniques is the bi-directional evolutionary
tructural optimization (BESO) method; it can redistribute the
nderutilized material to the most-needed locations by adding
r removing the finite elements [13–16].
According to [17], the ‘best design’ generated from topology

ptimization based purely on structural performance may be
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of low value in practical applications, as it does not always
satisfy all design requirements, including factors like aesthet-
ics quality [18]. To overcome this bottleneck, recent research
has extended the BESO method to generate multiple diverse
solutions while maintaining a high level of structural efficiency,
offering diverse ‘options’ for users to select. This is called multi-
solution strategies [17] (see Section 1.3). Such strategies sac-
rifice a small amount of structural performance (e.g., 3% stiff-
ness) of the best design in exchange for multiple solutions. They
can be achieved by introducing randomness to disturb the op-
timization process [19–21], changing the optimization settings
[6,14,22,23], and/or adding structural complexity control to mod-
ify optimal topologies [24–26].

Although multi-solution strategies can provide many design
options, picking a satisfactory final design can be a difficult task.
During the selection process, evaluating each design option is
time-consuming, and solutions that meet all design requirements
may be rare [27]. Hence, excessive design options can lead to a
high cost in finding the final design. As discussed in [28], design
exploration is an evolutionary process rather than picking an
appropriate outcome from various options, meaning users should
add their subjective considerations to guide the design process.

Therefore, to generate a useful list of design options, users should
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e allowed to subjectively engage in the optimization process
29,30].

It should be noted that different design tasks require different
evels of subjective involvement, where low and high levels of
nvolvement in structural design result in performance-driven
nd preference-driven designs, respectively [31,32]. Performance-
riven designs do not require much subjective involvement, thus
uitable for applications where structural performance is critical,
uch as bridge designs [33]. Although such designs can create
igh-performance configurations, designers typically fail to add
heir creative ideas to affect the formation process of the final
utcomes, meaning the designers have to passively accept the op-
imal solution from optimization. On the other hand, preference-
riven designs focus on creativity and aesthetics, and are less
oncerned about structural performance; therefore, the key ge-
metric features of the final structural design can be fully con-
rolled by subjective preferences, where optimization is utilized
s a supporting role in design exploration [7].
Structural optimization methods considering subjective pref-

rences can find a satisfying design more efficiently [34,35]. For
xample, [36] uses an evolutionary algorithm considering subjec-
ive preferences to create a variety of satisfying truss optimization
esults. This study is enlightening because it demonstrates the
otential of achieving design objectives while considering subjec-
ive preferences using an optimization framework. Their method
llows users iteratively and interactively to find the ideal solution,
hether it is a performance-driven or preference-driven design.
esides, a recent survey has reported that manually applying sub-
ective modifications to given optimal topologies based on aes-
hetic principles can result in more satisfying designs [18]. There
s a huge potential to use topology optimization that considers
ubjective preferences to iteratively and interactively generate a
ide variety of satisfying structural designs. However, it is an
ngoing challenge and remains under-explored.

.2. Scope of work

This paper proposes a new topology optimization method
hat considers subjective preferences, named ‘SP-BESO’. The pro-
osed method combines two subjective involvement approaches
ith the multi-solution optimization strategy. This combination
nables users to iteratively and interactively create diverse, satis-
ying structural designs by explicitly scoring and drawing their
ubjective preferences. Section 2 gives details of the proposed
P-BESO method. Section 3 introduces a new digital design tool,
iBESO’, achieved using the SP-BESO method. Section 4 performs
arametric investigations. Section 5 demonstrates two potential
ractical applications of the proposed SP-BESO method. Section 6
iscusses possible extensions of the proposed SP-BESO method,
ollowed by a conclusion in Section 7.

.3. Key contributions

The proposed SP-BESO method converts subjective prefer-
nces into a list of weights in topology optimization through
coring or drawing in order to obtain topologically different and
tructurally efficient solutions. Note that SP-BESO is a new ex-
ension of the conventional BESO method [15]. There are a few
xtensions of the BESO method that share a similar goal, also aim-
ng to obtain diverse and efficient structural designs considering
ubjective preferences. The key contributions of the SP-BESO and
ts differences from previous studies are summarized as follows.

First, [25,37] present three multi-solution BESO methods con-
idering subjective interventions, including multi-radius BESO
MR-BESO), multi-volume BESO (MV-BESO), and multi-weight

ESO (MW-BESO). MR-BESO and MV-BESO introduce different

2

filter radius and volume constraints, respectively, in different
regions of the continuous design domain [25]. Due to this, users
need to adjust the optimization parameters at different regions
based on local design requirements. Although such methods can
create diverse solutions, setting many local optimization param-
eters may be tedious and time-consuming, and the results rely
on a trial-and-error process to satisfy all design requirements,
including subjective preferences. The proposed SP-BESO method
uses a global filter radius and volume constraint to avoid these
problems, with the weighting method used to straightforwardly
involve subjective preferences. MW-BESO also uses the weight-
ing method by introducing subjective drawn patterns [25,37].
However, in contrast to SP-BESO, MW-BESO is not yet an interac-
tive topology optimization method, meaning users cannot further
modify the results to achieve the ‘most-desired’ structural design
through subsequent topology optimization.

Second, [26] explicitly prescribes the locations and number
of holes in the BESO method to affect the formation of final
structural topologies. Although the locations and number of holes
can be prescribed based on subjective preferences, the final hole
shapes are not controllable. Hence, the obtained solutions may
not always satisfy all subjective design requirements. In SP-BESO,
the number of holes and their locations and shapes can be con-
sidered subjective factors by the scoring or drawing systems,
meaning the solutions can implicitly involve all subjective design
requirements. The subsequent topology optimization can be used
to improve the obtained solution through an evolutionary design
exploration process.

Together, it can be understood that the proposed SP-BESO
method can iteratively and interactively create diverse and ef-
ficient structural designs using subjective scoring or drawing
systems. It offers a new evolutionary design exploration strategy
to effectively achieve desired structural designs so that users do
not need to passively accept the optimization results.

2. Structural topology optimization

In this study, the proposed structural topology optimization
framework is developed based on the soft-kill BESO method [15],
briefly summarized in Section 2.1. Three additional features are
added to this framework, introduced in Sections 2.2–2.4. To-
gether, a new topology optimization method considering subjec-
tive preferences, Subjective Preferences (SP)-BESO, is proposed in
Section 2.5.

2.1. Soft-kill BESO method

This study uses the soft-kill BESO method to perform struc-
tural topology optimization. The stiffness maximization (compli-
ance minimization) problem subject to a volume constraint can
be formulated as follows:

min : C =
1
2
UTKU (1a)

s.t. : V ∗
=

N∑
i=1

viρi (1b)

ρi = ρmin or 1 (1c)

where compliance, C , is the inverse measure of structural stiff-
ness; U and K are the global displacement vector and the global
stiffness matrix, respectively; V ∗ and vi are the target structural
volume and the volume of ith element, respectively. Note that the
given design domain is discretized into N elements, where each
element, i, has a design variable, ρi, to determine whether the
element is solid (ρ = 1) or void (ρ = ρ = 0.001).
i i min
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To achieve a nearly solid–void design, the material model
of structural elements is defined as a function of the element
density:

E(ρi)k = ρ
p
i E0 (2)

where E(ρi)k is Young’s modulus of ith structural element at
the kth iteration, E0 is the design Young’s modulus of structural
elements, and p = 3 is the penalty exponent [2].

It should be noted that the soft-kill BESO method determines
the topology according to the relative ranking of sensitivity num-
bers, αi. The ith elemental sensitivity number is defined as:

αi = −
1
p

∂C
∂xi

=

⎧⎪⎪⎨⎪⎪⎩
1
2
uT
i kiui, when ρi = 1

ρ
p−1
min

2
uT
i kiui, when ρi = ρmin

(3)

where ki is the elemental stiffness matrix and ui is the elemental
displacement vector.

To avoid checkerboard and mesh dependency problems, the
following filtering operation is used to smooth the above raw
sensitivity number [38]:

α̃i =

∑N
j=1(rmin − rij)αi∑N
j=1(rmin − rij)

(4)

where α̃i is the filtered sensitivity number, rmin is the filter radius,
and rij represents the distance between the centroids of elements
i and j.

To improve the convergence of the BESO technique, the cur-
rent and historical sensitivity numbers can be averaged using the
following equation [15]:

α̂i =
α̃ k
i + α̃ k−1

i

2
(5)

where α̂i is the averaged sensitivity number.
In each iteration, structural elements are added or removed

according to the sensitivity threshold procedure. The target vol-
ume for the next iteration, Vk+1, needs to be given before ele-
ments are removed from or added to the current design:

Vk+1
= Vk(1 ± ER) (6)

where Vk is the current volume and ER is the evolutionary volume
ratio.

Next, the bisection method is used to add or remove elements
based on α̂i [39]. The optimization process is repeated until the
following convergence criteria are satisfied [14].

|
∑M

m=1(Ck−m+1 − Ck−M−m+1)|∑M
m=1 Ck−m+1

≤ τ (7)

here M = 5 is an integer number and τ = 0.001 is the
llowable convergence error. Here, M is set as 5, meaning stable
ompliance values are checked in the last 10 iterations.

.2. Generation of multiple solutions

Conventional topology optimization methods can only gener-
te one structural topology under the same settings. This study
ses the random perturbations method [20] to allow the soft-
ill BESO method to generate different competitive structural
opologies every time, thereby providing multiple solutions.

To summarize, the random perturbations method introduces
random coefficient, βi, to penalize αi in each iteration:

¯i
r
= αiβi, βi ∈ [1 − ϵ, 1 + ϵ] (8)

here ᾱi
r is the penalized sensitivity number; ϵ determines the

andom range of β , which is set as ϵ = 0.15 in this study. Note
i

3

hat all random coefficients are generated before the optimization
rocess. Hence, the ranking of αi is changed into ᾱi

r , which affects
he selection of elements being added or removed in the thresh-
ld procedure, ultimately creating a different structural topology.
oreover, the generation of random coefficients is driven by the

andom seed integer, γ , where different γ can result in different
ets of random coefficients. Due to this, infinite solutions can
e obtained by modifying γ , thereby significantly improving the
esign diversity of topology optimization.

.3. Subjective scoring

This study proposes a weight-based strategy to introduce sub-
ective preferences into the method described in Section 2.2. The
trategy quantifies preferences by explicitly scoring the existing
ptimization design (‘parent design’). Then, the subjective score
s used to generate weights in the next topology optimization
o create new designs (‘child design’). The child design can be
sed as an updated parent design in the subsequent topology
ptimization, resulting in a further improved child design. By
lternately inputting subjective preferences and executing topol-
gy optimization, users can iteratively explore the desired design.
ote that the subsequent topology optimization should start from
he beginning based on the parameters of the parent design.

Here, the scoring weight, ω s
i , is used to penalize the elemental

ensitivity number:

s
i = 1 + λsρi

S
10

, λs ∈ [0, 1], S ∈ [−5, 5] (9a)

ᾱ s
i = ω s

i αi (9b)

where ᾱ s
i is the modified sensitivity number of the ith element

fter scoring; λs is a parameter ranging from 0 to 1, which allows
sers to control the influence of scoring weights on topology
ptimization; S is the subjective score, which can be selected

within a specific interval, e.g., [−5, 5]. Together, the default range
of ω s

i is [0.5, 1.5].
As shown in Fig. 1, applying a negative (S = −2) and positive

(S = 2) subjective score on the same parent design (see Fig. 1(a))
gives different child designs. It should be noted that when S < 0,
the parent design is considered an undesirable solution; when
S > 0, the parent design is considered a preferred solution. In
Fig. 1(b), as S is set to be −2, the modified sensitivity numbers at
solid regions are lower than void regions. Hence, the subsequent
topology optimization will avoid producing a similar solution to
the parent design, leading to a new design that may help users to
find their desired solutions, as shown in Fig. 1(c). In Fig. 1(d), as
S is set to be 2, the modified sensitivity numbers at solid regions
are higher than the void regions. In that case, the child design
will only be slightly different from its parent design, as shown in
Fig. 1(e). Note that using S = 0 will not change the parent design
in the subsequent topology optimization.

2.4. Subjective drawing

Another strategy to include subjective preferences in topology
optimization is to employ ‘hand-drawn patterns’, where drawing
allows users to put their creative ideas into structural designs
based on their artistic intuition [40]. It is worth pointing out
that it is difficult for users who lack experience in structural
design to produce high-performance structure sketches that will
fulfill all design requirements. Due to this, this study converts
the given drawn pattern to a list of ‘drawing weights’ to modify
the elemental sensitivity numbers, thereby guiding the topology
optimization process to achieve suitable designs considering both
structural performance and subjective preferences.
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Fig. 1. Applying subjective scores in topology optimization: (a) parent design; (b) visualization of applying S = −2 on the parent design; (c) child design obtained
sing S = −2; (d) visualization of applying S = 2 on the parent design; (e) child design obtained using S = 2. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
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In this study, a drawn pattern is first translated to a grayscale
aster texture made up of pixels. Next, the colors of pixels are
sed to calculate the drawing weights. Note that the color scale
anges from black through gray to white.

For simplicity, the normalized elemental sensitivity number,
e

i , is used:

e
i =

αi − αmin

αmax − αmin
(10)

here αmin and αmax represent the minimum and maximum raw
sensitivity numbers, respectively.

Here, the drawing weight, ω d
i , and the modified sensitivity

number considering the drawn pattern, ᾱ d
i , are calculated using:

ω d
i =

∑D
j=1(1 − cj)

D
, cj ∈ [0, 1] (11a)

¯
d

i = λeω
e

i + λdω
d

i , λe, λd ∈ [0, 1] (11b)

where D is the number of nodes in the ith element; cj is the gray
olor of the jth node on the texture, ranging from 0 (black) to 1
white); λd and λe are parameters within [0, 1], which control the
nfluence of ω d

i and ω e
i , respectively. Note that controlling λd and

e allows users to balance objective structural performance with
ubjective artistic intuition according to design requirements,
iscussed later in Section 4.4.
For a given design domain (see Fig. 2(a)), drawing operations

n topology optimization can be performed without or with a
arent design. Fig. 2(b) shows the workflow of drawing without
sing a parent design, requiring users to draw a pattern based on
heir rough idea beforehand. The pattern is first converted into
weighted texture so that each element can obtain a drawing
eight based on the color of the corresponding pixel. Using
eighted texture, the formation of the final structural topol-
gy is affected by the drawn pattern, thereby generating a new
esign considering both structural performance and subjective
references. Fig. 2(c) shows the workflow of drawing using a
arent design, allowing users to make further modifications, such
s adding new structural members. To achieve this, the nodal
ensitivity field of the parent topology is first converted to a
exture using the bilinear interpolation method [41]. Next, users
an draw on the texture according to their subjective preferences.
inally, the subsequent topology optimization is performed to
roduce a child design considering the drawn pattern (i.e., the
odified parent design).
4

.5. SP-BESO method

The SP-BESO method is proposed here based on the combi-
ation of the multi-solution strategy (see Section 2.1), subjective
coring (see Section 2.2), and subjective drawing (see Section 2.3).
o be specific, the elemental sensitivity number used in the SP-
ESO method before filtering (see Eq. (4)), ᾱi, is obtained by
ombining Eqs. (8), (9)(b) and (11)(b):

¯ i = βiω
s

i (λeω
e

i + λdω
d

i ), λe, λd ∈ [0, 1] (12)

The computational workflow of the proposed SP-BESO method
s summarized in Fig. 3. It should be noted that the SP-BESO
ethod is modified from the soft-kill BESO method. The new

eatures are highlighted in this workflow, including the use of
andom penalty coefficients (green) and subjective weights (red).
t is worth noting that the proposed SP-BESO method does not in-
rease the algorithmic complexity of the underlying BESO method
ue to the use of the weighting method. Hence, the SP-BESO
ethod requires almost the same computational resource con-
umption as BESO. The iteration numbers to generate a converged
olution of SP-BESO can be found in Figs. 8(c) and 9(d); the
ctual run time depends on the complexity of the structural
ptimization problem and the hardware used.

. iBESO digital design tool

.1. iBESO overview

To further explore the capability of the proposed SP-BESO
ethod, a user-friendly digital design tool, iBESO, is developed.
he iBESO software has three unique systems: the multi-solution
ystem, the scoring system, and the drawing system. These sys-
ems are detailed in the following subsections. The download link
nd the user guide of the iBESO software are available in [42].
The iBESO software can simultaneously perform up to four 2D

opology optimization solvers based on the SP-BESO method, as
hown in Fig. 4. This allows four parent designs to be parallel
valuated and further modified based on subjective preferences
scoring and drawing), resulting in child designs through sub-
equent topology optimization. The evaluation and modification
rocesses can be repeated until an ideal structural design is
btained.
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Fig. 2. Applying subjective drawing patterns in topology optimization: (a) optimization problem; (b) generating a child design using a prescribed pattern (letter ‘A’)
without a parent design; (c) generating a child design by adding new members in the parent design. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Computational workflow of the proposed SP-BESO method. Note that the SP-BESO method is modified from the soft-kill BESO method. The two new features
are highlighted in green and red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The implementation of iBESO is achieved using both C++ and
# programming languages. The C++ part contributes an efficient
ptimization kernel, which is modified from existing optimization
odes [39,43,44]. The C# part gives the graphical user interface,
llowing users to define boundary conditions and other design
arameters explicitly and interactively.

.2. Multi-solution system

The multi-solution system allows iBESO to create diverse,
nexpected, and competitive designs. To avoid the over-choice
roblem, the iBESO software uses only four optimization solvers
expansion can be easily made). Thus, the number of solutions in
very subsequent topology optimization is always four. As there
s no limitation on the number of subsequent topology optimiza-
ion that iBESO can perform, there could be infinite child designs.
owever, these child designs are considered useful, as they are
enerated using subjective preferences while maintaining high
tructural efficiency.
Fig. 4 summarizes the computational workflow of the multi-

olution system in iBESO. Initially, the key difference between
he four solvers is the use of different γ , leading to different
andom coefficients. It should be noted that βi is set to be 1
hen γ = 0. In that case, the solver will not be affected by
andom penalty coefficients, referring to the standard soft-kill
ESO procedure (see Section 2.1). During optimization, the four
olvers will start synchronously until all convergence conditions
re satisfied. After optimization, zig-zag boundaries of the re-
ults are smoothed using the method proposed previously by
he authors [45], enabling volumetric constraints and geometric
eatures to be preserved. Note that the smoothed results may
ave slightly different structural performances, but they are only
sed for visualization purposes [45].

.3. Scoring system

In iBESO, the scoring system is available after the four initial
arent designs are obtained. The scoring system is demonstrated
ore clearly in Fig. 5. In every subsequent topology optimiza-

ion, the four inputs (left) are treated as new parent designs
ith their design variables, ρi, recorded. Next, a scoring panel

can be accessed for interactive evaluation to include subjective
preferences. The specified S values are then used to calculate the
scoring weights and determine the relative ranking of modified
sensitivity numbers. Finally, the four optimization solvers are
restarted to generate new child designs (right).
6

Fig. 5. Demonstration of the scoring system in the iBESO software.

.4. Drawing system

In contrast to the scoring system, the drawing system can be
ctivated before or after the first topology optimization process
see Section 2.4); both start with a user-defined grayscale texture
rawn within the design domain. In iBESO, users can input their
reative patterns by drawing manually or importing external
rayscale raster images to all four solvers. These patterns are
onverted to drawing weights using Eqs. 11(a) and (b) to affect
he subsequent topology optimization. When drawing inside the
olvers, iBESO has a ‘brush’ tool (see Appendix), which allows
sers to draw grayscale patterns by stamping and swiping [46].
hen importing from external images, iBESO can map 2D images
ith different sizes and resolutions to the prescribed design
omain.

.5. iBESO demonstration

Fig. 6 shows the initial interface of the iBESO software and
he sub-interfaces after clicking the six major function buttons.
t can be seen that the initial interface has four optimization
olvers (dark rectangular areas) and a vertical toolbar. The toolbar
ncludes ‘Run’, ‘Stop’, and ‘Reset’ buttons to control the optimiza-
ion process of the four solvers; a ‘Quit’ button is also included
o shut the iBESO software. Other buttons in the toolbar control
he six major functions of the iBESO software, which will open
ub-panels:
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Fig. 6. Demonstration of the initial interface of the iBESO software and the sub-interfaces after clicking the six major function buttons.
w
e

• Parameters panel: It controls the design resolution (num-
ber of elements in the X and Y directions), BESO param-
eters (filter radius rmin and target volume fraction V ∗),
materials parameters (Young’s modulus E0 and Poisson’s
ratio ν), and the subjective parameters (λe, λs, and λd).

• Options panel: It allows users to choose whether to smooth
solutions and control the random seed parameters for the
four solvers.

• Problem setup panel: It allows users to add, remove, and
modify load and support conditions graphically by clicking
the selected nodes.

• Scoring panel: It can be opened after the four solvers have
converged. Four sliders are used to give scores on the
current optimization results.

• Drawing panel: Users can draw their creative patterns by
clicking or dragging the mouse. The buttons on the left in-
clude ‘drawing’, ‘erasing’, ‘drawing passive solid domains’,
‘drawing passive void domains’, ‘importing a texture’, and
‘exporting the current texture’. Note that ‘passive’ elements
will not change their design variables during optimiza-
tion. Besides, three sliders are included to control the size,
hardness, and opacity of the brush (see Appendix)

• Input/Output (I/O) panel: It allows users to export the cur-
rent four solutions or import a structural design problem
and parameters.

4. Parametric investigations

4.1. Measuring method

Parametric investigations (see Sections 4.3–4.4) are conducted
using the iBESO software. In order to thoroughly compare two
given structural topologies (denoted here as solutions A and B),
three metrics are used to quantify the differences in shape and
structural performance.

First, the difference in structural performance can be repre-
sented by the compliance ratio, ∆C = CB/CA, where CA and CB
are the compliance of solutions A and B, respectively. According
7

to [20,21,25,26], this is the most straightforward method to eval-
uate the difference between two topology optimization methods
under the same settings.

Second, the overlapping rate P can be used to measure the
similarity of the two solutions [23], as shown in Fig. 7. The
overlapping rate can be calculated by:

P =
VP

V ∗
(13)

here VP is the volume fraction of the overlapping part. For
xample, comparing Figs. 7(a) with (b) gives P = 88.97%, rep-

resenting the percentage of the overlapping area of the two
structural topologies. Note that P is a simple and effective mea-
sure for comparing BESO-based results, as it compares the shape
of two structural topologies based on overlapping solid elements
only. Other methods, such as DCC, DMCC, and DSSD, can also
measure the differences between two structural topologies, but
they require more complex calculations, which is unnecessary
for this study. Details of DCC, DMCC, and DSSD can be found
in [23,47].

It should be noted that P alone is insufficient to fully show
the geometric difference between the two solutions. Hence, the
third proposed metric measures the difference in the number of
holes of two structural topologies, ∆g . The number of holes, g ,
is closely related to the structural complexity, which has been
widely adopted in previous studies [24,26,48,49]. Structures with
many holes are typically considered complex and difficult to
manufacture. However, some users treat complexity as a valuable
aesthetic contribution [26]. Note that, in this study, g is only a
part of many implicit subjective factors, meaning minimization
of ∆g is not a strict design objective. Specifically, ∆g is only
used to assist in measuring the similarity between two shapes,
which must be used together with P . Mathematically, g can be
calculated based on geometric information [50,51]:

2 − 2g = MV − ME + MF (14)

where MV , ME , and MF represent the number of vertices, edges,

and faces of the final FE mesh, respectively. For example, in Fig. 7,
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Fig. 7. Measuring of similarity between two structural topologies: (a) solution
A with gA = 3 holes; (b) solution B with gB = 5 holes; (c) comparing solutions A
nd B gives the overlapping part. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

g = gB−gA = 5−3 = 2 represents the difference in the number
f holes of solutions A and B.
In the following parametric investigations, solutions A and B

re considered ‘highly similar’ when ∆C ≈ 1, P ≈ 1, and ∆g ≈ 0.

.2. Design parameters

The optimization problem used here is the classic 2D short
antilever example. An 80 mm tall × 50 mm wide design domain
s first discretized into 4000 square elements that have a side
ength of 1 mm. A F = −1 N point load is applied at the center
f the free edge, and the opposite edge is assigned with a fixed
oundary condition. The material is assumed to be isotropic and
inearly elastic, with Young’s modulus of E = 1 MPa and Poisson’s
atio of ν = 0.3. BESO parameters are: ER = 2%, V ∗

= 50%, and
rmin = 3 mm. Note that, to perform fair comparisons, all random
penalty coefficients are set to 1 when generating the parent
designs in Sections 4.3–4.4, meaning the optimization results are
not disturbed by random perturbations.

In Section 4.3, the influence of scoring weights on optimization
results is examined by setting different combinations of λs and S.
he optimization process is performed on the same parent design
see Fig. 8(a)) with λs = 0.1, 0.5 and 1 tested, where S is set to be
3, −1, 1, and 3 to obtain solutions A–D in each test, respectively.
ence, 12 child designs (see Fig. 8(b)) are created. They are then
ompared with their parent design using the proposed metrics.
ote that to avoid the interference of the drawing system, λd = 0

and λe = 1 are used.
In Section 4.4, the optimization problem is imparted with

a drawn pattern, as shown in Fig. 9(a). Five child designs are
created using different combinations of (λd, λe), including (0.1, 1),
(0.1, 0.5), (1, 1), (0.5, 0.1), and (1, 0.1). These child designs are
compared with two reference designs, as shown in Fig. 9(b). The
first reference is the BESO result obtained without activating the
drawn pattern (λd = 0, λe = 1), and the second reference is
the drawn pattern re-designed using topology optimization to
achieve the target volume (λ = 1, λ = 0).
d e

8

4.3. Results of using variable scoring weights

Figs. 8(b) and (c) show the results (structural topologies and
evolution histories) of setting λs and S as design variables. First,
it can be clearly seen that solutions A and B with disliked scores
(S < 0) have different shapes to their parent design. To be
specific, the overlapping rate P are all less than 90%, where the
lowest case (solution A with λs = 1) has P ≈ 50%. Besides,
most ∆g values are not 0, where several low cases have ∆g =

−5. Note that the creation of different shapes is attributed to
mutations (i.e., drastic changes in the structural topology, such as
rod breakage) that occurred during the optimization (see spikes
in the evolution histories). In contrast, solutions C and D with
preferred scores (S > 0) have similar shapes to their parent
design. Their P are relatively high, ranging from 89% to 98%, and
with ∆g to be either 0 or −2. It should be noted that solutions C
and D are obtained from stable evolution histories, meaning the
evolution histories do not have mutations; ∆g = −2 is due to
the two initially tiny holes being removed in the final topologies.

Moreover, it is seen that increasing λs can enhance the in-
fluence of scoring weights. For example, in solution A (S < 0),
P = 80% when λs = 0.1, but P is reduced dramatically to
55.6% when λs = 1. However, for cases with S > 0, either
high or low λs can make the subsequent child design close to the
parent design, corresponding to a higher P , as they are preferred
solutions already. In terms of structural performance, there is just
a little difference between these 12 solutions. Only solution A
with λs = 1 has a maximum ∆C of 1.038. Other designs have
performance variations within 2% (i.e., ∆C < 1.02).

Together, it can be concluded that both λs and S can control
the formation of final topologies, and the effect of introducing
scoring weights is in line with the expectation, which can provide
competitive designs considering subjective scoring preferences.

4.4. Results of using variable drawing weights

Fig. 9(c) shows the five child designs obtained using a drawn
pattern and different combinations of (λd, λe). Their evolutionary
histories are given in Fig. 9(d). Detail comparisons with the two
reference designs (see Fig. 9(b)) are summarized in Figs. 9(e)–
(f) and Table 1. Note that the two references are extremely
performance-driven (reference 1) and preference-driven designs
(reference 2).

Here, different combinations of (λd, λe) are represented as
λ = λd − λe. When ∆λ is increased from −0.9 to 0.9, it can
e clearly seen that trends P1 (P of reference 1) and P2 (P of
eference 2) decrease and increase, respectively (see Fig. 9(e)).
his indicates that ∆λ plays an important role in determining
he child designs to be performance-driven or preference-driven.
pecifically, based on the shape comparison, when ∆λ is low
e.g., −1), P1 < P2, a performance-driven design is created; when
λ is high (e.g., 1), P1 > P2, a preference-driven design is created.
Fig. 9(f) shows the comparison of structural performance. In

his figure, ∆C1 ≈ 1 (∆C of reference 1) represents a
erformance-driven design, which can be achieved using a low
λ; ∆C2 ≈ 1 (∆C of reference 2) represents a preference-
riven design, which can be achieved using a high ∆λ. Both
rends ∆C1 and ∆C2 are always increasing due to an increasing
λ, representing a performance loss. Specifically, with increasing
λ, trend ∆C1 has increased away from ∆C = 1, meaning

he shape difference between the child design and the extreme
erformance-driven design is becoming larger, and trend ∆C2 is
ncreased toward ∆C = 1, meaning the obtained child design
s becoming more alike to the extreme preference-driven design.
ote that the drawn pattern is specified based on artistic intuition
nly without considering the ‘best’ structural performance. Thus,
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Fig. 8. Examining the influence of scoring weights on optimization results using the 2D short cantilever example: (a) the parent design and its loading and boundary
conditions; (b) 12 child designs generated using three different λs (0.1, 0.5, and 1) and four different S (−3, −1, 1, 3); (c) comparison of evolutionary histories. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
he formation of the structural topology considering the drawn
attern is always guided away from the best performance-driven
ne, thereby introducing performance loss.
Together, it can be understood that using smaller ∆λ can

result in the child designs closer to reference 1 (performance-
driven), and higher ∆λ gives child designs closer to reference
2 (preference-driven). Although performance loss may be un-
avoided using a drawn pattern in topology optimization, the
generated child designs have the potential to meet multiple de-
sign requirements and give unexpected shapes to inspire users to
further improve the structural design.
9

5. Practical applications

Section 5 demonstrates the potential practical applications
of the SP-BESO method in structural designs considering com-
bined subjective scoring and drawing preferences; all results are
obtained using the iBESO software and performed by the authors.

5.1. Bridge design

The first example is a simple 2D bridge, as shown in Fig. 10.

The size of bridge is designed to be 240 mm wide and 80 mm
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Fig. 9. Examining the influence of drawing weights on optimization results using the 2D short cantilever example: (a) the drawn pattern and its loading and boundary
onditions; (b) left and right images are extreme performance-driven (reference 1) and preference-driven designs (reference 2) designs, respectively; (c) five child
esigns obtained using different combinations of λd and λe; (d) evolutionary histories; (e) comparison of P1 and P2 at different ∆λ; (f) comparison of ∆C1 and ∆C2

at different ∆λ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Detail comparisons of the child designs (solutions 1–5) with the two reference designs. ∆C1 , P1 and ∆g1 are the comparison data with reference 1; ∆C2 , P2 and ∆g2
are the comparison data with reference 2.
Design ∆λ C (N mm) ∆C1 ∆C2 P1 P2 g ∆g1 ∆g2
Reference 1 −1 18.683 – – – – 8 – –
Reference 2 1 48.674 – – – – 6 – –

Solution 1 −0.9 18.886 1.011 0.388 0.837 0.645 7 −1 1
Solution 2 −0.4 20.518 1.098 0.422 0.709 0.767 7 −1 1
Solution 3 0 23.749 1.271 0.488 0.652 0.840 6 −2 0
Solution 4 0.4 33.342 1.785 0.685 0.595 0.938 7 −1 1
Solution 5 0.9 38.560 2.064 0.792 0.588 0.967 6 −2 0
−

λ

d
h
o
C
a
a
4
s

tall. Due to symmetry, only half of the structure needs to be
modeled. The bridge deck is defined as the passive (non-design)
solid domain subjected to a vertical uniformly distributed load
with a total magnitude of 240 N [52]. Two points are set as fixed
supports at the bottom of the design domain. BESO parameters
are: ER = 3%, V ∗

= 25%, and rmin = 3 mm. Here, the subjective
election criteria are to achieve as many holes in the structural
opology as possible, meaning child designs with higher g are
referred. It is also desirable to obtain a final design that is
erformance-driven but includes subjective considerations [33].
ue to this, only 15% of performance loss to the reference design
see Fig. 10(a)) is allowed; child designs with ∆C > 1.15 are
not accepted. Note that the reference design is obtained using
the standard soft-kill BESO method described in Section 2.1, with
γ = 0.

In Fig. 10(a), the four parent designs are obtained using λe =
1, λs = 0, and λd = 0, which indicate that the scoring and

10
drawing systems are not yet considered. Among these four de-
signs, solutions A and B have g = 11, greater than g = 7
(solution C) and g = 9 (solution D). Hence, they are short-
listed as preferred candidates to perform subsequent topology
optimization; solutions A–B are scored with S = 4, 4, −4, and
1, respectively.
Fig. 10(b) gives the four child designs obtained using λe = 1,

s = 1, and λd = 0, meaning the subjective scores of their parent
esigns are activated. Interestingly, these four child designs all
ave g = 11 and are considered competitive designs in terms
f structural performance, where all ∆C are within [1.00, 1.04].
omparing these four child designs, it can be seen that their hole
rrangements are different, where the holes of solutions A–C are
rranged as 3-5-3 (bottom-top-bottom), and solution D has 4-3-
. If one wishes to design the bridge with more holes near the
upports, solution D may be preferred. It should be noted that
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Fig. 10. 2D bridge design example using the proposed SP-BESO method. It is here desirable to achieve a final design that is performance-driven but possesses
many holes: (a) parent designs; (b) child designs obtained considering the scores of their parent designs; (c) child designs obtained using the drawing system. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
p
d

solution D can be further modified using the proposed drawing
system to achieve a more satisfying design.

As shown in Fig. 10(c), a manually drawn texture is used to
generate a new generation of child designs, where λe = 1, λs = 0,
nd λd = 0.3. It should be noted that the drawn texture is
imicked from solution D of Fig. 10(b) but with two extra holes
dded to the top part of the bridge; the 13 holes are arranged as
-5-4. It can be seen that the new child designs (see Fig. 10(c))
ave a highly similar shape and structural performance, as all
= 13, P = 0.78, and ∆C = 1.14. Here, solution A is selected

s the final design, as it has the best structural performance (C =

36, 306.03 N mm).

.2. Chair design

The final example is a 2D chair, as shown in Fig. 11. The design
omain of the chair is designed to be 80 mm deep and 80 mm tall.
he seat and backrest parts are set as a continuous passive solid
omain subjected to a uniform load of 1 N/mm [52]. Two points
re fixed at the bottom of the design domain. Moreover, a passive
oid domain is added along the passive solid domain to avoid ma-
erials added in the seat and backrest areas during optimization.
ESO parameters are: ER = 3%, V ∗

= 20%, and rmin = 3 mm.
ere, the task is to create a list of competitive, preference-driven
esign options. The proposed subjective drawing system is used
o assist the design exploration process.

Fig. 11(a) shows three reference designs obtained without
sing subsequent topology optimization. In detail, reference 1 is
btained using the standard soft-kill BESO method, and refer-
nces 2–3 are obtained using different drawn patterns in SP-BESO
ith λe = 0, λs = 0, and λd = 1. References 2 is a curved chair,
here the drawn pattern is inspired by the wiggle side-chair
esigned by the famous architect Frank Gehry [53]. Reference 3
as the drawn pattern not supporting the seating area, which is
urposely designed to be structurally inefficient. Comparing these
hree reference designs, it is clearly seen that reference 1 is a
11
erformance-driven design, and references 2–3 are preference-
riven designs, as C = 29,340.694 N mm, 516,371.303 N mm,

and 840,141.598 for references 1–3, respectively. Note that refer-
ences 2–3 include preferred patterns hoping to occur in the child
designs.

This example uses two different strategies to create child
designs, including (1) purely adjusting the drawing weights (see
Figs. 11(b)–(c)), and (2) combining the drawing system with
the scoring system in two generations of subsequent topology
optimization (see Figs. 11(d)–(e)). In (1), the first generation of
child designs (see Fig. 11(b)) are obtained with λe = 1 and
λd = 0.5, aiming to achieve improved structural performance
with a small distortion of the drawn pattern. Interestingly, it
can be clearly seen that all four child designs have successfully
preserved the drawn pattern with additional members added to
enhance the structural performance. They have g = 7, and their
C are significantly reduced, where ∆C = 0.12, 0.13, 0.12, and
0.13 for solutions A–D, respectively. As shown in Fig. 11(c), the
drawn pattern can be largely distorted if a smaller λd is used
(i.e., 0.22). It can be seen that this generation of child designs
has obtained different interesting shapes; (∆g, P) = (6, 0.76),
(2, 0.72), (3, 0.79), and (0, 0.84) for solutions A–D, respectively.
With this small adjustment of λd, the structural performance can
be further improved; the best child design, solution A, has ∆C =

0.08.
In (2), the first generation of child designs (see Fig. 11(d)) are

created using λe = 1, λs = 0, and λd = 0.75. It can be seen
that extra structural members are added to the drawn pattern,
resulting in significantly enhanced structural performance; ∆C =

0.10, 0.12, 0.11, and 0.08 for solutions A–D, respectively. Although
this parameter setting allows the key geometric features of the
drawn pattern to be preserved in the child designs, the four
generated topologies are slightly different (see their ∆g and P).
Furthermore, the first generation of child designs can be scored
to obtain better structural performance and design diversity, as
shown in Fig. 11(e). Here, S = −5, −4, −2, and 5 for solutions
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–D of Fig. 11(d), respectively, meaning solution D is the only
referred design. Interestingly, it can be seen that the new child
esigns (see Fig. 11(e)) undertake the key geometric features of
olution D of Fig. 11(d) and have achieved improved structural
erformance, where ∆C = 0.05 (new solution A), 0.06 (new
olutions B–C), and 0.07 (new solution D) are all smaller than 0.08
previous solution D).

It is worth pointing out that all child designs (see Figs. 11(b)–
e)) have different shapes to reference 1 and with a dramatic
erformance loss. However, these child designs are considered
ore useful in practical applications, as they fulfill design re-
uirements based on subjective preferences while maintaining a
igh level of structural efficiency. This example clearly demon-
trates that structural performance is not the only consideration
n determining a structural design; creative ideas to improve the
esthetic quality and achieve other design requirements are also
aluable considerations.

. Discussion

The proposed SP-BESO method is demonstrated to effectively
btain topologically different and structurally efficient solutions
onsidering subjective preferences. There are many possible ex-
ensions of the proposed SP-BESO method, attributed to its sim-
licity of using the weighting method to penalize the sensitiv-
ty numbers. First, the proposed subjective scoring and drawing
eights can be readily integrated into other topology optimiza-
ion methods, such as the well-known SIMP and level-set meth-
ds. Specifically, these weights are scalar fields, which can be
ntroduced to alter the sensitivity numbers, thereby affecting the
ormation of final structural topologies. In doing so, some inher-
nt limitations of the underlying BESO method due to the use of
iscrete design variables may be avoided. It can be understood
hat such possible extensions with continuous design variables
acrifice the advantages of the BESO method (e.g., simplicity)
n exchange for the capability of handling mathematically more
omplex structural design problems, such as multi-objective opti-
ization problems. However, further study is needed to develop
uch possible extensions.
Second, it should be noted that the proposed SP-BESO method

s currently limited to compliance minimization problems. Com-
liance (i.e., the inverse measure of stiffness) is a global measure
f the structure, which has been widely used as the objective
unction in the literature to design stiff structures. However,
or certain structural design problems, the overall stiffness of
he structure may be less important, as the designers could be
ore concerned about the local performance, such as local dis-
lacement, stress, and buckling. There is potential to extend the
roposed SP-BESO method to other structural optimization prob-
ems considering the optimization of local performance while
nsuring subjective preferences. This is mathematically possible
ut remains unexplored. Besides, using the proposed drawing
ystem, a slight change in the structural topology may signifi-
antly affect the local structural performance. Therefore, future
esearch is required to consider different design objectives than
ompliance.
Finally, it is highly desirable to extend the proposed SP-BESO

ethod to 3D structural design problems for more realistic prac-
ical applications. However, three technical challenges need to be
olved to achieve this. First, it may be difficult for inexperienced
esigners to observe and evaluate 3D structures, which requires
trong spatial awareness skills to look at many 3D details. Second,
he proposed drawing system is difficult to operate in 3D space,
eaning concisely and accurately interacting with 3D structures

o include specific subjective preferences can be a complex task.
hird, subjective interventions in 3D topology optimization may
12
lead to more significant performance loss than in 2D cases due
to an extremely high degree of design freedom; a slight mod-
ification of 3D structures can easily be far from the optimum
and significantly affect the structural performance. These three
technical challenges will be closely studied in future work, aiming
to develop a practically useful 3D topology optimization software
based on SP-BESO and make it available to the end-users in an
easy, reliable, efficient, and inexpensive form.

7. Conclusion

This study presents a new topology optimization method,
bi-directional evolutionary structural optimization with subjec-
tive preference (SP-BESO), by introducing subjective scoring and
drawing systems into the structural optimization formulation.
The proposed SP-BESO method is developed based on the con-
ventional soft-kill BESO method. It converts the given scores and
drawings as weights to penalize the elemental sensitivity num-
bers, thereby changing the relative ranking of sensitivity num-
bers, resulting in diverse, novel, competitive structural topologies
with subjective preferences. Key findings of this study include: (1)
parent designs can be imparted with low and high scores to ob-
tain child designs with different and similar shapes, respectively,
and (2) specifying a drawn pattern in topology optimization
allows users to directly put their creative ideas into structural
designs.

A series of examples are tested using the iBESO software [42]
that is developed based on the proposed SP-BESO method. It is
found that the combination of parameters used in both scor-
ing and drawing systems controls the influence of subjective
preferences in topology optimization so that the final struc-
tural topologies can be performance-driven or preference-driven.
Moreover, this paper demonstrates that combined scoring and
drawing strategies can be effectively adopted for practical appli-
cations to create desired structural designs. Although structural
topologies obtained considering subjective preferences may have
lower structural performance, they may be more useful in practi-
cal applications, as they consider other design requirements while
maintaining a high level of structural efficiency. Future research
may consider extending the proposed SP-BESO method to 3D
structural design problems, thereby enabling the development
of a wide range of efficient 3D structures considering subjective
preferences.
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Fig. 11. 2D chair example: (a) reference 1 is the soft-kill BESO result, references 2–3 are obtained using different drawn patterns in SP-BESO; (b) child designs based
on reference 2 (λd = 0.5); (c) child designs based on reference 2 (λd = 0.22); (d) child designs based on reference 3 (λd = 0.75); (e) scoring the last generation to
enerate new child designs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
c

c

ppendix. Brush tool

The brush tool supports users in drawing patterns by clicking
r swiping on the texture. For each click, a circular stroke is
reated on the mouse click position. Inspired by the famous
mage design tool, Adobe Photoshop, three stroke parameters are
efined to create a rich drawing effect, including the radius, R,
he hardness, H , and the opacity, O, of the stroke. Note that H
nd O are parameters ranging from 0% to 100%, which determines
13
the sharpness of the stroke edge and the color of the stroke,
respectively (see Fig. A.12(a)).

Fig. A.12(b) shows a point P in a stroke, its color can be
alculated by

′

P =

⎧⎨⎩
1 − O, if D ≤ RH

cP + (1 − O)
D − RH
R(1 − H)

, if D > RH
(A.1)

where cP and c ′

P represent the current color and the updated color
of P on the texture, respectively. D is the distance between P and



Z. Li, T.-U. Lee and Y.M. Xie Computer-Aided Design 160 (2023) 103532

c

w
h
o

R

Fig. A.12. Brush stroke: (a) the effect of using different brush parameters; (b) the explanatory diagram of a stroke. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
the center of the stroke. Note that a new stoke may overlap the
existing stoke, which requires c ′

P to be further modified by

′′

P =

{
1 − O, if c ′

P ≥ 1 − O
c ′

P , if c ′

P < 1 − O
(A.2)

here c ′′

P is the final color of P . In this way, creating strokes at a
igh frequency when swiping the mouse can simulate the effect
f manual drawing [46].
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