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ABSTRACT

This paper presents a machine learning-enabled approach for achieving modulus tunability in hierarchical archi-
tectures, with a specific focus on the inverse design of modulus properties in both the x- and y-directions. By
leveraging finite element analysis, a comprehensive dataset was generated, capturing the relationships between
material allocation and directional modulus properties across isotropic and anisotropic configurations. A machine
learning model was trained to predict the x- and y-directional modulus with remarkable accuracy (R-squared can
reach 0.9997), enabling precise forward predictions of mechanical behavior. To achieve targeted modulus proper-
ties, an evolutionary algorithm was employed for inverse design, optimizing material allocations to match desired
modulus magnitudes with high precision. This dual-direction modulus design methodology offers a powerful
framework for tailoring hierarchical architectures to specific mechanical requirements, advancing applications in
fields such as soft robotics, aerospace, and advanced manufacturing. The integration of machine learning and
optimization highlights the potential for data-driven strategies in the design of customizable material systems.

Keywords: hierarchical architectures, modulus tunability, machine learning-enabled design, directional modu-
lus, inverse design, evolutionary algorithm, data-driven materials design

1. INTRODUCTION

The design and optimization of materials with tunable mechanical properties have garnered significant attention
in recent years, driven by the growing demand for advanced materials in applications such as aerospace,1–5 soft
robots,6–10 and biomedical devices.11–13 Hierarchical architectures, characterized by their multi-scale structural
organization, offer a promising solution for achieving such tunability. By strategically controlling material com-
position and distribution, hierarchical architectures enable the customization of mechanical responses, including
modulus properties,14 stress-strain distribution,15,16 and even 4D printing effect,17–21 to meet specific functional
requirements.

Modulus tunability is essential for engineering materials with specific directional properties. Some applica-
tions require anisotropic behavior, while others need isotropic responses. Hierarchical architectures offer great
potential, but designing them is challenging. The relationship between material distribution and mechanical
properties is complex. Traditional trial-and-error methods are inefficient and often overlook better design possi-
bilities.

Recent advancements in computational and machine learning techniques have provided effective tools to
address these challenges.22 Hierarchical architecture design research has primarily focused on two directions:
optimizing mechanical properties, such as stiffness and toughness, and predicting or designing deformed shapes
under stimuli. Numerous studies have employed machine learning to enhance forward prediction and inverse
design in hierarchical architectures. For optimizing mechanical properties, Gu et al. utilized machine learning
models to predict and optimize mechanical properties, achieving configurations with superior toughness and
strength compared to baseline designs.23,24 Similarly, generative design approaches have been explored, such
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as those by Chen and Gu, who developed a generative inverse design network to optimize hierarchical architec-
tures for maximal toughness.25 Other researchers have focused on using neural networks and deep reinforcement
learning to optimize architectures for specific mechanical properties, including stiffness and stress-strain behav-
ior.26–31 The second research direction focuses on predicting or designing the deformed shapes of hierarchical
architectures when subjected to external forces or stimuli, such as stretching or heating. Zhang and Gu em-
ployed a physics-informed neural network (PINN) to predict deformed shapes without relying on ground truth
data, using the principle of energy minimization as the optimization criterion.32 Zhao et al. integrated machine
learning with evolutionary algorithms to optimize grayscale material distributions in 3D-printed components,
achieving desired deformed shapes.33 Additionally, Jin et al. proposed a residual neural network combined with
evolutionary optimization to design hierarchical architectures with non-rectangular deformed configurations.34,35

Sun et al. extended these approaches by using machine learning and evolutionary algorithms to design 4D print-
ing effects for 2D rods and 3D plates, showcasing the versatility of such frameworks in tailoring deformation
responses.36–38

Despite these advances, the inverse design of directional modulus properties in hierarchical architectures has
received limited attention. Designing for tunable modulus in x- and y-directions, whether isotropic or anisotropic,
is critical for applications requiring precise control of material behavior. Addressing this gap, we present a
machine learning-enabled framework for inverse design of modulus properties in hierarchical architectures.

In this paper, we present a machine learning-enabled framework for the inverse design of modulus properties
in hierarchical architectures, focusing on tunability in the x- and y-directions. Using Finite Element Analysis
(FEA), we generate a dataset of material allocations and their corresponding modulus properties, which serves
as the foundation for training a highly accurate predictive model (R2 = 0.9997). We further employ an evolu-
tionary algorithm to achieve precise inverse design, optimizing material distributions to match desired modulus
magnitudes. Our approach enables both isotropic and anisotropic designs, offering good flexibility in tailoring
hierarchical architectures.

The remainder of this paper is organized as follows. Section 2 describes the methodology, including FEA-
based dataset generation, machine learning model development, and inverse design using evolutionary algorithms.
Section 3 presents results and discussions, highlighting the performance of the predictive model and the effec-
tiveness of the inverse design framework. Finally, Section 4 concludes the paper with a discussion of potential
applications and future directions.

2. METHODOLOGY

2.1 Overview

This study presents a computational framework for designing hierarchical materials with tunable mechanical
properties. It combines FEA, machine learning, and an evolutionary algorithm. The workflow begins with the
generation of a dataset using FEA simulations, which captures the relationship between material allocation and
resulting properties, specifically the modulus in the x- and y-directions.

Next, a machine learning model is trained to perform forward prediction. This model estimates mechanical
properties based on material configurations, establishing a robust relationship between input structural config-
urations and output properties.

Finally, an evolutionary algorithm is employed for inverse optimization. This step identifies the optimal
material allocation that achieves the desired mechanical properties in the x- and y-directions. The combination
of these methods ensures a systematic and efficient approach to material design.

2.2 Dataset Generation with Finite Element Analysis

The dataset generation process in this study relies on FEA simulations and requires significant computational
resources. We utilize a Python-based automation process to generate the necessary datasets. This method
runs Abaqus simulations using Python scripts in a multi-process framework, enabling efficient and parallel
computation across 32 separate processes. The task involves generating 80,000 unique datasets, which takes four
hours to complete using this approach.
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The computer we use for this paper is equipped with a 13th Gen Intel® Core™ i9-13900K processor, which
operates at a base frequency of 3.00 GHz. The system has 64.0 GB of installed RAM. The computer features an
NVIDIA® GeForce RTX™ 4090 GPU.

In this study, the dataset generation process involves simulating the mechanical response of a 16 mm by 16
mm part that is divided into a grid of 40 by 40 voxels. Each voxel has a size of 0.4 mm by 0.4 mm. The analysis
aims to investigate the behavior of two different materials in the hierarchical architecture: a soft material and
a hard material. The soft material is assigned a Young’s Modulus of 1.27 MPa, while the hard material has a
Young’s Modulus of 400 MPa. The mesh size in the simulation is 0.05 mm. To perform the analysis, a reference
point is created at the boundary for displacement-based evaluation. This reference point connects to the right
boundary’s edges, allowing the application of constraints and loads. The left edge remains fixed, while a 5.0
mm displacement is applied to the right edge to simulate deformation. After the simulation, a Python script
automatically extracts Young’s modulus from the .odb (output database) file in Abaqus.

The results of the dataset generation process are visualized in Figure 1. Figure 1(a) illustrates the distribution
of the ratio of soft material across the dataset, which indicates the variety in material composition. Figure 1(b)
shows the relationship between the ratio of soft material and the corresponding Young’s modulus. Finally, Figure
1(c) presents a comparative analysis of Young’s modulus in the x-direction (Ex) and y-direction (Ey).

(a) (b) (c)

Figure 1: Visualization of dataset characteristics. (a) Distribution of the ratio of soft materials across the dataset.
(b) Relationship between the ratio of soft materials and Young’s modulus. (c) Comparison of Young’s modulus
in the x-direction (Ex) and y-direction (Ey).

2.3 Machine Learning for Forward Prediction

The machine learning framework employed for forward prediction in this study is based on a convolutional neural
network (CNN) architecture, specifically designed to handle the complex relationships between input structural
configurations and output material properties. The workflow integrates data preparation, model building, and
training into a cohesive pipeline, ensuring accurate predictions of material behavior under varying conditions.
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Figure 2: CNN architecture for forward prediction.
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The CNN architecture used for forward prediction is shown in Figure 2. The input to the model is a matrix
representing the material allocation in the hierarchical structure. This input undergoes multiple convolutional
layers, including Conv2D-32 and Conv2D-64, followed by a dense layer, and finally produces the output prediction
for the material properties. This design captures spatial relationships and effectively maps the input structure
to its corresponding mechanical behavior.

The process begins with the preparation of a substantial dataset comprising 80,000 samples. The dataset
includes input matrices and corresponding outputs for Young’s modulus, both preprocessed and normalized
to enhance model convergence. The input data, originally represented as 0 for hard material and 1 for soft
material, is normalized to −1 and 1. The output data normalization is based on the calculated mean and
standard deviation. The data is then split into training and validation subsets, with 80% allocated for training
and 20% for validation to monitor and evaluate model performance during training.

2.4 Evolutionary Algorithm for Inverse Design

The evolutionary algorithm implemented for inverse design leverages a framework combining genetic opera-
tions, fitness evaluation, and population management to optimize material configurations for specific mechanical
properties. This section outlines the algorithm’s methodology and mechanisms in detail.

2.4.1 Initialization and Population Generation

The algorithm begins with the generation of an initial population consisting of 1,000 individuals, each represented
as a binary chromosome of length 1,600, corresponding to a 40×40 material matrix. These chromosomes encode
material configurations with binary values indicating the allocation of either a soft or hard material. The initial
population is created randomly to ensure diverse solutions, which forms the basis for evolutionary exploration
and exploitation.

2.4.2 Fitness Evaluation and Normalization

The fitness evaluation process is designed to assess each individual in the population based on their predicted
Young’s modulus in the x- and y-directions. The process begins by reshaping each individual, represented as
a one-dimensional array, into a 40 × 40 × 1 tensor to match the input format required by the CNN model. To
ensure the data is appropriately scaled for the model, the reshaped input undergoes normalization through a
predefined normalization function (0 to −1 and 1 to 1). This step standardizes the values, preparing the input
for accurate predictions.

After normalization, a batch dimension is added to the input data, making it compatible with the requirements
of the CNN model for prediction. The model then processes the input and predicts the Young’s modulus values
for the x- and y-directions. These predictions are initially output as normalized values and are subsequently
denormalized using predefined mean and standard deviation values. This denormalization step recovers the
actual Young’s modulus values, ensuring that the predictions are expressed in meaningful physical terms.

The fitness evaluation follows two objectives. The first measures the absolute difference between the predicted
Young’s modulus in the x-direction and the target value. This captures the deviation along the x-axis. The
second measures the same difference in the y-direction and the target modulus, assessing accuracy along the
y-axis. These objectives are defined as

Fx = |Predicted modulusx − Target modulusx|

and
Fy = |Predicted modulusy − Target modulusy|,

respectively.

The fitness function then returns a pair of scores, (Fx, Fy). These scores represent the individual’s performance
in both directions. This approach ensures a comprehensive evaluation, guiding the optimization process toward
the desired material properties.
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2.4.3 Selection of Elite Individuals

The selection process prioritizes individuals with optimal Young’s modulus in both directions. First, the fitness
of each individual is evaluated, producing two scores: Fx and Fy. These values determine the fitness in the x-
and y-directions, respectively.

The population is then sorted separately based on Fx and Fy. From these sorted lists, the top 30% of
individuals with the highest Fx scores and the top 30% of individuals with the highest Fy scores are selected.
These groups are referred to as ex and ey, representing elite individuals in the x- and y-directions, respectively.

The intersection of ex and ey is computed, identifying the set of overlapping individuals eo who exhibit high
fitness in both directions. These overlapping individuals are preserved to form part of the next generation, as
they represent solutions with strong anisotropic properties.

Individuals in ex \ eo and ey \ eo (those who are not overlapping elites) are then selected as parents for
crossover operations, contributing to the generation of offspring for the next population. This ensures diversity
while retaining individuals with high fitness properties.

2.4.4 Genetic Operators: Crossover and Mutation

Genetic operators, specifically crossover and mutation, play a pivotal role in the evolutionary process by facili-
tating the generation of offspring with potentially enhanced properties. These mechanisms are instrumental in
maintaining diversity within the population and enabling a thorough exploration of the solution space to identify
optimal configurations.

In the proposed evolutionary algorithm, the crossover operation is designed to combine genetic material from
selected parents, generating offspring with a blend of advantageous traits. The process begins with crossover
among elite individuals. For these elites, crossover is performed separately along the x-direction and y-direction,
with two methods applied: row exchange and column exchange. Specifically, 50% of the crossover operations
are carried out via row exchange, and the remaining 50% via column exchange. During row exchange, a ran-
dom number of rows is selected for crossover, with both the starting and ending indices determined randomly.
Similarly, in column exchange, random column ranges are swapped between the parent individuals.

Following the crossover of elite individuals, an additional 30% of the general population, referred to as normal
individuals, are randomly selected to undergo crossover. The same division of operations—50% row exchange
and 50% column exchange—is applied to these individuals, ensuring the generation of diverse offspring.

The mutation operation is introduced to preserve genetic diversity and explore the search space. Individuals
are selected for mutation from the entire population, with their number calculated as:

Population size−Number of overlapping elites−Number of offspring from crossover− 2.

Mutation is performed in both row and column dimensions. Each dimension is further divided into two equal
parts. For the first part of row mutation, specific rows are randomly selected (with start and end indices
determined randomly), and their values are flipped (i.e., 0 → 1 and 1 → 0). For the second part, values within
the selected rows are replaced with randomly generated binary numbers (0 or 1). The column mutation follows
an analogous procedure.

To ensure specific anisotropic performance properties, two deterministic individuals—one composed entirely
of 0s and the other of 1s—are added to the offspring pool. The new population is then constructed by combining
the overlapping elites, the offspring generated by crossover, the offspring generated by mutation, and the two
deterministic individuals. The total population size is maintained at 1000.

2.4.5 Population Filtering and Replenishment

The evaluation process identifies the best individual in each iteration using the Root Mean Square Error (RMSE)
of fitness scores. This helps ensure precise convergence toward the desired material properties.

First, overlapping elites are identified by selecting top-performing individuals in both the x- and y-directions.
These elites are then evaluated using their fitness scores. The RMSE is calculated for each elite to measure their
overall deviation from target properties. This produces a single scalar value, simplifying the comparison process.
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The overlapping elites are then sorted based on their RMSE values in ascending order, with the individual
exhibiting the lowest RMSE considered the best candidate. This sorting process ranks the elites, ensuring that
the optimization prioritizes solutions with the smallest overall error.

From the sorted list, the best individual (the one with the lowest RMSE) is selected as the top-performing
candidate for the current generation. This individual is stored for later analysis and reporting. Additionally, the
corresponding fitness scores for the x- and y-directions are extracted and recorded for tracking the optimization
progress.

2.4.6 Iterative Evolution and Optimization

The evolutionary loop iterates for 1,000 generations, continually refining the population towards configurations
that minimize the RMSE between predicted and target mechanical properties. The dynamic selection, crossover,
and mutation mechanisms ensure that the algorithm balances exploration of the solution space with the exploita-
tion of high-quality solutions.

Algorithm 1: Evolutionary Algorithm for Inverse Design

Input:
• Target Young’s modulus: (Modulustargetx ,Modulustargety )

• Population size: 1000

• Chromosome length: 1600

• Matrix dimensions: 40× 40

• Number of generations: 1000

Output: Best material configuration with minimized RMSE.

1. Initialization:
Generate an initial population of 1000 individuals;
Each individual is represented as a binary chromosome of length 1600;

2. Iterative Evolution (for each generation):
a. Fitness Evaluation:

Reshape each chromosome to a 40× 40× 1 tensor;
Normalize the input data;
Predict Young’s modulus in the x- and y-directions using the CNN model;
Denormalize predictions to recover actual values;
Calculate fitness scores:

Fx = |Predicted modulusx − Target modulusx|, Fy = |Predicted modulusy − Target modulusy|

b. Selection of Elite Individuals:
Sort population by Fx and Fy;
Select top 30% based on Fx as ex and Fy as ey;
Compute overlapping elites, eo = ex ∩ ey;
Retain eo for the next generation;
Select ex \ eo and ey \ eo as parents for crossover;
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Algorithm 1: Evolutionary Algorithm for Inverse Design (continued)

c. Genetic Operators:
Crossover:
Perform row exchange for 50% of parents;
Perform column exchange for the other 50%;
Apply the same to 30% of normal individuals;
Mutation:
Calculate the number of individuals for mutation:

Mutation count = Population size− |eo| − Crossover offspring− 2

Perform row and column mutations:
• Flip random values in one-half of selected rows/columns.

• Replace random values in the other half.

Add two deterministic individuals (all 0s and all 1s);
Construct the new population by combining eo, crossover offspring, mutated individuals, and
deterministic individuals;

d. Population Filtering:
Evaluate RMSE for overlapping elites in eo:

RMSE =

√
F 2
x + F 2

y

2

Sort eo by RMSE in ascending order;
Select the individual with the lowest RMSE as the best candidate;

3. Output Results:
After 1000 generations, return the best material configuration and its fitness scores.

3. RESULTS AND DISCUSSION

3.1 Forward Prediction Results

To validate the performance of our forward prediction model, we generated an additional dataset comprising
80,000 samples, each containing input material configurations and corresponding output data. The output data,
representing the ground truth, was obtained through simulation.

(a) (b) (c)

Figure 3: Performance of the forward prediction model. (a) Training loss and validation loss for the forward
prediction model. (b) Comparison of ground truth Ex values with predicted Ex values. (c) Comparison of
ground truth Ey values with predicted Ey values.
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Using the forward prediction model, we predicted the Young’s modulus values (Ex and Ey) for the 80,000
material allocations. To visually and quantitatively assess the model’s performance, the training loss and the
validation loss were shown in Figure 3(a), which illustrates that for both training loss and validation loss, the
value will decrease to a small amount (less than 10−1). We also plotted the ground truth values (x-axis) against
the predicted values (y-axis) for both Ex (Figure 3(b)) and Ey (Figure 3(c)). The resulting scatter plots exhibit
points that are closely aligned with the y = x line, signifying an excellent agreement between the predicted and
simulated values.

Moreover, the coefficient of determination (R2) was calculated for both Ex and Ey, yielding values of 0.9997
in each case. This high R2 score demonstrates the good predictive accuracy of our model and confirms its
capability to generalize effectively to unseen data. The clustering of data points along the y = x line further
corroborates the robustness of the model, highlighting its reliability in forward predictions.

3.2 Inverse Design Results

To evaluate the performance of the evolutionary algorithm we designed, we selected nine target points with
specified Young’s modulus (Ex, Ey) values as follows:

(100, 100) MPa, (200, 100) MPa, (300, 100) MPa,

(100, 200) MPa, (200, 200) MPa, (300, 200) MPa,

(100, 300) MPa, (200, 300) MPa, (300, 300) MPa.

For each target point, the evolutionary algorithm was employed to determine the near-optimal material
allocation. Subsequently, the machine learning model was used to predict the Ex and Ey values for these
optimized material allocations. These predicted values were then compared with the ground truth Ex and Ey,
which were obtained through simulation of the optimized material allocations.

Evolution

(a) (b)

Figure 4: Performance of the inverse optimization framework. (a) Comparison of the target, machine learning-
predicted results for the optimized material allocation, and simulation results for the optimized material alloca-
tion. (b) Evolution process during optimization with a target of Ex = 200 MPa and Ey = 100 MPa, illustrating
the iterative improvement toward the target properties.

The results for all cases are presented in Figure 4(a). In this figure:

• Squares represent the target modulus values (Ex, Ey).

• Triangles represent the machine learning-predicted performance of the optimized material allocations.
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• Circles represent the simulated (ground truth) performance of the optimized material allocations.

From Figure 4(a), it can be observed that the three types of data—target values, machine learning predic-
tions, and simulated results—are closely aligned. This alignment demonstrates the accuracy and effectiveness
of the proposed inverse optimization algorithm in achieving material allocations that satisfy the target modulus
requirements.

To further illustrate the optimization process, we selected one representative case with a target modulus
of (200, 100) MPa. The evolution of the root mean square error over generations for this case is depicted in
Figure 4(b). The RMSE decreases rapidly as the number of generations increases, eventually converging to
a minimal value. This rapid convergence highlights the efficiency of the evolutionary algorithm in optimizing
material configurations. The velocity of error reduction, particularly in the early generations, further underscores
the robustness of our approach. These results validate the excellent performance of the evolutionary algorithm,
making it a reliable tool for inverse optimization of material properties.

4. CONCLUSIONS & FUTURE WORKS

This study presented a machine learning-enabled framework for designing hierarchical architectures with tunable
modulus in the x- and y-directions. The approach combined finite element analysis, convolutional neural net-
works, and evolutionary algorithms. It achieved high accuracy (R2 = 0.9997) in predicting mechanical properties.
The framework also optimized material configurations for both isotropic and anisotropic designs.

While effective, this work leaves room for further exploration. Future research could enhance material com-
plexity by using multi-phase materials with gradient properties. This approach may improve tunability and
expand the design space, leading to more versatile applications. Another promising direction is extending the
framework to three-dimensional hierarchical structures. Moving beyond two-dimensional designs could unlock
new possibilities and address existing limitations. Testing designed architectures under dynamic or multi-axial
loading is also essential. Real-world conditions involve complex forces. Investigating these scenarios would
improve durability and functionality. Experimental validation remains a key challenge. Physical prototyping
with multi-material 3D printing would help bridge the gap between theory and practice. Testing real models is
necessary to confirm predictions and refine designs. Finally, integrating additional properties such as thermal,
electrical, or acoustic characteristics could open doors to multifunctional applications. Addressing these factors
would enhance the relevance of hierarchical architectures across various industries.
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