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A B S T R A C T   

Additive manufacturing (AM) is poised to bring a revolution due to its unique production paradigm. It offers the 
prospect of mass customization, flexible production, on-demand and decentralized manufacturing. However, a 
number of challenges stem from not only the complexity of manufacturing systems but the demand for 
increasingly complex and high-quality products, in terms of design principles, standardization and quality 
control. These challenges build up barriers to the widespread adoption of AM in the industry and the in-depth 
research of AM in academia. To tackle the challenges, machine learning (ML) technologies rise to play a crit-
ical role as they are able to provide effective ways to quality control, process optimization, modelling of complex 
systems, and energy management. Hence, this paper employs a systematic literature review method as it is a 
defined and methodical way of identifying, assessing, and analysing published literature. Then, a keyword co- 
occurrence and cluster analysis are employed for analysing relevant literature. Several aspects of AM, 
including Design for AM (DfAM), material analytics, in situ monitoring and defect detection, property prediction 
and sustainability, have been clustered and summarized to present state-of-the-art research in the scope of ML for 
AM. Finally, the challenges and opportunities of ML for AM are uncovered and discussed.   

1. Introduction 

Additive manufacturing (AM), also known as rapid prototyping, 3D 
printing, and freeform fabrication, is capable of depositing, joining or 
solidifying materials to construct physical objects from computer-aided 
design (CAD) models [1]. Compared with conventional manufacturing 
methodologies, such as subtractive manufacturing and formative 
manufacturing, AM systems show higher efficiency and flexibility 
within the high-yield production and offer a new perspective for the 
design and processing of both parts and materials. However, the AM 
process is well-known as a highly complex system including various 
technologies that combines material science, mechanics, optics, and 
electronics with computer science. As a result, the quality of produced 
parts is affected by numerous factors, such as material properties, 

processing parameters, process stability, and working conditions. This 
leads to the challenges that are summarized and highlighted as follows.  

• It is generally difficult to model the mathematical relations of the 
underlying AM process because the correlated factors are from 
various heterogeneous perspectives and different process stages.  

• High-fidelity physical-based models are generally too complicated 
considering the in-process uncertainties of the AM process, which 
demand significant computational resources.  

• It is challenging to integrate AM digital models, pertinent to various 
phenomena, at multiple scales into one unified framework [2]. 

The applications of machine learning (ML) technologies have been 
proved effective in a wide range of fields, such as computer science, 
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aviation, healthcare, and the manufacturing industry [3]. With the 
advancement of data acquisition and storage technologies, data-driven 
approaches based on ML technologies have been increasingly adopted 
to discover hidden knowledge and build highly complex relationships in 
digital manufacturing systems [4]. By using reliable datasets, ML models 
are capable of learning hidden patterns and uncovering latent knowl-
edge to support decision-making, in terms of process optimization, 
quality control, and system improvement. As one of the most popular 
manufacturing systems in Industry 4.0, AM has been incorporated with 
digital systems and sensor networks where high-volume data can be 
obtained. Hence, a growing number of researchers have applied ML 
algorithms to tackle challenges in AM, such as design optimization, in 
situ monitoring, process modelling, and energy management. However, 
different researchers and organisations focus on various AM issues by 

using diverse ML technologies. To clarify the significant research chal-
lenges and future opportunities of ML for AM, a comprehensive review is 
necessarily crucial to summarise and analyse current research topics. 
There have been some existing review articles focusing on different 
perspectives of this topic [5], such as the ML for the material develop-
ment of AM [6], and ML applications in laser powder bed fusion pro-
cesses [7]. Additionally, the highlighted papers in these review articles 
were selected and reviewed based on authors’ research and industry 
experience, which is valuable but subjective. In order to discover the 
exhaustive challenges and opportunities in this increasingly growing 
research field, a systematic and data-driven review method is needed. 

This paper aims to review, summarise, analyse and present the latest 
research and applications of ML for AM. Section 2 introduces the state- 
of-the-art of the AM process, including seven main AM system categories 

Table 1 
AM process categories.  

AM process Working principle Material Material 
feedstock 

Material 
distribution 

State of fusion Represented technology 

Binder Jetting[15] Polymer Liquid Print head Chemical reaction 
bonding 

Binder jetting 

Material extrusion[16] Polymer Filament Deposition 
nozzle 

Thermal reaction bonding Fused filament 
fabrication (FFF) 

Directed energy 
deposition[17] 

Metallic Filament/ 
Powder 

Deposition 
nozzle 

Melted state: (electric 
beam/arc /laser) 

Wire + arc additive 
manufacturing (WAAM) 

Material jetting[20] Polymer Liquid Print head Chemical/Thermal 
reaction bonding 

Drop on demand (DOD) 

Powder bed fusion[19] Polymer/ 
Metallic/ 
Ceramic 

Powder Powder bed Melted state/Laser/ Solid- 
state 

Selective laser melting 
(SLM) 

Sheet lamination[21] Polymer/ 
Metallic 

Sheet Sheet stack Solid state: (Ultrasound)/ 
Chemical reaction 
bonding 

Ultrasonic additive 
manufacturing (UAM) 

Vat 
photopolymerization 
[22] 

Polymer Liquid Vat Chemical reaction 
bonding 

Digital light processing 
(DLP)  
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and their characteristics. In Section 3, the methodology of systematic 
review is introduced. Based on the results of the systematic review, this 
paper also applies a data-driven method to analyse notable articles, a 
keyword co-occurrence and clustering method. Several aspects of AM 
issues are clustered based on these notable articles which are reviewed 
and summarised in Section 4. The challenges and opportunities are 
discovered and clarified in Section 5. Section 6 concludes. 

2. AM: the state-of-the-art 

The first commercial AM system was recognizably emerged in 1987 
with stereolithography (SL) by 3D Systems [8]. Since then, AM has 
become one of the most crucial manufacturing solutions across various 
industries, such as automobile [9], aerospace [10], and construction 
[11]. According to the Wohlers Report 2020, the global market size of 
AM industry is over USD 11 billion in 2019 and will increase to over USD 
35 billion by 2024 [12]. There are currently 7 AM process categories, 
published in the Standard Terminology for Additive Manufacturing 
Technologies, which are Binder Jetting, Directed Energy Deposition, 
Material Extrusion, Material Jetting, Powder Bed Fusion, Sheet Lami-
nation and Vat Photopolymerization [13]. Table 1 shows the details of 
these AM process categories. These seven categories focus on the 
single-step process, and for the multi-step AM process, the system 
combines two or more AM processes [14].  

• Binder Jetting. Binder jetting process is one of the earliest AM 
processes developed for polymer powder-based material. An inkjet 
print head is used to spray the liquid binder onto the polymer 
powder. The powder material is solidified crossing the section of 
produced part layer by layer by the chemical reaction bonding at a 
reasonable speed [15].  

• Material Extrusion. Material extrusion (ME) AM process is 
currently the most prevailing AM process in the market. The mate-
rials of extrusion-based AM systems are normally forced out in a 
semisolid state via a nozzle where constant pressure is applied. Then 
the extruded materials solidify and bond to the previous extruded 
materials to form a solid structure [16]. 

• Direct Energy Deposition. Direct energy deposition (DED) pro-
cesses utilize focused energy, such as a laser beam, electron beam, or 
plasma arc, to melt and fuse simultaneously the substrate and the 
material that is being deposited into the substrate’s melt pool to 
construct parts [1]. Powder-based and wire-based materials can be 
used for DED processes [17].  

• Material Jetting. Material jetting (MJ) is another fast AM process, 
which uses ultraviolet (UV) light as the main power to solid-liquid 
photopolymer droplets. The droplets are controlled by the voltage 
signal. Through the print head, the liquid or melted material is jetted 
onto the produced part surface [18].  

• Powder bed fusion. The powder bed fusion (PBF) processes consist 
of thin layers of fine powders, which are spread and closely packed 
on a platform. One or two thermal sources are employed in the 
systems to melt and fuse material powder particles in each layer. 
Subsequent layers of powders are spread across the previous layers 
using a roller and then fused together until the entire product is built. 
Selective laser sintering (SLS), selective laser melting (SLM), and 
powder-based electron beam melting (EBM) are the commonly used 
PBF technologies [19].  

• Sheet lamination. 2 AM technologies are commonly classified into 
the class of sheet lamination (SL) AM process, ultrasonic additive 
manufacturing (UAM) and laminated object manufacturing (LOM). 
The sheets of the material are bonded together as the part based on 
the fusion resource, like ultrasonic [21].  

• Vat Photopolymerization. Vat photopolymerization (VP) processes 
mainly use ultraviolet (UV) to cure or harden materials such as 
photopolymers, liquids, resins for building products. These processes 

are capable of manufacturing large parts with submillimetre details 
and are widely applied in the coating and printing industry [22]. 

The processing characteristics of each AM process is specific and can 
be allocated into different production scenarios. For example, the 
WAAM, as a variation of DED technology normally uses an arc-based 
heat source, such as a plasma or Metal Inert Gas deposition [23], to 
melt and fuse metal materials for constructing parts layer by layer. It has 
recently attracted great attention in the industry, especially the aero-
space industry, as it is capable of producing large metal parts with a high 
deposition rate, low equipment cost, high material utilization [24]. 

3. Research methodology 

To investigate the research and application of ML for AM, a sys-
tematic literature review and text mining analysis are adopted for 
identifying, assessing, and analysing the literature published between 
2000 and 2020. The overall methodology is illustrated in Fig. 1. In the 
first place, a systematic literature review is adopted to search, select, and 
assess relevant publications. The systematic literature review is defined 
as a systematic, explicit and reproducible method for identifying, eval-
uating, and synthesizing the existing body of completed and recorded 
work produced by researchers [25]. The review process typically in-
volves several main steps [26], including specifying research questions, 
identification of research, selecting and assessing the collected publi-
cations. In the article selection and assessment processes, explicit 
exclusion and inclusion criteria are required to assess each potential 
primary study. After the systematic literature review is conducted, the 
keyword co-occurrence and clustering analysis for selected publications 
are applied to make a comprehensive overview of the main research 
topics and directions in the applications of ML for AM. 

3.1. Research questions 

The research questions for conducting the systematic literature re-
view are set up and presented in Table 2 with its motivations. 

3.2. Search strategy 

3.2.1. Search terms identification 
The search strategy designed in this work includes keyword identi-

fication, resources for the searching, searching process, and criteria for 
article selection, to collect available and qualified published articles 
relevant to the topic [26]. The search query using Boolean operators is 
shown in Fig. 2. 

The search terms are modified by reducing synonyms while search-
ing in some databases (e.g., IEEE Xplore) due to the search term 
limitation. 

3.2.2. Resources for searching 
The searching of relevant articles is conducted by inserting keywords 

(search terms) in five databases, including ACM digital library, IEEE 
Xplore digital library, Science Direct, Springer Link, and Scopus. These 
databases are the most representative databases of scientific research 
that is closely related to the topic of this review and contains a massive 
volume of literature, such as journal papers, conference proceedings, 
and books.  

• ACM digital library (https://dl.acm.org)  
• IEEE Xplore digital library (http://ieeexplore.ieee.org)  
• ScienceDirect (http://www.sciencedirect.com)  
• SpringerLink (https://link.springer.com)  
• Scopus (https://www.scopus.com) 

3.2.3. Inclusion and Exclusion Criteria for Article Selection 
Based on the directions of exploration and motivations presented in 
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Table 2, the listed following are the exclusion and inclusion criteria for 
the article selection process. The exclusion criteria are applied in the 
title, abstract, and keyword list of a publication while inclusion criteria 
are applied in full text. 

Exclusion Criteria, sources that met the constraints reported below 
were excluded from this study:  

a) Articles that were focused on other technologies rather than machine 
learning for tackling issues in AM.  

b) Articles that were focused on other manufacturing systems rather 
than AM systems by using ML technologies.  

c) Articles that were not written in English. 

Inclusion Criteria, sources that met the constraints reported below 
were included from our study:  

a) All the articles, written in English, reporting machine learning 
technologies for tackling AM issues.  

b) Articles that introduce new techniques to improve the performance 
of existing machine learning technologies used for AM. 

3.3. Article Selection and Assessment Process 

The framework for the article selection process is illustrated in Fig. 3. 
The searching process starts with searching publications from the pre-
defined databases using the Boolean operator based on the identified 
keywords (10,054 publications were included). Then these publications 
were filtered through an initial selection process based on the proposed 
exclusion criteria where 4212 publications remained. The publications 
were selected by the proposed inclusion criteria and 277 papers were 
included. A manual search process is adopted to search for additional 
sources related to the review topic [27,28], where the exclusion and 
inclusion criteria were re-applied. Twenty-five publications were 
selected by the manual search process. In the quality assessment stage, 
the quality of the selected publications is assessed by the following 
criteria and 228 publications were finally obtained.  

• In the paper, the focused issues in AM should be clearly defined.  
• The motivations for employing the ML algorithm to tackle the issues 

should be clarified. 

Fig. 1. The overview of the research methodology.  

Table 2 
Research questions posed for the systematic literature review.  

Research Question Motivation 

RQ1: What kind of issues in AM can be 
currently tackled by using ML 
technologies? 

To explore state-of-the-art of AM 
challenges that can be tackled by using 
ML technologies. 

RQ2: What ML algorithms have been 
adopted to tackle the challenges? 

To present the ML algorithms adopted by 
previous studies to tackle challenges in 
AM. Answer this question will help 
researchers understand and select 
appropriate ML algorithms for dealing 
with similar issues in AM. 

RQ3: What are the advantages and 
limitations of using ML algorithms to 
solve the issues in AM? 

To study the reasons and limitations for 
adopting a certain ML algorithm to 
tackle a specific research challenge in 
AM. Answer this question will assist 
researchers to make the trade-off 
between ML-based methods and 
conventional methods, as well as 
exploring modified strategies.  

Fig. 2. The search query for searching publications.  
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• The evaluation or validation of the proposed methodology should be 
presented. 

3.4. Keyword co-occurrence and clustering analysis for selected articles 

The analysis of keyword co-occurrence can provide an effective way 
to reflect the research hotspots in the research fields through analysing 
the distribution of keywords [29]. In the keyword co-occurrence anal-
ysis, the keywords can be words or phrases that are extracted from the 
title, abstract, and keyword list in a publication for representing the core 

contents of a study. The two keywords are counted as one co-occurrence 
when they occur together in the publications. The clustering approach, 
introduced by Waltman et al. [30], is employed to group these keywords 
based on the co-occurrence matrix [31]. Considering a bibliometric 
network of n nodes, the main concept of this clustering approach is to 
assign the keywords into n nodes and group these n nodes into k clusters. 
Based on the co-occurrence matrix, the similarity sij, also known as the 
association strength [32], between keyword i and j can be calculated as: 

Fig. 3. The framework of the proposed article selection process.  

Fig. 4. The clustering results based on the keyword co-occurrence for the selected publications.  
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sij =
cij

wiwj
(1)  

where cij denotes the number of co-occurrences of keyword i and j, and 
where wi and wj denote the total number of occurrences of word i and j. 
The clustering method is to minimize V (x1,…, xn): 

V(x1, ., xn) =
∑

i<j
sijd2

ij −
∑

i<j
dij (2)  

dij =

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
√

(3) 

In Eqs. (2) and (3), xi represents a positive integer that indicates a 
cluster to which node i belongs, and dij denotes the distance between 
node i and j. By minimizing the Eq. (2), this clustering method can be 
interpreted as that the higher the association strength of two nodes, the 
stronger the relatedness between the nodes. The results of applying the 
clustering algorithm [30] based on the keyword co-occurrence for the 
selected publications are obtained by using VOSviewer [31], profes-
sional software for bibliometric analysis. 

In Fig. 4, the research hotspots are clustered into 5 main clusters that 
are represented by different colours (i.e., purple, blue, yellow, green, 
and red). According to the clustering algorithm described previously, 
the keywords close to each other indicates strong relatedness. Two 
keywords connected by a link represents the co-occurrence of them in 
the publications. For each cluster, the research domain is defined by the 
understanding of the clustered keywords. The keywords in the green 
cluster such as complex geometry, geometry, layer thickness, and 
parameter are related to the topics of DfAM. However, the keyword (i.e., 
energy consumption) relevant to the research of AM sustainability is also 
displayed in this cluster. This may be due to the increasing trend that 
researchers study AM sustainability from the design perspective. 

The research domain of the cluster in blue is defined as image-based 
defect detection and monitoring, where the keywords are image, defect, 
detection, classification, porosity, pore, etc. Similarly, the cluster in red 
is defined as sensor signal-based monitoring, where the keywords are 
sensor, acoustic emission, process monitoring, defect detection, real- 
time, etc. The implementation of process monitoring is based on the 
success of detecting defects during the manufacturing processes. Hence, 
these two clusters (blue and red) can be merged into one cluster, rep-
resenting the same research domain but with different strategies. The 
keywords displayed in the yellow cluster are physics, property, micro-
structure, simulation, mechanical property, laser power, etc. These 
keywords are closely related which indicates that the studies mainly 
focus on investigating and modelling the relationships between pro-
cessing parameters and their resulting performances. For the cluster in 
purple, the keywords are powder, mental powder, shape, and class 
which can be defined as material analytics. To present the clustered 
keywords with their corresponding research domains more reasonably, 
the keywords in each cluster are polished and re-clustered manually 
based on domain understanding, shown in Table 3. The general termi-
nologies in the clustered keywords (e.g., additive manufacturing, 3D 
printing, technology, model, etc.) are removed from each cluster and not 
displayed in the table. 

Table 4 shows the link and total link strength information of the top 
10 occurrence keywords (the general terminologies are removed). The 
occurrences represent the total number of a keyword that occurs in the 
selected publications and a link is counted when two keywords occur 
together in a publication. For a keyword, the total link strength is the 
sum of its association strengths, indicating the relatedness of the 
keyword with other keywords. In other words, the higher the total link 
strength, the stronger the relatedness. 

According to Table 4, the quality issues (keywords: monitoring, 
defect, property, porosity) of the AM produced products is the biggest 
concerns that attract most researchers’ attention. It is worth noting that 
the parameter is the most commonly considered attribute in AM 

research. In addition, most studies focus on process modelling and defect 
detection domain. Based on the keyword co-occurrence and clustering 
analysis, the articles under different research domains are reviewed and 
discussed in the next section. 

4. ML for AM 

4.1. ML for DfAM 

AM has provided opportunities for innovative designs and advances 
in product performance, in terms of geometric freedom and highly in-
tegrated structures [33]. Due to its unique production paradigm, the AM 
processes may involve different batch sizes, production times, and cost 
drivers compared with conventional processes. It also requires different 
approaches to metrology and quality control. Therefore, DfAM has been 
proposed as a way to provide AM design professionals with a wide range 
of design and analysis tools for complex part structures and AM pro-
cesses. Typically, DfAM includes two main research topics, part design 
and design optimization [34]. For part design, AM creates free forms and 
customized geometries, enabling the creation of complex internal fea-
tures to increase functionality and improve performance of target parts, 
which provides designers with huge design space. For design optimi-
zation, AM part designers need to determine production path strategies, 
part locations, build orientations, and support structures for improving 
the quality of final printed products. Due to the advances of artificial 
intelligence and available data, ML technologies have been increasingly 
applied to DfAM in recent years [35]. 

4.1.1. Part design 
At the conceptual design phase, most AM designers select appro-

priate design features based on their knowledge and experience. How-
ever, there is a lack of systematic and intelligent techniques to assist AM 
professionals to explore AM-enabled design space [36,37]. Hence, Yao, 
et al. [36] introduced a hybrid ML approach for design features 

Table 3 
Clustering results for selected publications.   

Clustered Keywords Research Domain 

Cluster 
1 

Complex geometry, geometry, layer 
thickness, parameter 

DfAM 

Cluster 
2 

Powder, metal powder, shape, class Material analytics 

Cluster 
3 

Image, defect, detection, classification, 
convolutional neural network, porosity, 
pore, fusion 

Image-based defect 
detection and monitoring 

Sensor, process monitoring, acoustic 
emission, real-time, surface roughness, 
predictive model, crack, defect detection 

Sensor signal-based defect 
detection and monitoring 

Cluster 
4 

Physics, property, microstructure, 
simulation, mechanical property, laser 
power 

Process modelling and 
control 

Cluster 
5 

Energy consumption Sustainability  

Table 4 
The links and total link strength information of the top 10 occurrence keywords.  

Keywords Cluster Number Occurrences Links Total Link Strength 

Parameter  1  87  60  630 
Image  3  58  46  619 
Monitoring  3  43  52  434 
Defect  3  41  52  415 
Property  4  41  44  329 
Porosity  3  39  53  547 
Classification  3  34  47  324 
Sensor  3  34  48  393 
Simulation  4  32  32  178 
Detection  3  27  34  187  
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recommendation at the conceptual design phase in AM. In the paper, the 
authors classified the functionality-centric design knowledge inherent in 
AM design features and target components into ‘loadings’, ‘objectives’ 
and ‘properties’, which were coded with numerical digits and saved in 
database files. Then hierarchical clustering was carried out on the coded 
design knowledge to reveal the relationships among design features and 
target components, resulting in a dendrogram. Previous industrial 
application examples with their design features implementation were 
simplified as a binary classification problem (implemented design fea-
tures denote as ‘+1′, otherwise ‘− 1′) and trained by a support vector 
machine (SVM) classifier. The trained SVM model was used to refine the 
hierarchical clustering results by an SVM-based progressive dendrogram 
cutting process, which aims at identifying the final sub-cluster con-
taining the recommended AM design features. Through the case study 
results, the proposed hybrid ML approach was demonstrated useful in 
identifying appropriate AM design features for inexperienced designers. 
Neural network is another popular ML technology used to improve the 
part design in AM processes. 

Andrew and Markus [38] introduced a method that uses variational 
autoencoders (VAE) and ML techniques for the compliance optimization 
of cantilever design. In this work, the cantilever structures were encoded 
into a 2D latent space by VAE and the long short-term memory (LSTM) 
neural network was adopted to learn the latent space trajectories that 
correspond to the topology optimization process. The results showed 
that the VAE-LSTM model was capable of generating complex structures 
and evolving them. A framework of using neural networks for the 
analysis and design of micro-lattices architectures in AM was introduced 
by Nathaniel [39]. In this study, to obtain training datasets, the authors 
used a compact genetic algorithm (cGA) to generate micro-lattice 
structures of which the corresponding mechanical properties were ob-
tained by finite-element analysis (FEA). The graph convolutional net-
works (GCN) with an asymmetric auto-encoder was adopted and trained 
by the graph representation of the generated micro-lattices. Specifically, 
through the training process, the encoder was able to learn the physical 
characteristics of micro-lattices and infer their mechanical properties. 
Then the decoder was used for generating the micro-lattices structures 
with specified mechanical properties. According to the empirical results, 
the encoder had an accuracy of 93.72% in predicting the mechanical 
properties of the given micro-lattices structures. The decoder was 
demonstrated to be capable of generating the micro-lattices from the 
specified mechanical properties. Another example of applying neural 
networks is that Jonnel et al., [40] used artificial neural networks (ANN) 

for geometry corrections of the designed lattice infill patterns in FDM 
systems. In this work, the 3D coordinates of the designed infill structures 
were used as the input of the ANN model, while the symmetrical devi-
ation surface coordinates were the output. After training, the model was 
implemented to the STL file for geometric corrections., Considering the 
manufacturability of AM process, Tang et al., [41] proposed a strategy 
for lattice structure design and optimization to ensure products quality. 
To represent the design space of lattice structures, the concept “physical 
entity” was introduced to include the design information (geometrical 
information and material information) for each design stage. Then, the 
lattice unit cell model was defined and proposed to represent the to-
pology of the elements inside lattice structures. The authors used the 
concept of “manufacturable element” to include the geometry, material, 
and process information of a lattice strut. ANN was used to bridge the 
relationship between manufacturability and geometrical data. 

Integrating the physical and domain knowledge in ML algorithm has 
been proven which can improve the ML performance significantly [42]. 
Ko et al., [43] introduced a methodology for bridging the gap between 
multi-discipline designs and AM capabilities based on knowledge graph 
ML. In this work, the framework of the proposed method, shown in  
Fig. 5, consists of 4 main modules, including (1) AM prior knowledge 
structuration, (2) transformation of knowledge to DfAM ontology, (3) 
extraction of knowledge from AM data using ML, and (4) design rules 
transformation. The design fundamentals, principles, and rules were 
obtained by formalizing unstructured AM prior knowledge into struc-
tured knowledge and extracting knowledge from AM data based on ML 
algorithms. Then, these designs knowledge was encoded into ontologies 
with knowledge graphs. Finally, the design rules were constructed by 
reasoning with prior knowledge and newly discovered knowledge. 

4.1.2. Design optimization 
To obtain the required production quality, design optimization is a 

critical step before the AM process begins [44]. Many crucial elements 
and parameters are defined in this step. For instance, the determination 
of build orientation and direction significantly affects process and 
fabrication attributes [45]. In Ref [44], the authors applied K-means 
clustering with Davies–Bouldin Criterion cluster measuring on surface 
models to generate alternative build orientations in a computationally 
efficient way. The K-means clustering method was adopted to decom-
pose stereolithography (STL) models into K facet clusters where the 
number of clusters was determined by Davies–Bouldin Criterion. The 
central normal vectors of each facet normal cluster were used as 

Fig. 5. The proposed data-knowledge-design rule framework. This framework consists of 4 main modules, including AM prior knowledge structuration, trans-
formation of knowledge to DfAM ontology, extraction of knowledge from AM data using ML, design rules transformation, Ref [43]. 
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alternative build orientations where the optimal orientation was ulti-
mately obtained by a statistical evaluation process. To prevent unsightly 
surface artefacts or damages of fine surface details when removing 
support structures, a perceptual model of preference in the printing di-
rection of AM was proposed by Zhang, et al. [46]. The authors developed 
a perceptual model to determine the preference of printing orientation 
in terms of area of support, visual saliency, preferred viewpoint, and 
smoothness preservation. 

Support structures are also important and required in some AM 
processes if the designed models contain separated segments or over-
hang parts in a layer where does not exist solid material underneath. To 
find the minimum amount of support structures for successfully fabri-
cating a model, Huang et al. [47] developed a support detection 
approach based on a surfel convolutional neural network (surface 
element - CNN) in AM. In this method, the surfel is the sampling point on 
the surface with normal information, defined through layered 
depth-normal image (LDNI) [48] sampling method. The LDNI stores 
array of rays that are shot to intersect with the CAD model, where the 
depth and normal values of intersection points on the rays are included. 
Based on LDNI sampling, local surfel images with ground-truth support 
regions were obtained and fed into the CNN model for classification. The 
experimental results indicated that the proposed methodology out-
performed the normal-based method and image-based method in terms 
of support detection. It is highlighted in the paper that, due to the 
topology-preserving and salient feature extracting capability, the surfel 
CNN model is more robust for support detection on extreme features 
than the traditional image-based method. 

AM has been increasingly employed for printing composite material 
parts. However, the fiber size, volume fraction and direction are 
important in determining the properties of the printed part. Kaushik 
et al. [49] introduced a method for reversing additive manufactured 
composite parts by toolpath reconstruction of the printing process using 
the LSTM network. In this method, the CT-scan images of fibre orien-
tation at each layer were sequentially fed into the LSTM model for 
predicting the orientation angle of fibres. Then the G-code can be 
generated based on the fibre orientation and measured layer thickness. 
The method developed in this study showed the effectiveness of the ML 
model in identifying and tracking any given orientation of the fibres. It 
also demonstrated the possibility of reconstructing the G-code and 
reverse engineering any composite part for improving the properties of 
the printed parts. 

4.1.3. Shape deviation 
Due to the functionality and manufacturing requirements, shape 

accuracy measurement is essential and critical in DfAM, aiming to 
reduce the geometrical deviations of the final products [50]. In general, 
during an AM process, the geometries of final products are affected by 
various factors, such as material properties, thermal gradients, and build 
orientations, which lead to the low quality of printed parts. Hence, the 
geometrical inaccuracies of the produced products pose significant 
challenges to predictive modelling of shape deviations and developing 
error compensation strategies for AM. Several researchers have explored 
that ML models are used for tackling geometrical accuracy-relevant is-
sues, such as shape deviation prediction [50–57], classifying and 
quantifying geometrical accuracy [58,59], and deviation compensation 
[60]. In the studies [53–56], ANN was adopted to model the relationship 
between process parameters and geometry-related errors in different 
AM processes. 

Zhu et al. [50] proposed an ML-based method to model in-plane 
deviation and random local variant in AM. A mathematical relation-
ship between the designed shape and the final shape was constructed 
from a transformation perspective, aiming at capturing the global trend 
of shape deviations. Due to unexplained variations with complex pat-
terns, a multi-task Gaussian process (GP) learning algorithm was 
adopted to learn from the unexplained deviation data and model the 
local deviation. The experimental results demonstrated the effectiveness 

of the proposed methodology with prediction accuracies over 90%. 
An automated geometric shape deviation modelling approach based 

on Bayesian neural networks (BNN) and transfer learning techniques for 
different shapes and AM processes was proposed by Ferreira et al. [52]. 
In this approach, the geometry shapes are defined under the polar co-
ordinate representation, where each point on a product is identified by 
an angle θ. The in-plane and out-of-plane deviations of different shapes 
and processes are represented by statistical models. A baseline BNN for 
modelling shape deviation was firstly built by training on a small 
number of product samples under a specific AM process. Then transfer 
learning techniques were employed to transfer the baseline model to 
new shapes and processes. A case study was carried out under different 
SLA processes, where the proposed model yielded good performance in 
an automated manner. This study provides insights of automatically 
leveraging data and models from different processes, addressing the 
challenges of modelling for various shapes produced by distinct AM 
processes. 

Tootooni et al., [59] introduced a method to classify the dimensional 
variation of AM produced products based on spectral graph theory and 
ML techniques. It is interesting that this work extracted the spectral 
graph Laplacian eigenvalues from the 3D point cloud data of the man-
ufactured parts and used them as features in ML models for classifica-
tion. This work provides a solution to reduce the measurement burden 
for post-process quality assurance. For shape deviation compensation, 
Shen et al. [60] introduced a framework for AM using a convolutional 
neural network (CNN). In this framework, the 3D model was encoded as 
a binary probabilistic distribution in 3D space and fed into the CNN 
model for capturing deformation features. An inverse function network 
was trained for obtaining the compensated model. 

4.2. ML on material analytics for AM 

A variety of materials, such as metals, ceramics, plastics, and their 
combinations are used for AM applications and the development of new 
materials is in progress [61]. Using different materials for producing 
products can result in different performances and properties. A signifi-
cant amount of data can be generated from material property and con-
ditions. It is essential to analyse and understand the relationships among 
material chemistry, material characteristics and final part performances 
based on the material data. The powder property is one of the key ele-
ments that affect the build process and final part quality in 
powder-based AM [62]. During the printing process, the interaction and 
consolidation between powder particles are complicated where 
high-quality powders are required to ensure the process reliability and 
final part property. Thus, qualifying powder materials is critical, and 
some researchers have made efforts in measuring and analysing powder 
materials by using ML technologies. 

Powder characterization is important for evaluating the quality of 
powder materials in AM, where computer vision and ML technologies 
have been applied for autonomous characterization [63,64]. DeCost, 
et al. [64] introduced a method that used key-point based computer 
vision for quantitatively characterizing powder materials. In this study, 
eight powders that only differed in their particle size distribution were 
considered. The authors employed a computer graphics suite, called 
Blender, to generate synthetic powder micrographs. A bag of visual 
words (BOVW) image representation was adopted for characterizing the 
synthetic powder micrographs, where the images were represented by 
key-point features and organized into a visual dictionary. Then the 
difference of Gaussians (DoG) and Harris-LaPlace (HL) interest point 
detectors were used to select critical key-point features. The regions 
surrounding the key-point features were characterized by applying scale 
invariant feature transform (SIFT). Finally, the support vector machine 
(SVM) algorithm was used for the particle size classification of which the 
accuracy was 0.894. Compared with conventional characterizing 
methods, this study provided an alternative method to characterize 
feedstock powders based on ML. 
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Vrábel, et al. [65] also adopted SVM to classify Al alloy powder 
materials for the SLM process. In this work, the authors used the 
laser-induced breakdown spectroscopy (LIBS) technique to obtain 
spectra from the powder materials. Then the spectra were processed 
through unit vector normalization and principal component analysis 
(PCA). The PCA model was applied to reduce dimensionality and 
remove noise data, where four principal components (PCs) were ob-
tained. These PCs were fed into the SVM model for material classifica-
tion. Powder flows significantly affect the deposition behaviour of the 
layers on the substrate. Richard et al., [66] used the decision trees (DT) 
algorithm to classify powder flowability based on particle-level physical 
property measurements in cold spray AM, achieving an accuracy of 
98.04% in classification. 

Currently, ML technologies are generally used for classification tasks 
for powder material analysis. There still need further exploration and 
research to achieve the potential of leveraging ML for material analytics 
in AM, such as analysing material composition for alloy development 
and modelling the relationship among material chemistry, material 
properties and final part performances. 

4.3. Defect detection and in situ monitoring for AM based on ML 

Lack of quality assurance in AM produced parts is one of the key 
technological barriers that prevent manufacturers from adopting AM 
technologies, especially for high-value applications where component 
failure cannot be tolerated [67]. There still lacks effective and mature 
monitoring technologies in AM systems for detecting the onset of defects 
in real-time and keeping the stability of the process in control [68]. Due 
to different material supplies and working principles of different AM 
processes, the defects or quality issues can be various. For instance, the 
issues of porosity, lack-of-fusion, balling, crack are critical in the 
powder-based processes [67,69,70] and the geometry deviation [71], 
shape shrinkage [72], and surface roughness [73–75] in FDM processes 
have been focused by many relevant research groups. Only when these 
defect issues are detected synchronously and accurately during the AM 
process, the real-time control strategies can be realized. With the 
advancement of data acquisition, communication, and storage technol-
ogies, ML technologies have been increasingly used for in situ moni-
toring in AM systems [76,77]. The ML models are trained by different 
types of data which are classified into three categories, including 
one-dimensional 1D data (e.g., spectra), 2D data (e.g., images), and 3D 
data (e.g., tomography) [78]. Each strategy developed in existing studies 
has pros and cons. In general, two main types of strategies, image-based 
and sensor signal-based, are adopted for defect detection and in situ 
monitoring in AM. Strategies that leverage 3D point cloud data with ML 
models have also been explored in recent studies [79,80]. 

4.3.1. Image-based approach 
Visual camera images can present the surface characteristics of every 

build layer to reflect the quality of the AM produced parts. Zhang et al. 
[81] developed a vision system with a high-speed camera to capture the 
sequential images for PBF process monitoring. Their research focused on 
detecting the information of melt pool, plume, and spatter. Features of 
these objects were extracted based on the understanding of the physical 
mechanisms. These features were then selected by PCA before being 
used as inputs for SVM classification. The performance of the SVM 
model showed an accuracy of 90.1% for quality level classification. This 
work also demonstrated that CNN is promising to achieve real-time 
monitoring as it has an accuracy of 92.7% without the feature selec-
tion process. CNN is capable of learning fairly representative features 
from the raw data automatically and is commonly used for image 
analysis. CNN-based defect detection and monitoring methods are 
developed in Ref [82–95]. As an extension of the CNN model, deep CNN 
(DCNN) with a hierarchical structure that allows multilevel image fea-
tures to be extracted to achieve accurate pattern discovery was 
employed by Caggiano et al. [82] for online defect-recognition in the 

SLM process. Additionally, a modification of the CNN model developed 
by Scime and Beuth [83], called multi-scale CNN (MsCNN), improves 
the flexibility and overall classification accuracy of the conventional 
CNN model in autonomous anomaly detection. The proposed MsCNN 
methodology has been demonstrated to be robust when analysing builds 
that were manufactured by different materials, including AlSi10Mg, 
bronze, Inconel 625, Inconel 718, stainless steel 316 L, stainless steel 
17–4 PH, and Ti-6Al-4 V, in the L-PBF systems. Lee et al. [96] adopted 
3D-CNN and CNN-LSTM for the classification of different statuses, 
including damaged, cured, and uncured, in the two-photon lithography 
(TPL) process. 

Some researchers have also explored image-based monitoring ap-
proaches with their corresponding control strategies [97,98]. Wang 
et al. [98] presented a closed-loop control framework by seamlessly 
integrating vision-based techniques and neural networks (NN) to detect 
droplet phenomena and accordingly implement control strategies in 
liquid metal jet printing (LMJP) processes. In this work, a 
charge-coupled device (CCD) camera was employed in the monitoring 
system to capture jetting images. The key features were extracted from 
jet images by a flood-fill algorithm [99] and summarized to the prop-
erties of the droplet patterns (i.e., satellite, ligament, volume, and speed 
of droplets). The complex relationship between droplet features and 
voltage level was modelled by NN of which the architecture is shown in  
Fig. 6(a). This NN model enabled the conversion of real-time droplet 
features to voltage values and a proportional integral derivative (PID) 
process was used to adjust the drive voltage by comparing the output 
values of NN with target values for process control. Results from 
empirical tests indicated that more stable jetting processes can be real-
ized in real-time through the proposed methodology. Fig. 6(b). shows 
the control processes for offset jetting stabilization. 

Besides, Jin et al. [100] developed a real-time monitoring and 
autonomous correction system for FDM processes. A CNN classification 
model was used for detecting defects and a feedback loop was used to 
modify processing parameters. In their paper, three categories, 
including ‘Good-quality’, ‘Under-extrusion’, and ‘Over-extrusion’, were 
adopted to represent the quality of the printed parts and 120,000 images 
were used for training and testing. The adjusting commands were sent to 
the control system to modify the flow rate of the AM system when five 
successive over or under-extrusion judgments were made by the CNN 
model. Experimental results indicated that the proposed model achieved 
above 98% accuracy in predicting the part quality and the response rate 
of the system from defect-recognition to correction reaches or even 
surpasses the human reaction (9 s). However, the key parameters for the 
adjustment are selected based on the authors’ understanding of the 
processes in both Ref [98,100]. For instance, in Ref [100], the adjust-
ment of flow rate was focused in this paper, while other parameters such 
as printing speed and nozzle height were not considered. 

Apart from CNN-based models, SVM [101,102], Bayesian classifi-
cation [103], deep belief networks (DBN) [104], deep neural networks 
(DNN) [105], k-means singular value decomposition (K-SVD) [106] 
have also been employed to analyse image data for quality inspection in 
AM systems. However, in Ref [101–103], key features of visual images 
need to be extracted before being fed into the ML models. In Ref [104], 
Ye et al. proposed an in situ monitoring method based on analysing 
plume and spatter signatures during the SLM process. The plume and 
spatter images were obtained by a high-speed near-infrared (NIR) 
camera and normalized by zero mean and unit variance to capture the 
pair-wise interactions between pixel values. These processed data were 
then fed into the DBN structure with four-level hidden restricted 
Boltzmann machines (RBMs) for classifying 5 distinct melted states (i.e., 
over-melted, middle-over melted, normal melted, middle-under melted, 
and under melted). The experimental results showed that the proposed 
method had a classification accuracy of 83.4%. The DBN structure 
developed in this study were demonstrated effective in learning features 
from original data with less prior knowledge. 

Different ML models for image-based defect detection and 
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monitoring strategies have been developed in existing studies. However, 
it’s worth noting that CNN-based models are prevailing in image-based 
methods and normally yield superior results than conventional ML 
models. 

4.3.2. Sensor signal-based approach 
Sensor signal-based approaches for system monitoring are widely 

applied in the manufacturing industry. In existing studies, different 
signals, including AE, optical emission, infrared signal, and multi-sensor 
signals are used for defect detection and monitoring in AM systems. 

4.3.2.1. Acoustic Emission. Besides developing monitoring strategies 
based on image analysis, AE sensors have been applied in conventional 
manufacturing processes and are increasingly explored in AM. A quality 
monitoring approach based on AE for powder bed fusion (PBF) AM 
processes was proposed by S.A. Shevchik, et al. [107]. In this paper, the 
AM machine was equipped with a fiber Bragg grating (FBG) sensor to 
detect AE signals, shown in Fig. 7. The acoustic features, extracted from 
signals during the manufacturing process, were the relative energies of 
the narrow frequency bands of the wavelet packet transform. The 
spectrograms localized in the time-frequency domain were built from 

the acoustic features and used as input for spectral convolutional neural 
networks (SCNN) for classification. Based on the porosity measurement 
results of the printed workpieces, the qualities were categorized into 
poor, medium, and high. According to the empirical results, the classi-
fication accuracies of SCNN varied from 83% to 89%, indicating the 
feasibility of quality monitoring based on the proposed method. Similar 
methods using AE signals for quality monitoring on PBF processes can be 
found in Ref [108,109]. In Ref [109], where the reinforcement learning 
(LR) algorithm was adopted for training and classification. However, the 
corresponding control strategies have not been discussed in these studies 
[107–109]. 

In addition, some other researchers have also developed monitoring 
strategies by analysing acoustic emission data based on various ML 
models, such as SVM [110], hidden semi-Markov model (HSMM) [111], 
Clustering by fast search and find of density peaks (CFSFDP) [112], and 
LSTM [113] for FDM processes, DBN [114] for SLM processes and 
k-means [115] for laser metal deposition (LMD) processes. However, the 
studies [110–113] focus more on identifying and detecting the abnormal 
machine conditions, such as material run-out, filament breakage, 
extruder blockage or incorrect nozzle height, rather than the quality of 
manufactured products. For example, the methodology developed in Ref 

Fig. 6. (a) The developed NN for droplet defects detection based on key droplet patterns (i.e., satellite, ligament, volume, and speed) analysis from jet images; (b) 
The real-time control processes for offset jetting stabilization, Ref [98]. 
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[114] is capable of identifying five melted states, including balling, 
slight balling, overheating, slight overheating, and normal phenomena 
for the SLM process. Compared with conventional ML models such as 
multilayer perceptron (MLP) and SVM, the DBN model is highlighted in 
this study to be capable of achieving a high defect detection rate without 
extracting features from raw signal data. Liu et al. [112] also developed 
a machine state monitoring platform based on AE sensors for FDM 
machine states identification using unsupervised learning. The moni-
toring platform (a) and procedure for machine condition fault diagnosis 
(b) are presented in Fig. 8 respectively. 

4.3.2.2. Optical emission. Optical emission spectroscopy (OES) has long 

been used to better understand physical mechanisms and is also 
considered promising for real-time monitoring in AM systems 
[116–119]. Mohammad et al. [120] proposed an in-process porosity 
monitoring approach using optical emission signatures captured by the 
multispectral sensor during the LPBF process. In this study, the 
line-to-continuum ratio, a measurement of the emission spectrum to 
determine the defects, of chromium emission around 520 nm was 
monitored during L-PBF of nickel alloy 718 powder feedstock. Based on 
emission spectroscopy, Ren et al., [121] introduced a quality monitoring 
method for the DED process by applying LSTM-autoencoder and 
K-means clustering models. In their work, the LSTM-Autoencoder was 
adopted for extracting features from the spectra collected during the 

Fig. 7. The FBG system for collecting AE signals during the SLM process. The spectrograms localized in the time-frequency domain were built from the acoustic 
features and used as input for spectral convolutional neural networks (SCNN) for classification, Ref [107]. 

Fig. 8. (a) The AE sensor-based monitoring platform for the FDM machine; (b) the procedure of fault diagnosis for FDM machine states using unsupervised learning, 
Ref [112]. 
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production, and the K-means clustering algorithm was used for the 
deposition quality classification. 

The X-ray computed tomography (CT) techniques were employed to 
quantify the pore severity in each layer of a test part. The pore severity 
was classified into four levels, Disc A (160 J/mm3), Disc B (80 J/mm3), 
Disc C (53 J/mm3), Disc D (107 J/mm3). The graph-theoretic approach 
was adopted to extract features, called graph Fourier transform co-
efficients, from the line-to-continuum signatures. These features were 
used as input in various ML models, such as k-nearest neighbours (k- 
NN), NN and SVM, for predicting the porosity level in each layer with 
the CT data taken as ground truth. The results demonstrated that the 
proposed methodology had an accuracy of 90% (F-score) of classifica-
tion in a computation time of less than 0.5 s. 

4.3.2.3. Infrared signal. Outputs from the visual and simulation-based 
porosity detection methods are possibly far from actual yields in some 
cases since they are often incapable of taking into account the uncer-
tainty that results from material or process parameters [122]. Charac-
teristics of a melt pool have been demonstrated to have a strong link 
with the formation of defects through existing studies[123–125]. 
Therefore, some researchers have explored methods for detecting and 
predicting porosity by capturing in situ melt pool morphologies using 
infrared sensors [122,126]. The information of the melt pool can be 
obtained by using various instruments such as infrared sensors, py-
rometers or high-speed cameras. Khanzadeh et al. [127] adopted 
self-organizing maps (SOMs) to analyse 2D melt pool images for 
detecting anomalies in additively manufactured thin walls in the DED 
process. As an extension of the work in Ref [127], a real-time porosity 
prediction method based on morphological characteristics of melt pool 
boundaries was proposed by Khanzadeh et al. [122]. In this paper, the 
time-varying melt pool signals were captured by a dual-wavelength 
pyrometer and categorized as either pores or normal melt pools by 

X-ray tomography. In the proposed method, shown in Fig. 9, features 
from melt pool boundaries were obtained through functional principal 
component analysis (FPCA) and used as input in different supervised ML 
models, including k-NN, SVM, decision tree (DT), and linear discrimi-
nant analysis (DA), for predicting porosity. It was reported from the 
experimental results that the k-NN model obtained the best performance 
for correctly predicting an abnormal melt pool with an accuracy of 
98.44%, while the DT model achieved the best result for false-negative 
value of only 0.033%. 

4.3.2.4. Multisensor signal. Recently, researchers have begun to fuse 
data acquired from multiple in-process sensors for analysing and 
developing defect detection strategies as it is unusual that the data 
collected from a single source can cover all information of different 
phenomena. Kim et al. [128] proposed a data-driven method for 
monitoring and fault diagnosis of the FDM process states using two types 
of sensors, an accelerometer and an AE sensor. The root mean square 
(RMS) values were extracted as critical features from time-domain sig-
nals under healthy and faulty process states. The faulty FDM process 
state was realized by considering the loosened bolt which would be 
resulted in shifting layers in the printed specimen due to a feed motion of 
the extruder head. The extracted features were fed into the SVM model 
which had an accuracy of 87.5% for classification according to the 
experiment results. 

A heterogeneous sensor-based in situ monitoring approach was 
developed by Montazeri et al. [129] to detect the occurrence of 
lack-of-fusion defects in titanium alloy (Ti-6Al-4 V) parts manufactured 
in the DED process. In this study, the data was collected from an optical 
emissions spectrometer and a CCD camera with a near-infrared (NIR) 
filter, aiming at capturing the dynamic phenomena around the melt pool 
region. The authors fused the data into a weighted network graph 
developed in Ref [130] and employed the graph Kronecker product 

Fig. 9. Illustration of using ML techniques for porosity prediction based on melt pool boundary features that are extracted from thermal images by using FPCA, 
Ref [122]. 
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approach to building a dictionary of graph-theoretic features related to 
the severity level of lack-of-fusion defects. These features were used as 
inputs to the SVM model for classification which achieved F-scores close 
to 85% and 70% for a two-level and three-level classification scenario 
respectively. Compared with traditional statistical signal processing 
approaches, the merits of the graph Kronecker product method was 
demonstrated in the paper. Similarly, strategies of using multi-sensor 
data for quality monitoring in AM systems are developed in 
[131–133]. It is worth noting that, in Ref [131], Bastani et al. proposed a 
novel supervised classification approach, called online sparse 
estimation-based classification (OSEC), which aimed to improve the 
classification accuracy and reduce the computational burden for 
real-time monitoring. In this study, the OSEC method was demonstrated 
to be capable of processing raw sensor data directly with F-score per-
formances between 89% and 95% and being successfully applied to 
multiple sensor monitoring scenarios with a 685 Hz sampling rate. 

Photodiode data is considered closely correlated to the properties of 
the melt pool by Okaro [134]. In this paper, the authors used a 
semi-supervised ML model, Gaussian mixture model (GMM), trained by 
the key features extracted from photodiode data to classify ‘acceptable’ 
and ‘faulty’ AM builds regarding the tensile strength in the L-PBF pro-
cess. randomized singular value decomposition (SVD) was employed as 
a feature extraction method to handle large datasets (approximately 
400 G per build) collected from photodiode sensors. The experiment 
results indicated that the GMM model achieved a 77% success rate in 
identifying faulty specimens. Additionally, the proposed 
semi-supervised approach was demonstrated to be able to use data from 
both builds where the resulting components were certified and build 
where the quality of the resulting components is unknown, which is 
cost-efficient especially in cases where part certification is costly and 
time-consuming. Monitoring methods for AM systems based on vibra-
tion data and ML models were also developed by several researchers 
[135,136]. 

Various monitoring and defect detection methodologies have been 
developed, such as using pyrometer, AE, optical emission, infrared 
camera, and high-speed visual camera, to detect macroscale or meso-
scale defects based on ML models. Typically, the 1D (sensing signal- 
based) data can be processed faster but is normally less informative 
while the 2D (image-based) or 3D data is often incapable of taking into 
account the process and material uncertainties. 

4.4. ML for process modelling and control in AM 

The properties and performances of additively manufactured parts 
have long been major concerns of the AM industry as a high degree of 
quality, performance, reliability, and repeatability is required in aero-
space, automobile, defence, etc. [137]. This urges the development of 
robust predicting tools to feedback specific properties and performances 
under different AM conditions. ML technologies have been increasingly 
adopted for bridging the process conditions to final product perfor-
mances due to their ability of learning and modelling highly complex 
relationships. In general, the in-process performances, such as the melt 
pool geometry or line morphology, are significantly related to the 
quality of the final products. Therefore, some researchers focus on 
modelling in-process performance by adopting various combinations of 
process parameters for understanding the physical phenomena and 
identifying optimal parameter settings. However, with the development 
of in-process sensing systems and IoT technologies, researchers tend to 
model the process-structure (PS) [138–143], process-structure-property 
(PSP) [144–147], and process-property-performance (PPP) [2] re-
lationships directly by exploring the data and information acquired from 
the printing processes. This information includes processing parameters 
and processing resultant data during the printing process. By building 
these models, further studies such as material design, process optimi-
zation, and quality improvement, can be explored. For instance, Gan 
et al. [144] introduced a data-driven method for modelling the PSP 

relationship in the DED process, illustrated in Fig. 10, where 
multi-physics modelling, experimental measurements, and data mining 
were integrated. In this method, simulations were carried out based on a 
computational thermal-fluid dynamics (CFD) model to obtain structure 
and property results (e.g., melt pool geometry, cooling rate, dilution, 
microhardness, etc.). These results were then validated by actual ex-
periments and fed into the SOM (self-organizing map) model with pro-
cess parameters (i.e., laser power, mass flow rate, and energy density) 
for investigating the PSP relationships. It was stated in the paper that 
helping researchers visually identify underlying relations among the 
features is the main advantage of using the SOM technique. 

The following paragraph reviews and concludes the main areas that 
researchers apply ML technologies for process modelling and control in 
AM, including the prediction for mechanical property, shape deviation, 
and in-process signature. 

4.4.1. Mechanical property 
Masahiro et al. [148] introduced a prediction model for tensile 

properties based on analysing the microstructural features of the fabri-
cated parts with post-heat treatments. In this study, the specimens were 
fabricated by the SLM process using Ti-6Al-4 V alloy powder. The mi-
crostructures on the cross-section of the specimens were observed using 
scanning electron microscopy (SEM), while the parallel-length part of 
the specimens was observed by using a micro-focus X-ray CT. The 
averaged maximum and minimum Feret diameters and aspect ratios of 
each α and prior-β grains were extracted by using ML-based image 
analysis tools. In addition, the defect features (e.g., the volume fraction 
of pore) were also taken into consideration. Finally, these features were 
used for the prediction of tensile properties by multiple linear regression 
analysis with leave-one-out cross-validation. According to the experi-
mental results, the models showed good performances in predicting the 
yield strength and the ultimate tensile strength by using the selected 
microstructural features. 

Process parameters are considered significant to determine the 
properties of the printed parts. Therefore, finding optimal combinations 
of process parameters for producing products with desired mechanical 
properties is crucial. ANN is frequently adopted by researchers for 
modelling the complex relationships between process parameters and 
part properties such as the strain recovery rates and transformation 
temperatures [149] and compressive strength [150]. Besides ANN, 
Nathan et al. [151] introduced a method that bridged the links between 
process parameters and part properties by using a Bayesian network 
(BN). In this study, laser power, scan speed, hatch spacing, and layer 
thickness were selected as the parent nodes with different parameter 
settings to govern the casual relationships with child nodes. The yield 
strength, ultimate tensile strength, surface roughness, hardness, and 
density were used as child nodes. The authors used the data collected 
from the publications where the parts were manufactured by SLM pro-
cesses using 316 L to train the BN. By using this BN model, the users can 
be provided with the probability distribution predictions of the 
remaining nodes when they enter a known value for one or more nodes. 
For a specific machine, the developed BN model can be continually 
re-trained to improve the accuracy. 

Compared with previous studies that investigated the relationships 
between static factors and part properties, Zhang et al. [152] presented a 
method taking into account the in-process layer-wise information. The 
authors proposed a predictive model based on deep learning to improve 
the quality control regarding the tensile strength of printed parts in the 
FDM process. In this model, a merged structure that combines a 
fully-connected neural network with a long short-term memory (LSTM) 
network was constructed for tensile strength predictions. The LSTM 
network was employed to process sensing signals, temperature, and 
vibration, which aimed at capturing the process variations and 
sequential inter-layer interactions of the FDM process. Other relevant 
factors, such as printing speed, layer height, extruder temperature, and 
material property, were combined with the output of the LSTM network 
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Fig. 10. The structure and property results (e.g., melt pool geometry, cooling rate, dilution, microhardness, etc.) of DED processed parts are obtained from simu-
lations and validated by actual experiments. These results are fed into the SOM (self-organizing map) model with process parameters (i.e., laser power, mass flow 
rate, and energy density) for PSP (process-structure-property) relationship modelling, Ref [144]. 

Fig. 11. The neural network schematic of tensile strength prediction including two full connection layers and relevance propagation methods, Ref [152].  
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and fed into the fully-connected neural network for the final part 
property prediction. A case study was carried out which demonstrated 
the effectiveness of the proposed sequential layer-by-layer modelling. In 
addition, a layer-wise relevance propagation (LRP) algorithm was 
adopted in this work to identify the contributions of each input to output 
based on the LSTM network. The proposed methodology of this study is 
illustrated in Fig. 11. 

Researchers have also made effort to investigate and study the me-
chanical properties of fabricated parts in AM processes using ML tech-
nologies [145,146,153–162]. For exploring substitute model for 
traditional numerical simulation methods, Koeppe et al. [153] intro-
duced a strategy, combining experiments, finite element (FE) simula-
tions, and deep learning (DL) model, to predict the maximum von Mises 
and equivalent principal stresses of printed lattice-cell structures in AM. 
In this study, the FE simulations were validated by empirical experi-
ments, and the datasets obtained from simulations were used to train the 
LSTM model for prediction. By taking design-related information into 
account, Baturynska, et al. [156] developed ML-based models for part 
property (e.g., tensile modulus, nominal stress, and elongation) pre-
diction, where part location, orientation, and STL model properties were 
considered as the inputs. Using ANN for fatigue life predictions for 
aerospace alloy parts have been investigated by Zhan et al., [157,158]. 

4.4.2. In-process signature 
Many researchers have done many efforts on computational models 

to simulate AM processes [2,154,163,164]. However, with the emer-
gence of advanced data mining techniques, ML is considered promising 
for modelling and uncovering the complex correlations among process 
conditions and resultant signatures. Meng and Zhang [165] proposed a 
process modelling method for laser powder bed fusion (LPBF) of stain-
less steel. In this work, a processing map of the re-melted depth of single 
tracks in terms of laser power and laser scan speed was developed by 
using the GP-based ML model. The GP regression model was trained 
using the datasets obtained from simulations of the computational fluid 
dynamics (CFD) model and the predictions were then compared against 
experimental data for validation. For 316 L and 17–4 PH stainless steel, 
the preferred conduction mode regions of laser power and laser scan 
speed were predicted by the GP model to assist the process optimization. 
Based on the process maps, the normalized enthalpy criterion of iden-
tifying keyhole modes was modified for these two metals respectively. 
Tapia et al. [166] also adopted the GP model for process modelling in 
LPBF of 316 L stainless steel. A GP-based surrogate modelling frame-
work was proposed in the paper, which was then used to predict melt 
pool depth of single tracks in terms of laser power, scan speed, and laser 
beam size combination. The operators can benefit from the applications 
of process maps which can provide predictions to reduce the demand for 
experimental or computational studies and obtain optimal process 
parameter combinations. ML models have also been applied to predict 
in-process signatures such as geometries of deposited metal trace using 
ANN [167] in laser metal deposition (LMD), the stress distribution of 
cured layers using CNN [168] in SLA, product magnetic characteristics 
using XGboost in SLM [169], connection status between printed lines 
using DNN in FDM [170], and printed line morphology using ANN [171] 
in SLM and using GP [172] and SVM [173] in aerosol jet printing (AJP). 

Melt-pool geometries or characteristics have closely related to the 
quality of the produced products in metal AM processes. The control and 
minimization of the melt-pool variation are crucial to the stability and 
reliability of the AM processes. Therefore, several studies have been 
conducted on the investigation of melt-pool characteristics. A data- 
driven approach to predict melt-pool area for scan strategy improve-
ment in the PBF process was developed by Yeung et al. [174]. The build 
time, laser power, scan speed, and neighbouring effect factors were 
considered as the input to the polynomial regression model for melt-pool 
area prediction. Then, the laser power was adopted as the design vari-
able for controlling melt pool size and reducing its variation. The opti-
mized laser power distributions (a–c) and the resultant melt pool image 

areas (d-f) are presented in Fig. 12. 
In addition, Mondal et al. [175] also used the predictive melt-pool 

dimensions to obtain optimal scan strategy based on GP surrogate 
model. Other studies on the prediction of the characteristics of the 
melt-pool using ML models can be found in Ref [176–179]. Thermal 
profiles are able to reflect the interaction between layers, resulting in 
residual stress and distortion distribution during the printing processes. 
This drives researchers to investigate the thermal profiles for the 
improvement of product quality. Mriganka and Olga [180] introduced a 
data-driven method for the modelling of thermal history based on ANN 
in FDM. The authors proposed a unique geometry representation 
method that translated G-Code into a set of features. There were three 
types of features, including features related to the deposition time, 
features related to the distances from the cool surfaces and heat sources, 
that were used for predicting the thermal profile. A heat influence zone 
that determined the area significantly affected by the heat source was 
defined for feature selection. These selected features were fed into ANN, 
also called the surrogate model (SM) in the paper, to predict the tem-
perature profiles. In the case study, the training data was obtained by FE 
simulations based on a physical model, and the prediction from the SM 
had an accuracy higher than 95%. The comparison of the temperature 
distributions obtained from the FE model (a-d) and SM (e-h) is shown in  
Fig. 13. 

Other studies on the prediction of thermal histories in different AM 
processes can be found in Ref [181–186], where ML-based models were 
applied. For instance, Ren et al. [182] introduced a combined model 
called RNN-DNN (recurrent neural networks and deep neural networks) 
to model the relationship between laser scanning strategies and their 
corresponding thermal history distributions in the DED process. From 
the studies above, it’s apparent that ML technologies have made sig-
nificant contributions to modelling complex AM processes, largely 
facilitating the development of control strategies and improving the 
reliability of the manufacturing processes. 

Lack of physical insights and normally requiring a considerable 
volume of training data samples are the main drawbacks of most ML 
models. Integrating physical knowledge with ML models has great po-
tential to provide more explainable results and reduce training samples. 
Hence, physical-informed ML techniques have risen in recent studies 
[187–190]. The bond formation and mesostructure have strong in-
fluences on the final mechanical properties of the FDM produced 
products. Different from the studies that purely rely on data-driven or 
physical models, Berkcan et al., [188] introduced a physical-informed 
ML approach to predict bond quality and porosity of the parts manu-
factured by the FDM process. In their study, two coupled multi-physics 
models, thermal model and polymer sintering model, were first con-
structed to predict the temperature evolution, bond formation, and 
mesostructure evolution. As the multi-physics models were built within 
certain assumptions that cannot fully represent the highly complex 
physical phenomenon, a DNN was adopted to improve the prediction 
performance. There were three strategies, (1) embed physics constraints 
in the loss function of the DNN, (2) the outputs of physical models are 
used as extra inputs in the DNN, and (3) the DNN is firstly trained by the 
data generated from physical models and updated by real-world ex-
periments data, for integrating physics knowledge with ML algorithms. 
The experimental results indicated that incorporating physics knowl-
edge with ML models was able to enhance the prediction accuracy even 
with a small amount of data. 

4.5. ML on AM sustainability 

Over the past couple of decades, AM technologies have attracted 
extensive attention across the world. Compared with conventional 
manufacturing, AM shows higher efficiency and flexibility, leading to its 
increasing adoption in the industry. However, according to the life-cycle 
analysis (LCA), the energy consumption of AM systems tends to have a 
significant effect on the environment [191]. This drives AM 
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sustainability to a crucial research topic as the number of AM systems 
being employed keeps growing. More specifically, cost and energy 
consumption are considered the key indicators to measure the sustain-
ability of AM [192]. 

4.5.1. Cost estimation 
Cost estimation is a crucial task before the manufacturing processes 

start. Reduction of costs (e.g. material and build time costs) is significant 
to AM sustainability in the industry. A data-driven cost estimation 
framework, shown in Fig. 14, was introduced by Chan et al. [193] for 
AM systems based on big data analytics tools, aiming at reducing the 
subjectivity of the cost estimation process. In the framework, the auto-
mated cost estimation system is an online service provider where 
manufacturing jobs with 3D models and relevant information, such as 
material types, surface textures, and tolerances, were uploaded. Feature 
vectors of the submitted jobs were extracted and clustered which were 
then fed in ML models with their costs as output for training. A 
simulation-based cost prediction function was also presented in the 
framework to simulate the whole manufacturing process for cost esti-
mation when there was a small number of relevant jobs in the database. 
The final cost prediction from the ML model was combining the costs of 
similar jobs in the database and the prediction from the simulation. 
When a new 3D model in STL file format was uploaded, g-code was 
generated automatically where feature vectors were able to be extracted 
to represent geometry information. These feature vectors were used as 
the input for the ML models that were built from the closest cluster to 
predict the cost. However, cost elements such as post-processing and 
labour cost are not included in the model, and obtaining sufficient data 
with high quality in the database is also challenging. 

It is usually time-consuming to build a patient-customized model 

that is used for surgical preparation. Huff et al. [194] demonstrated and 
discussed the feasibility of using ML models to reduce the time and cost 
of AM for surgical planning. In this work, ML models are applied for 
patient selection, optimizing the scanning process of CT scans, and 
automated segmentation of medical images. ML technologies can 
potentially improve the process of 3D anatomical modelling and 
contribute to the sustainability of applying AM in medical practice. 

4.5.2. Energy consumption 
Mathematical models for estimating energy consumption have been 

explored and investigated in existing studies [192,195] of various AM 
systems. For instance, Verma and Rai [192], developed mathematical 
models for estimating energy consumption and material waste in the SLS 
system and optimized the AM processes. However, AM systems are 
complex of which the energy consumption is correlated with various 
subsystems and factors, showing a large difference in terms of different 
working principles and main material supplies. It is difficult to take into 
account various factors based on conventional methods (e.g., mathe-
matical formulas) for energy modelling. Hence, ML models have been 
increasingly adopted for analysing and modelling the energy con-
sumption of AM systems. 

A linear regression (LR) model was adopted by Tian et al. [196] to 
capture the relationships between process parameters, part quality and 
energy consumption respectively in the fused filament fabrication (FFF) 
process. In this paper, the printing resolution, printing speed, and nozzle 
temperature were considered as the process parameters. The geometry 
accuracy features, including thickness deviation and average 
out-of-tolerance percentage, were selected as the indicators of part 
quality. Based on the linear regression models, the optimal solution for 
acquiring energy-efficient process parameters under the specific quality 

Fig. 12. The optimized laser power with corresponding melt pool image areas is predicted by the proposed ML approach. The melt pool area is allocated in high 
power density areas as predicted Ref [174]. 
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requirements was developed. This work provided a strategy for mini-
mizing the energy consumption of the AM system while simultaneously 
ensuring the geometry-related quality of the manufactured parts. 

Qin et al. [197] proposed a multi-source data analytics method for 
AM energy consumption modelling based on ANN. In this method, the 
data generation of an AM process was categorized into four sources, 
including design, process operation, working environment, and material 
condition, which tended to cover the entire production phases during an 
AM process. This multi-source data was heterogeneous and classified as 

layer-level and build-level which were hard to integrate in a direct way 
for modelling. Hence, a clustering method was carried out on the 
layer-level data and then integrated with build-level data in the ANN 
model. A case study was implemented on an SLS system. The empirical 
experiment results indicated that the ANN model had an accuracy of 
80.3% for energy consumption prediction when the number of clusters 
was four. Furthermore, as an extension of the study, the authors [198] 
found out that the design-relevant features, including part design and 
design optimization, had significant impacts on AM energy consumption 

Fig. 13. The comparison of the FEM (finite element model) and SM (surrogate model) for temperature distribution, Ref [180].  

Fig. 14. The automated cost estimation framework for AM systems, Ref [193].  
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based on the weights of neurons in the ANN model. Thus, a 
design-relevant feature-based energy consumption prediction model 
was established and a particle swarm optimization (PSO) method was 
adopted to optimize the design-relevant features for reducing the energy 
consumption of the target AM system. Hu et al. [199] also analysed the 
impacts of design and working environment attributes on AM energy 
consumption based on the gradient boosting decision tree (GBDT) al-
gorithm. In this work, information gain was used to evaluate the 
contribution of each attribute to the unit energy consumption in the SLS 
process. 

Geometry feature-based energy consumption estimation methods for 
mask image projection SLA systems using ML technologies are devel-
oped by Yang et al. [200,201]. In the Ref [201], three methods, 
including sensitivity analysis based on Pearson correlation coefficient 
(PCC) and Laplacian score, PCA, and stacked autoencoders (SAE), were 
applied to feature extraction and selection of layer-wise geo-
metry-related indexes. These extracted features were fed into different 
ML models for predicting energy consumption. According to the 
experimental results, the neural network has the lowest averaged root 
mean square error (RMSE) of 0.75% regarding both training and testing 
while the SAE structure has the best testing performance with an RMSE 
of 0.85%. The main contribution of these studies [197–201] is pre-
senting a design-based method to better manage the energy consump-
tion of the target systems before the AM processes start for AM 
designers, which is a significant improvement for AM sustainability. 
However, still, the feature extraction method that best represents the 
characteristics of geometry models remains an open challenge. 

Several existing studies have demonstrated the effectiveness and 
superiority of using ML technologies for cost estimation, reducing cost, 
improving energy management in different AM systems. However, the 
potential of applying ML for AM sustainability have not been fully 
achieved, where further studies of using ML for energy saving, reducing 
material waste, and improving manufacturing process efficiency need to 
be explored. 

4.6. Classification of recent research work 

In the previous section, the recent research of ML for AM is reviewed 
including different AM processes of manufacturing various types of 
material, like powder bed fusion (PBF), direct energy deposition (DED), 
material extrusion (ME), vat photopolymerization (VP) and material 
jetting (MJ), which have been introduced in Section 2. It is obvious that 
ML technologies have played a critical role in these AM processes.  
Table 5 has classified the recent research work of ML technologies for 
AM processes during the last five years. 

In the table, the eight most representative ML technologies are 
included, SVM (I), deep learning (II), decision tree (III), k-NN (IV), 
Bayesian (V), linear regression (VI), Gaussian process (VII), Markov 
model (VIII), clustering algorithms (IX) which are the most often used 
ML technologies for the AM research perspective. Generally, researchers 
choose ML technologies based on the research or project target, in which 
the most applicable technology is selected. These ML technologies are 
used in 5 AM research domains, in terms of DfAM (RD1), material an-
alytics (RD2), defect detection and in-situ monitoring (RD3), process 
modelling and control (RD4), and sustainability (RD5). Interestingly, 
over 70% of research focus on RD3 (defect detection and in-situ moni-
toring), and RD4 (process modelling and control) which data-driven 
methods are more intuitive in these two research domains, and ML 
technologies highly reply to the data. However, data is also available 
and important for other research domains which are lack-of-attention. 
There are huge potential research opportunities in these domains 
compared to RD3 and RD4. Furthermore, many potential research ideas 
in RD1 (DfAM), RD2 (material analytics) and RD5 (sustainability) can be 
inspired by ML approaches in the RD3 and RD4. 

The most used ML technology is deep learning which was applied for 
over half of the reviewed research and in all five research domains. It has 

been implemented as one of the most popular ML technologies for AM 
issues. Benefiting from its high compatibility of input data, various types 
of data is collected and used for deep learning models, such as image, 
video, acoustic data, process parameters, CAD model, and other sensor 
data. Also, comparing ML technologies between deep learning and 
others, deep learning has generally shown merit. Deep learning tech-
nologies, such as artificial neural networks, convolutional neural net-
works and Long-short term memory neural networks, have been studied 
and applied to many industrial fields as one type of the latest ML algo-
rithms. Many researchers tend to compare deep learning with conven-
tional ML algorithms which deep learning generally shows its merits, in 
terms of, high prediction accuracy, data adaptability and the capability 
of processing big data [202]. 

However, deep learning algorithms are required a huge amount of 
training data to build the model. For many real issues, collecting high 
quality and big size data is challenging. Additionally, the majority of 
deep learning technologies require a high-performance computational 
platform to train the model which increases the research or development 
budget. The necessity of using deep learning as a solution for the issues 
should be considered [203]. Many factors should be discussed before 
selecting an ML algorithm which depends on the complexity and nature 
of the issues. Another issue of both deep learning and conventional ML is 
the rational interpretations. Many researchers have realised this issue 
which ‘black box’ solutions are hard to use for revealing the basic 
mechanisms of many research fields [204]. ML technologies are 
increasingly required a reasonable explanation and domain 
knowledge-based structure. The fundamental knowledge and correc-
tions of AM processes largely obey the law of physics and material. 
Knowledge-based ML technologies can integrate the known theory to 
discover the potential information from the multi-source datasets [108]. 
Many researchers have started to tackle this issue by using 
physical-informed and knowledge graph neural networks [43,187,188]. 

To present the performance of the ML algorithms, evaluation metrics 
are the most important element which use for measuring the quality of 
the proposed ML model in the case studies. Many different metrics can 
be applied depending on the purposes of the research [210]. However, 
for AM issues, the focuses of the majority of research are on the solution 
of the critical issues in which the evaluation metrics theoretically in-
fluence the proposed methods less than other factors of ML technologies, 
such as the prior parameters, data format, and data variables. Although 
the evaluation metrics are not included in Table 5, many more details 
are reported in the ML literature [211,212]. 

In addition, about half of the reviewed research applied ML tech-
nologies to solve the issues in the research domain of defect detection 
and in-situ monitoring. However, for the work on defect detection and 
in-situ monitoring, multiple data processing and modelling are still 
crucial problems. While ML is a powerful tool for empirical modelling 
but it still highly depends on data. From the studies reviewed, various 
types of data are considered as the input of ML technologies, such as 
image data, video data, sensing data and design data. How to integrate 
multi-source data for ML is still an important research topic. Further-
more, increasingly researchers have moved their concentration from 
process to design and sustainability which ML technologies can also play 
a critical role. 

5. Challenges and opportunities 

Although ML technologies have been increasingly employed in dig-
ital manufacturing systems, there are still several challenges that remain 
to be tackled, as well as opportunities to be seized. In this section, four 
aspects of challenges are summarized based on the previous literature 
review. In addition, three directions of opportunities are presented to 
herald the future research and development of ML for AM. 
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Table 5 
The classification of research work of ML for AM.  

Reference AM 
Process 

Research 
Domain 

ML Technologies  Data Type Research Target Material Used in 
Studies 

I II III IV V VI VII VIII IX 

Zhang, et al.[81] PBF RD3 √ √        Image Quality level Steel 
Ye, et al.[104] RD3  √        Image Melt pool state 
Shevchik, et al. 

[107] 
RD3  √        Acoustic data Quality level 

Ye, et al.[114] RD3  √        Acoustic data Melt pool state 
Tapia, et al.[166] RD4       √   Process parameters Melt pool state 
Meng and Zhang 

[165] 
RD4       √   Process parameters Melt pool state 

Chandrika and Ya 
[179] 

RD4   √ √  √    Process parameters Melt pool state 

Nathan, et al.[151] RD4     √     Process parameters Quality level 
Germán, et al.[205] RD4 √ √ √ √   √   Process parameters Quality level 
Aniruddha, et al. 

[187] 
RD4  √        Sensor data and image Quality level 

Xin, et al.[106] RD3         √ Thermal imaging Porosity detection 
Bugatti, et al.[77] RD3 √ √       √ Video Defect detection 
Montazeri, et al. 

[120] 
RD3 √  √ √      Optical data Porosity detection Nickel alloy 

Aminzadeh and 
Kurfess[103] 

RD3     √     Image Quality level 

Caggiano, et al.[82] RD3  √        Image Defect detection 
Seulbi, et al.[178] RD4 √  √   √    Process parameters Melt pool state 
Mehrshad, et al. 

[149] 
RD4  √        Process parameters Quality level 

Scime and Beuth 
[83] 

RD3  √        Image Defect detection 

Fathizadan, et al. 
[93] 

RD3  √       √ Image Defect detection 

Okaro, et al.[134] RD3       √   Photodiode data Quality level 
Yeung, et al.[174] RD4      √    Process parameters Melt pool state 
Mondal, et al.[175] RD4       √   Process parameters Melt pool state 
Vrábel, et al.[65] RD2 √         Radiation data Material 

classification 
Aluminium 
alloy 

Yao, et al.[36] RD1 √         CAD model Feature selection 
Chen, et al.[171] RD4  √        Process parameters Line morphology 
Zhang, et al.[206] RD4  √        Production 

information 
Manufacturability 

Ertay, et al.[95] RD3  √        Image Pore prediction 
Masahiro, et al. 

[148] 
RD4      √    Image Tensile property Titanium alloy 

Shin, et al.[141] RD4  √        Process parameters Density prediction 
Zackary, et al.[90] RD3  √        Image Defect detection 
Li, et al.[91] RD3  √        Image Quality level Cobalt alloy 
Baturynska[156] RD4   √  √ √    Design information Nominal stress Polymer 
Qin, et al.[198] RD5  √        CAD model Energy consumption 
Hu, et al.[199] RD5   √       CAD model Energy consumption 
DeCost, et al.[63] RD2 √         Image Material 

classification 
Multiple 
materials 

Ko, et al.[43] RD1   √       Production 
information 

Design rule 
construction 

Montazeri, et al. 
[129] 

DED RD3 √         Optical data and image Quality level Titanium alloy 

Khanzadeh, et al. 
[122] 

RD3 √  √ √      Thermal imaging Porosity detection 

Zhang, et al.[84] RD3  √        Acoustic data Porosity detection 
Li, et al.[56] RD4 √         Process parameters Offset distance Copper alloy 
Ren, et al.[121] RD3  √       √ Emission spectroscopy Quality level Aluminium 

alloy Ding, et al.[207] RD4 √         Process parameters Bead modelling 
Ren, et al.[182] RD4  √        Scanning patterns Thermal history Steel 
Chen, et al.[80] RD3 √ √ √ √ √  √  √ 3D point cloud Defect detection 
Lam, et al.[142] RD4  √        Tool paths Void-filling strategy 
Ren, et al.[183] RD4  √        Process parameters Temperature field 
Richard, et al.[66] RD2   √       Particle-level features Flowability 

classification 
Multiple 
materials 

Jonnel et al.[40] ME RD1  √        3D coordinates Geometry correction Polymers 
Wu, et al.[111] RD3        √  Acoustic data Material condition 
Zhang, et al.[152] RD4  √        Process parameter Tensile strength 
Wu, et al.[132] RD4 √     √    Sensor data Surface roughness 
Jin, et al.[100] RD3  √        Image Quality level 
Kim, et al.[128] RD3 √         Sensor signals Defect detection 
Koeppe, et al.[153] RD4  √        CAD model Stress prediction 
Zhu, et al.[50] RD4       √   Shape variation Geometric deviation 

RD4  √        G-Code Thermal history 

(continued on next page) 
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5.1. Challenges 

5.1.1. Data fusion 
AM is considered a complex system, where several subsystems and 

the manufacturing processes are affected by various correlated factors. 
Therefore, it is necessary and significant to integrate or fuse the data 
from multiple sources or modalities to jointly analyse for enhancing 
knowledge discovery, as well as improving the modelling accuracy. But 
it is difficult to fuse the heterogeneous data generated from AM systems 
as it normally has different types, dimensions, and structures (e.g., im-
ages, 3D models, and signals). Several methods have been adopted by 
researchers to tackle the issues, such as extracting features from raw 
data to reduce data dimensions or using decomposition and factorization 
techniques for data concatenation. There is still significant latent or 
useful information from raw data which is lost through feature extrac-
tion processes. Moreover, the data from different modalities or sources 
may yield conflicting results in ML models. Hence, in what way and how 
to fuse the heterogeneous data for modelling and analysing becomes a 
critical challenge when applying ML for AM. Data registration tech-
niques play an important role in aligning multi-sensory data to ground 
truth data properly before the data is fused or integrated into ML 
models. Some researchers have explored tackling data alignment issues, 
such as [213–216], that effectively pave the way for data fusion in AM. 

5.1.2. Training with limited amount of data 
According to the selected articles reviewed in the previous section of 

the paper, ML algorithms play an important role in classification and 
regression tasks for AM. However, the performances of ML algorithms 
are influenced by the data available for training. For instance, in the 
topic of process monitoring, CNN is the prevailing algorithm to process 
image data for defect detection. It is capable of learning useful infor-
mation from raw images directly and automatically. The convolutional 
layers and pooling layers in the CNN architecture can extract repre-
sentative features and lower feature dimensions. In the meantime, its 
performances suffer from the data volume. The CNN model often re-
quires a sufficient amount of data for training processes and fine-tuning 
the parameters to yield high accuracy results. Using X-ray computed 
tomography to detect defects (e.g., porosity, cracks, and lack of fusion) 
of the produced products for labelling data is typically costly and time- 
consuming. Additionally, when using ML for mechanical property pre-
dictions, researchers need to conduct a number of experiments where 

different processing parameter combinations are considered. Testing the 
properties of the manufactured parts also requires considerable labour. 
Thus, it is always expensive and impractical to collect a large amount of 
training data from experiments. Some researchers are investigating the 
use of process simulations for training, in addition to experimental re-
sults. Furthermore, the ML models are consequently applied to the real 
AM process and collaborate with some control algorithm, such as 
adaptive control. The limited data may lead to a high possibility of 
failure due to the lack of training. Even if a well-trained ML model is 
obtained, it is difficult to be robust and widely applied in the same AM 
process but for different machines where the uncertainties affect the 
model performance. Therefore, it is challenging to obtain a robust and 
reliable ML model with a limited amount of training data. 

5.1.3. Interpretability 
Since ML technologies have been increasingly adopted for modelling 

and decision making in several crucial scenarios (e.g. medical use, 
defence, and precision machining), people have to make a trade-off 
between transparency and accuracy [217]. The results yielded by ML 
models need to be interpretable and tractable to assist decision-makers 
to understand the results and their rationale. Some conventional ML 
algorithms such as LR and DT are capable of generating explainable 
results. However, it requires profound domain knowledge for variable 
selections and is normally hard to yield better results than DNN-based 
models. In AM systems, an interpretable ML model can help engineers 
improve the understanding of manufacturing processes and develop 
corresponding control strategies. Hence, still, the explanation of the 
inference from black-box ML models remains challenging and require 
further effort. One possible strategy moving forward is to integrate ML 
results with high fidelity simulations of relevant parts, processes, or 
process conditions to help manufacturing personnel understand the 
outcomes yielded by ML. 

5.1.4. Spatial and temporal scales 
AM processes occur over a wide range of size and time scales. Build 

volumes can be measured in meters, while grains in metal alloys may be 
micrometres in size. Similarly, a build may require dozens of hours, 
while heating and cooling of feedstock occurs over microseconds. These 
wide ranges of spatial and temporal scales lead to significant challenges 
in AM process monitoring and control and, from an ML perspective, 
relate to the data fusion and latency issues raised earlier. Data fusion 

Table 5 (continued ) 

Reference AM 
Process 

Research 
Domain 

ML Technologies  Data Type Research Target Material Used in 
Studies 

I II III IV V VI VII VIII IX 

Mriganka and Olga 
[180] 

Jiang, et al.[170]  RD4  √        Process parameters Quality level 
Kapusuzoglu, et al. 

[188]  
RD4  √        Process parameters Porosity prediction 

Mohammad, et al. 
[88]  

RD3  √        Image Defect detection 

Li, et al.[79]  RD3 √  √ √      3D point cloud Defect detection 
Roach, et al.[208]  RD4  √        Image Compression 

response 
Silicone 

Aditya, et al.[168] VP RD4  √        Image Stress distribution Liquid resin 
Yang, et al.[201] RD5  √    √    CAD model Energy consumption 
Lee, et al.[96] RD3  √        Video Quality level 
Ferreira, et al.[52] RD4     √     CAD model Geometric deviation 
Shen, et al.[60] RD4  √        CAD model Geometric deviation 
Wang, et al.[98] MJ RD3  √        Image Droplet behaviour Polymers 
Zhang, et al.[173] RD4       √   Process parameters Line morphology Silver 
Després, et al.[39] General RD1  √        CAD model mechanical 

properties 
Software-based 

Huang, et al.[47] RD1  √        CAD model Structure design 
Nathan, et al.[209] RD1  √        Image Design optimization 
Zhan et al.[158] RD4 √ √ √       Process parameters 

and fatigue loadings 
Fatigue life Steel  
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must occur at the appropriate size and time scales. Furthermore, con-
sistency across size and time scales is necessary to help ensure results are 
meaningful. It seems that networks of ML models will likely need to be 
developed to model relationships at the relevant size and time scales and 
additional relationships across these scales. It is not clear if similar ML 
network models have been developed for other domains which could 
perhaps inform the AM research community of promising technical 
directions. 

5.1.5. Latency 
Using ML technologies for modelling and data analytics based on 

cloud computing often requires considerable computing power and are 
not ideal where low latency is a major concern (e.g., real-time moni-
toring and control). For instance, DNN is a prevailing ML algorithm and 
DNN-based models are capable of performing high accuracy or gener-
ating reliable inferences in many different tasks. It has been widely 
applied in natural language processing, target recognition, and fault 
diagnosis. However, training a DNN-based model normally requires 
considerable time and computing resources. This is unlikely to be sup-
ported by local or edge devices due to the limited computing power. 
Thus, in the real-time monitoring and control scenario, the collected 
data normally need to be sent to the Cloud for processing and analysing. 
Then the control instructions are sent back from the Cloud to the local 
system. This whole process normally causes latency for real-time defect 
detection and control. Moreover, the uncertainties of the network 
connection and the limitation of the network bandwidth also affect the 
reaction time. Therefore, it is challenging to apply ML models to practice 
where low latency is required. 

5.2. Opportunities 

5.2.1. Transfer learning 
A major assumption in most ML models is that the training and future 

data must be in the same feature space with the same distribution [218]. 
However, in real-world industry applications, it is impractical and costly 
to retrain a model for each machine or system. Therefore, knowledge 
transfer becomes critical in this scenario. Transfer learning can transfer 
prior knowledge or information from a domain to a related domain, 
improving ML models [219]. For example, for process modelling in AM, 
transfer learning techniques can be used to transfer a pre-trained model 
for different machines with similar working principles, which requires 
less amount of training data than training a new model. Hence, transfer 
learning can enable the rapid development of ML models for different 
AM machines, materials, and part designs. In the future, more studies on 
transfer learning techniques for AM can be explored to achieve its 
potential. 

5.2.2. Light-weight computing model 
As described previously, low latency is the major concern in real- 

time monitoring and control. Most studies of applying ML for defect 
detection or anomaly correction are implemented at the Cloud level 
where latency is not a major concern. In real-world applications, 
applying analytical models on the local or edge devices is important to 
attain low latency. Due to the limited computing power of edge devices, 
it is crucial and significant to develop lightweight computing models for 
implementing artificial intelligence on the edge. Data fusion techniques 
are one of the promising approaches as they can reduce data dimen-
sionality in raw data. Additionally, designing and adopting ML algo-
rithms with fast data sampling or sorting strategies such as light gradient 
boosting machines (LGBM) [220] also reduce the computing load. 

5.2.3. Learning by cloud-edge synergy 
The current state-of-the-art applications of ML in AM are mostly 

performed by centralized services on the Cloud. The information and 
data are transmitted between Cloud servers and local devices which is 
unavoidably increase network burden if tremendous data is collected 

and transmitted. Consequently, unexpected latency will occur and affect 
the decision making during the manufacturing process. However, it is 
also challenging to train ML models directly on the edge devices with 
local datasets. Therefore, collaborative learning between the Cloud and 
edge is a possible and promising solution that leverages the knowledge 
from the Cloud to improve the model developed by edge devices. 
Knowledge transfer is applied in the Cloud-Edge learning paradigm. 

5.2.4. Other opportunities 
Apart from the above three potential research topics of ML for AM, 

there are still some research opportunities in many relevant research 
areas. Although many research pioneers have started to discover these 
topics, the lack of research is still obvious. One of these opportunities is 
on the topic of sustainability. In this paper, the research of the ML on AM 
sustainability is reviewed in the last section. However, these papers 
mainly focused on the cost and energy consumption where the research 
of AM sustainability involves more perspectives, in terms of re- 
manufacturing, waste recycling and process and life-cycle emission 
[221,222]. These research issues are generally complex and affected by 
many different variables that ML has the strong advantage of over-
coming. Moreover, according to the studies reviewed, another research 
opportunity, AM researchers pay less attention to, is the physics 
informed ML approach. With the rapid development of AM, the current 
unsolved research issues tend to be increasingly fundamental. The 
typical ML algorithms including deep learning technologies are hard to 
discover the hidden fundamental knowledge without the assistance of 
domain knowledge. The knowledge-based ML methods become more 
and more critical and essential for solving challenging AM issues. 
Additionally, the interpretability of ML for engineering problems is al-
ways discussed. The research of physics informed, and knowledge-based 
ML models are effectively explained. 

6. Conclusions 

ML has made a significant contribution in many AM aspects, such as 
DfAM, defect detection, process monitoring, modelling and control, and 
also has the great potential to become a type of critical solution for the 
entire field of AM. The focus of this paper has been on the research and 
application of various ML technologies for AM systems. The paper was 
inspired by the current popularity of machine learning for solving AM 
issues. After reviewing seven categories of AM processes this paper has 
then followed a systemic literature review method which aims to target 
the state-of-the-art relevant research articles. There are over hundreds of 
research articles selected for further detailed reviewing and analysis. 
Based on these research articles, this paper has also applied the keyword 
co-occurrence and clustering analysis aiming to identify the hotspots in 
the research field. Five aspects of AM issues were clustered by the pro-
posed method. Then, the selected research articles were arranged, pre-
sented and reviewed following these clusters. These articles are also 
summarised based on the targeted AM processes, applied ML algorithms, 
research domains, and utilised data. Finally, research challenges and 
opportunities of ML for AM are highlighted and discussed focusing on 
various perspectives. 
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