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A B S T R A C T   

Shape transformations of active composites (ACs) depend on the spatial distribution and active 
response of constituent materials. Voxel-level complex material distributions offer a vast possi-
bility for attainable shape changes of 4D-printed ACs, while also posing a significant challenge in 
efficiently designing material distributions to achieve target shape changes. Here, we present an 
integrated machine learning (ML) and sequential subdomain optimization (SSO) approach for 
ultrafast inverse designs of 4D-printed AC structures. By leveraging the inherent sequential de-
pendency, a recurrent neural network ML model and SSO are seamlessly integrated. For multiple 
target shapes of various complexities, ML-SSO demonstrates superior performance in optimiza-
tion accuracy and speed, delivering results within second(s). When integrated with computer 
vision, ML-SSO also enables an ultrafast, streamlined design-fabrication paradigm based on hand- 
drawn targets. Furthermore, ML-SSO empowered with a splicing strategy is capable of designing 
diverse lengthwise voxel configurations, thus showing exceptional adaptability to intricate target 
shapes with different lengths without compromising high speed and accuracy. As a comparison, 
for the benchmark three-period shape, the finite element and evolutionary algorithm (EA) 
method was estimated to need 219 days for the inverse design; the ML-EA achieved the design in 
54 min; the new ML-SSO with splicing strategy requires only 1.97 s. By further leveraging 
appropriate symmetries, the highly efficient ML-SSO is employed to design active shape changes 
of 4D-printed lattice structures. The new ML-SSO approach thus provides a highly efficient tool 
for the design of various 4D-printed, shape-morphing AC structures.   

1. Introduction 

Shape transformations of active composites (ACs) depend on the spatial distribution and active response of constituent materials. 
Multimaterial 3D/4D printing (Ge et al., 2013; Kuang et al., 2019; Cheng et al., 2022; Yue et al., 2023; Yue et al., 2023) allows for easy 
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implementation of voxel-level distribution of active materials/properties, thus permitting a vast space of active shape changes that can 
be achieved. To fully exploit this space, inverse design (i.e., finding the optimal material distribution to achieve a target shape) is 
highly desired, which is yet challenging due to the tremendous design space (Demoly et al., 2021; Sun et al., 2024). To tackle these 
challenges, gradient-based and gradient-free methods have been developed. For instance, the gradient-based topology optimization 
(TO) has been used for designing active shape changes of ACs (Maute et al., 2015; Geiss et al., 2019; Tanaka et al., 2023) or optimizing 
structure compliances (Zolfagharian et al., 2020). The TO, however, typically requires the complicated derivation of gradients and may 
encounter difficulties when the ACs involve geometric or material nonlinearity (Wang et al., 2021; Zhao and Zhang, 2022). Alter-
natively, the gradient-free evolutionary algorithm (EA) has also been adopted for designing active shape changes of ACs (Hamel et al., 
2019; Wu et al., 2020; Athinarayanarao et al., 2023). EA is well suited for handling discrete design variables and can scale efficiently 
on parallel computing. However, its lack of gradient information means there is no directional guidance for the solution search, 
resulting in inefficiency (Sigmund, 2011). As a consequence, these EA implementations (Hamel et al., 2019; Wu et al., 2020; Athi-
narayanarao et al., 2023), which require numerous shape predictions through finite element (FE) methods (referred to as FE-EA), 
suffer from high computational cost. Although reduced-order models have been developed to replace FE for faster EA, they suffer 
from either relatively low accuracy (against FE) (Sossou et al., 2019) or limited design freedom (1D material distribution) (Wang et al., 
2021). Accurate and efficient inverse design strategies remain to be developed. 

Machine learning (ML) (Guo et al., 2021) opens up new avenues for developing fast, computationally affordable, and high-fidelity 
models for both forward prediction and inverse design of a variety of material responses. Existing works mainly focused on optimizing 
or predicting mechanical properties of materials, such as the strength and toughness of composites (Gu et al., 2018; Chen and Gu, 
2019), stress and strain fields of composites (Yang et al., 2021), Poisson’s ratio of auxetic metamaterials (Wilt et al., 2020), responses of 
soft pneumatic robots (Zolfagharian et al., 2021), among others (Roach et al., 2021; Rawat and Shen, 2018). However, there is limited 
work on exploiting ML for designing active shape-change responses of ACs (Sun et al., 2024). For voxelized AC beams, Zhang and Gu 
(2020) explored performances of multiple ML models for the forward prediction problem. Our recent work (Sun et al., 2022) 
demonstrated that the recurrent neural network (RNN) is particularly suited for the beam problem as it inherently preserves a 
sequential dependency, similar to that in beam deflection. The RNN-based ML model thus demonstrated exceptional accuracy in 
forward shape predictions based on material distributions. The ML was then integrated with EA (ML-EA), enabling fast inverse designs 
for complicated target shapes, typically in 10–60 min. Although ML-EA has significantly outperformed conventional methods such as 
FE-EA, it also has two major limitations. First, there remains a strong demand for faster or even real-time inverse designs for AC beams. 
One key limiting factor for the design speed is that EA seeks solutions in a vast design space comprising all voxels with no preferred 
search direction, which is inefficient. Second, an ML model, once trained, is specific to a certain beam length and voxel configuration, 
making it inapplicable to designs of target shapes that have different lengths (hence different voxel numbers) or finer features (such as 
large curvature) beyond the design space of current voxels. 

This work addresses these issues by leveraging the sequential dependency of beam deflections. We first present a design approach 
that seamlessly combines an RNN ML model and a sequential subdomain optimization (SSO) algorithm to realize ultrafast inverse 
designs for target shapes of various complexities, producing results in second(s), which is hundreds or thousands of times faster than 
conventional ML-EA method. In addition, the sequential characteristic allows for accurate predictions for beams with fewer lengthwise 
voxels than that of the training data. It also permits the splicing of multiple predicted shapes, extending accuracy to beams with more 
lengthwise voxels. Moreover, this splicing strategy, when integrated with ML-SSO, also permits ultrafast inverse designs for a spectrum 
of target intricate shapes with different lengths, using lengthwise voxel configurations different from that for the ML training. Finally, 
the highly efficient ML-SSO is employed for the inverse design of active shape changes of 4D-printed lattice structures. Our approach 
thus facilitates the development of 4D printing towards intelligent and streamlined design and fabrication of various shape-morphing 
AC structures. 

2. Models and methods 

2.1. Physical problem 

The physical problem is illustrated in Fig. 1a. We consider an AC beam whose left end is fixed. It is composed of Nx (length- or x- 
direction) × Ny (thickness- or y-direction) voxels, each assigned with an active or a passive material. The active material (encoded by 
“1″) expands under the actuation while the passive material (encoded by “0″) does not. The material distribution is therefore digitally 
encoded into an Ny × Nx binary number array, denoted by M. Under an actuation, an active shape change is induced by the expansion 
mismatch, which depends on the material distribution (Fig. 1a). The shape is represented by the coordinates (x, y) sampled from 
certain points of voxels, forming 2D number arrays x and y. Here, we focus on the voxel configuration of 24 (Nx) × 4 (Ny), which has a 
large design space involving 296 (≈7.92 × 1028) possible material distributions. Our goal is to build an ML model to predict the 
mapping from M to (x, y). To achieve this, the FE simulations are performed to generate a dataset. 

2.2. Finite element model 

We perform FE simulations using the commercial software Abaqus/Standard (version 2018, Simulia, Providence, RI). The FE model 
follows our previous work (Sun et al., 2022) and is briefly summarized here. An active beam with the left edge fixed (x = y = 0) and 
under the plane strain conditions is considered. The beam has a dimension of 80 mm long × 1 mm thick and is partitioned into Nx × Ny 
voxels for material assignment. Both active and passive materials are modeled as nearly incompressible neo-Hookean solids with the 
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Fig. 1. Schematic illustration of the active composite (AC) beam and the sequential dependency. (a) Actuation of an AC beam with voxel-level 
material distribution. The two materials, encoded as “1″ (active) and “0″ (passive), have a volume expansion mismatch. (b) Architecture of an 
RNN, which shows a similar structure to the AC beam. (c) Density scatter plots of the ground-truth versus ML-predicted values of the coordinates x 
(left) and y (right) in the test dataset. The color indicates the relative point density. (d) Gradients (or sensitivities) of actuated coordinates (x, y) of 
the 12th and 24th voxel columns with respect to all voxels (i.e., ∂xi/∂Mv and ∂yi/∂Mv for i = 12 and 24, where v = 1, 2, …, 4 × 24 represents the 
voxel number, Mv represents the material encoding of voxel v), based on an all-passive (Mv=0) state. The color of an arbitrary voxel represents the 
gradient of xi or yi (unit: mm) with respect to the encoding of this voxel (unitless). 
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same Young’s modulus but different coefficients of thermal expansion (0.001 for active and 0 for passive materials). The shape change 
is induced by applying a 100 ◦C temperature increase to the entire beam, which results in a linear strain mismatch of 0.1 between the 
two materials. A finite strain simulation framework is utilized (The “Nlgeom” is set to “On”). A mesh convergence study is performed 
and 960 × 12=11,520 hybrid plane strain (CPE4H) elements are adopted. The FE model is automatically generated and executed 
through a Python script. To generate a dataset, 10,800 random material distributions are created, and FE simulations are used to obtain 
their ground-truth actuated shapes. The generated dataset, which consists of 10,800 pairs of M and (x, y), is then randomly split into 
training, validation, and test datasets with sizes of 6000, 2000, and 2800, respectively. Each of M, x, and y is restructured into 
sequential data: M becomes a sequence of Nx columns of voxels, and x or y becomes a sequence of Nx coordinate values (each sampled 
from one column). In general, sampling points can be arbitrarily chosen from available mesh points. Here, we choose the sampling 
points to be the mid-axis, rightmost mesh point of each column of voxels. 

2.3. RNN-based ML model for forward predictions 

With the dataset generated by FE simulations, an RNN-based ML model is constructed to predict actuated shapes for given material 
distributions (Fig. 1b). RNN can use the “past” information to predict the “current” response and thus is highly capable of learning 
sequential data. It is noted that the deflection of the AC beam has a similar sequential characteristic, i.e., the displacement of any points 
only depends on the points to their left (or before them); the displacement of the points to their right (or after them) would not affect 
their displacement. This feature inspires us to use RNN. 

For each step, RNN receives a single column of voxel encodings and produces the coordinates of the column (sampled on the mid- 
axis of the beam). By repeating this process, RNN sequentially processes all voxel columns to predict the shape of the entire beam 
(Fig. 1b). More details on the construction of the RNN model are provided in Appendix A.1. 

Two RNN-based ML models are trained separately, one for predicting coordinate x and the other for coordinate y, to better identify 
their respective errors. Let Fx and Fy denote the built models for x and y, respectively, we have 

x = Fx(θx;M), y = Fy
(
θy;M

)
, (1)  

where x and y are predicted coordinate vectors whose components, xi and yi, i ∈ [1, Nx], are coordinates of sampling points, 
respectively. θx and θy denote the learnable parameter sets for Fx and Fy, respectively. The loss function is defined as the half-mean- 
squared-error between the predicted coordinates (xi or yi) and true coordinates (xi

true or yi
true) for a specific material distribution, i.e., 

Loss(x) =
1

2Nx

∑Nx

i=1

(
xi − xtrue

i

)2
, Loss(y) =

1
2Nx

∑Nx

i=1

(
yi − ytrue

i

)2
, (2)  

for coordinates x and y, respectively. The training of ML models is to find the optimal θx and θy that minimize the loss values on the 
training set, i.e., min

θx
Loss(x)and min

θy
Loss(y). The adaptive moment estimation (Adam) (Kingma and Ba, 2014) optimizer is used to train 

the network. We perform a systematic study on the hyperparameters for the training and network architectures, which is detailed in 
Appendix A.2. 

2.4. Performance of the ML model 

As shown in our previous study (Sun et al., 2022), the RNN-based ML model demonstrates high accuracy for cases with different 
numbers of voxels. In this work, we adopt the ML model trained on 24 (Nx) × 4 (Ny) voxels. Notably, the coordinates (x, y) are sampled 
from the mid-axis, rightmost mesh point of each voxel column to represent a shape, which is different from the middle point as used in 
our previous work (Fig. 1b). This choice of sampling points has two merits. First, it achieves higher prediction accuracy with R2 =

0.99987 for x and 0.99986 for y, as shown in regression (or density scatter) plots of the ground-truth versus ML-predicted coordinates 
of the test dataset (Fig. 1c). The increased accuracy is attributed to the better sequential characteristic of the column rightmost points. 
Second, the new sampling points enable the ultrafast SSO optimizations as will be introduced in Section 2.5. Although the model 
achieves very high accuracy, a few datapoints deviate from the regression line (Fig. 1c). The analysis of prediction errors shows that the 
data with large errors are only a small portion (<0.36 %) of the test set (Fig. A.4 and associated text in Appendix A.3). Even for these 
cases, the accuracy is very high near the beam origin and over most of the beam length, and the large errors all happen near the beam 
end. In addition to the accuracy, the ML model allows for ultrafast prediction speed due to its parallel computing capability on GPU 
(see Appendix A.4). 

As mentioned above, since the left end of the actuated beam is fixed, the coordinate of a voxel column is dependent on the voxels in 
the current column and the left of the current column. Similarly, the architecture of RNN determines that the “current” output is 
dependent on the “current” and “past” inputs. To illustrate this feature, we display the gradients (or sensitivities) of RNN-predicted 
coordinates (x, y) of the 12th and 24th voxel columns with respect to all voxels (i.e., ∂xi/∂Mv and ∂yi/∂Mv for i = 12 and 24, where 
v = 1, 2, …, 4 × 24 represents the voxel number, Mv represents the material encoding of voxel v), based on a state where all voxels are 
initially passive materials (Mv=0) (Fig. 1d). The gradients are calculated through automatic differentiation as described in 
Appendix A.5. We see that (x12, y12) depends on the first 12 voxel columns only, while (x24, y24) depends on all the voxels. The results 
evidently showcase that the RNN inherently preserves the sequential data dependency of the beam deflection. 

X. Sun et al.                                                                                                                                                                                                             



Journal of the Mechanics and Physics of Solids 186 (2024) 105561

5

Such a similarity in sequential dependency allows RNN to achieve superior accuracy over other network architectures such as 
neural network (NN) and convolutional neural network (CNN), as demonstrated in Fig. A.3. Note that RNN uses the “temporally” 
invariant weights across different steps and thus is well suited to learn a universal relationship between two consecutive voxel col-
umns. In contrast, CNN uses spatially invariant weights (convolutional kernels) to recognize spatial local features, which intuitively 
have a highly complex mapping to the coordinates of large-deflection beams. In addition, CNN likely needs a large reception field to 
learn the relation between the voxels near the origin and the coordinates near the end, which leads to inefficiency. For example, each 
coordinate would depend on the global voxel information, and thus it may be easily disturbed by irrelevant voxels. 

2.5. ML-SSO approach for ultrafast inverse design 

Although the ML model achieves high accuracy in the forward prediction, applying it to the inverse map (from shape to design) is 
still challenging due to the “one-to-many” characteristic (i.e., one actuated shape could be achieved by distinct designs)[7]. This is 
particularly the case considering the large design space and the high-dimensional data for shape representation. To address this 
challenge, a straightforward approach is to combine ML with optimization algorithms such as EA (Sun et al., 2022). However, as a 
gradient-free stochastic search algorithm, EA seeks solutions in a vast design space comprising all voxels with no preferred search 
direction, which is inefficient. 

In this work, we present an ML-empowered SSO approach that can further leverage the inherent sequential characteristic. Instead 
of directly optimizing the entire domain, this approach sequentially optimizes subdomains, composed of Nsub columns, from left to 
right (Fig. 2). In each optimization step, SSO receives the coordinates of Nsub target points (highlighted red “o”) and optimizes the 
material distribution in the corresponding subdomain (highlighted yellow domain) such that the RNN-predicted coordinates of 
actuated points (highlighted blue “+”) match with the targets. Once a subdomain, e.g., (i-1), is optimized, the target points and design 
domain move one step forward for the next subdomain, i, as seen by the one-step sliding of the highlighting window in Fig. 2. Due to 
the sequential dependency, the optimization of subdomain i would not affect the optimized preceding subdomains (those to the left of 
subdomain i) except the overlapping domain of (i-1) and i (see the rightmost panel of Fig. 2). Here, we choose Nsub to range from 1 to 3. 
When Nsub=1, there is no overlap between two consecutive subdomains. As will be detailed later, a larger Nsub can improve the 
optimization accuracy. For the optimization of individual subdomains, we employ a brute-force approach, calculating the subdomain 
shapes of all possible designs through RNN and retaining the optimal one. When evaluating these shapes, RNN receives the subdomain 
inputs (with Nsub columns) to produce their corresponding coordinates. The change of Nsub does not need the retraining of RNN. As Nsub 
increases, the number of potential designs (=2Ny×Nsub) would increase exponentially, and therefore a cap on Nsub is chosen to be 3. This 
ensures the local optimality of the found solution while not requiring many shape evaluations as the chosen Nsub is small. For larger 
Nsub, the subdomain EA or other stochastic search algorithms may be used to reduce computational cost. The loss function Lsub for each 
subdomain is defined as 

Lsub =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Nsub

∑Nsub

j=1

[(
xsub,j − x̂sub,j

)2
+
(
ysub,j − ŷsub,j

)2
]√

(3)  

where (xsub,j, ysub,j) are the ML-predicted sampled point coordinates for the j-th column of the considered subdomain, (x̂sub, j, ŷsub,j) are 
the corresponding target coordinates. Compared to the ML-EA on the entire domain, ML-SSO reduces computational cost in two as-
pects. First, the design space of a single subdomain is much smaller than the whole domain, thus drastically reducing the number of 
potential design evaluations required. For instance, for Nsub = 2, the brute-force method assesses 256 (=2Ny×Nsub=28) potential 
subdomain designs per step, totaling 5888 (=256 × 23, where 23 = (Nx–Nsub+1) is the number of subdomains to optimize) evaluations, 
which is much smaller than the number (typically 75,000–375,000 (Sun et al., 2022)) of global ML-EA. Second, these are the number of 
potential designs that need to be evaluated. In ML-SSO, the evaluation of each candidate design (comprising Nsub columns only) is also 
more efficient. This is because, during each optimization step, RNN permits only processing the current subdomain and predicting its 
coordinates (xsub,j, ysub,j), j ∈ [1, Nsub], based on the stored hidden state, thereby bypassing the need to evaluate the preceding or 

Fig. 2. Schematic of the ML-SSO approach.  
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subsequent subdomains. This further significantly reduces computational costs compared to ML-EA which demands a full-domain 
shape evaluation for each candidate design. 

3. Results and discussions 

3.1. Performance of ML-SSO on numerically generated target shapes 

We now consider multiple numerically generated target shapes of different complexities to evaluate the performance of ML-SSO 
with different Nsub values. In this sub-section, we focus on the case with 24 × 4 voxels. The first two target shapes, the one-period 
and two-period sinusoidal shapes, are optimized using Nsub = 1. To provide a more intuitive understanding of ML-SSO, in Figs. 3a 
and 3b, we show the optimized and target shapes with symbols of varying colors to visualize the optimization sequence. Each opti-
mized point (“+”) is the one closest to the corresponding target point (“o”, same color) among all possible designs for the specific 
subdomain. For both two targets, excellent agreements between the optimized shapes and the targets are achieved. Although some 
discrepancies can be observed, e.g., in the middle of the two-period shape where the curvature is relatively large, the subsequent 
optimized points can still accurately capture the target shape (Fig. 3b), demonstrating the high capability of our approach. 

Next, two more complicated targets are considered: the three-period shape and the half-butterfly shape. As shown in Fig. 3c and d, 
the sensitivity of optimized shapes to the Nsub is studied. For both targets, Nsub=1 leads to notable discrepancies between the optimized 
and target shapes. With the increased Nsub, the optimization accuracy is significantly improved. This is because ML-SSO operates on a 
greedy strategy, selecting the best shape at each step. Such an approach might lead to a short-sighted problem for regions with sharp 
turns, missing the target of the subsequent subdomain in favor of the best match for the current one. Increasing Nsub effectively 
broadens the optimization foresight and can, to some extent, mitigate this problem, although it concurrently escalates the compu-
tational cost. To gain more insights, we show in Fig. 3c and d the optimization sequence for the cases with Nsub=2, where each voxel 

Fig. 3. Demonstration of ML-SSO on inverse designs of numerically generated target shapes. (a) One-period target and ML-SSO optimized shape 
with Nsub=1. (b) Two-period target and ML-SSO optimized shape with Nsub=1. (c) Three-period target, ML-SSO optimized shape with different Nsub 
values, and illustration of optimization sequence with Nsub=2. (d) Half-butterfly target, ML-SSO optimized shape with different Nsub values, and 
illustration of optimization sequence with Nsub=2. In the plots with optimization sequence, the last Nsub points are optimized in one step and thus 
have the same color. All ML-SSO designs are based on Nx=24. 
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column (except the first and last ones) is involved in two consecutive subdomains and thus optimized twice (see, for example, the 
overlapping domain of (i-1) and i in the rightmost panel of Fig. 2). The temporarily optimal point denotes the one achieved in the first 
optimization of its involved subdomain and is depicted in dark gray “+” symbols. The discrepancy between the temporarily optimal 
point and the optimal point often appears in regions with sharp turns, manifesting the short-sighted problem. 

We further quantitively compare the performance of ML-SSO with different Nsub values on these four targets in terms of accuracy 
(Fig. 4a) and time cost (Fig. 4b). The ML-EA optimization results are already available (Sun et al., 2022) and also compared here. The 
accuracy is quantified by the root-mean-squared errors (RMSEs) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

2Nx

∑Nx

i=1

[
(xi − x̂i)

2
+ (yi − ŷi)

2]
√

(4)  

between the optimized coordinates (xi, yi) and target coordinates (x̂i, ŷi) for all Nx sampling points. As shown in Fig. 4, for the relatively 
simple one-period and two-period shapes, ML-SSO with Nsub=1 which only takes 0.23 s achieves similar RMSEs with that of ML-EA 
which takes 660 s (or 11 min). Using the number of shape evaluations needed in ML-EA, the FE-EA approach was estimated to 
need 44 days for these two targets, as discussed in our previous work (Sun et al., 2022). For the most complex three-period shape, 
ML-SSO with Nsub=3 takes 11.8 s and achieves much better RMSEs than that of ML-EA, which takes 3240 s (or 54 min); the FE-EA 
approach was estimated to need 219 days (Sun et al., 2022). It is worth noting that a large time increase can be observed as Nsub 
increases, which is due to the exponentially growing brute-force shape evaluations. Interestingly, the time increase factor is about 4 
when the Nsub increases from 1 to 2 which corresponds to a 16-fold increase in the number of shape evaluations. This acceleration in 
optimization is due to the faster ML prediction enabled by its parallel computing capability on GPU (see Appendix A.4). In short, 
ML-SSO outperforms or matches ML-EA in optimization accuracy while being significantly (at least two orders of magnitude) faster. 
This demonstrates the very high efficacy of our approach in solving inverse material design problems for complicated target shapes, 
which is attributed to the seamless integration of RNN-ML and SSO that fully leverages sequential characteristics for highly efficient 
optimal design searches. 

3.2. ML-SSO enabled, streamlined 4D printing design and fabrication based on hand-drawn lines 

Next, we apply the ultrafast ML-SSO approach to hand-drawn target shapes to enable a streamlined design-fabrication paradigm for 
4D printing. In general, these target shapes are more challenging to optimize, because the discrete target points are uniformly sampled 
from the identified shape, which could have inappropriate spacing and thus produce difficulties for the optimization. Following our 
previous work (Sun et al., 2022), computer vision (CV) algorithms are employed for the automatic identification of target shapes from 
hand-drawn lines. The ML-SSO is then utilized for the inverse design, and the optimized material distributions can be readily 

Fig. 4. (a) RMSEs of optimized shapes by ML-SSO (with different Nsub values) and ML-EA for the four target shapes considered in Fig. 3. The RMSE is 
calculated using Eq.(2). (b) Time cost of the corresponding optimizations, which are run using the Intel Core i9-10900 CPU and NVIDIA Quadro 
P620 GPU. 
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4D-printed using the grayscale digital light processing (g-DLP)[2, 4] technique. The material system is different from that of our 
previous work (Sun et al., 2022). More details on the printing method, material, and actuation mechanism are provided in Appendix B. 

Fig. 5 shows the ML-SSO design and fabrication results for four different target shapes. The ML-EA optimized designs are available 
(Sun et al., 2022) and also presented here for the evaluation of the ML-SSO performance. For each target shape, shown in four sections 
are the hand-drawn line (top left), the optimized shapes by ML-SSO (with different Nsub values, solid lines) and ML-EA (dashed lines) 
compared against the targets (symbols) (bottom left), the corresponding performance in terms of RMSE and time cost as well as the 
optimal ML-SSO design selected (RMSE < 1 mm, shown in grayscale) (bottom right), and the experimentally 4D-printed, actuated 
shape (top right). All printed strips are initially flat and only the actuated shapes are shown. For all the targets, the optimized shapes by 
both ML-SSO and ML-EA agree well with the target shapes, whilst ML-SSO is much faster than ML-EA. The optimal ML-SSO designs are 
finally converted into grayscale slices for 4D printing through g-DLP, and the printed strips transform into target shapes upon actu-
ation. These results demonstrate an ultrafast, streamlined design-fabrication paradigm for 4D printing. 

3.3. Active beams with varying numbers of lengthwise voxels: forward predictions 

The preceding sections demonstrate ultrafast inverse designs enabled by ML-SSO for both numerically generated and hand-drawn 
target shapes. However, these designs have been constrained to fixed beam length (80 mm) and voxel configuration (24 × 4 voxels) on 
which the ML model is trained, implying a relatively limited design space. For example, a configuration of Nx=24 lengthwise voxels 
might struggle to capture complicated target shapes, such as a six-period shape, which would be very challenging for Nx=24 as it would 

Fig. 5. Ultrafast ML-SSO enabled streamlined design and fabrication for 4D printing based on hand-drawn lines. Four hand-drawn targets are 
considered: (a) “G”, (b) “T”, (c) half-butterfly (the other half is also displayed), and (d) mountain. Shown in each panel includes the hand-drawn line 
(top left), optimized shapes by ML-SSO (with different Nsub values) and ML-EA (bottom left), the corresponding RMSE and time cost as well as the 
optimal ML-SSO design selected (RMSE < 1 mm, shown in grayscale) (bottom right), and the 4D-printed, actuated shape (top right). 
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require four voxels in the length direction to capture one period. Therefore, more lengthwise voxels (Nx > 24) are needed to tackle this 
design problem. 

To further enhance design capabilities, we aim for the ML-based method to address both forward and inverse problems for beam 
structures with varying lengths or Nx values. Here, we fix the voxel number Ny=4 in thickness and the voxel size. Thus, the sequential 
(column-by-column) prediction ability of the RNN-ML allows it to be directly applied to structures with different Nx values and hence 
different lengths. For the case Nx>24, we propose an ML-based splicing method, with no need for retraining the model, for forward 
predictions with different Nx values. 

As shown in Fig. 6a, an input sequence (referring to a material distribution) of any length Nx can be divided into multiple sub-
sequences with overlaps, each with a length of 24, except for the last subsequence which can be shorter than 24. We use ML to predict 
the shapes of all subsequences, and then concatenate them in order, to obtain the full-sequence shape. The predicted shapes of all 
subsequences are initially based on a fixed boundary condition on the left end, which we refer to as being in their local spaces, while 
the shape of the first subsequence is in the real space. We sequentially transform each subsequence shape into the real space by 
matching the coordinates in the overlapping regions between two consecutive subsequences. Here, we use the length of the over-
lapping region to be Noverlap=6. Note that the correct local concatenation angle cannot be determined if there is no overlapping region. 

Fig. 6. Demonstration of ML-splicing on forward prediction problems of beam structures with different Nx values. (a) Schematic of ML-splicing. (b) 
Prediction results for benchmark input sequences of different Nx values. 
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Fig. 7. Demonstration of the splicing-empowered ML-SSO on inverse design problems using different Nx (numbers lengthwise voxels) or numbers of 
sampling points. Multiple target shapes are considered, including (a) the three-period shape, (b) the hand-drawn mountain shape, (c) a six-period 
shape, and (d) a “Chinese dragon” profile. Image by brgfx on Freepik (https://www.freepik.com/free-vector/chinese-dragon-flying-clouds-isolated- 
white-background_18054261.htm). 
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Fig. 8. Applications of ML-SSO to rapid designs for active lattice structures. (a) Arbitrary edge design with half of the hand-drawn mountain as a 
target. (b) Anti-symmetric edge design with a simple wavy target. (c) Anti-symmetric edge design with two more complex target shapes. In (a-c), the 
dashed lines represent the initial shapes of edges or lattices before actuation. 
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Next, we perform forward predictions on multiple benchmark shapes of different lengths, including Nx=12, 24, 48, 72, and 96 
(Fig. 6b). The input sequences with Nx≤24 are directly predicted using the RNN-ML without accuracy degradation. The input se-
quences with Nx>24 are obtained by concatenating multiple sequences of the three-period shape and predicted using the ML-splicing 
strategy. Directly applying ML to such long sequences would yield less accurate results (see Fig. A.6 and associated text in 
Appendix A.6). By using the ML-splicing strategy, we can achieve very high prediction accuracy. Note that the ML prediction errors 
will inevitably accumulate with increasing Nx and numbers of splicing, as even a small prediction error in the subsequence could be 
retained in the shape transformation process. Nonetheless, the ML-splicing predictions remain accurate for Nx up to 72, three times 
Nx=24; a noticeable discrepancy only arises at Nx=96. Our strategy thus demonstrates excellent robustness significantly (three times) 
beyond the sequence length (Nx=24) of the ML training set. 

3.4. Active beams with varying numbers of lengthwise voxels: inverse designs 

Next, we combine ML-SSO with the splicing strategy for inverse design problems. The splicing strategy works in a slightly different 
way from the forward prediction. In the forward prediction, each subsequence shape is transformed into the real space to infer the 
correct shape. In the inverse design, instead of transforming the shapes of potential designs into the real space for comparisons against 
the target, we transform the target shape (which is initially in the real space) into the local space for optimization. This enables the 
seamless use of ML-SSO for each subsequence, bypassing unnecessary shape transformations and improving the optimization speed. 
We use multiple complicated target shapes (i.e., involving relatively sharp turns when represented using Nx=24 sampling points) to 
demonstrate the capability of our splicing-empowered ML-SSO. Fig. 7 shows the optimization results for these target shapes obtained 
with different Nx values. The optimized shapes together with the corresponding RMSEs and time cost are presented. FE simulations for 
the optimized designs are also performed, and the FE-predicted shapes and their RMSEs are provided. The first two targets are the most 
complex target shapes considered so far: the three-period shape (Fig. 7a) and the hand-drawn mountain (Fig. 7b). With the original 
Nx=24, Nsub=2 is not sufficient to accurately capture the two targets (Fig. 3c and 5d); using Nsub=3 significantly increases the accuracy 
(with RMSEs of 0.21 mm and 0.96 mm) but also takes longer optimization time (11.8 s) (Fig. 7a and 7b). By using greater Nx values (48 
and 40 respectively), which offer more sampling points, these complex targets with sharp turns can be rapidly captured with Nsub=2, 
achieving similar accuracies (with RMSEs of 0.28 mm and 0.97 mm) in much shorter times (1.97 s and 1.62 s) (Fig. 7a and 7b). To put 
these results in perspective, for the three-period shape, the FE-EA approach was estimated to need 219 days for the inverse design, the 
ML-EA approach obtained the design in 54 min, and our new approach requires merely 1.97 s. 

To further evaluate the capability of our approach, we consider a more complex six-period target shape obtained by chaining two 
three-period shapes (Fig. 7c). The original Nx=24 fails to capture this target (RMSE=3.33 mm) even with Nsub=3 (which takes 11.8 s), 
and therefore greater Nx values are used. We then use Nx=48 with Nsub=2 and achieve an improved accuracy (RMSE=2.01 mm) in a 
much shorter time (1.98 s), but an evident discrepancy can still be observed. By further increasing Nx=60, even a smaller Nsub=1 
successfully yields a high-precision optimized shape (RMSE=1.38 mm) in only 0.53 s (Fig. 7c). As the last example, we take the profile 
of a “Chinese dragon” art as the target shape and again achieve excellent optimization results (RMSE=0.29 mm) very rapidly (0.42 s 
with Nx=40 and Nsub=1) (Fig. 7d). 

These results show that although we train the ML model on a certain voxel configuration, the splicing strategy allows for ultrafast 
and accurate forward predictions and inverse designs for structures with variable Nx values and lengths by leveraging the inherent 
sequential characteristics. 

3.5. Applications to rapid designs of 4D-printed lattice structures 

The inverse designs demonstrated so far have been constrained to the AC beam structures. However, the voxel-level, ultrafast 
inverse shape-change designs for more complex structures such as lattice structures are highly desired, which could have broader 
applications but are also more challenging due to the increased number of involving voxels in an entire lattice. In this sub-section, we 
further show that by leveraging appropriate symmetries, the ML-SSO can be applied in designing the active shape transformation of 
4D-printed lattice structures. We focus on a periodic square lattice and optimize the material distribution on its edges so that they 
achieve target shapes under actuation. The design strategy can be also applied to other lattice structures, such as triangular and 
hexagonal lattices. 

First, we consider an arbitrary target edge shape. The material distribution is designed to satisfy 4-fold rotational symmetry about 
each joint to prevent mismatches in structural deformation. Due to the size limit of the printing stage, we use half of the hand-drawn 
mountain as a target (Nx=12). We adapt its optimized design for the lattice structure, validate the design through FE simulations, and 
then 4D print the lattice structure (Fig. 8a). The FE results show that all edges of the lattice transform to the desired shape. In ex-
periments, we only print individual square lattices due to the size limit. These printed lattices, initially square, transform into the target 
shape upon actuation. When tessellated, the structure matches with the FE result. The tessellation is used solely for improved visu-
alization and does not affect the actuated shape. 

Note that for an arbitrary target shape considered above, four (2 × 2) lattice cells form a periodic unit. Next, we consider anti- 
symmetric target edge shapes, which are common in lattice structures, such that a single lattice cell would be periodic. In this case, 
a translational symmetry in the material distribution is satisfied, ensuring structural compatibility. Due to the anti-symmetry of the 
edge, the design is carried out on half of the domain. For a simple wavy target (Nx=6 on its half), we perform the inverse design and 4D 
printing. The initially square lattices, when actuated and tessellated, agree excellently with the FE predictions (Fig. 8b). Furthermore, 
we consider two more complex target shapes (Nx=12 on the half) and use them for multiple lattice structures with identical target 
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shapes for all edges or distinct targets for horizontal and vertical edges. For all lattices, excellent agreement is achieved among the 
target, the optimized shape, and the actuated edge shapes of the lattice obtained from FE simulations (Fig. 8c). These results 
demonstrate the high efficacy and flexibility of our design strategy for lattice structures. 

It is worth noting that a translational symmetric material distribution can be used to ensure structural compatibility as long as the 
target edge shape has equal slopes at two ends, without necessarily being antisymmetric. Additionally, by employing appropriate 
target shapes for horizontal and vertical edges, our approach can be readily used for designing lattices with target macroscopic de-
formations, such as horizontal and vertical normal strains, shear strains, and/or rigid rotations. Moreover, our design strategy is also 
readily applicable to other lattice structures, such as triangular and hexagonal lattices. These results and discussions highlight the high 
flexibility of our approach in designing the active shape change of lattice structures. 

3.6. Discussions and potential improvements 

Although ML-SSO achieves high efficiency, there is still potential for further improvements, which are worthy of future investi-
gation. First, the cap on the Nsub is chosen to be 3, as further increasing it would significantly increase the time cost due to the brute- 
force calculation. In this case, the EA or other gradient-free algorithms may be used for the subdomain optimization to enable the use of 
larger Nsub and enhance the design capability. Second, nested or adaptive optimizations may be used. For example, we may obtain an 
initial design using a smaller Nsub=1 and then refine the design at difficult regions (e.g., with a sharp kink) using larger Nsub values. In 
addition, using adaptive Nsub values for regions with different complexities (e.g., curvatures) could potentially improve the design 
accuracy and speed. Third, pre-calculating all possible shapes for a certain subdomain size (Nsub-pre) and later searching solutions in a 
look-up table fashion may save the time of brute-force calculations. Since the pre-calculated shapes are based on a fixed boundary 
condition on its left end, a splicing strategy is needed to properly convert these shapes to the correct ones, which thus requires Nsub-pre to 
be larger than Nsub (i.e., the size of the subdomain to be optimized in SSO). 

In addition, the ML model performance may also be further improved. For example, the large prediction errors mostly happen at the 
end of the beam (see Fig. A.4 in Appendix A.3). Based on this fact, the model performance may be improved by modifying the training 
loss, such as weighting the prediction errors near the end of the beam more than those near the origin (fixed end). In addition, as we 
train two separate networks for x and y, one single RNN for two coordinates may be trained, which could further accelerate the forward 
prediction and thus the inverse design. In this case, the loss weights for the two coordinates could be optimized to improve the ac-
curacy. These potential improvements will be explored in the future. 

Even with high accuracy, the ML predictions always have errors, which, in theory, could affect the optimization accuracy. How-
ever, the probability of a significantly inaccurate prediction is very low and it is almost negligible and thus not encountered in our 
study. This is expected since the data with significant errors are only a small portion (<0.36 %) of the test set (see Fig. A.4 and 
associated text in Appendix A.3). Although the probability of such a situation is low, the following measures may be taken to mitigate 
its impact or prevent its occurrence. First, the FE simulations should always be performed to verify the optimized designs before they 
are used for 4D printing. Second, one potential improvement is to add a FE verification step in the optimization. For example, one can 
use FE simulations to re-sort top-performing candidate solutions and select the best solution based on the FE results. A similar idea was 
recently proposed by Li et al. (2023). This potential improvement will be explored in our future work. 

Moreover, our ML-SSO is focused on the design of 1D AC which leverages the remarkable efficiency of RNN for cantilever-like 
structures. However, the efficient design of higher-dimensional AC structures with 3D deformations (such as active sheets with out- 
of-plane actuation) could have broader applications, which is highly desired but also more challenging due to the higher- 
dimensional deformation behavior and significantly increased design space. The ML approach as well as the SSO and the splicing 
strategy could be potentially expanded to such problems, where the exploration and selection of appropriate network architectures will 
be important. This will be explored in our future work. 

4. Conclusions 

We present an approach for ultrafast inverse design of 4D-printed AC beams by combining ML and SSO. An RNN ML model is rapid 
and accurate in forward shape predictions based on the material distributions. We then integrate ML with SSO for the inverse design of 
material distributions based on the target shapes. For multiple target shapes of different complexities, ML-SSO outperforms or is 
comparable to ML-EA in optimization accuracy while being two to three orders of magnitude faster, delivering results in mere second 
(s). The CV-integrated ML-SSO then demonstrates an ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets. 
Furthermore, although the ML model is trained on a fixed voxel configuration (Nx=24, Ny=4), we present a splicing strategy that 
achieves accurate shape predictions for beams with varying numbers (Nx) of lengthwise voxels with no need for retraining the ML 
model. This strategy, when integrated with ML-SSO, enhances adaptability for ultrafast inverse designs, accommodating target shapes 
of diverse complexities or lengths. For highly complex target shapes, the splicing-empowered ML-SSO, simply with Nx>24, proves to 
be more robust and rapid than the regular ML-SSO (which requires Nx=24), achieving better or similar optimization results while 
reducing time cost from 11.8 s to 1.6–2 s. As a comparison, for the benchmark three-period shape, the FE-EA method was estimated to 
need 219 days for the inverse design; the ML-EA achieved the design in 54 min; the new ML-SSO with splicing strategy requires only 
1.97 s. Finally, the highly efficient ML-SSO is employed for the inverse design of active shape changes of 4D-printed lattice structures. 
Our approach thus offers an intelligent design-fabrication paradigm for 4D printing of various shape-morphing AC structures. 
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Appendix A. More information on the RNN-ML model 

A.1. Construction of the RNN model 

Our network architecture consists of a sequence input layer, an LSTM (Hochreiter and Schmidhuber, 1997) layer, a fully connected 
layer, and a regression layer. The LSTM is a special type of RNN that addresses the issues of vanishing or exploding gradients presented 
in long sequences. The implementation, training, and testing are conducted using MATLAB (2020a, MathWorks, Natick, MA). Before 
the training, all the input and output data are normalized through x’ = (x-mean(x))/std (x), where x and x’ are the raw and normalized 
feature values, respectively, and mean is the mean value and std is the standard deviation. The randomly generated raw inputs 
(numerous “1″ and “0″) show a mean value of 0.5 and a standard deviation of 0.5. As a result, the input state “0″ and “1″ become “− 1″ 
and “1″ after normalization. Such a normalization is found to improve the network performance. The hidden size (number of neurons of 
each neural layer) of LSTM is set as 500, and the LSTM layer has 200 × (500+Ny+1) learnable parameters. LSTM can process a 
sequence input of any lengths, and different time steps of LSTM share the same weights (“temporarily” invariant). 

A.2. Hyperparameters for the training and network architectures 

We perform a systematic study on the hyperparameters for the network architecture and training. The adopted hyperparameters for 
the training are listed here. The initial learning rate is set to 0.005, which decreases by multiplying a factor of 1/2 every 50 epochs. The 
training stops after the validation loss converges. The mini-batch size during training is set to 64. The adaptive moment estimation 
(Adam)[30] optimizer is used to train the network. 

The studied hyperparameters for training include the hidden size (Fig. A.1a), initial learning rate (Fig. A.1b) and mini-batch size 
(Fig. A.1c). These hyperparameters do not significantly affect the model performance. We also study different RNN architectures, such 
as stacked (multi-layer) LSTM, bi-directional LSTM, and gated recurrent unit (GRU) network (an RNN with a different gating 
mechanism). These architectures again do not significantly affect the model performance (Fig. A.2). 

In addition, we compare the performance of three ML models with different network architectures: RNN, CNN and NN. The CNN 
architecture and training parameters are described in our previous work (Sun et al., 2022), which is similar to that of the regression 
CNN used in Zhang and Gu (2020). The NN consists of five fully-connected layers with the hidden size of 100. The three models are 
trained and tested using the same datasets. Fig. A.3 shows the density scatter plots comparing the ground-truth and predicted values of 
x and y on the test set across the three ML models. The R2 value of RNN is calculated using the values of both x and y, which is thus 
slightly higher than those presented in Fig. 1. The results demonstrate that RNN achieves much higher accuracy than CNN and NN. 
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Fig. A.1. Validation loss (left for x and right for y) versus training epoch curves of the LSTM with different (a) hidden sizes, (b) initial learning rates, 
and (c) mini-batch sizes. No significant difference is found between different hyperparameters. The adopted ML model is based on the following 
hyperparameters: hidden size = 500, initial learning rate = 0.005, and mini-batch size = 64.  
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Fig. A.2. Validation loss (left for x and right for y) versus training epoch curves for different RNN architectures: LSTM, stacked LSTM, bi-directional 
LSTM, and GRU, with different hidden sizes and/or number of layers. No significant difference is found between different architectures. The adopted 
ML model is based on the LSTM architecture.  

Fig. A.3. Performance of different network architectures: (a) RNN, (b) CNN, (c) NN. For each architecture, the density scatter plot comparing the 
ground-truth and ML-predicted coordinates (x and y shown together) on the test set is shown. 

A.3. Error analysis of the ML model 

We show the statistical distribution of the prediction errors for the test set (on which Fig. 1c is plotted) in Fig. A.4a, and the ground- 
truth and ML-predicted shapes of the 10 worst cases in Fig. A.4b. If we remove the 10 worst cases (only 0.36 % portion) from the entire 
test set (size is 2800) and re-plot the density scatter graph, nearly all points are concentrated on the regression line (Fig. A.4c). These 
results demonstrate that: (1) the datapoints with significant errors in Fig. 1c are only a tiny portion of the entire test set (<0.36 %); (2) 

X. Sun et al.                                                                                                                                                                                                             



Journal of the Mechanics and Physics of Solids 186 (2024) 105561

17

even for these cases, the largest errors typically happen at the end of the beam, whilst the accuracy is very high near the beam origin 
(black symbols, Fig. A.4b). The probability of significantly inaccurate predictions is thus very low in ML-SSO. 

Fig. A.4. Study of prediction errors of the ML model. (a) Distribution of the maximum prediction error of the ML on the test dataset. The test set has 
2800 datapoints, and each datapoint represents one entire beam, which consists of a material distribution and its actuated shape. For a particular 
datapoint, the prediction error Δri, where i = 1, 2, …, Nx, is defined as the absolute distance between the i th sampling point of the ground-truth 
shape and that of the ML-predicted shape. (b) Ground-truth and ML-predicted shapes of the 10 worst cases with the highest max(Δri,) values in the 
test set. Black symbols represent the origins (fixed end) of the beams. (c) Density scatter plots of the ground-truth versus ML-predicted values of the 
coordinate x (left) and y (right) for the test set with the 10 worst cases removed.  
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A.4. Optimized ML-prediction speed for ML-SSO 

Fig. A.5. Time cost of ML predictions for different data volumes and mini-batch sizes using GPU (NVIDIA Quadro P620) or CPU (Intel Core i9- 
10900). This mini-batch size is used for the ML prediction instead of training. The optimal mini-batch size of 512 and the GPU device lead to 
fastest ML predictions and are thus adopted in our ML-SSO process. 

Moreover, to fully exploit the parallel computing capability of ML and improve the optimization speed, the shape evaluation 
process in ML-SSO is implemented through a vectorized approach, which allows all potential material distributions to be processed in 
parallel by the ML model. In addition, in ML-SSO, the number of all potential designs for each subdomain is 2^(Ny × Nsub). Therefore, 
we examine the time cost for ML prediction of different amounts of data with different batch sizes and computing devices (Fig. A.5), 
and adopt the optimal batch size of 512 and the GPU device for all Nsub values in our ML-SSO optimizations. The achieved prediction 
speed is higher than that of our previous work (Sun et al., 2022). These strategies exploit the ML capability to deliver ultrafast and 
massive predictions. 

A.5. Method of gradient calculation for Fig. 1d 

The gradients of actuated coordinates x or y with respect to the voxel encoding can be written as 

∂x / ∂Mor∂y / ∂M (5) 

Since x and y are functions of M as described by which involves differentiable operations only, we use automatic differentiation 
(AD) to evaluate the gradients in Eq.(5) through the dlgradient function in MATLAB. As defined in Section 2.1, M is an array composed 
of “1″ and “0″. Here the component of M is denoted by Mv, which represents the material encoding of voxel v, where v∈[1, Ny × Nx] 
represents the voxel number. The gradient values, ∂xi/∂Mv and ∂yi/∂Mv, for i = 12 and 24, based on an all-passive state (Mv=0 for any 
v∈[1, Ny × Nx]), are then displayed in Fig. 1d. 

Note that although the material variables (Mv) must be discrete values to be physically meaningful, they are treated as continuous 
variables when processed through the ML model. Since the ML model involves differentiable operations only, it naturally allows for the 
efficient computation of gradients via AD. Although the obtained gradients are with respect to non-continuous variables, they can 
provide high-level physical insights on the influence of each voxel input on all voxels’ coordinate output (e.g., how changes in certain 
voxels affect the deformed shape)[28]. 

A.6. Direct extrapolation of RNN on inputs with Nx>24 

Here, we test the extrapolation ability of our RNN model on input sequences with Nx > 24, i.e., use RNN to make direct predictions 
on these sequences. The results are compared with those obtained by the ML-splicing approach. As shown in Fig. A.6, the RNN model 
(which is trained on a dataset with Nx=24) does have the accuracy degradation but would not immediately lose the accuracy as Nx 
exceeds 24. It can remain accurate for Nx up to 32. This implies that RNN has learned some universal relations between consecutive 
voxel columns.  
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Fig. A.6. (a) Example material distributions with Nx>24, taken from (i) Fig. 6b and (ii - v) the optimized material distributions of cases in Fig. 7. (b) 
The corresponding FE ground-truth shapes, the ML-splicing shapes, and the ML-predicted (“ML-direct”) shapes for patterns in (a). In each case, the 
two black symbols indicate the beam origin and the location at Nx = 24, respectively. The results show that the ML prediction (or extrapolation) can 
maintain the high accuracy for Nx up to 32, whilst ML-splicing is much more robust. 

Appendix B. Experimental methods 

B.1. Materials and 4D printing 

The photocurable resin is prepared by mixing isobornyl acrylate (IOBA, Sigma-Aldrich) and aliphatic urethane diacrylate (AUD, 
Ebecryl 8402, Allnex, GA, USA) in a weight ratio of 1:1. Then, 1 wt% photoinitiator (Irgacure 819, Sigma-Aldrich), 0.08 wt% photo 
absorber (Sudan I, Sigma-Aldrich), and 0.04 wt% fluorescent dye (Solvent green 5, Orichem International Ltd., Hangzhou, Zhejiang, 
China) are added. The resin is thoroughly mixed before printing. 

The grayscale digital light processing (g-DLP) printing technique (Yue et al., 2023) is used to print the designed structure, where the 
degree of curing (DoC) can be locally controlled by the assigned light intensity. Our ML-SSO designs are transformed into grayscale 
printing slices, where the active (“1″) and passive (“0″) phases correspond to grayscale percentages of 0 % (hence higher light intensity) 
and 60 % (hence lower light intensity), respectively, which later spatially assign the high-DoC and low-DoC phases in the printed 
structure, respectively. The printed structure is then placed in an 80 ◦C oven for 8 h to facilitate monomer volatilization. The low-DoC 
phase contains more residual monomers that can volatize and thus shows more volume shrinkage than the high-DoC phase at elevated 
temperatures. The shrinkage strain mismatch of the two phases induces the shape transformation. 

B.2. Modification of optimal designs 

Note that the material properties in experiments are different from those used in FE simulations. Experimental characterizations 
show that the printed two material phases show a modulus ratio of 0.06, while the ML-EA design assumes the identical modulus for two 
constituent phases. Additionally, the practical expansion mismatch is identified to be 0.05, which is also different from that used in ML- 
EA (i.e., 0.1). Such issues can be resolved by retraining the ML model based on the FE data with practical material properties 
(expansion mismatch and modulus difference) and re-running the ML-EA. Here, instead of retraining a new model, we adopt a design 
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conversion strategy (Sun et al., 2022) to approximately compensate effects of property difference of the two phases on the shape 
change, i.e., the optimal designs are converted using the analytical curvatures of multi-layer composite beams. The effectiveness of this 
strategy has been validated by FE simulations and experiments, as detailed in our previous work (Sun et al., 2022). 

References 

Athinarayanarao, D., et al., 2023. Computational design for 4D printing of topology optimized multi-material active composites. npj Comput. Mater. 9 (1), 1. 
Chen, C.-T., Gu, G.X., 2019. Effect of constituent materials on composite performance: exploring design strategies via machine learning. Adv. Theory Simul. 2 (6), 

1900056. 
Cheng, J., et al., 2022. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat. Commun. 13 (1), 7931. 
Demoly, F., et al., 2021. The status, barriers, challenges, and future in design for 4D printing. Mater. Des. 212, 110193. 
Ge, Q., Qi, H.J., Dunn, M.L., 2013. Active materials by four-dimension printing. Appl. Phys. Lett. 103 (13), 131901. 
Geiss, M.J., et al., 2019. Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation. J. Mech. Des. 

(5), 141. 
Gu, G.X., et al., 2018. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5 (5), 

939–945. 
Guo, K., et al., 2021. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8 (4), 1153–1172. 
Hamel, C.M., et al., 2019. Machine-learning based design of active composite structures for 4D printing. Smart Mater. Struct. 28 (6), 065005. 
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780. 
Kingma, D.P., Ba, J., 2014. arXiv preprint. 
Kuang, X., et al., 2019. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 5 (5), eaav5790. 
Li, X., et al., Physics-supervised deep learning–based optimization (PSDLO) with accuracy and efficiency. 2023. 120(35): p. e2309062120. 
Maute, K., et al., 2015. level set topology optimization of printed active composites. J. Mech. Des. 137 (11), 111402. 
Rawat, S., Shen, M., 2018. arXiv preprint. 
Roach, D.J., et al., 2021. Utilizing computer vision and artificial intelligence algorithms to predict and design the mechanical compression response of direct ink write 

3D printed foam replacement structures. Addit. Manuf. 41, 101950. 
Sigmund, O., 2011. On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43 (5), 589–596. 
Sossou, G., et al., 2019. Design for 4D printing: modeling and computation of smart materials distributions. Mater. Des. 181, 108074. 
Sun, X., et al., 2022. Machine learning-evolutionary algorithm enabled design for 4d-printed active composite structures. Adv. Funct. Mater., 2109805. n/a(n/a).  
Sun, X., et al., 2024. Perspective: machine learning in design for 3D/4D printing. J. Appl. Mech. 91 (3), 030801. 
Tanaka, M., et al., 2023. Turing pattern-based design and fabrication of inflatable shape-morphing structures. Sci. Adv. 9 (6), eade4381. 
Wang, C., et al., 2021a. A comprehensive review of educational articles on structural and multidisciplinary optimization. Struct. Multidiscip. Optim. 64 (5), 

2827–2880. 
Wang, L., et al., 2021b. Evolutionary design of magnetic soft continuum robots. Proc. Natl. Acad. Sci. 118 (21), e2021922118. 
Wilt, J.K., Yang, C., Gu, G.X., 2020. accelerating auxetic metamaterial design with deep learning. Adv. Eng. Mater. 22 (5), 1901266. 
Wu, S., et al., 2020. Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Adv. Intell. Syst. 2 (8), 2000060. 
Yang, Z., Yu, C.-H., Buehler, M.J., 2021. Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci. Adv. 7 (15), eabd7416. 
Yue, L., et al., 2023b. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun. 14 (1), 5519. 
Yue, L., et al., 2023a. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat. 

Commun. 14 (1), 1251. 
Zhang, Z., Gu, G.X., 2020. Finite-element-based deep-learning model for deformation behavior of digital materials. Adv. Theory Simul. 3 (7), 2000031. 
Zhao, Z., Zhang, X.S., 2022. Topology optimization of hard-magnetic soft materials. J. Mech. Phys. Solids 158, 104628. 
Zolfagharian, A., et al., 2020. Topology-optimized 4D printing of a soft actuator. Acta Mech. Solida Sin. 33 (3), 418–430. 
Zolfagharian, A., et al., 2021. 4D printing soft robots guided by machine learning and finite element models. Sens. Actuat. A 328, 112774. 

X. Sun et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0001
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0002
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0002
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0003
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0004
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0005
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0006
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0006
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0007
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0007
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0008
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0009
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0010
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0011
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0012
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0014
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0015
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0016
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0016
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0017
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0018
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0019
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0020
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0021
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0022
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0022
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0023
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0024
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0025
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0026
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0027
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0028
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0028
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0029
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0030
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0031
http://refhub.elsevier.com/S0022-5096(24)00027-9/sbref0032

	Machine learning and sequential subdomain optimization for ultrafast inverse design of 4D-printed active composite structures
	1 Introduction
	2 Models and methods
	2.1 Physical problem
	2.2 Finite element model
	2.3 RNN-based ML model for forward predictions
	2.4 Performance of the ML model
	2.5 ML-SSO approach for ultrafast inverse design

	3 Results and discussions
	3.1 Performance of ML-SSO on numerically generated target shapes
	3.2 ML-SSO enabled, streamlined 4D printing design and fabrication based on hand-drawn lines
	3.3 Active beams with varying numbers of lengthwise voxels: forward predictions
	3.4 Active beams with varying numbers of lengthwise voxels: inverse designs
	3.5 Applications to rapid designs of 4D-printed lattice structures
	3.6 Discussions and potential improvements

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. More information on the RNN-ML model
	A.1. Construction of the RNN model
	A.2. Hyperparameters for the training and network architectures
	A.3. Error analysis of the ML model
	A.4. Optimized ML-prediction speed for ML-SSO
	A.5. Method of gradient calculation for Fig. 1d
	A.6. Direct extrapolation of RNN on inputs with Nx>24

	Appendix B. Experimental methods
	B.1. Materials and 4D printing
	B.2. Modification of optimal designs

	References


